exynos-cpufreq.c 8.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/*
 * Copyright (c) 2010-2011 Samsung Electronics Co., Ltd.
 *		http://www.samsung.com
 *
 * EXYNOS - CPU frequency scaling support for EXYNOS series
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
*/

#include <linux/kernel.h>
#include <linux/err.h>
#include <linux/clk.h>
#include <linux/io.h>
#include <linux/slab.h>
#include <linux/regulator/consumer.h>
#include <linux/cpufreq.h>
#include <linux/suspend.h>

#include <mach/cpufreq.h>

23
#include <plat/cpu.h>
24 25 26 27 28 29 30 31 32 33

static struct exynos_dvfs_info *exynos_info;

static struct regulator *arm_regulator;
static struct cpufreq_freqs freqs;

static unsigned int locking_frequency;
static bool frequency_locked;
static DEFINE_MUTEX(cpufreq_lock);

34
static int exynos_verify_speed(struct cpufreq_policy *policy)
35 36 37 38 39
{
	return cpufreq_frequency_table_verify(policy,
					      exynos_info->freq_table);
}

40
static unsigned int exynos_getspeed(unsigned int cpu)
41 42 43 44
{
	return clk_get_rate(exynos_info->cpu_clk) / 1000;
}

45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
static int exynos_cpufreq_get_index(unsigned int freq)
{
	struct cpufreq_frequency_table *freq_table = exynos_info->freq_table;
	int index;

	for (index = 0;
		freq_table[index].frequency != CPUFREQ_TABLE_END; index++)
		if (freq_table[index].frequency == freq)
			break;

	if (freq_table[index].frequency == CPUFREQ_TABLE_END)
		return -EINVAL;

	return index;
}

static int exynos_cpufreq_scale(unsigned int target_freq)
62 63 64
{
	struct cpufreq_frequency_table *freq_table = exynos_info->freq_table;
	unsigned int *volt_table = exynos_info->volt_table;
65 66
	struct cpufreq_policy *policy = cpufreq_cpu_get(0);
	unsigned int arm_volt, safe_arm_volt = 0;
67
	unsigned int mpll_freq_khz = exynos_info->mpll_freq_khz;
68 69
	unsigned int index, old_index;
	int ret = 0;
70 71

	freqs.old = policy->cur;
72
	freqs.cpu = policy->cpu;
73

74
	if (target_freq == freqs.old)
75 76
		goto out;

77 78 79 80 81
	/*
	 * The policy max have been changed so that we cannot get proper
	 * old_index with cpufreq_frequency_table_target(). Thus, ignore
	 * policy and get the index from the raw freqeuncy table.
	 */
82 83 84
	old_index = exynos_cpufreq_get_index(freqs.old);
	if (old_index < 0) {
		ret = old_index;
85 86 87
		goto out;
	}

88 89 90
	index = exynos_cpufreq_get_index(target_freq);
	if (index < 0) {
		ret = index;
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
		goto out;
	}

	/*
	 * ARM clock source will be changed APLL to MPLL temporary
	 * To support this level, need to control regulator for
	 * required voltage level
	 */
	if (exynos_info->need_apll_change != NULL) {
		if (exynos_info->need_apll_change(old_index, index) &&
		   (freq_table[index].frequency < mpll_freq_khz) &&
		   (freq_table[old_index].frequency < mpll_freq_khz))
			safe_arm_volt = volt_table[exynos_info->pll_safe_idx];
	}
	arm_volt = volt_table[index];

107 108
	for_each_cpu(freqs.cpu, policy->cpus)
		cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
109 110 111 112

	/* When the new frequency is higher than current frequency */
	if ((freqs.new > freqs.old) && !safe_arm_volt) {
		/* Firstly, voltage up to increase frequency */
113 114 115 116 117 118
		ret = regulator_set_voltage(arm_regulator, arm_volt, arm_volt);
		if (ret) {
			pr_err("%s: failed to set cpu voltage to %d\n",
				__func__, arm_volt);
			goto out;
		}
119 120
	}

121 122
	if (safe_arm_volt) {
		ret = regulator_set_voltage(arm_regulator, safe_arm_volt,
123
				      safe_arm_volt);
124 125 126 127 128 129
		if (ret) {
			pr_err("%s: failed to set cpu voltage to %d\n",
				__func__, safe_arm_volt);
			goto out;
		}
	}
130 131

	exynos_info->set_freq(old_index, index);
132

133 134
	for_each_cpu(freqs.cpu, policy->cpus)
		cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
135 136 137 138 139 140 141

	/* When the new frequency is lower than current frequency */
	if ((freqs.new < freqs.old) ||
	   ((freqs.new > freqs.old) && safe_arm_volt)) {
		/* down the voltage after frequency change */
		regulator_set_voltage(arm_regulator, arm_volt,
				arm_volt);
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
		if (ret) {
			pr_err("%s: failed to set cpu voltage to %d\n",
				__func__, arm_volt);
			goto out;
		}
	}

out:

	cpufreq_cpu_put(policy);

	return ret;
}

static int exynos_target(struct cpufreq_policy *policy,
			  unsigned int target_freq,
			  unsigned int relation)
{
	struct cpufreq_frequency_table *freq_table = exynos_info->freq_table;
	unsigned int index;
	int ret;

	mutex_lock(&cpufreq_lock);

	if (frequency_locked)
		goto out;

	if (cpufreq_frequency_table_target(policy, freq_table,
					   target_freq, relation, &index)) {
		ret = -EINVAL;
		goto out;
173 174
	}

175 176 177 178
	freqs.new = freq_table[index].frequency;

	ret = exynos_cpufreq_scale(freqs.new);

179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
out:
	mutex_unlock(&cpufreq_lock);

	return ret;
}

#ifdef CONFIG_PM
static int exynos_cpufreq_suspend(struct cpufreq_policy *policy)
{
	return 0;
}

static int exynos_cpufreq_resume(struct cpufreq_policy *policy)
{
	return 0;
}
#endif

/**
 * exynos_cpufreq_pm_notifier - block CPUFREQ's activities in suspend-resume
 *			context
 * @notifier
 * @pm_event
 * @v
 *
 * While frequency_locked == true, target() ignores every frequency but
 * locking_frequency. The locking_frequency value is the initial frequency,
 * which is set by the bootloader. In order to eliminate possible
 * inconsistency in clock values, we save and restore frequencies during
 * suspend and resume and block CPUFREQ activities. Note that the standard
 * suspend/resume cannot be used as they are too deep (syscore_ops) for
 * regulator actions.
 */
static int exynos_cpufreq_pm_notifier(struct notifier_block *notifier,
				       unsigned long pm_event, void *v)
{
215
	int ret;
216 217 218

	switch (pm_event) {
	case PM_SUSPEND_PREPARE:
219
		mutex_lock(&cpufreq_lock);
220
		frequency_locked = true;
221
		mutex_unlock(&cpufreq_lock);
222

223 224 225
		ret = exynos_cpufreq_scale(locking_frequency);
		if (ret < 0)
			return NOTIFY_BAD;
226 227 228 229

		break;

	case PM_POST_SUSPEND:
230
		mutex_lock(&cpufreq_lock);
231
		frequency_locked = false;
232
		mutex_unlock(&cpufreq_lock);
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
		break;
	}

	return NOTIFY_OK;
}

static struct notifier_block exynos_cpufreq_nb = {
	.notifier_call = exynos_cpufreq_pm_notifier,
};

static int exynos_cpufreq_cpu_init(struct cpufreq_policy *policy)
{
	policy->cur = policy->min = policy->max = exynos_getspeed(policy->cpu);

	cpufreq_frequency_table_get_attr(exynos_info->freq_table, policy->cpu);

249 250
	locking_frequency = exynos_getspeed(0);

251 252 253 254 255 256 257 258 259 260 261 262 263
	/* set the transition latency value */
	policy->cpuinfo.transition_latency = 100000;

	/*
	 * EXYNOS4 multi-core processors has 2 cores
	 * that the frequency cannot be set independently.
	 * Each cpu is bound to the same speed.
	 * So the affected cpu is all of the cpus.
	 */
	if (num_online_cpus() == 1) {
		cpumask_copy(policy->related_cpus, cpu_possible_mask);
		cpumask_copy(policy->cpus, cpu_online_mask);
	} else {
264
		policy->shared_type = CPUFREQ_SHARED_TYPE_ANY;
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
		cpumask_setall(policy->cpus);
	}

	return cpufreq_frequency_table_cpuinfo(policy, exynos_info->freq_table);
}

static struct cpufreq_driver exynos_driver = {
	.flags		= CPUFREQ_STICKY,
	.verify		= exynos_verify_speed,
	.target		= exynos_target,
	.get		= exynos_getspeed,
	.init		= exynos_cpufreq_cpu_init,
	.name		= "exynos_cpufreq",
#ifdef CONFIG_PM
	.suspend	= exynos_cpufreq_suspend,
	.resume		= exynos_cpufreq_resume,
#endif
};

static int __init exynos_cpufreq_init(void)
{
	int ret = -EINVAL;

	exynos_info = kzalloc(sizeof(struct exynos_dvfs_info), GFP_KERNEL);
	if (!exynos_info)
		return -ENOMEM;

	if (soc_is_exynos4210())
		ret = exynos4210_cpufreq_init(exynos_info);
294 295
	else if (soc_is_exynos4212() || soc_is_exynos4412())
		ret = exynos4x12_cpufreq_init(exynos_info);
296 297
	else if (soc_is_exynos5250())
		ret = exynos5250_cpufreq_init(exynos_info);
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
	else
		pr_err("%s: CPU type not found\n", __func__);

	if (ret)
		goto err_vdd_arm;

	if (exynos_info->set_freq == NULL) {
		pr_err("%s: No set_freq function (ERR)\n", __func__);
		goto err_vdd_arm;
	}

	arm_regulator = regulator_get(NULL, "vdd_arm");
	if (IS_ERR(arm_regulator)) {
		pr_err("%s: failed to get resource vdd_arm\n", __func__);
		goto err_vdd_arm;
	}

	register_pm_notifier(&exynos_cpufreq_nb);

	if (cpufreq_register_driver(&exynos_driver)) {
		pr_err("%s: failed to register cpufreq driver\n", __func__);
		goto err_cpufreq;
	}

	return 0;
err_cpufreq:
	unregister_pm_notifier(&exynos_cpufreq_nb);

326
	regulator_put(arm_regulator);
327 328 329 330 331 332
err_vdd_arm:
	kfree(exynos_info);
	pr_debug("%s: failed initialization\n", __func__);
	return -EINVAL;
}
late_initcall(exynos_cpufreq_init);