exynos-cpufreq.c 8.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/*
 * Copyright (c) 2010-2011 Samsung Electronics Co., Ltd.
 *		http://www.samsung.com
 *
 * EXYNOS - CPU frequency scaling support for EXYNOS series
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
*/

#include <linux/kernel.h>
#include <linux/err.h>
#include <linux/clk.h>
#include <linux/io.h>
#include <linux/slab.h>
#include <linux/regulator/consumer.h>
#include <linux/cpufreq.h>
#include <linux/suspend.h>

21
#include <plat/cpu.h>
22

23 24
#include "exynos-cpufreq.h"

25 26 27 28 29 30 31 32 33
static struct exynos_dvfs_info *exynos_info;

static struct regulator *arm_regulator;
static struct cpufreq_freqs freqs;

static unsigned int locking_frequency;
static bool frequency_locked;
static DEFINE_MUTEX(cpufreq_lock);

34
static int exynos_verify_speed(struct cpufreq_policy *policy)
35 36 37 38 39
{
	return cpufreq_frequency_table_verify(policy,
					      exynos_info->freq_table);
}

40
static unsigned int exynos_getspeed(unsigned int cpu)
41 42 43 44
{
	return clk_get_rate(exynos_info->cpu_clk) / 1000;
}

45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
static int exynos_cpufreq_get_index(unsigned int freq)
{
	struct cpufreq_frequency_table *freq_table = exynos_info->freq_table;
	int index;

	for (index = 0;
		freq_table[index].frequency != CPUFREQ_TABLE_END; index++)
		if (freq_table[index].frequency == freq)
			break;

	if (freq_table[index].frequency == CPUFREQ_TABLE_END)
		return -EINVAL;

	return index;
}

static int exynos_cpufreq_scale(unsigned int target_freq)
62 63 64
{
	struct cpufreq_frequency_table *freq_table = exynos_info->freq_table;
	unsigned int *volt_table = exynos_info->volt_table;
65 66
	struct cpufreq_policy *policy = cpufreq_cpu_get(0);
	unsigned int arm_volt, safe_arm_volt = 0;
67
	unsigned int mpll_freq_khz = exynos_info->mpll_freq_khz;
68
	int index, old_index;
69
	int ret = 0;
70 71

	freqs.old = policy->cur;
72
	freqs.new = target_freq;
73
	freqs.cpu = policy->cpu;
74

75
	if (freqs.new == freqs.old)
76 77
		goto out;

78 79 80 81 82
	/*
	 * The policy max have been changed so that we cannot get proper
	 * old_index with cpufreq_frequency_table_target(). Thus, ignore
	 * policy and get the index from the raw freqeuncy table.
	 */
83 84 85
	old_index = exynos_cpufreq_get_index(freqs.old);
	if (old_index < 0) {
		ret = old_index;
86 87 88
		goto out;
	}

89 90 91
	index = exynos_cpufreq_get_index(target_freq);
	if (index < 0) {
		ret = index;
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
		goto out;
	}

	/*
	 * ARM clock source will be changed APLL to MPLL temporary
	 * To support this level, need to control regulator for
	 * required voltage level
	 */
	if (exynos_info->need_apll_change != NULL) {
		if (exynos_info->need_apll_change(old_index, index) &&
		   (freq_table[index].frequency < mpll_freq_khz) &&
		   (freq_table[old_index].frequency < mpll_freq_khz))
			safe_arm_volt = volt_table[exynos_info->pll_safe_idx];
	}
	arm_volt = volt_table[index];

108 109
	for_each_cpu(freqs.cpu, policy->cpus)
		cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
110 111 112 113

	/* When the new frequency is higher than current frequency */
	if ((freqs.new > freqs.old) && !safe_arm_volt) {
		/* Firstly, voltage up to increase frequency */
114 115 116 117 118 119
		ret = regulator_set_voltage(arm_regulator, arm_volt, arm_volt);
		if (ret) {
			pr_err("%s: failed to set cpu voltage to %d\n",
				__func__, arm_volt);
			goto out;
		}
120 121
	}

122 123
	if (safe_arm_volt) {
		ret = regulator_set_voltage(arm_regulator, safe_arm_volt,
124
				      safe_arm_volt);
125 126 127 128 129 130
		if (ret) {
			pr_err("%s: failed to set cpu voltage to %d\n",
				__func__, safe_arm_volt);
			goto out;
		}
	}
131 132

	exynos_info->set_freq(old_index, index);
133

134 135
	for_each_cpu(freqs.cpu, policy->cpus)
		cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
136 137 138 139 140 141 142

	/* When the new frequency is lower than current frequency */
	if ((freqs.new < freqs.old) ||
	   ((freqs.new > freqs.old) && safe_arm_volt)) {
		/* down the voltage after frequency change */
		regulator_set_voltage(arm_regulator, arm_volt,
				arm_volt);
143 144 145 146 147
		if (ret) {
			pr_err("%s: failed to set cpu voltage to %d\n",
				__func__, arm_volt);
			goto out;
		}
148 149
	}

150 151 152 153 154 155 156 157 158 159 160 161 162
out:

	cpufreq_cpu_put(policy);

	return ret;
}

static int exynos_target(struct cpufreq_policy *policy,
			  unsigned int target_freq,
			  unsigned int relation)
{
	struct cpufreq_frequency_table *freq_table = exynos_info->freq_table;
	unsigned int index;
163
	unsigned int new_freq;
164
	int ret = 0;
165 166 167 168 169 170 171 172 173 174

	mutex_lock(&cpufreq_lock);

	if (frequency_locked)
		goto out;

	if (cpufreq_frequency_table_target(policy, freq_table,
					   target_freq, relation, &index)) {
		ret = -EINVAL;
		goto out;
175 176
	}

177
	new_freq = freq_table[index].frequency;
178

179
	ret = exynos_cpufreq_scale(new_freq);
180

181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
out:
	mutex_unlock(&cpufreq_lock);

	return ret;
}

#ifdef CONFIG_PM
static int exynos_cpufreq_suspend(struct cpufreq_policy *policy)
{
	return 0;
}

static int exynos_cpufreq_resume(struct cpufreq_policy *policy)
{
	return 0;
}
#endif

/**
 * exynos_cpufreq_pm_notifier - block CPUFREQ's activities in suspend-resume
 *			context
 * @notifier
 * @pm_event
 * @v
 *
 * While frequency_locked == true, target() ignores every frequency but
 * locking_frequency. The locking_frequency value is the initial frequency,
 * which is set by the bootloader. In order to eliminate possible
 * inconsistency in clock values, we save and restore frequencies during
 * suspend and resume and block CPUFREQ activities. Note that the standard
 * suspend/resume cannot be used as they are too deep (syscore_ops) for
 * regulator actions.
 */
static int exynos_cpufreq_pm_notifier(struct notifier_block *notifier,
				       unsigned long pm_event, void *v)
{
217
	int ret;
218 219 220

	switch (pm_event) {
	case PM_SUSPEND_PREPARE:
221
		mutex_lock(&cpufreq_lock);
222
		frequency_locked = true;
223
		mutex_unlock(&cpufreq_lock);
224

225 226 227
		ret = exynos_cpufreq_scale(locking_frequency);
		if (ret < 0)
			return NOTIFY_BAD;
228 229 230 231

		break;

	case PM_POST_SUSPEND:
232
		mutex_lock(&cpufreq_lock);
233
		frequency_locked = false;
234
		mutex_unlock(&cpufreq_lock);
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
		break;
	}

	return NOTIFY_OK;
}

static struct notifier_block exynos_cpufreq_nb = {
	.notifier_call = exynos_cpufreq_pm_notifier,
};

static int exynos_cpufreq_cpu_init(struct cpufreq_policy *policy)
{
	policy->cur = policy->min = policy->max = exynos_getspeed(policy->cpu);

	cpufreq_frequency_table_get_attr(exynos_info->freq_table, policy->cpu);

	/* set the transition latency value */
	policy->cpuinfo.transition_latency = 100000;

254
	cpumask_setall(policy->cpus);
255 256 257 258

	return cpufreq_frequency_table_cpuinfo(policy, exynos_info->freq_table);
}

259 260 261 262 263 264 265 266 267 268 269
static int exynos_cpufreq_cpu_exit(struct cpufreq_policy *policy)
{
	cpufreq_frequency_table_put_attr(policy->cpu);
	return 0;
}

static struct freq_attr *exynos_cpufreq_attr[] = {
	&cpufreq_freq_attr_scaling_available_freqs,
	NULL,
};

270 271 272 273 274 275
static struct cpufreq_driver exynos_driver = {
	.flags		= CPUFREQ_STICKY,
	.verify		= exynos_verify_speed,
	.target		= exynos_target,
	.get		= exynos_getspeed,
	.init		= exynos_cpufreq_cpu_init,
276
	.exit		= exynos_cpufreq_cpu_exit,
277
	.name		= "exynos_cpufreq",
278
	.attr		= exynos_cpufreq_attr,
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
#ifdef CONFIG_PM
	.suspend	= exynos_cpufreq_suspend,
	.resume		= exynos_cpufreq_resume,
#endif
};

static int __init exynos_cpufreq_init(void)
{
	int ret = -EINVAL;

	exynos_info = kzalloc(sizeof(struct exynos_dvfs_info), GFP_KERNEL);
	if (!exynos_info)
		return -ENOMEM;

	if (soc_is_exynos4210())
		ret = exynos4210_cpufreq_init(exynos_info);
295 296
	else if (soc_is_exynos4212() || soc_is_exynos4412())
		ret = exynos4x12_cpufreq_init(exynos_info);
297 298
	else if (soc_is_exynos5250())
		ret = exynos5250_cpufreq_init(exynos_info);
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
	else
		pr_err("%s: CPU type not found\n", __func__);

	if (ret)
		goto err_vdd_arm;

	if (exynos_info->set_freq == NULL) {
		pr_err("%s: No set_freq function (ERR)\n", __func__);
		goto err_vdd_arm;
	}

	arm_regulator = regulator_get(NULL, "vdd_arm");
	if (IS_ERR(arm_regulator)) {
		pr_err("%s: failed to get resource vdd_arm\n", __func__);
		goto err_vdd_arm;
	}

316 317
	locking_frequency = exynos_getspeed(0);

318 319 320 321 322 323 324 325 326 327 328
	register_pm_notifier(&exynos_cpufreq_nb);

	if (cpufreq_register_driver(&exynos_driver)) {
		pr_err("%s: failed to register cpufreq driver\n", __func__);
		goto err_cpufreq;
	}

	return 0;
err_cpufreq:
	unregister_pm_notifier(&exynos_cpufreq_nb);

329
	regulator_put(arm_regulator);
330 331 332 333 334 335
err_vdd_arm:
	kfree(exynos_info);
	pr_debug("%s: failed initialization\n", __func__);
	return -EINVAL;
}
late_initcall(exynos_cpufreq_init);