sparse.c 11.1 KB
Newer Older
A
Andy Whitcroft 已提交
1 2 3 4 5 6
/*
 * sparse memory mappings.
 */
#include <linux/mm.h>
#include <linux/mmzone.h>
#include <linux/bootmem.h>
7
#include <linux/highmem.h>
A
Andy Whitcroft 已提交
8
#include <linux/module.h>
9
#include <linux/spinlock.h>
10
#include <linux/vmalloc.h>
A
Andy Whitcroft 已提交
11
#include <asm/dma.h>
12 13
#include <asm/pgalloc.h>
#include <asm/pgtable.h>
A
Andy Whitcroft 已提交
14 15 16 17 18 19

/*
 * Permanent SPARSEMEM data:
 *
 * 1) mem_section	- memory sections, mem_map's for valid memory
 */
20
#ifdef CONFIG_SPARSEMEM_EXTREME
B
Bob Picco 已提交
21
struct mem_section *mem_section[NR_SECTION_ROOTS]
22
	____cacheline_internodealigned_in_smp;
23 24
#else
struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
25
	____cacheline_internodealigned_in_smp;
26 27 28
#endif
EXPORT_SYMBOL(mem_section);

29 30 31 32 33 34 35 36 37 38 39 40
#ifdef NODE_NOT_IN_PAGE_FLAGS
/*
 * If we did not store the node number in the page then we have to
 * do a lookup in the section_to_node_table in order to find which
 * node the page belongs to.
 */
#if MAX_NUMNODES <= 256
static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
#else
static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
#endif

41
int page_to_nid(struct page *page)
42 43 44 45
{
	return section_to_node_table[page_to_section(page)];
}
EXPORT_SYMBOL(page_to_nid);
46 47 48 49 50 51 52 53 54

static void set_section_nid(unsigned long section_nr, int nid)
{
	section_to_node_table[section_nr] = nid;
}
#else /* !NODE_NOT_IN_PAGE_FLAGS */
static inline void set_section_nid(unsigned long section_nr, int nid)
{
}
55 56
#endif

57
#ifdef CONFIG_SPARSEMEM_EXTREME
S
Sam Ravnborg 已提交
58
static struct mem_section noinline __init_refok *sparse_index_alloc(int nid)
59 60 61 62 63
{
	struct mem_section *section = NULL;
	unsigned long array_size = SECTIONS_PER_ROOT *
				   sizeof(struct mem_section);

64
	if (slab_is_available())
65 66 67
		section = kmalloc_node(array_size, GFP_KERNEL, nid);
	else
		section = alloc_bootmem_node(NODE_DATA(nid), array_size);
68 69 70 71 72

	if (section)
		memset(section, 0, array_size);

	return section;
73
}
B
Bob Picco 已提交
74

75
static int __meminit sparse_index_init(unsigned long section_nr, int nid)
B
Bob Picco 已提交
76
{
I
Ingo Molnar 已提交
77
	static DEFINE_SPINLOCK(index_init_lock);
78 79 80
	unsigned long root = SECTION_NR_TO_ROOT(section_nr);
	struct mem_section *section;
	int ret = 0;
B
Bob Picco 已提交
81 82

	if (mem_section[root])
83
		return -EEXIST;
84

85
	section = sparse_index_alloc(nid);
86 87
	if (!section)
		return -ENOMEM;
88 89 90 91 92
	/*
	 * This lock keeps two different sections from
	 * reallocating for the same index
	 */
	spin_lock(&index_init_lock);
93

94 95 96 97 98 99 100 101 102 103 104 105 106 107
	if (mem_section[root]) {
		ret = -EEXIST;
		goto out;
	}

	mem_section[root] = section;
out:
	spin_unlock(&index_init_lock);
	return ret;
}
#else /* !SPARSEMEM_EXTREME */
static inline int sparse_index_init(unsigned long section_nr, int nid)
{
	return 0;
B
Bob Picco 已提交
108
}
109 110
#endif

111 112
/*
 * Although written for the SPARSEMEM_EXTREME case, this happens
113
 * to also work for the flat array case because
114 115 116 117 118 119 120
 * NR_SECTION_ROOTS==NR_MEM_SECTIONS.
 */
int __section_nr(struct mem_section* ms)
{
	unsigned long root_nr;
	struct mem_section* root;

121 122
	for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
		root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
123 124 125 126 127 128 129 130 131 132
		if (!root)
			continue;

		if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
		     break;
	}

	return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
}

133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
/*
 * During early boot, before section_mem_map is used for an actual
 * mem_map, we use section_mem_map to store the section's NUMA
 * node.  This keeps us from having to use another data structure.  The
 * node information is cleared just before we store the real mem_map.
 */
static inline unsigned long sparse_encode_early_nid(int nid)
{
	return (nid << SECTION_NID_SHIFT);
}

static inline int sparse_early_nid(struct mem_section *section)
{
	return (section->section_mem_map >> SECTION_NID_SHIFT);
}

A
Andy Whitcroft 已提交
149
/* Record a memory area against a node. */
150
void __init memory_present(int nid, unsigned long start, unsigned long end)
A
Andy Whitcroft 已提交
151
{
I
Ingo Molnar 已提交
152
	unsigned long max_arch_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
A
Andy Whitcroft 已提交
153 154
	unsigned long pfn;

I
Ingo Molnar 已提交
155 156 157 158 159 160 161 162 163
	/*
	 * Sanity checks - do not allow an architecture to pass
	 * in larger pfns than the maximum scope of sparsemem:
	 */
	if (start >= max_arch_pfn)
		return;
	if (end >= max_arch_pfn)
		end = max_arch_pfn;

A
Andy Whitcroft 已提交
164 165 166
	start &= PAGE_SECTION_MASK;
	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
		unsigned long section = pfn_to_section_nr(pfn);
B
Bob Picco 已提交
167 168 169
		struct mem_section *ms;

		sparse_index_init(section, nid);
170
		set_section_nid(section, nid);
B
Bob Picco 已提交
171 172 173

		ms = __nr_to_section(section);
		if (!ms->section_mem_map)
174 175
			ms->section_mem_map = sparse_encode_early_nid(nid) |
							SECTION_MARKED_PRESENT;
A
Andy Whitcroft 已提交
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
	}
}

/*
 * Only used by the i386 NUMA architecures, but relatively
 * generic code.
 */
unsigned long __init node_memmap_size_bytes(int nid, unsigned long start_pfn,
						     unsigned long end_pfn)
{
	unsigned long pfn;
	unsigned long nr_pages = 0;

	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
		if (nid != early_pfn_to_nid(pfn))
			continue;

193
		if (pfn_present(pfn))
A
Andy Whitcroft 已提交
194 195 196 197 198 199
			nr_pages += PAGES_PER_SECTION;
	}

	return nr_pages * sizeof(struct page);
}

A
Andy Whitcroft 已提交
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
/*
 * Subtle, we encode the real pfn into the mem_map such that
 * the identity pfn - section_mem_map will return the actual
 * physical page frame number.
 */
static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
{
	return (unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
}

/*
 * We need this if we ever free the mem_maps.  While not implemented yet,
 * this function is included for parity with its sibling.
 */
static __attribute((unused))
struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
{
	return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
}

220
static int __meminit sparse_init_one_section(struct mem_section *ms,
221 222
		unsigned long pnum, struct page *mem_map,
		unsigned long *pageblock_bitmap)
A
Andy Whitcroft 已提交
223
{
224
	if (!present_section(ms))
A
Andy Whitcroft 已提交
225 226
		return -EINVAL;

227
	ms->section_mem_map &= ~SECTION_MAP_MASK;
228 229
	ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) |
							SECTION_HAS_MEM_MAP;
230
 	ms->pageblock_flags = pageblock_bitmap;
A
Andy Whitcroft 已提交
231 232 233 234

	return 1;
}

235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
static unsigned long usemap_size(void)
{
	unsigned long size_bytes;
	size_bytes = roundup(SECTION_BLOCKFLAGS_BITS, 8) / 8;
	size_bytes = roundup(size_bytes, sizeof(unsigned long));
	return size_bytes;
}

#ifdef CONFIG_MEMORY_HOTPLUG
static unsigned long *__kmalloc_section_usemap(void)
{
	return kmalloc(usemap_size(), GFP_KERNEL);
}
#endif /* CONFIG_MEMORY_HOTPLUG */

250
static unsigned long *__init sparse_early_usemap_alloc(unsigned long pnum)
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
{
	unsigned long *usemap;
	struct mem_section *ms = __nr_to_section(pnum);
	int nid = sparse_early_nid(ms);

	usemap = alloc_bootmem_node(NODE_DATA(nid), usemap_size());
	if (usemap)
		return usemap;

	/* Stupid: suppress gcc warning for SPARSEMEM && !NUMA */
	nid = 0;

	printk(KERN_WARNING "%s: allocation failed\n", __FUNCTION__);
	return NULL;
}

267
#ifndef CONFIG_SPARSEMEM_VMEMMAP
268
struct page __init *sparse_mem_map_populate(unsigned long pnum, int nid)
A
Andy Whitcroft 已提交
269 270 271 272 273 274 275 276 277
{
	struct page *map;

	map = alloc_remap(nid, sizeof(struct page) * PAGES_PER_SECTION);
	if (map)
		return map;

	map = alloc_bootmem_node(NODE_DATA(nid),
			sizeof(struct page) * PAGES_PER_SECTION);
278 279 280 281 282 283 284 285 286 287
	return map;
}
#endif /* !CONFIG_SPARSEMEM_VMEMMAP */

struct page __init *sparse_early_mem_map_alloc(unsigned long pnum)
{
	struct page *map;
	struct mem_section *ms = __nr_to_section(pnum);
	int nid = sparse_early_nid(ms);

288
	map = sparse_mem_map_populate(pnum, nid);
A
Andy Whitcroft 已提交
289 290 291
	if (map)
		return map;

292 293
	printk(KERN_ERR "%s: sparsemem memory map backing failed "
			"some memory will not be available.\n", __FUNCTION__);
B
Bob Picco 已提交
294
	ms->section_mem_map = 0;
A
Andy Whitcroft 已提交
295 296 297
	return NULL;
}

298 299 300 301 302 303 304 305
/*
 * Allocate the accumulated non-linear sections, allocate a mem_map
 * for each and record the physical to section mapping.
 */
void __init sparse_init(void)
{
	unsigned long pnum;
	struct page *map;
306
	unsigned long *usemap;
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
	unsigned long **usemap_map;
	int size;

	/*
	 * map is using big page (aka 2M in x86 64 bit)
	 * usemap is less one page (aka 24 bytes)
	 * so alloc 2M (with 2M align) and 24 bytes in turn will
	 * make next 2M slip to one more 2M later.
	 * then in big system, the memory will have a lot of holes...
	 * here try to allocate 2M pages continously.
	 *
	 * powerpc need to call sparse_init_one_section right after each
	 * sparse_early_mem_map_alloc, so allocate usemap_map at first.
	 */
	size = sizeof(unsigned long *) * NR_MEM_SECTIONS;
	usemap_map = alloc_bootmem(size);
	if (!usemap_map)
		panic("can not allocate usemap_map\n");
325 326

	for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
327
		if (!present_section_nr(pnum))
328
			continue;
329 330
		usemap_map[pnum] = sparse_early_usemap_alloc(pnum);
	}
331

332 333
	for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
		if (!present_section_nr(pnum))
334
			continue;
335

336
		usemap = usemap_map[pnum];
337 338 339
		if (!usemap)
			continue;

340 341 342 343
		map = sparse_early_mem_map_alloc(pnum);
		if (!map)
			continue;

344 345
		sparse_init_one_section(__nr_to_section(pnum), pnum, map,
								usemap);
346
	}
347 348

	free_bootmem(__pa(usemap_map), size);
349 350 351
}

#ifdef CONFIG_MEMORY_HOTPLUG
352 353 354 355 356 357 358 359 360 361 362 363
#ifdef CONFIG_SPARSEMEM_VMEMMAP
static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
						 unsigned long nr_pages)
{
	/* This will make the necessary allocations eventually. */
	return sparse_mem_map_populate(pnum, nid);
}
static void __kfree_section_memmap(struct page *memmap, unsigned long nr_pages)
{
	return; /* XXX: Not implemented yet */
}
#else
364 365 366 367 368
static struct page *__kmalloc_section_memmap(unsigned long nr_pages)
{
	struct page *page, *ret;
	unsigned long memmap_size = sizeof(struct page) * nr_pages;

369
	page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size));
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
	if (page)
		goto got_map_page;

	ret = vmalloc(memmap_size);
	if (ret)
		goto got_map_ptr;

	return NULL;
got_map_page:
	ret = (struct page *)pfn_to_kaddr(page_to_pfn(page));
got_map_ptr:
	memset(ret, 0, memmap_size);

	return ret;
}

386 387 388 389 390 391
static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
						  unsigned long nr_pages)
{
	return __kmalloc_section_memmap(nr_pages);
}

392 393
static void __kfree_section_memmap(struct page *memmap, unsigned long nr_pages)
{
394
	if (is_vmalloc_addr(memmap))
395 396 397 398 399
		vfree(memmap);
	else
		free_pages((unsigned long)memmap,
			   get_order(sizeof(struct page) * nr_pages));
}
400
#endif /* CONFIG_SPARSEMEM_VMEMMAP */
401

A
Andy Whitcroft 已提交
402 403 404 405 406
/*
 * returns the number of sections whose mem_maps were properly
 * set.  If this is <=0, then that means that the passed-in
 * map was not consumed and must be freed.
 */
407 408
int sparse_add_one_section(struct zone *zone, unsigned long start_pfn,
			   int nr_pages)
A
Andy Whitcroft 已提交
409
{
410 411 412 413
	unsigned long section_nr = pfn_to_section_nr(start_pfn);
	struct pglist_data *pgdat = zone->zone_pgdat;
	struct mem_section *ms;
	struct page *memmap;
414
	unsigned long *usemap;
415 416
	unsigned long flags;
	int ret;
A
Andy Whitcroft 已提交
417

418 419 420 421
	/*
	 * no locking for this, because it does its own
	 * plus, it does a kmalloc
	 */
422 423 424
	ret = sparse_index_init(section_nr, pgdat->node_id);
	if (ret < 0 && ret != -EEXIST)
		return ret;
425
	memmap = kmalloc_section_memmap(section_nr, pgdat->node_id, nr_pages);
426 427
	if (!memmap)
		return -ENOMEM;
428
	usemap = __kmalloc_section_usemap();
429 430 431 432
	if (!usemap) {
		__kfree_section_memmap(memmap, nr_pages);
		return -ENOMEM;
	}
433 434

	pgdat_resize_lock(pgdat, &flags);
A
Andy Whitcroft 已提交
435

436 437 438 439 440
	ms = __pfn_to_section(start_pfn);
	if (ms->section_mem_map & SECTION_MARKED_PRESENT) {
		ret = -EEXIST;
		goto out;
	}
441

A
Andy Whitcroft 已提交
442 443
	ms->section_mem_map |= SECTION_MARKED_PRESENT;

444
	ret = sparse_init_one_section(ms, section_nr, memmap, usemap);
445 446 447

out:
	pgdat_resize_unlock(pgdat, &flags);
448 449
	if (ret <= 0) {
		kfree(usemap);
450
		__kfree_section_memmap(memmap, nr_pages);
451
	}
452
	return ret;
A
Andy Whitcroft 已提交
453
}
454
#endif