sparse.c 16.2 KB
Newer Older
A
Andy Whitcroft 已提交
1 2 3 4 5 6
/*
 * sparse memory mappings.
 */
#include <linux/mm.h>
#include <linux/mmzone.h>
#include <linux/bootmem.h>
7
#include <linux/highmem.h>
A
Andy Whitcroft 已提交
8
#include <linux/module.h>
9
#include <linux/spinlock.h>
10
#include <linux/vmalloc.h>
11
#include "internal.h"
A
Andy Whitcroft 已提交
12
#include <asm/dma.h>
13 14
#include <asm/pgalloc.h>
#include <asm/pgtable.h>
A
Andy Whitcroft 已提交
15 16 17 18 19 20

/*
 * Permanent SPARSEMEM data:
 *
 * 1) mem_section	- memory sections, mem_map's for valid memory
 */
21
#ifdef CONFIG_SPARSEMEM_EXTREME
B
Bob Picco 已提交
22
struct mem_section *mem_section[NR_SECTION_ROOTS]
23
	____cacheline_internodealigned_in_smp;
24 25
#else
struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
26
	____cacheline_internodealigned_in_smp;
27 28 29
#endif
EXPORT_SYMBOL(mem_section);

30 31 32 33 34 35 36 37 38 39 40 41
#ifdef NODE_NOT_IN_PAGE_FLAGS
/*
 * If we did not store the node number in the page then we have to
 * do a lookup in the section_to_node_table in order to find which
 * node the page belongs to.
 */
#if MAX_NUMNODES <= 256
static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
#else
static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
#endif

42
int page_to_nid(struct page *page)
43 44 45 46
{
	return section_to_node_table[page_to_section(page)];
}
EXPORT_SYMBOL(page_to_nid);
47 48 49 50 51 52 53 54 55

static void set_section_nid(unsigned long section_nr, int nid)
{
	section_to_node_table[section_nr] = nid;
}
#else /* !NODE_NOT_IN_PAGE_FLAGS */
static inline void set_section_nid(unsigned long section_nr, int nid)
{
}
56 57
#endif

58
#ifdef CONFIG_SPARSEMEM_EXTREME
S
Sam Ravnborg 已提交
59
static struct mem_section noinline __init_refok *sparse_index_alloc(int nid)
60 61 62 63 64
{
	struct mem_section *section = NULL;
	unsigned long array_size = SECTIONS_PER_ROOT *
				   sizeof(struct mem_section);

65
	if (slab_is_available())
66 67 68
		section = kmalloc_node(array_size, GFP_KERNEL, nid);
	else
		section = alloc_bootmem_node(NODE_DATA(nid), array_size);
69 70 71 72 73

	if (section)
		memset(section, 0, array_size);

	return section;
74
}
B
Bob Picco 已提交
75

76
static int __meminit sparse_index_init(unsigned long section_nr, int nid)
B
Bob Picco 已提交
77
{
I
Ingo Molnar 已提交
78
	static DEFINE_SPINLOCK(index_init_lock);
79 80 81
	unsigned long root = SECTION_NR_TO_ROOT(section_nr);
	struct mem_section *section;
	int ret = 0;
B
Bob Picco 已提交
82 83

	if (mem_section[root])
84
		return -EEXIST;
85

86
	section = sparse_index_alloc(nid);
87 88
	if (!section)
		return -ENOMEM;
89 90 91 92 93
	/*
	 * This lock keeps two different sections from
	 * reallocating for the same index
	 */
	spin_lock(&index_init_lock);
94

95 96 97 98 99 100 101 102 103 104 105 106 107 108
	if (mem_section[root]) {
		ret = -EEXIST;
		goto out;
	}

	mem_section[root] = section;
out:
	spin_unlock(&index_init_lock);
	return ret;
}
#else /* !SPARSEMEM_EXTREME */
static inline int sparse_index_init(unsigned long section_nr, int nid)
{
	return 0;
B
Bob Picco 已提交
109
}
110 111
#endif

112 113
/*
 * Although written for the SPARSEMEM_EXTREME case, this happens
114
 * to also work for the flat array case because
115 116 117 118 119 120 121
 * NR_SECTION_ROOTS==NR_MEM_SECTIONS.
 */
int __section_nr(struct mem_section* ms)
{
	unsigned long root_nr;
	struct mem_section* root;

122 123
	for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
		root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
124 125 126 127 128 129 130 131 132 133
		if (!root)
			continue;

		if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
		     break;
	}

	return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
}

134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
/*
 * During early boot, before section_mem_map is used for an actual
 * mem_map, we use section_mem_map to store the section's NUMA
 * node.  This keeps us from having to use another data structure.  The
 * node information is cleared just before we store the real mem_map.
 */
static inline unsigned long sparse_encode_early_nid(int nid)
{
	return (nid << SECTION_NID_SHIFT);
}

static inline int sparse_early_nid(struct mem_section *section)
{
	return (section->section_mem_map >> SECTION_NID_SHIFT);
}

150 151 152
/* Validate the physical addressing limitations of the model */
void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
						unsigned long *end_pfn)
A
Andy Whitcroft 已提交
153
{
154
	unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
A
Andy Whitcroft 已提交
155

I
Ingo Molnar 已提交
156 157 158 159
	/*
	 * Sanity checks - do not allow an architecture to pass
	 * in larger pfns than the maximum scope of sparsemem:
	 */
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
	if (*start_pfn > max_sparsemem_pfn) {
		mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
			"Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
			*start_pfn, *end_pfn, max_sparsemem_pfn);
		WARN_ON_ONCE(1);
		*start_pfn = max_sparsemem_pfn;
		*end_pfn = max_sparsemem_pfn;
	}

	if (*end_pfn > max_sparsemem_pfn) {
		mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
			"End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
			*start_pfn, *end_pfn, max_sparsemem_pfn);
		WARN_ON_ONCE(1);
		*end_pfn = max_sparsemem_pfn;
	}
}

/* Record a memory area against a node. */
void __init memory_present(int nid, unsigned long start, unsigned long end)
{
	unsigned long pfn;
I
Ingo Molnar 已提交
182

A
Andy Whitcroft 已提交
183
	start &= PAGE_SECTION_MASK;
184
	mminit_validate_memmodel_limits(&start, &end);
A
Andy Whitcroft 已提交
185 186
	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
		unsigned long section = pfn_to_section_nr(pfn);
B
Bob Picco 已提交
187 188 189
		struct mem_section *ms;

		sparse_index_init(section, nid);
190
		set_section_nid(section, nid);
B
Bob Picco 已提交
191 192 193

		ms = __nr_to_section(section);
		if (!ms->section_mem_map)
194 195
			ms->section_mem_map = sparse_encode_early_nid(nid) |
							SECTION_MARKED_PRESENT;
A
Andy Whitcroft 已提交
196 197 198 199 200 201 202 203 204 205 206 207 208
	}
}

/*
 * Only used by the i386 NUMA architecures, but relatively
 * generic code.
 */
unsigned long __init node_memmap_size_bytes(int nid, unsigned long start_pfn,
						     unsigned long end_pfn)
{
	unsigned long pfn;
	unsigned long nr_pages = 0;

209
	mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
A
Andy Whitcroft 已提交
210 211 212 213
	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
		if (nid != early_pfn_to_nid(pfn))
			continue;

214
		if (pfn_present(pfn))
A
Andy Whitcroft 已提交
215 216 217 218 219 220
			nr_pages += PAGES_PER_SECTION;
	}

	return nr_pages * sizeof(struct page);
}

A
Andy Whitcroft 已提交
221 222 223 224 225 226 227 228 229 230 231
/*
 * Subtle, we encode the real pfn into the mem_map such that
 * the identity pfn - section_mem_map will return the actual
 * physical page frame number.
 */
static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
{
	return (unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
}

/*
232
 * Decode mem_map from the coded memmap
A
Andy Whitcroft 已提交
233 234 235
 */
struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
{
236 237
	/* mask off the extra low bits of information */
	coded_mem_map &= SECTION_MAP_MASK;
A
Andy Whitcroft 已提交
238 239 240
	return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
}

241
static int __meminit sparse_init_one_section(struct mem_section *ms,
242 243
		unsigned long pnum, struct page *mem_map,
		unsigned long *pageblock_bitmap)
A
Andy Whitcroft 已提交
244
{
245
	if (!present_section(ms))
A
Andy Whitcroft 已提交
246 247
		return -EINVAL;

248
	ms->section_mem_map &= ~SECTION_MAP_MASK;
249 250
	ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) |
							SECTION_HAS_MEM_MAP;
251
 	ms->pageblock_flags = pageblock_bitmap;
A
Andy Whitcroft 已提交
252 253 254 255

	return 1;
}

256
unsigned long usemap_size(void)
257 258 259 260 261 262 263 264 265 266 267 268 269 270
{
	unsigned long size_bytes;
	size_bytes = roundup(SECTION_BLOCKFLAGS_BITS, 8) / 8;
	size_bytes = roundup(size_bytes, sizeof(unsigned long));
	return size_bytes;
}

#ifdef CONFIG_MEMORY_HOTPLUG
static unsigned long *__kmalloc_section_usemap(void)
{
	return kmalloc(usemap_size(), GFP_KERNEL);
}
#endif /* CONFIG_MEMORY_HOTPLUG */

271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
#ifdef CONFIG_MEMORY_HOTREMOVE
static unsigned long * __init
sparse_early_usemap_alloc_pgdat_section(struct pglist_data *pgdat)
{
	unsigned long section_nr;

	/*
	 * A page may contain usemaps for other sections preventing the
	 * page being freed and making a section unremovable while
	 * other sections referencing the usemap retmain active. Similarly,
	 * a pgdat can prevent a section being removed. If section A
	 * contains a pgdat and section B contains the usemap, both
	 * sections become inter-dependent. This allocates usemaps
	 * from the same section as the pgdat where possible to avoid
	 * this problem.
	 */
	section_nr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT);
	return alloc_bootmem_section(usemap_size(), section_nr);
}

static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
{
	unsigned long usemap_snr, pgdat_snr;
	static unsigned long old_usemap_snr = NR_MEM_SECTIONS;
	static unsigned long old_pgdat_snr = NR_MEM_SECTIONS;
	struct pglist_data *pgdat = NODE_DATA(nid);
	int usemap_nid;

	usemap_snr = pfn_to_section_nr(__pa(usemap) >> PAGE_SHIFT);
	pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT);
	if (usemap_snr == pgdat_snr)
		return;

	if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
		/* skip redundant message */
		return;

	old_usemap_snr = usemap_snr;
	old_pgdat_snr = pgdat_snr;

	usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
	if (usemap_nid != nid) {
		printk(KERN_INFO
		       "node %d must be removed before remove section %ld\n",
		       nid, usemap_snr);
		return;
	}
	/*
	 * There is a circular dependency.
	 * Some platforms allow un-removable section because they will just
	 * gather other removable sections for dynamic partitioning.
	 * Just notify un-removable section's number here.
	 */
	printk(KERN_INFO "Section %ld and %ld (node %d)", usemap_snr,
	       pgdat_snr, nid);
	printk(KERN_CONT
	       " have a circular dependency on usemap and pgdat allocations\n");
}
#else
static unsigned long * __init
sparse_early_usemap_alloc_pgdat_section(struct pglist_data *pgdat)
{
	return NULL;
}

static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
{
}
#endif /* CONFIG_MEMORY_HOTREMOVE */

341
static unsigned long *__init sparse_early_usemap_alloc(unsigned long pnum)
342
{
343
	unsigned long *usemap;
344 345 346
	struct mem_section *ms = __nr_to_section(pnum);
	int nid = sparse_early_nid(ms);

347
	usemap = sparse_early_usemap_alloc_pgdat_section(NODE_DATA(nid));
348 349 350
	if (usemap)
		return usemap;

351 352 353 354 355 356
	usemap = alloc_bootmem_node(NODE_DATA(nid), usemap_size());
	if (usemap) {
		check_usemap_section_nr(nid, usemap);
		return usemap;
	}

357 358 359
	/* Stupid: suppress gcc warning for SPARSEMEM && !NUMA */
	nid = 0;

360
	printk(KERN_WARNING "%s: allocation failed\n", __func__);
361 362 363
	return NULL;
}

364
#ifndef CONFIG_SPARSEMEM_VMEMMAP
365
struct page __init *sparse_mem_map_populate(unsigned long pnum, int nid)
A
Andy Whitcroft 已提交
366 367 368 369 370 371 372
{
	struct page *map;

	map = alloc_remap(nid, sizeof(struct page) * PAGES_PER_SECTION);
	if (map)
		return map;

373 374
	map = alloc_bootmem_pages_node(NODE_DATA(nid),
		       PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION));
375 376 377 378
	return map;
}
#endif /* !CONFIG_SPARSEMEM_VMEMMAP */

379
static struct page __init *sparse_early_mem_map_alloc(unsigned long pnum)
380 381 382 383 384
{
	struct page *map;
	struct mem_section *ms = __nr_to_section(pnum);
	int nid = sparse_early_nid(ms);

385
	map = sparse_mem_map_populate(pnum, nid);
A
Andy Whitcroft 已提交
386 387 388
	if (map)
		return map;

389
	printk(KERN_ERR "%s: sparsemem memory map backing failed "
390
			"some memory will not be available.\n", __func__);
B
Bob Picco 已提交
391
	ms->section_mem_map = 0;
A
Andy Whitcroft 已提交
392 393 394
	return NULL;
}

395 396 397
void __attribute__((weak)) __meminit vmemmap_populate_print_last(void)
{
}
398 399 400 401 402 403 404 405
/*
 * Allocate the accumulated non-linear sections, allocate a mem_map
 * for each and record the physical to section mapping.
 */
void __init sparse_init(void)
{
	unsigned long pnum;
	struct page *map;
406
	unsigned long *usemap;
407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
	unsigned long **usemap_map;
	int size;

	/*
	 * map is using big page (aka 2M in x86 64 bit)
	 * usemap is less one page (aka 24 bytes)
	 * so alloc 2M (with 2M align) and 24 bytes in turn will
	 * make next 2M slip to one more 2M later.
	 * then in big system, the memory will have a lot of holes...
	 * here try to allocate 2M pages continously.
	 *
	 * powerpc need to call sparse_init_one_section right after each
	 * sparse_early_mem_map_alloc, so allocate usemap_map at first.
	 */
	size = sizeof(unsigned long *) * NR_MEM_SECTIONS;
	usemap_map = alloc_bootmem(size);
	if (!usemap_map)
		panic("can not allocate usemap_map\n");
425 426

	for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
427
		if (!present_section_nr(pnum))
428
			continue;
429 430
		usemap_map[pnum] = sparse_early_usemap_alloc(pnum);
	}
431

432 433
	for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
		if (!present_section_nr(pnum))
434
			continue;
435

436
		usemap = usemap_map[pnum];
437 438 439
		if (!usemap)
			continue;

440 441 442 443
		map = sparse_early_mem_map_alloc(pnum);
		if (!map)
			continue;

444 445
		sparse_init_one_section(__nr_to_section(pnum), pnum, map,
								usemap);
446
	}
447

448 449
	vmemmap_populate_print_last();

450
	free_bootmem(__pa(usemap_map), size);
451 452 453
}

#ifdef CONFIG_MEMORY_HOTPLUG
454 455 456 457 458 459 460 461 462 463 464
#ifdef CONFIG_SPARSEMEM_VMEMMAP
static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
						 unsigned long nr_pages)
{
	/* This will make the necessary allocations eventually. */
	return sparse_mem_map_populate(pnum, nid);
}
static void __kfree_section_memmap(struct page *memmap, unsigned long nr_pages)
{
	return; /* XXX: Not implemented yet */
}
465 466 467
static void free_map_bootmem(struct page *page, unsigned long nr_pages)
{
}
468
#else
469 470 471 472 473
static struct page *__kmalloc_section_memmap(unsigned long nr_pages)
{
	struct page *page, *ret;
	unsigned long memmap_size = sizeof(struct page) * nr_pages;

474
	page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size));
475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
	if (page)
		goto got_map_page;

	ret = vmalloc(memmap_size);
	if (ret)
		goto got_map_ptr;

	return NULL;
got_map_page:
	ret = (struct page *)pfn_to_kaddr(page_to_pfn(page));
got_map_ptr:
	memset(ret, 0, memmap_size);

	return ret;
}

491 492 493 494 495 496
static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
						  unsigned long nr_pages)
{
	return __kmalloc_section_memmap(nr_pages);
}

497 498
static void __kfree_section_memmap(struct page *memmap, unsigned long nr_pages)
{
499
	if (is_vmalloc_addr(memmap))
500 501 502 503 504
		vfree(memmap);
	else
		free_pages((unsigned long)memmap,
			   get_order(sizeof(struct page) * nr_pages));
}
505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530

static void free_map_bootmem(struct page *page, unsigned long nr_pages)
{
	unsigned long maps_section_nr, removing_section_nr, i;
	int magic;

	for (i = 0; i < nr_pages; i++, page++) {
		magic = atomic_read(&page->_mapcount);

		BUG_ON(magic == NODE_INFO);

		maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
		removing_section_nr = page->private;

		/*
		 * When this function is called, the removing section is
		 * logical offlined state. This means all pages are isolated
		 * from page allocator. If removing section's memmap is placed
		 * on the same section, it must not be freed.
		 * If it is freed, page allocator may allocate it which will
		 * be removed physically soon.
		 */
		if (maps_section_nr != removing_section_nr)
			put_page_bootmem(page);
	}
}
531
#endif /* CONFIG_SPARSEMEM_VMEMMAP */
532

533 534
static void free_section_usemap(struct page *memmap, unsigned long *usemap)
{
535 536 537
	struct page *usemap_page;
	unsigned long nr_pages;

538 539 540
	if (!usemap)
		return;

541
	usemap_page = virt_to_page(usemap);
542 543 544
	/*
	 * Check to see if allocation came from hot-plug-add
	 */
545
	if (PageSlab(usemap_page)) {
546 547 548 549 550 551 552
		kfree(usemap);
		if (memmap)
			__kfree_section_memmap(memmap, PAGES_PER_SECTION);
		return;
	}

	/*
553 554
	 * The usemap came from bootmem. This is packed with other usemaps
	 * on the section which has pgdat at boot time. Just keep it as is now.
555
	 */
556 557 558 559 560 561 562 563 564 565

	if (memmap) {
		struct page *memmap_page;
		memmap_page = virt_to_page(memmap);

		nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
			>> PAGE_SHIFT;

		free_map_bootmem(memmap_page, nr_pages);
	}
566 567
}

A
Andy Whitcroft 已提交
568 569 570 571 572
/*
 * returns the number of sections whose mem_maps were properly
 * set.  If this is <=0, then that means that the passed-in
 * map was not consumed and must be freed.
 */
573 574
int sparse_add_one_section(struct zone *zone, unsigned long start_pfn,
			   int nr_pages)
A
Andy Whitcroft 已提交
575
{
576 577 578 579
	unsigned long section_nr = pfn_to_section_nr(start_pfn);
	struct pglist_data *pgdat = zone->zone_pgdat;
	struct mem_section *ms;
	struct page *memmap;
580
	unsigned long *usemap;
581 582
	unsigned long flags;
	int ret;
A
Andy Whitcroft 已提交
583

584 585 586 587
	/*
	 * no locking for this, because it does its own
	 * plus, it does a kmalloc
	 */
588 589 590
	ret = sparse_index_init(section_nr, pgdat->node_id);
	if (ret < 0 && ret != -EEXIST)
		return ret;
591
	memmap = kmalloc_section_memmap(section_nr, pgdat->node_id, nr_pages);
592 593
	if (!memmap)
		return -ENOMEM;
594
	usemap = __kmalloc_section_usemap();
595 596 597 598
	if (!usemap) {
		__kfree_section_memmap(memmap, nr_pages);
		return -ENOMEM;
	}
599 600

	pgdat_resize_lock(pgdat, &flags);
A
Andy Whitcroft 已提交
601

602 603 604 605 606
	ms = __pfn_to_section(start_pfn);
	if (ms->section_mem_map & SECTION_MARKED_PRESENT) {
		ret = -EEXIST;
		goto out;
	}
607

A
Andy Whitcroft 已提交
608 609
	ms->section_mem_map |= SECTION_MARKED_PRESENT;

610
	ret = sparse_init_one_section(ms, section_nr, memmap, usemap);
611 612 613

out:
	pgdat_resize_unlock(pgdat, &flags);
614 615
	if (ret <= 0) {
		kfree(usemap);
616
		__kfree_section_memmap(memmap, nr_pages);
617
	}
618
	return ret;
A
Andy Whitcroft 已提交
619
}
620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635

void sparse_remove_one_section(struct zone *zone, struct mem_section *ms)
{
	struct page *memmap = NULL;
	unsigned long *usemap = NULL;

	if (ms->section_mem_map) {
		usemap = ms->pageblock_flags;
		memmap = sparse_decode_mem_map(ms->section_mem_map,
						__section_nr(ms));
		ms->section_mem_map = 0;
		ms->pageblock_flags = NULL;
	}

	free_section_usemap(memmap, usemap);
}
636
#endif