sparse.c 7.8 KB
Newer Older
A
Andy Whitcroft 已提交
1 2 3 4 5 6
/*
 * sparse memory mappings.
 */
#include <linux/mm.h>
#include <linux/mmzone.h>
#include <linux/bootmem.h>
7
#include <linux/highmem.h>
A
Andy Whitcroft 已提交
8
#include <linux/module.h>
9
#include <linux/spinlock.h>
10
#include <linux/vmalloc.h>
A
Andy Whitcroft 已提交
11 12 13 14 15 16 17
#include <asm/dma.h>

/*
 * Permanent SPARSEMEM data:
 *
 * 1) mem_section	- memory sections, mem_map's for valid memory
 */
18
#ifdef CONFIG_SPARSEMEM_EXTREME
B
Bob Picco 已提交
19
struct mem_section *mem_section[NR_SECTION_ROOTS]
20
	____cacheline_internodealigned_in_smp;
21 22
#else
struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
23
	____cacheline_internodealigned_in_smp;
24 25 26
#endif
EXPORT_SYMBOL(mem_section);

27 28 29 30 31 32 33 34 35 36 37 38
#ifdef NODE_NOT_IN_PAGE_FLAGS
/*
 * If we did not store the node number in the page then we have to
 * do a lookup in the section_to_node_table in order to find which
 * node the page belongs to.
 */
#if MAX_NUMNODES <= 256
static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
#else
static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
#endif

39
int page_to_nid(struct page *page)
40 41 42 43 44 45
{
	return section_to_node_table[page_to_section(page)];
}
EXPORT_SYMBOL(page_to_nid);
#endif

46
#ifdef CONFIG_SPARSEMEM_EXTREME
47 48 49 50 51 52
static struct mem_section *sparse_index_alloc(int nid)
{
	struct mem_section *section = NULL;
	unsigned long array_size = SECTIONS_PER_ROOT *
				   sizeof(struct mem_section);

53
	if (slab_is_available())
54 55 56
		section = kmalloc_node(array_size, GFP_KERNEL, nid);
	else
		section = alloc_bootmem_node(NODE_DATA(nid), array_size);
57 58 59 60 61

	if (section)
		memset(section, 0, array_size);

	return section;
62
}
B
Bob Picco 已提交
63

64
static int sparse_index_init(unsigned long section_nr, int nid)
B
Bob Picco 已提交
65
{
I
Ingo Molnar 已提交
66
	static DEFINE_SPINLOCK(index_init_lock);
67 68 69
	unsigned long root = SECTION_NR_TO_ROOT(section_nr);
	struct mem_section *section;
	int ret = 0;
B
Bob Picco 已提交
70

71 72 73 74
#ifdef NODE_NOT_IN_PAGE_FLAGS
	section_to_node_table[section_nr] = nid;
#endif

B
Bob Picco 已提交
75
	if (mem_section[root])
76
		return -EEXIST;
77

78 79 80 81 82 83
	section = sparse_index_alloc(nid);
	/*
	 * This lock keeps two different sections from
	 * reallocating for the same index
	 */
	spin_lock(&index_init_lock);
84

85 86 87 88 89 90 91 92 93 94 95 96 97 98
	if (mem_section[root]) {
		ret = -EEXIST;
		goto out;
	}

	mem_section[root] = section;
out:
	spin_unlock(&index_init_lock);
	return ret;
}
#else /* !SPARSEMEM_EXTREME */
static inline int sparse_index_init(unsigned long section_nr, int nid)
{
	return 0;
B
Bob Picco 已提交
99
}
100 101
#endif

102 103 104 105 106 107 108 109 110 111
/*
 * Although written for the SPARSEMEM_EXTREME case, this happens
 * to also work for the flat array case becase
 * NR_SECTION_ROOTS==NR_MEM_SECTIONS.
 */
int __section_nr(struct mem_section* ms)
{
	unsigned long root_nr;
	struct mem_section* root;

112 113
	for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
		root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
114 115 116 117 118 119 120 121 122 123
		if (!root)
			continue;

		if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
		     break;
	}

	return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
}

124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
/*
 * During early boot, before section_mem_map is used for an actual
 * mem_map, we use section_mem_map to store the section's NUMA
 * node.  This keeps us from having to use another data structure.  The
 * node information is cleared just before we store the real mem_map.
 */
static inline unsigned long sparse_encode_early_nid(int nid)
{
	return (nid << SECTION_NID_SHIFT);
}

static inline int sparse_early_nid(struct mem_section *section)
{
	return (section->section_mem_map >> SECTION_NID_SHIFT);
}

A
Andy Whitcroft 已提交
140 141 142 143 144 145 146 147
/* Record a memory area against a node. */
void memory_present(int nid, unsigned long start, unsigned long end)
{
	unsigned long pfn;

	start &= PAGE_SECTION_MASK;
	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
		unsigned long section = pfn_to_section_nr(pfn);
B
Bob Picco 已提交
148 149 150 151 152 153
		struct mem_section *ms;

		sparse_index_init(section, nid);

		ms = __nr_to_section(section);
		if (!ms->section_mem_map)
154 155
			ms->section_mem_map = sparse_encode_early_nid(nid) |
							SECTION_MARKED_PRESENT;
A
Andy Whitcroft 已提交
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
	}
}

/*
 * Only used by the i386 NUMA architecures, but relatively
 * generic code.
 */
unsigned long __init node_memmap_size_bytes(int nid, unsigned long start_pfn,
						     unsigned long end_pfn)
{
	unsigned long pfn;
	unsigned long nr_pages = 0;

	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
		if (nid != early_pfn_to_nid(pfn))
			continue;

		if (pfn_valid(pfn))
			nr_pages += PAGES_PER_SECTION;
	}

	return nr_pages * sizeof(struct page);
}

A
Andy Whitcroft 已提交
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
/*
 * Subtle, we encode the real pfn into the mem_map such that
 * the identity pfn - section_mem_map will return the actual
 * physical page frame number.
 */
static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
{
	return (unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
}

/*
 * We need this if we ever free the mem_maps.  While not implemented yet,
 * this function is included for parity with its sibling.
 */
static __attribute((unused))
struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
{
	return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
}

static int sparse_init_one_section(struct mem_section *ms,
		unsigned long pnum, struct page *mem_map)
{
	if (!valid_section(ms))
		return -EINVAL;

206
	ms->section_mem_map &= ~SECTION_MAP_MASK;
A
Andy Whitcroft 已提交
207 208 209 210 211 212 213 214
	ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum);

	return 1;
}

static struct page *sparse_early_mem_map_alloc(unsigned long pnum)
{
	struct page *map;
B
Bob Picco 已提交
215
	struct mem_section *ms = __nr_to_section(pnum);
216
	int nid = sparse_early_nid(ms);
A
Andy Whitcroft 已提交
217 218 219 220 221 222 223 224 225 226 227

	map = alloc_remap(nid, sizeof(struct page) * PAGES_PER_SECTION);
	if (map)
		return map;

	map = alloc_bootmem_node(NODE_DATA(nid),
			sizeof(struct page) * PAGES_PER_SECTION);
	if (map)
		return map;

	printk(KERN_WARNING "%s: allocation failed\n", __FUNCTION__);
B
Bob Picco 已提交
228
	ms->section_mem_map = 0;
A
Andy Whitcroft 已提交
229 230 231
	return NULL;
}

232 233 234 235 236
static struct page *__kmalloc_section_memmap(unsigned long nr_pages)
{
	struct page *page, *ret;
	unsigned long memmap_size = sizeof(struct page) * nr_pages;

237
	page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size));
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
	if (page)
		goto got_map_page;

	ret = vmalloc(memmap_size);
	if (ret)
		goto got_map_ptr;

	return NULL;
got_map_page:
	ret = (struct page *)pfn_to_kaddr(page_to_pfn(page));
got_map_ptr:
	memset(ret, 0, memmap_size);

	return ret;
}

static int vaddr_in_vmalloc_area(void *addr)
{
	if (addr >= (void *)VMALLOC_START &&
	    addr < (void *)VMALLOC_END)
		return 1;
	return 0;
}

static void __kfree_section_memmap(struct page *memmap, unsigned long nr_pages)
{
	if (vaddr_in_vmalloc_area(memmap))
		vfree(memmap);
	else
		free_pages((unsigned long)memmap,
			   get_order(sizeof(struct page) * nr_pages));
}

A
Andy Whitcroft 已提交
271 272 273 274
/*
 * Allocate the accumulated non-linear sections, allocate a mem_map
 * for each and record the physical to section mapping.
 */
275
void __init sparse_init(void)
A
Andy Whitcroft 已提交
276 277 278 279 280
{
	unsigned long pnum;
	struct page *map;

	for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
A
Andy Whitcroft 已提交
281
		if (!valid_section_nr(pnum))
A
Andy Whitcroft 已提交
282 283
			continue;

A
Andy Whitcroft 已提交
284
		map = sparse_early_mem_map_alloc(pnum);
B
Bob Picco 已提交
285 286 287
		if (!map)
			continue;
		sparse_init_one_section(__nr_to_section(pnum), pnum, map);
A
Andy Whitcroft 已提交
288 289
	}
}
A
Andy Whitcroft 已提交
290 291 292 293 294 295

/*
 * returns the number of sections whose mem_maps were properly
 * set.  If this is <=0, then that means that the passed-in
 * map was not consumed and must be freed.
 */
296 297
int sparse_add_one_section(struct zone *zone, unsigned long start_pfn,
			   int nr_pages)
A
Andy Whitcroft 已提交
298
{
299 300 301 302 303 304
	unsigned long section_nr = pfn_to_section_nr(start_pfn);
	struct pglist_data *pgdat = zone->zone_pgdat;
	struct mem_section *ms;
	struct page *memmap;
	unsigned long flags;
	int ret;
A
Andy Whitcroft 已提交
305

306 307 308 309 310 311 312 313
	/*
	 * no locking for this, because it does its own
	 * plus, it does a kmalloc
	 */
	sparse_index_init(section_nr, pgdat->node_id);
	memmap = __kmalloc_section_memmap(nr_pages);

	pgdat_resize_lock(pgdat, &flags);
A
Andy Whitcroft 已提交
314

315 316 317 318 319
	ms = __pfn_to_section(start_pfn);
	if (ms->section_mem_map & SECTION_MARKED_PRESENT) {
		ret = -EEXIST;
		goto out;
	}
A
Andy Whitcroft 已提交
320 321
	ms->section_mem_map |= SECTION_MARKED_PRESENT;

322 323 324 325
	ret = sparse_init_one_section(ms, section_nr, memmap);

out:
	pgdat_resize_unlock(pgdat, &flags);
326 327
	if (ret <= 0)
		__kfree_section_memmap(memmap, nr_pages);
328
	return ret;
A
Andy Whitcroft 已提交
329
}