exynos-cpufreq.c 7.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/*
 * Copyright (c) 2010-2011 Samsung Electronics Co., Ltd.
 *		http://www.samsung.com
 *
 * EXYNOS - CPU frequency scaling support for EXYNOS series
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
*/

#include <linux/kernel.h>
#include <linux/err.h>
#include <linux/clk.h>
#include <linux/io.h>
#include <linux/slab.h>
#include <linux/regulator/consumer.h>
#include <linux/cpufreq.h>
#include <linux/suspend.h>

#include <mach/cpufreq.h>

23
#include <plat/cpu.h>
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212

static struct exynos_dvfs_info *exynos_info;

static struct regulator *arm_regulator;
static struct cpufreq_freqs freqs;

static unsigned int locking_frequency;
static bool frequency_locked;
static DEFINE_MUTEX(cpufreq_lock);

int exynos_verify_speed(struct cpufreq_policy *policy)
{
	return cpufreq_frequency_table_verify(policy,
					      exynos_info->freq_table);
}

unsigned int exynos_getspeed(unsigned int cpu)
{
	return clk_get_rate(exynos_info->cpu_clk) / 1000;
}

static int exynos_target(struct cpufreq_policy *policy,
			  unsigned int target_freq,
			  unsigned int relation)
{
	unsigned int index, old_index;
	unsigned int arm_volt, safe_arm_volt = 0;
	int ret = 0;
	struct cpufreq_frequency_table *freq_table = exynos_info->freq_table;
	unsigned int *volt_table = exynos_info->volt_table;
	unsigned int mpll_freq_khz = exynos_info->mpll_freq_khz;

	mutex_lock(&cpufreq_lock);

	freqs.old = policy->cur;

	if (frequency_locked && target_freq != locking_frequency) {
		ret = -EAGAIN;
		goto out;
	}

	if (cpufreq_frequency_table_target(policy, freq_table,
					   freqs.old, relation, &old_index)) {
		ret = -EINVAL;
		goto out;
	}

	if (cpufreq_frequency_table_target(policy, freq_table,
					   target_freq, relation, &index)) {
		ret = -EINVAL;
		goto out;
	}

	freqs.new = freq_table[index].frequency;
	freqs.cpu = policy->cpu;

	/*
	 * ARM clock source will be changed APLL to MPLL temporary
	 * To support this level, need to control regulator for
	 * required voltage level
	 */
	if (exynos_info->need_apll_change != NULL) {
		if (exynos_info->need_apll_change(old_index, index) &&
		   (freq_table[index].frequency < mpll_freq_khz) &&
		   (freq_table[old_index].frequency < mpll_freq_khz))
			safe_arm_volt = volt_table[exynos_info->pll_safe_idx];
	}
	arm_volt = volt_table[index];

	cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);

	/* When the new frequency is higher than current frequency */
	if ((freqs.new > freqs.old) && !safe_arm_volt) {
		/* Firstly, voltage up to increase frequency */
		regulator_set_voltage(arm_regulator, arm_volt,
				arm_volt);
	}

	if (safe_arm_volt)
		regulator_set_voltage(arm_regulator, safe_arm_volt,
				      safe_arm_volt);
	if (freqs.new != freqs.old)
		exynos_info->set_freq(old_index, index);

	cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);

	/* When the new frequency is lower than current frequency */
	if ((freqs.new < freqs.old) ||
	   ((freqs.new > freqs.old) && safe_arm_volt)) {
		/* down the voltage after frequency change */
		regulator_set_voltage(arm_regulator, arm_volt,
				arm_volt);
	}

out:
	mutex_unlock(&cpufreq_lock);

	return ret;
}

#ifdef CONFIG_PM
static int exynos_cpufreq_suspend(struct cpufreq_policy *policy)
{
	return 0;
}

static int exynos_cpufreq_resume(struct cpufreq_policy *policy)
{
	return 0;
}
#endif

/**
 * exynos_cpufreq_pm_notifier - block CPUFREQ's activities in suspend-resume
 *			context
 * @notifier
 * @pm_event
 * @v
 *
 * While frequency_locked == true, target() ignores every frequency but
 * locking_frequency. The locking_frequency value is the initial frequency,
 * which is set by the bootloader. In order to eliminate possible
 * inconsistency in clock values, we save and restore frequencies during
 * suspend and resume and block CPUFREQ activities. Note that the standard
 * suspend/resume cannot be used as they are too deep (syscore_ops) for
 * regulator actions.
 */
static int exynos_cpufreq_pm_notifier(struct notifier_block *notifier,
				       unsigned long pm_event, void *v)
{
	struct cpufreq_policy *policy = cpufreq_cpu_get(0); /* boot CPU */
	static unsigned int saved_frequency;
	unsigned int temp;

	mutex_lock(&cpufreq_lock);
	switch (pm_event) {
	case PM_SUSPEND_PREPARE:
		if (frequency_locked)
			goto out;

		frequency_locked = true;

		if (locking_frequency) {
			saved_frequency = exynos_getspeed(0);

			mutex_unlock(&cpufreq_lock);
			exynos_target(policy, locking_frequency,
				      CPUFREQ_RELATION_H);
			mutex_lock(&cpufreq_lock);
		}
		break;

	case PM_POST_SUSPEND:
		if (saved_frequency) {
			/*
			 * While frequency_locked, only locking_frequency
			 * is valid for target(). In order to use
			 * saved_frequency while keeping frequency_locked,
			 * we temporarly overwrite locking_frequency.
			 */
			temp = locking_frequency;
			locking_frequency = saved_frequency;

			mutex_unlock(&cpufreq_lock);
			exynos_target(policy, locking_frequency,
				      CPUFREQ_RELATION_H);
			mutex_lock(&cpufreq_lock);

			locking_frequency = temp;
		}
		frequency_locked = false;
		break;
	}
out:
	mutex_unlock(&cpufreq_lock);

	return NOTIFY_OK;
}

static struct notifier_block exynos_cpufreq_nb = {
	.notifier_call = exynos_cpufreq_pm_notifier,
};

static int exynos_cpufreq_cpu_init(struct cpufreq_policy *policy)
{
	policy->cur = policy->min = policy->max = exynos_getspeed(policy->cpu);

	cpufreq_frequency_table_get_attr(exynos_info->freq_table, policy->cpu);

213 214
	locking_frequency = exynos_getspeed(0);

215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
	/* set the transition latency value */
	policy->cpuinfo.transition_latency = 100000;

	/*
	 * EXYNOS4 multi-core processors has 2 cores
	 * that the frequency cannot be set independently.
	 * Each cpu is bound to the same speed.
	 * So the affected cpu is all of the cpus.
	 */
	if (num_online_cpus() == 1) {
		cpumask_copy(policy->related_cpus, cpu_possible_mask);
		cpumask_copy(policy->cpus, cpu_online_mask);
	} else {
		cpumask_setall(policy->cpus);
	}

	return cpufreq_frequency_table_cpuinfo(policy, exynos_info->freq_table);
}

static struct cpufreq_driver exynos_driver = {
	.flags		= CPUFREQ_STICKY,
	.verify		= exynos_verify_speed,
	.target		= exynos_target,
	.get		= exynos_getspeed,
	.init		= exynos_cpufreq_cpu_init,
	.name		= "exynos_cpufreq",
#ifdef CONFIG_PM
	.suspend	= exynos_cpufreq_suspend,
	.resume		= exynos_cpufreq_resume,
#endif
};

static int __init exynos_cpufreq_init(void)
{
	int ret = -EINVAL;

	exynos_info = kzalloc(sizeof(struct exynos_dvfs_info), GFP_KERNEL);
	if (!exynos_info)
		return -ENOMEM;

	if (soc_is_exynos4210())
		ret = exynos4210_cpufreq_init(exynos_info);
257 258
	else if (soc_is_exynos4212() || soc_is_exynos4412())
		ret = exynos4x12_cpufreq_init(exynos_info);
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
	else
		pr_err("%s: CPU type not found\n", __func__);

	if (ret)
		goto err_vdd_arm;

	if (exynos_info->set_freq == NULL) {
		pr_err("%s: No set_freq function (ERR)\n", __func__);
		goto err_vdd_arm;
	}

	arm_regulator = regulator_get(NULL, "vdd_arm");
	if (IS_ERR(arm_regulator)) {
		pr_err("%s: failed to get resource vdd_arm\n", __func__);
		goto err_vdd_arm;
	}

	register_pm_notifier(&exynos_cpufreq_nb);

	if (cpufreq_register_driver(&exynos_driver)) {
		pr_err("%s: failed to register cpufreq driver\n", __func__);
		goto err_cpufreq;
	}

	return 0;
err_cpufreq:
	unregister_pm_notifier(&exynos_cpufreq_nb);

	if (!IS_ERR(arm_regulator))
		regulator_put(arm_regulator);
err_vdd_arm:
	kfree(exynos_info);
	pr_debug("%s: failed initialization\n", __func__);
	return -EINVAL;
}
late_initcall(exynos_cpufreq_init);