qla_sup.c 82.7 KB
Newer Older
A
Andrew Vasquez 已提交
1 2
/*
 * QLogic Fibre Channel HBA Driver
3
 * Copyright (c)  2003-2013 QLogic Corporation
L
Linus Torvalds 已提交
4
 *
A
Andrew Vasquez 已提交
5 6
 * See LICENSE.qla2xxx for copyright and licensing details.
 */
L
Linus Torvalds 已提交
7 8 9
#include "qla_def.h"

#include <linux/delay.h>
10
#include <linux/slab.h>
11
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
12 13 14 15 16 17 18
#include <asm/uaccess.h>

/*
 * NVRAM support routines
 */

/**
A
Andrew Vasquez 已提交
19
 * qla2x00_lock_nvram_access() -
L
Linus Torvalds 已提交
20 21
 * @ha: HA context
 */
A
Adrian Bunk 已提交
22
static void
23
qla2x00_lock_nvram_access(struct qla_hw_data *ha)
L
Linus Torvalds 已提交
24 25
{
	uint16_t data;
26
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
L
Linus Torvalds 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

	if (!IS_QLA2100(ha) && !IS_QLA2200(ha) && !IS_QLA2300(ha)) {
		data = RD_REG_WORD(&reg->nvram);
		while (data & NVR_BUSY) {
			udelay(100);
			data = RD_REG_WORD(&reg->nvram);
		}

		/* Lock resource */
		WRT_REG_WORD(&reg->u.isp2300.host_semaphore, 0x1);
		RD_REG_WORD(&reg->u.isp2300.host_semaphore);
		udelay(5);
		data = RD_REG_WORD(&reg->u.isp2300.host_semaphore);
		while ((data & BIT_0) == 0) {
			/* Lock failed */
			udelay(100);
			WRT_REG_WORD(&reg->u.isp2300.host_semaphore, 0x1);
			RD_REG_WORD(&reg->u.isp2300.host_semaphore);
			udelay(5);
			data = RD_REG_WORD(&reg->u.isp2300.host_semaphore);
		}
	}
}

/**
A
Andrew Vasquez 已提交
52
 * qla2x00_unlock_nvram_access() -
L
Linus Torvalds 已提交
53 54
 * @ha: HA context
 */
A
Adrian Bunk 已提交
55
static void
56
qla2x00_unlock_nvram_access(struct qla_hw_data *ha)
L
Linus Torvalds 已提交
57
{
58
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
L
Linus Torvalds 已提交
59 60 61 62 63 64 65

	if (!IS_QLA2100(ha) && !IS_QLA2200(ha) && !IS_QLA2300(ha)) {
		WRT_REG_WORD(&reg->u.isp2300.host_semaphore, 0);
		RD_REG_WORD(&reg->u.isp2300.host_semaphore);
	}
}

66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
/**
 * qla2x00_nv_write() - Prepare for NVRAM read/write operation.
 * @ha: HA context
 * @data: Serial interface selector
 */
static void
qla2x00_nv_write(struct qla_hw_data *ha, uint16_t data)
{
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;

	WRT_REG_WORD(&reg->nvram, data | NVR_SELECT | NVR_WRT_ENABLE);
	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
	NVRAM_DELAY();
	WRT_REG_WORD(&reg->nvram, data | NVR_SELECT | NVR_CLOCK |
	    NVR_WRT_ENABLE);
	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
	NVRAM_DELAY();
	WRT_REG_WORD(&reg->nvram, data | NVR_SELECT | NVR_WRT_ENABLE);
	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
	NVRAM_DELAY();
}

/**
 * qla2x00_nvram_request() - Sends read command to NVRAM and gets data from
 *	NVRAM.
 * @ha: HA context
 * @nv_cmd: NVRAM command
 *
 * Bit definitions for NVRAM command:
 *
 *	Bit 26     = start bit
 *	Bit 25, 24 = opcode
 *	Bit 23-16  = address
 *	Bit 15-0   = write data
 *
 * Returns the word read from nvram @addr.
 */
static uint16_t
qla2x00_nvram_request(struct qla_hw_data *ha, uint32_t nv_cmd)
{
	uint8_t		cnt;
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
	uint16_t	data = 0;
	uint16_t	reg_data;

	/* Send command to NVRAM. */
	nv_cmd <<= 5;
	for (cnt = 0; cnt < 11; cnt++) {
		if (nv_cmd & BIT_31)
			qla2x00_nv_write(ha, NVR_DATA_OUT);
		else
			qla2x00_nv_write(ha, 0);
		nv_cmd <<= 1;
	}

	/* Read data from NVRAM. */
	for (cnt = 0; cnt < 16; cnt++) {
		WRT_REG_WORD(&reg->nvram, NVR_SELECT | NVR_CLOCK);
		RD_REG_WORD(&reg->nvram);	/* PCI Posting. */
		NVRAM_DELAY();
		data <<= 1;
		reg_data = RD_REG_WORD(&reg->nvram);
		if (reg_data & NVR_DATA_IN)
			data |= BIT_0;
		WRT_REG_WORD(&reg->nvram, NVR_SELECT);
		RD_REG_WORD(&reg->nvram);	/* PCI Posting. */
		NVRAM_DELAY();
	}

	/* Deselect chip. */
	WRT_REG_WORD(&reg->nvram, NVR_DESELECT);
	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
	NVRAM_DELAY();

	return data;
}


L
Linus Torvalds 已提交
144 145 146 147 148 149 150 151
/**
 * qla2x00_get_nvram_word() - Calculates word position in NVRAM and calls the
 *	request routine to get the word from NVRAM.
 * @ha: HA context
 * @addr: Address in NVRAM to read
 *
 * Returns the word read from nvram @addr.
 */
A
Adrian Bunk 已提交
152
static uint16_t
153
qla2x00_get_nvram_word(struct qla_hw_data *ha, uint32_t addr)
L
Linus Torvalds 已提交
154 155 156 157 158 159 160 161 162 163 164
{
	uint16_t	data;
	uint32_t	nv_cmd;

	nv_cmd = addr << 16;
	nv_cmd |= NV_READ_OP;
	data = qla2x00_nvram_request(ha, nv_cmd);

	return (data);
}

165 166 167 168 169 170 171 172 173 174 175 176 177 178
/**
 * qla2x00_nv_deselect() - Deselect NVRAM operations.
 * @ha: HA context
 */
static void
qla2x00_nv_deselect(struct qla_hw_data *ha)
{
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;

	WRT_REG_WORD(&reg->nvram, NVR_DESELECT);
	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
	NVRAM_DELAY();
}

L
Linus Torvalds 已提交
179 180 181 182 183 184
/**
 * qla2x00_write_nvram_word() - Write NVRAM data.
 * @ha: HA context
 * @addr: Address in NVRAM to write
 * @data: word to program
 */
A
Adrian Bunk 已提交
185
static void
186
qla2x00_write_nvram_word(struct qla_hw_data *ha, uint32_t addr, uint16_t data)
L
Linus Torvalds 已提交
187 188 189
{
	int count;
	uint16_t word;
190
	uint32_t nv_cmd, wait_cnt;
191
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
192
	scsi_qla_host_t *vha = pci_get_drvdata(ha->pdev);
L
Linus Torvalds 已提交
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219

	qla2x00_nv_write(ha, NVR_DATA_OUT);
	qla2x00_nv_write(ha, 0);
	qla2x00_nv_write(ha, 0);

	for (word = 0; word < 8; word++)
		qla2x00_nv_write(ha, NVR_DATA_OUT);

	qla2x00_nv_deselect(ha);

	/* Write data */
	nv_cmd = (addr << 16) | NV_WRITE_OP;
	nv_cmd |= data;
	nv_cmd <<= 5;
	for (count = 0; count < 27; count++) {
		if (nv_cmd & BIT_31)
			qla2x00_nv_write(ha, NVR_DATA_OUT);
		else
			qla2x00_nv_write(ha, 0);

		nv_cmd <<= 1;
	}

	qla2x00_nv_deselect(ha);

	/* Wait for NVRAM to become ready */
	WRT_REG_WORD(&reg->nvram, NVR_SELECT);
220
	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
221
	wait_cnt = NVR_WAIT_CNT;
L
Linus Torvalds 已提交
222
	do {
223
		if (!--wait_cnt) {
224 225
			ql_dbg(ql_dbg_user, vha, 0x708d,
			    "NVRAM didn't go ready...\n");
226 227
			break;
		}
L
Linus Torvalds 已提交
228 229 230 231 232 233 234 235 236 237 238 239 240 241
		NVRAM_DELAY();
		word = RD_REG_WORD(&reg->nvram);
	} while ((word & NVR_DATA_IN) == 0);

	qla2x00_nv_deselect(ha);

	/* Disable writes */
	qla2x00_nv_write(ha, NVR_DATA_OUT);
	for (count = 0; count < 10; count++)
		qla2x00_nv_write(ha, 0);

	qla2x00_nv_deselect(ha);
}

242
static int
243 244
qla2x00_write_nvram_word_tmo(struct qla_hw_data *ha, uint32_t addr,
	uint16_t data, uint32_t tmo)
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
{
	int ret, count;
	uint16_t word;
	uint32_t nv_cmd;
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;

	ret = QLA_SUCCESS;

	qla2x00_nv_write(ha, NVR_DATA_OUT);
	qla2x00_nv_write(ha, 0);
	qla2x00_nv_write(ha, 0);

	for (word = 0; word < 8; word++)
		qla2x00_nv_write(ha, NVR_DATA_OUT);

	qla2x00_nv_deselect(ha);

	/* Write data */
	nv_cmd = (addr << 16) | NV_WRITE_OP;
	nv_cmd |= data;
	nv_cmd <<= 5;
	for (count = 0; count < 27; count++) {
		if (nv_cmd & BIT_31)
			qla2x00_nv_write(ha, NVR_DATA_OUT);
		else
			qla2x00_nv_write(ha, 0);

		nv_cmd <<= 1;
	}

	qla2x00_nv_deselect(ha);

	/* Wait for NVRAM to become ready */
	WRT_REG_WORD(&reg->nvram, NVR_SELECT);
279
	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
	do {
		NVRAM_DELAY();
		word = RD_REG_WORD(&reg->nvram);
		if (!--tmo) {
			ret = QLA_FUNCTION_FAILED;
			break;
		}
	} while ((word & NVR_DATA_IN) == 0);

	qla2x00_nv_deselect(ha);

	/* Disable writes */
	qla2x00_nv_write(ha, NVR_DATA_OUT);
	for (count = 0; count < 10; count++)
		qla2x00_nv_write(ha, 0);

	qla2x00_nv_deselect(ha);

	return ret;
}

/**
 * qla2x00_clear_nvram_protection() -
 * @ha: HA context
 */
static int
306
qla2x00_clear_nvram_protection(struct qla_hw_data *ha)
307 308 309
{
	int ret, stat;
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
310
	uint32_t word, wait_cnt;
311
	uint16_t wprot, wprot_old;
312
	scsi_qla_host_t *vha = pci_get_drvdata(ha->pdev);
313 314 315

	/* Clear NVRAM write protection. */
	ret = QLA_FUNCTION_FAILED;
316 317 318

	wprot_old = cpu_to_le16(qla2x00_get_nvram_word(ha, ha->nvram_base));
	stat = qla2x00_write_nvram_word_tmo(ha, ha->nvram_base,
319
	    __constant_cpu_to_le16(0x1234), 100000);
320 321
	wprot = cpu_to_le16(qla2x00_get_nvram_word(ha, ha->nvram_base));
	if (stat != QLA_SUCCESS || wprot != 0x1234) {
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
		/* Write enable. */
		qla2x00_nv_write(ha, NVR_DATA_OUT);
		qla2x00_nv_write(ha, 0);
		qla2x00_nv_write(ha, 0);
		for (word = 0; word < 8; word++)
			qla2x00_nv_write(ha, NVR_DATA_OUT);

		qla2x00_nv_deselect(ha);

		/* Enable protection register. */
		qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
		qla2x00_nv_write(ha, NVR_PR_ENABLE);
		qla2x00_nv_write(ha, NVR_PR_ENABLE);
		for (word = 0; word < 8; word++)
			qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE);

		qla2x00_nv_deselect(ha);

		/* Clear protection register (ffff is cleared). */
		qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
		qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
		qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
		for (word = 0; word < 8; word++)
			qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE);

		qla2x00_nv_deselect(ha);

		/* Wait for NVRAM to become ready. */
		WRT_REG_WORD(&reg->nvram, NVR_SELECT);
351
		RD_REG_WORD(&reg->nvram);	/* PCI Posting. */
352
		wait_cnt = NVR_WAIT_CNT;
353
		do {
354
			if (!--wait_cnt) {
355 356
				ql_dbg(ql_dbg_user, vha, 0x708e,
				    "NVRAM didn't go ready...\n");
357 358
				break;
			}
359 360 361 362
			NVRAM_DELAY();
			word = RD_REG_WORD(&reg->nvram);
		} while ((word & NVR_DATA_IN) == 0);

363 364
		if (wait_cnt)
			ret = QLA_SUCCESS;
365
	} else
366
		qla2x00_write_nvram_word(ha, ha->nvram_base, wprot_old);
367 368 369 370 371

	return ret;
}

static void
372
qla2x00_set_nvram_protection(struct qla_hw_data *ha, int stat)
373 374
{
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
375
	uint32_t word, wait_cnt;
376
	scsi_qla_host_t *vha = pci_get_drvdata(ha->pdev);
377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410

	if (stat != QLA_SUCCESS)
		return;

	/* Set NVRAM write protection. */
	/* Write enable. */
	qla2x00_nv_write(ha, NVR_DATA_OUT);
	qla2x00_nv_write(ha, 0);
	qla2x00_nv_write(ha, 0);
	for (word = 0; word < 8; word++)
		qla2x00_nv_write(ha, NVR_DATA_OUT);

	qla2x00_nv_deselect(ha);

	/* Enable protection register. */
	qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
	qla2x00_nv_write(ha, NVR_PR_ENABLE);
	qla2x00_nv_write(ha, NVR_PR_ENABLE);
	for (word = 0; word < 8; word++)
		qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE);

	qla2x00_nv_deselect(ha);

	/* Enable protection register. */
	qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
	qla2x00_nv_write(ha, NVR_PR_ENABLE);
	qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
	for (word = 0; word < 8; word++)
		qla2x00_nv_write(ha, NVR_PR_ENABLE);

	qla2x00_nv_deselect(ha);

	/* Wait for NVRAM to become ready. */
	WRT_REG_WORD(&reg->nvram, NVR_SELECT);
411
	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
412
	wait_cnt = NVR_WAIT_CNT;
413
	do {
414
		if (!--wait_cnt) {
415 416
			ql_dbg(ql_dbg_user, vha, 0x708f,
			    "NVRAM didn't go ready...\n");
417 418
			break;
		}
419 420 421 422 423 424 425 426 427 428 429
		NVRAM_DELAY();
		word = RD_REG_WORD(&reg->nvram);
	} while ((word & NVR_DATA_IN) == 0);
}


/*****************************************************************************/
/* Flash Manipulation Routines                                               */
/*****************************************************************************/

static inline uint32_t
430
flash_conf_addr(struct qla_hw_data *ha, uint32_t faddr)
431
{
432
	return ha->flash_conf_off | faddr;
433 434 435
}

static inline uint32_t
436
flash_data_addr(struct qla_hw_data *ha, uint32_t faddr)
437
{
438
	return ha->flash_data_off | faddr;
439 440 441
}

static inline uint32_t
442
nvram_conf_addr(struct qla_hw_data *ha, uint32_t naddr)
443
{
444
	return ha->nvram_conf_off | naddr;
445 446 447
}

static inline uint32_t
448
nvram_data_addr(struct qla_hw_data *ha, uint32_t naddr)
449
{
450
	return ha->nvram_data_off | naddr;
451 452
}

453
static uint32_t
454
qla24xx_read_flash_dword(struct qla_hw_data *ha, uint32_t addr)
455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
{
	int rval;
	uint32_t cnt, data;
	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;

	WRT_REG_DWORD(&reg->flash_addr, addr & ~FARX_DATA_FLAG);
	/* Wait for READ cycle to complete. */
	rval = QLA_SUCCESS;
	for (cnt = 3000;
	    (RD_REG_DWORD(&reg->flash_addr) & FARX_DATA_FLAG) == 0 &&
	    rval == QLA_SUCCESS; cnt--) {
		if (cnt)
			udelay(10);
		else
			rval = QLA_FUNCTION_TIMEOUT;
470
		cond_resched();
471 472 473 474 475 476 477 478 479 480 481
	}

	/* TODO: What happens if we time out? */
	data = 0xDEADDEAD;
	if (rval == QLA_SUCCESS)
		data = RD_REG_DWORD(&reg->flash_data);

	return data;
}

uint32_t *
482
qla24xx_read_flash_data(scsi_qla_host_t *vha, uint32_t *dwptr, uint32_t faddr,
483 484 485
    uint32_t dwords)
{
	uint32_t i;
486 487
	struct qla_hw_data *ha = vha->hw;

488 489
	/* Dword reads to flash. */
	for (i = 0; i < dwords; i++, faddr++)
490 491
		dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(ha,
		    flash_data_addr(ha, faddr)));
492 493 494 495

	return dwptr;
}

496
static int
497
qla24xx_write_flash_dword(struct qla_hw_data *ha, uint32_t addr, uint32_t data)
498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
{
	int rval;
	uint32_t cnt;
	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;

	WRT_REG_DWORD(&reg->flash_data, data);
	RD_REG_DWORD(&reg->flash_data);		/* PCI Posting. */
	WRT_REG_DWORD(&reg->flash_addr, addr | FARX_DATA_FLAG);
	/* Wait for Write cycle to complete. */
	rval = QLA_SUCCESS;
	for (cnt = 500000; (RD_REG_DWORD(&reg->flash_addr) & FARX_DATA_FLAG) &&
	    rval == QLA_SUCCESS; cnt--) {
		if (cnt)
			udelay(10);
		else
			rval = QLA_FUNCTION_TIMEOUT;
514
		cond_resched();
515 516 517 518
	}
	return rval;
}

519
static void
520
qla24xx_get_flash_manufacturer(struct qla_hw_data *ha, uint8_t *man_id,
521 522 523 524
    uint8_t *flash_id)
{
	uint32_t ids;

525
	ids = qla24xx_read_flash_dword(ha, flash_conf_addr(ha, 0x03ab));
526 527
	*man_id = LSB(ids);
	*flash_id = MSB(ids);
528 529 530 531 532 533 534 535 536

	/* Check if man_id and flash_id are valid. */
	if (ids != 0xDEADDEAD && (*man_id == 0 || *flash_id == 0)) {
		/* Read information using 0x9f opcode
		 * Device ID, Mfg ID would be read in the format:
		 *   <Ext Dev Info><Device ID Part2><Device ID Part 1><Mfg ID>
		 * Example: ATMEL 0x00 01 45 1F
		 * Extract MFG and Dev ID from last two bytes.
		 */
537
		ids = qla24xx_read_flash_dword(ha, flash_conf_addr(ha, 0x009f));
538 539 540
		*man_id = LSB(ids);
		*flash_id = MSB(ids);
	}
541 542
}

543
static int
544
qla2xxx_find_flt_start(scsi_qla_host_t *vha, uint32_t *start)
545 546 547 548 549 550 551
{
	const char *loc, *locations[] = { "DEF", "PCI" };
	uint32_t pcihdr, pcids;
	uint32_t *dcode;
	uint8_t *buf, *bcode, last_image;
	uint16_t cnt, chksum, *wptr;
	struct qla_flt_location *fltl;
552
	struct qla_hw_data *ha = vha->hw;
553
	struct req_que *req = ha->req_q_map[0];
554 555 556 557 558 559 560

	/*
	 * FLT-location structure resides after the last PCI region.
	 */

	/* Begin with sane defaults. */
	loc = locations[0];
561 562 563 564 565 566 567
	*start = 0;
	if (IS_QLA24XX_TYPE(ha))
		*start = FA_FLASH_LAYOUT_ADDR_24;
	else if (IS_QLA25XX(ha))
		*start = FA_FLASH_LAYOUT_ADDR;
	else if (IS_QLA81XX(ha))
		*start = FA_FLASH_LAYOUT_ADDR_81;
568
	else if (IS_P3P_TYPE(ha)) {
569 570
		*start = FA_FLASH_LAYOUT_ADDR_82;
		goto end;
571
	} else if (IS_QLA83XX(ha) || IS_QLA27XX(ha)) {
572 573
		*start = FA_FLASH_LAYOUT_ADDR_83;
		goto end;
574
	}
575
	/* Begin with first PCI expansion ROM header. */
576 577
	buf = (uint8_t *)req->ring;
	dcode = (uint32_t *)req->ring;
578 579 580 581
	pcihdr = 0;
	last_image = 1;
	do {
		/* Verify PCI expansion ROM header. */
582
		qla24xx_read_flash_data(vha, dcode, pcihdr >> 2, 0x20);
583 584 585 586 587 588
		bcode = buf + (pcihdr % 4);
		if (bcode[0x0] != 0x55 || bcode[0x1] != 0xaa)
			goto end;

		/* Locate PCI data structure. */
		pcids = pcihdr + ((bcode[0x19] << 8) | bcode[0x18]);
589
		qla24xx_read_flash_data(vha, dcode, pcids >> 2, 0x20);
590 591 592 593 594 595 596 597 598 599 600 601 602 603
		bcode = buf + (pcihdr % 4);

		/* Validate signature of PCI data structure. */
		if (bcode[0x0] != 'P' || bcode[0x1] != 'C' ||
		    bcode[0x2] != 'I' || bcode[0x3] != 'R')
			goto end;

		last_image = bcode[0x15] & BIT_7;

		/* Locate next PCI expansion ROM. */
		pcihdr += ((bcode[0x11] << 8) | bcode[0x10]) * 512;
	} while (!last_image);

	/* Now verify FLT-location structure. */
604 605
	fltl = (struct qla_flt_location *)req->ring;
	qla24xx_read_flash_data(vha, dcode, pcihdr >> 2,
606 607 608 609 610
	    sizeof(struct qla_flt_location) >> 2);
	if (fltl->sig[0] != 'Q' || fltl->sig[1] != 'F' ||
	    fltl->sig[2] != 'L' || fltl->sig[3] != 'T')
		goto end;

611
	wptr = (uint16_t *)req->ring;
612 613 614 615
	cnt = sizeof(struct qla_flt_location) >> 1;
	for (chksum = 0; cnt; cnt--)
		chksum += le16_to_cpu(*wptr++);
	if (chksum) {
616
		ql_log(ql_log_fatal, vha, 0x0045,
617
		    "Inconsistent FLTL detected: checksum=0x%x.\n", chksum);
618 619
		ql_dump_buffer(ql_dbg_init + ql_dbg_buffer, vha, 0x010e,
		    buf, sizeof(struct qla_flt_location));
620 621 622 623 624
		return QLA_FUNCTION_FAILED;
	}

	/* Good data.  Use specified location. */
	loc = locations[1];
625 626
	*start = (le16_to_cpu(fltl->start_hi) << 16 |
	    le16_to_cpu(fltl->start_lo)) >> 2;
627
end:
628 629 630
	ql_dbg(ql_dbg_init, vha, 0x0046,
	    "FLTL[%s] = 0x%x.\n",
	    loc, *start);
631 632 633 634
	return QLA_SUCCESS;
}

static void
635
qla2xxx_get_flt_info(scsi_qla_host_t *vha, uint32_t flt_addr)
636 637
{
	const char *loc, *locations[] = { "DEF", "FLT" };
638 639 640 641 642 643
	const uint32_t def_fw[] =
		{ FA_RISC_CODE_ADDR, FA_RISC_CODE_ADDR, FA_RISC_CODE_ADDR_81 };
	const uint32_t def_boot[] =
		{ FA_BOOT_CODE_ADDR, FA_BOOT_CODE_ADDR, FA_BOOT_CODE_ADDR_81 };
	const uint32_t def_vpd_nvram[] =
		{ FA_VPD_NVRAM_ADDR, FA_VPD_NVRAM_ADDR, FA_VPD_NVRAM_ADDR_81 };
644 645 646 647 648 649 650 651
	const uint32_t def_vpd0[] =
		{ 0, 0, FA_VPD0_ADDR_81 };
	const uint32_t def_vpd1[] =
		{ 0, 0, FA_VPD1_ADDR_81 };
	const uint32_t def_nvram0[] =
		{ 0, 0, FA_NVRAM0_ADDR_81 };
	const uint32_t def_nvram1[] =
		{ 0, 0, FA_NVRAM1_ADDR_81 };
652 653 654 655 656 657 658 659 660
	const uint32_t def_fdt[] =
		{ FA_FLASH_DESCR_ADDR_24, FA_FLASH_DESCR_ADDR,
			FA_FLASH_DESCR_ADDR_81 };
	const uint32_t def_npiv_conf0[] =
		{ FA_NPIV_CONF0_ADDR_24, FA_NPIV_CONF0_ADDR,
			FA_NPIV_CONF0_ADDR_81 };
	const uint32_t def_npiv_conf1[] =
		{ FA_NPIV_CONF1_ADDR_24, FA_NPIV_CONF1_ADDR,
			FA_NPIV_CONF1_ADDR_81 };
S
Sarang Radke 已提交
661 662 663 664 665 666
	const uint32_t fcp_prio_cfg0[] =
		{ FA_FCP_PRIO0_ADDR, FA_FCP_PRIO0_ADDR_25,
			0 };
	const uint32_t fcp_prio_cfg1[] =
		{ FA_FCP_PRIO1_ADDR, FA_FCP_PRIO1_ADDR_25,
			0 };
667
	uint32_t def;
668 669 670 671 672
	uint16_t *wptr;
	uint16_t cnt, chksum;
	uint32_t start;
	struct qla_flt_header *flt;
	struct qla_flt_region *region;
673
	struct qla_hw_data *ha = vha->hw;
674
	struct req_que *req = ha->req_q_map[0];
675

676 677 678 679 680
	def = 0;
	if (IS_QLA25XX(ha))
		def = 1;
	else if (IS_QLA81XX(ha))
		def = 2;
681 682 683 684

	/* Assign FCP prio region since older adapters may not have FLT, or
	   FCP prio region in it's FLT.
	 */
685
	ha->flt_region_fcp_prio = (ha->port_no == 0) ?
686 687
	    fcp_prio_cfg0[def] : fcp_prio_cfg1[def];

688
	ha->flt_region_flt = flt_addr;
689 690
	wptr = (uint16_t *)req->ring;
	flt = (struct qla_flt_header *)req->ring;
691
	region = (struct qla_flt_region *)&flt[1];
692
	ha->isp_ops->read_optrom(vha, (uint8_t *)req->ring,
693 694 695 696
	    flt_addr << 2, OPTROM_BURST_SIZE);
	if (*wptr == __constant_cpu_to_le16(0xffff))
		goto no_flash_data;
	if (flt->version != __constant_cpu_to_le16(1)) {
697 698
		ql_log(ql_log_warn, vha, 0x0047,
		    "Unsupported FLT detected: version=0x%x length=0x%x checksum=0x%x.\n",
699
		    le16_to_cpu(flt->version), le16_to_cpu(flt->length),
700
		    le16_to_cpu(flt->checksum));
701 702 703 704 705 706 707
		goto no_flash_data;
	}

	cnt = (sizeof(struct qla_flt_header) + le16_to_cpu(flt->length)) >> 1;
	for (chksum = 0; cnt; cnt--)
		chksum += le16_to_cpu(*wptr++);
	if (chksum) {
708 709
		ql_log(ql_log_fatal, vha, 0x0048,
		    "Inconsistent FLT detected: version=0x%x length=0x%x checksum=0x%x.\n",
710
		    le16_to_cpu(flt->version), le16_to_cpu(flt->length),
711
		    le16_to_cpu(flt->checksum));
712 713 714 715 716 717 718 719
		goto no_flash_data;
	}

	loc = locations[1];
	cnt = le16_to_cpu(flt->length) / sizeof(struct qla_flt_region);
	for ( ; cnt; cnt--, region++) {
		/* Store addresses as DWORD offsets. */
		start = le32_to_cpu(region->start) >> 2;
720 721
		ql_dbg(ql_dbg_init, vha, 0x0049,
		    "FLT[%02x]: start=0x%x "
722
		    "end=0x%x size=0x%x.\n", le32_to_cpu(region->code) & 0xff,
723 724
		    start, le32_to_cpu(region->end) >> 2,
		    le32_to_cpu(region->size));
725

726
		switch (le32_to_cpu(region->code) & 0xff) {
727 728 729 730 731
		case FLT_REG_FCOE_FW:
			if (!IS_QLA8031(ha))
				break;
			ha->flt_region_fw = start;
			break;
732
		case FLT_REG_FW:
733 734
			if (IS_QLA8031(ha))
				break;
735 736 737 738 739 740
			ha->flt_region_fw = start;
			break;
		case FLT_REG_BOOT_CODE:
			ha->flt_region_boot = start;
			break;
		case FLT_REG_VPD_0:
741 742
			if (IS_QLA8031(ha))
				break;
743
			ha->flt_region_vpd_nvram = start;
744
			if (IS_P3P_TYPE(ha))
745
				break;
746
			if (ha->port_no == 0)
747 748 749
				ha->flt_region_vpd = start;
			break;
		case FLT_REG_VPD_1:
750
			if (IS_P3P_TYPE(ha) || IS_QLA8031(ha))
751
				break;
752 753 754 755 756 757 758 759 760 761 762 763 764
			if (ha->port_no == 1)
				ha->flt_region_vpd = start;
			break;
		case FLT_REG_VPD_2:
			if (!IS_QLA27XX(ha))
				break;
			if (ha->port_no == 2)
				ha->flt_region_vpd = start;
			break;
		case FLT_REG_VPD_3:
			if (!IS_QLA27XX(ha))
				break;
			if (ha->port_no == 3)
765 766 767
				ha->flt_region_vpd = start;
			break;
		case FLT_REG_NVRAM_0:
768 769
			if (IS_QLA8031(ha))
				break;
770
			if (ha->port_no == 0)
771 772 773
				ha->flt_region_nvram = start;
			break;
		case FLT_REG_NVRAM_1:
774 775
			if (IS_QLA8031(ha))
				break;
776 777 778 779 780 781 782 783 784 785 786 787 788
			if (ha->port_no == 1)
				ha->flt_region_nvram = start;
			break;
		case FLT_REG_NVRAM_2:
			if (!IS_QLA27XX(ha))
				break;
			if (ha->port_no == 2)
				ha->flt_region_nvram = start;
			break;
		case FLT_REG_NVRAM_3:
			if (!IS_QLA27XX(ha))
				break;
			if (ha->port_no == 3)
789
				ha->flt_region_nvram = start;
790 791 792 793
			break;
		case FLT_REG_FDT:
			ha->flt_region_fdt = start;
			break;
794
		case FLT_REG_NPIV_CONF_0:
795
			if (ha->port_no == 0)
796 797 798
				ha->flt_region_npiv_conf = start;
			break;
		case FLT_REG_NPIV_CONF_1:
799
			if (ha->port_no == 1)
800 801
				ha->flt_region_npiv_conf = start;
			break;
802 803 804
		case FLT_REG_GOLD_FW:
			ha->flt_region_gold_fw = start;
			break;
S
Sarang Radke 已提交
805
		case FLT_REG_FCP_PRIO_0:
806
			if (ha->port_no == 0)
S
Sarang Radke 已提交
807 808 809
				ha->flt_region_fcp_prio = start;
			break;
		case FLT_REG_FCP_PRIO_1:
810
			if (ha->port_no == 1)
S
Sarang Radke 已提交
811 812
				ha->flt_region_fcp_prio = start;
			break;
813 814 815
		case FLT_REG_BOOT_CODE_82XX:
			ha->flt_region_boot = start;
			break;
816 817 818 819
		case FLT_REG_BOOT_CODE_8044:
			if (IS_QLA8044(ha))
				ha->flt_region_boot = start;
			break;
820 821 822
		case FLT_REG_FW_82XX:
			ha->flt_region_fw = start;
			break;
823 824 825 826
		case FLT_REG_CNA_FW:
			if (IS_CNA_CAPABLE(ha))
				ha->flt_region_fw = start;
			break;
827 828 829 830 831 832
		case FLT_REG_GOLD_FW_82XX:
			ha->flt_region_gold_fw = start;
			break;
		case FLT_REG_BOOTLOAD_82XX:
			ha->flt_region_bootload = start;
			break;
833 834
		case FLT_REG_VPD_8XXX:
			if (IS_CNA_CAPABLE(ha))
835 836 837
				ha->flt_region_vpd = start;
			break;
		case FLT_REG_FCOE_NVRAM_0:
838
			if (!(IS_QLA8031(ha) || IS_QLA8044(ha)))
839
				break;
840
			if (ha->port_no == 0)
841 842 843
				ha->flt_region_nvram = start;
			break;
		case FLT_REG_FCOE_NVRAM_1:
844
			if (!(IS_QLA8031(ha) || IS_QLA8044(ha)))
845
				break;
846
			if (ha->port_no == 1)
847 848
				ha->flt_region_nvram = start;
			break;
849 850 851 852 853 854 855
		}
	}
	goto done;

no_flash_data:
	/* Use hardcoded defaults. */
	loc = locations[0];
856 857 858
	ha->flt_region_fw = def_fw[def];
	ha->flt_region_boot = def_boot[def];
	ha->flt_region_vpd_nvram = def_vpd_nvram[def];
859
	ha->flt_region_vpd = (ha->port_no == 0) ?
S
Sarang Radke 已提交
860
	    def_vpd0[def] : def_vpd1[def];
861
	ha->flt_region_nvram = (ha->port_no == 0) ?
S
Sarang Radke 已提交
862
	    def_nvram0[def] : def_nvram1[def];
863
	ha->flt_region_fdt = def_fdt[def];
864
	ha->flt_region_npiv_conf = (ha->port_no == 0) ?
S
Sarang Radke 已提交
865
	    def_npiv_conf0[def] : def_npiv_conf1[def];
866
done:
867
	ql_dbg(ql_dbg_init, vha, 0x004a,
868 869 870 871 872 873
	    "FLT[%s]: boot=0x%x fw=0x%x vpd_nvram=0x%x vpd=0x%x nvram=0x%x "
	    "fdt=0x%x flt=0x%x npiv=0x%x fcp_prif_cfg=0x%x.\n",
	    loc, ha->flt_region_boot, ha->flt_region_fw,
	    ha->flt_region_vpd_nvram, ha->flt_region_vpd, ha->flt_region_nvram,
	    ha->flt_region_fdt, ha->flt_region_flt, ha->flt_region_npiv_conf,
	    ha->flt_region_fcp_prio);
874 875 876
}

static void
877
qla2xxx_get_fdt_info(scsi_qla_host_t *vha)
878
{
879
#define FLASH_BLK_SIZE_4K	0x1000
880 881
#define FLASH_BLK_SIZE_32K	0x8000
#define FLASH_BLK_SIZE_64K	0x10000
882
	const char *loc, *locations[] = { "MID", "FDT" };
883 884 885 886
	uint16_t cnt, chksum;
	uint16_t *wptr;
	struct qla_fdt_layout *fdt;
	uint8_t	man_id, flash_id;
887
	uint16_t mid = 0, fid = 0;
888
	struct qla_hw_data *ha = vha->hw;
889
	struct req_que *req = ha->req_q_map[0];
890

891 892 893
	wptr = (uint16_t *)req->ring;
	fdt = (struct qla_fdt_layout *)req->ring;
	ha->isp_ops->read_optrom(vha, (uint8_t *)req->ring,
894
	    ha->flt_region_fdt << 2, OPTROM_BURST_SIZE);
895 896 897 898 899 900 901 902 903 904
	if (*wptr == __constant_cpu_to_le16(0xffff))
		goto no_flash_data;
	if (fdt->sig[0] != 'Q' || fdt->sig[1] != 'L' || fdt->sig[2] != 'I' ||
	    fdt->sig[3] != 'D')
		goto no_flash_data;

	for (cnt = 0, chksum = 0; cnt < sizeof(struct qla_fdt_layout) >> 1;
	    cnt++)
		chksum += le16_to_cpu(*wptr++);
	if (chksum) {
905 906 907 908 909 910
		ql_dbg(ql_dbg_init, vha, 0x004c,
		    "Inconsistent FDT detected:"
		    " checksum=0x%x id=%c version0x%x.\n", chksum,
		    fdt->sig[0], le16_to_cpu(fdt->version));
		ql_dump_buffer(ql_dbg_init + ql_dbg_buffer, vha, 0x0113,
		    (uint8_t *)fdt, sizeof(*fdt));
911 912 913
		goto no_flash_data;
	}

914 915 916
	loc = locations[1];
	mid = le16_to_cpu(fdt->man_id);
	fid = le16_to_cpu(fdt->id);
917
	ha->fdt_wrt_disable = fdt->wrt_disable_bits;
918 919 920 921 922 923 924
	ha->fdt_wrt_enable = fdt->wrt_enable_bits;
	ha->fdt_wrt_sts_reg_cmd = fdt->wrt_sts_reg_cmd;
	if (IS_QLA8044(ha))
		ha->fdt_erase_cmd = fdt->erase_cmd;
	else
		ha->fdt_erase_cmd =
		    flash_conf_addr(ha, 0x0300 | fdt->erase_cmd);
925 926
	ha->fdt_block_size = le32_to_cpu(fdt->block_size);
	if (fdt->unprotect_sec_cmd) {
927
		ha->fdt_unprotect_sec_cmd = flash_conf_addr(ha, 0x0300 |
928 929
		    fdt->unprotect_sec_cmd);
		ha->fdt_protect_sec_cmd = fdt->protect_sec_cmd ?
930 931
		    flash_conf_addr(ha, 0x0300 | fdt->protect_sec_cmd):
		    flash_conf_addr(ha, 0x0336);
932
	}
933
	goto done;
934
no_flash_data:
935
	loc = locations[0];
936
	if (IS_P3P_TYPE(ha)) {
937 938 939
		ha->fdt_block_size = FLASH_BLK_SIZE_64K;
		goto done;
	}
940
	qla24xx_get_flash_manufacturer(ha, &man_id, &flash_id);
941 942
	mid = man_id;
	fid = flash_id;
943
	ha->fdt_wrt_disable = 0x9c;
944
	ha->fdt_erase_cmd = flash_conf_addr(ha, 0x03d8);
945 946 947 948 949 950 951 952
	switch (man_id) {
	case 0xbf: /* STT flash. */
		if (flash_id == 0x8e)
			ha->fdt_block_size = FLASH_BLK_SIZE_64K;
		else
			ha->fdt_block_size = FLASH_BLK_SIZE_32K;

		if (flash_id == 0x80)
953
			ha->fdt_erase_cmd = flash_conf_addr(ha, 0x0352);
954 955 956 957 958
		break;
	case 0x13: /* ST M25P80. */
		ha->fdt_block_size = FLASH_BLK_SIZE_64K;
		break;
	case 0x1f: /* Atmel 26DF081A. */
959
		ha->fdt_block_size = FLASH_BLK_SIZE_4K;
960 961 962
		ha->fdt_erase_cmd = flash_conf_addr(ha, 0x0320);
		ha->fdt_unprotect_sec_cmd = flash_conf_addr(ha, 0x0339);
		ha->fdt_protect_sec_cmd = flash_conf_addr(ha, 0x0336);
963 964 965 966 967 968
		break;
	default:
		/* Default to 64 kb sector size. */
		ha->fdt_block_size = FLASH_BLK_SIZE_64K;
		break;
	}
969
done:
970
	ql_dbg(ql_dbg_init, vha, 0x004d,
971 972 973
	    "FDT[%s]: (0x%x/0x%x) erase=0x%x "
	    "pr=%x wrtd=0x%x blk=0x%x.\n",
	    loc, mid, fid,
974
	    ha->fdt_erase_cmd, ha->fdt_protect_sec_cmd,
975 976
	    ha->fdt_wrt_disable, ha->fdt_block_size);

977 978
}

979 980 981 982 983 984 985 986
static void
qla2xxx_get_idc_param(scsi_qla_host_t *vha)
{
#define QLA82XX_IDC_PARAM_ADDR       0x003e885c
	uint32_t *wptr;
	struct qla_hw_data *ha = vha->hw;
	struct req_que *req = ha->req_q_map[0];

987
	if (!(IS_P3P_TYPE(ha)))
988 989 990 991 992 993 994
		return;

	wptr = (uint32_t *)req->ring;
	ha->isp_ops->read_optrom(vha, (uint8_t *)req->ring,
		QLA82XX_IDC_PARAM_ADDR , 8);

	if (*wptr == __constant_cpu_to_le32(0xffffffff)) {
995 996
		ha->fcoe_dev_init_timeout = QLA82XX_ROM_DEV_INIT_TIMEOUT;
		ha->fcoe_reset_timeout = QLA82XX_ROM_DRV_RESET_ACK_TIMEOUT;
997
	} else {
998 999
		ha->fcoe_dev_init_timeout = le32_to_cpu(*wptr++);
		ha->fcoe_reset_timeout = le32_to_cpu(*wptr);
1000
	}
1001
	ql_dbg(ql_dbg_init, vha, 0x004e,
1002 1003 1004
	    "fcoe_dev_init_timeout=%d "
	    "fcoe_reset_timeout=%d.\n", ha->fcoe_dev_init_timeout,
	    ha->fcoe_reset_timeout);
1005 1006 1007
	return;
}

1008
int
1009
qla2xxx_get_flash_info(scsi_qla_host_t *vha)
1010 1011 1012
{
	int ret;
	uint32_t flt_addr;
1013
	struct qla_hw_data *ha = vha->hw;
1014

1015
	if (!IS_QLA24XX_TYPE(ha) && !IS_QLA25XX(ha) &&
1016
	    !IS_CNA_CAPABLE(ha) && !IS_QLA2031(ha) && !IS_QLA27XX(ha))
1017 1018
		return QLA_SUCCESS;

1019
	ret = qla2xxx_find_flt_start(vha, &flt_addr);
1020 1021 1022
	if (ret != QLA_SUCCESS)
		return ret;

1023 1024
	qla2xxx_get_flt_info(vha, flt_addr);
	qla2xxx_get_fdt_info(vha);
1025
	qla2xxx_get_idc_param(vha);
1026 1027 1028 1029

	return QLA_SUCCESS;
}

1030
void
1031
qla2xxx_flash_npiv_conf(scsi_qla_host_t *vha)
1032 1033 1034 1035 1036
{
#define NPIV_CONFIG_SIZE	(16*1024)
	void *data;
	uint16_t *wptr;
	uint16_t cnt, chksum;
1037
	int i;
1038 1039
	struct qla_npiv_header hdr;
	struct qla_npiv_entry *entry;
1040
	struct qla_hw_data *ha = vha->hw;
1041

1042 1043
	if (!IS_QLA24XX_TYPE(ha) && !IS_QLA25XX(ha) &&
	    !IS_CNA_CAPABLE(ha) && !IS_QLA2031(ha))
1044 1045
		return;

1046
	if (ha->flags.nic_core_reset_hdlr_active)
1047 1048
		return;

1049 1050 1051
	if (IS_QLA8044(ha))
		return;

1052
	ha->isp_ops->read_optrom(vha, (uint8_t *)&hdr,
1053 1054 1055 1056
	    ha->flt_region_npiv_conf << 2, sizeof(struct qla_npiv_header));
	if (hdr.version == __constant_cpu_to_le16(0xffff))
		return;
	if (hdr.version != __constant_cpu_to_le16(1)) {
1057 1058
		ql_dbg(ql_dbg_user, vha, 0x7090,
		    "Unsupported NPIV-Config "
1059 1060
		    "detected: version=0x%x entries=0x%x checksum=0x%x.\n",
		    le16_to_cpu(hdr.version), le16_to_cpu(hdr.entries),
1061
		    le16_to_cpu(hdr.checksum));
1062 1063 1064 1065 1066
		return;
	}

	data = kmalloc(NPIV_CONFIG_SIZE, GFP_KERNEL);
	if (!data) {
1067 1068
		ql_log(ql_log_warn, vha, 0x7091,
		    "Unable to allocate memory for data.\n");
1069 1070 1071
		return;
	}

1072
	ha->isp_ops->read_optrom(vha, (uint8_t *)data,
1073 1074 1075 1076 1077 1078 1079
	    ha->flt_region_npiv_conf << 2, NPIV_CONFIG_SIZE);

	cnt = (sizeof(struct qla_npiv_header) + le16_to_cpu(hdr.entries) *
	    sizeof(struct qla_npiv_entry)) >> 1;
	for (wptr = data, chksum = 0; cnt; cnt--)
		chksum += le16_to_cpu(*wptr++);
	if (chksum) {
1080 1081
		ql_dbg(ql_dbg_user, vha, 0x7092,
		    "Inconsistent NPIV-Config "
1082 1083
		    "detected: version=0x%x entries=0x%x checksum=0x%x.\n",
		    le16_to_cpu(hdr.version), le16_to_cpu(hdr.entries),
1084
		    le16_to_cpu(hdr.checksum));
1085 1086 1087 1088 1089
		goto done;
	}

	entry = data + sizeof(struct qla_npiv_header);
	cnt = le16_to_cpu(hdr.entries);
1090
	for (i = 0; cnt; cnt--, entry++, i++) {
1091 1092 1093 1094
		uint16_t flags;
		struct fc_vport_identifiers vid;
		struct fc_vport *vport;

1095 1096
		memcpy(&ha->npiv_info[i], entry, sizeof(struct qla_npiv_entry));

1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
		flags = le16_to_cpu(entry->flags);
		if (flags == 0xffff)
			continue;
		if ((flags & BIT_0) == 0)
			continue;

		memset(&vid, 0, sizeof(vid));
		vid.roles = FC_PORT_ROLE_FCP_INITIATOR;
		vid.vport_type = FC_PORTTYPE_NPIV;
		vid.disable = false;
		vid.port_name = wwn_to_u64(entry->port_name);
		vid.node_name = wwn_to_u64(entry->node_name);

1110 1111 1112 1113 1114 1115 1116
		ql_dbg(ql_dbg_user, vha, 0x7093,
		    "NPIV[%02x]: wwpn=%llx "
		    "wwnn=%llx vf_id=0x%x Q_qos=0x%x F_qos=0x%x.\n", cnt,
		    (unsigned long long)vid.port_name,
		    (unsigned long long)vid.node_name,
		    le16_to_cpu(entry->vf_id),
		    entry->q_qos, entry->f_qos);
1117 1118 1119 1120

		if (i < QLA_PRECONFIG_VPORTS) {
			vport = fc_vport_create(vha->host, 0, &vid);
			if (!vport)
1121 1122 1123 1124 1125
				ql_log(ql_log_warn, vha, 0x7094,
				    "NPIV-Config Failed to create vport [%02x]: "
				    "wwpn=%llx wwnn=%llx.\n", cnt,
				    (unsigned long long)vid.port_name,
				    (unsigned long long)vid.node_name);
1126
		}
1127 1128 1129 1130 1131
	}
done:
	kfree(data);
}

1132 1133
static int
qla24xx_unprotect_flash(scsi_qla_host_t *vha)
1134
{
1135
	struct qla_hw_data *ha = vha->hw;
1136 1137
	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;

1138 1139 1140
	if (ha->flags.fac_supported)
		return qla81xx_fac_do_write_enable(vha, 1);

1141 1142 1143 1144 1145
	/* Enable flash write. */
	WRT_REG_DWORD(&reg->ctrl_status,
	    RD_REG_DWORD(&reg->ctrl_status) | CSRX_FLASH_ENABLE);
	RD_REG_DWORD(&reg->ctrl_status);	/* PCI Posting. */

1146
	if (!ha->fdt_wrt_disable)
1147
		goto done;
1148

1149
	/* Disable flash write-protection, first clear SR protection bit */
1150
	qla24xx_write_flash_dword(ha, flash_conf_addr(ha, 0x101), 0);
1151
	/* Then write zero again to clear remaining SR bits.*/
1152
	qla24xx_write_flash_dword(ha, flash_conf_addr(ha, 0x101), 0);
1153 1154
done:
	return QLA_SUCCESS;
1155 1156
}

1157 1158
static int
qla24xx_protect_flash(scsi_qla_host_t *vha)
1159 1160
{
	uint32_t cnt;
1161
	struct qla_hw_data *ha = vha->hw;
1162 1163
	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;

1164 1165 1166
	if (ha->flags.fac_supported)
		return qla81xx_fac_do_write_enable(vha, 0);

1167 1168 1169
	if (!ha->fdt_wrt_disable)
		goto skip_wrt_protect;

1170
	/* Enable flash write-protection and wait for completion. */
1171
	qla24xx_write_flash_dword(ha, flash_conf_addr(ha, 0x101),
1172
	    ha->fdt_wrt_disable);
1173
	for (cnt = 300; cnt &&
1174
	    qla24xx_read_flash_dword(ha, flash_conf_addr(ha, 0x005)) & BIT_0;
1175 1176 1177 1178
	    cnt--) {
		udelay(10);
	}

1179
skip_wrt_protect:
1180 1181 1182 1183
	/* Disable flash write. */
	WRT_REG_DWORD(&reg->ctrl_status,
	    RD_REG_DWORD(&reg->ctrl_status) & ~CSRX_FLASH_ENABLE);
	RD_REG_DWORD(&reg->ctrl_status);	/* PCI Posting. */
1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203

	return QLA_SUCCESS;
}

static int
qla24xx_erase_sector(scsi_qla_host_t *vha, uint32_t fdata)
{
	struct qla_hw_data *ha = vha->hw;
	uint32_t start, finish;

	if (ha->flags.fac_supported) {
		start = fdata >> 2;
		finish = start + (ha->fdt_block_size >> 2) - 1;
		return qla81xx_fac_erase_sector(vha, flash_data_addr(ha,
		    start), flash_data_addr(ha, finish));
	}

	return qla24xx_write_flash_dword(ha, ha->fdt_erase_cmd,
	    (fdata & 0xff00) | ((fdata << 16) & 0xff0000) |
	    ((fdata >> 16) & 0xff));
1204 1205
}

1206
static int
1207
qla24xx_write_flash_data(scsi_qla_host_t *vha, uint32_t *dwptr, uint32_t faddr,
1208 1209 1210
    uint32_t dwords)
{
	int ret;
1211
	uint32_t liter;
1212
	uint32_t sec_mask, rest_addr;
1213
	uint32_t fdata;
1214 1215
	dma_addr_t optrom_dma;
	void *optrom = NULL;
1216
	struct qla_hw_data *ha = vha->hw;
1217

1218
	/* Prepare burst-capable write on supported ISPs. */
1219 1220
	if ((IS_QLA25XX(ha) || IS_QLA81XX(ha) || IS_QLA83XX(ha) ||
	    IS_QLA27XX(ha)) &&
1221
	    !(faddr & 0xfff) && dwords > OPTROM_BURST_DWORDS) {
1222 1223 1224
		optrom = dma_alloc_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE,
		    &optrom_dma, GFP_KERNEL);
		if (!optrom) {
1225 1226 1227 1228
			ql_log(ql_log_warn, vha, 0x7095,
			    "Unable to allocate "
			    "memory for optrom burst write (%x KB).\n",
			    OPTROM_BURST_SIZE / 1024);
1229 1230 1231
		}
	}

1232
	rest_addr = (ha->fdt_block_size >> 2) - 1;
1233
	sec_mask = ~rest_addr;
1234

1235 1236
	ret = qla24xx_unprotect_flash(vha);
	if (ret != QLA_SUCCESS) {
1237
		ql_log(ql_log_warn, vha, 0x7096,
1238 1239 1240
		    "Unable to unprotect flash for update.\n");
		goto done;
	}
1241

1242
	for (liter = 0; liter < dwords; liter++, faddr++, dwptr++) {
1243
		fdata = (faddr & sec_mask) << 2;
1244

1245
		/* Are we at the beginning of a sector? */
1246
		if ((faddr & rest_addr) == 0) {
1247 1248
			/* Do sector unprotect. */
			if (ha->fdt_unprotect_sec_cmd)
1249
				qla24xx_write_flash_dword(ha,
1250
				    ha->fdt_unprotect_sec_cmd,
1251
				    (fdata & 0xff00) | ((fdata << 16) &
1252
				    0xff0000) | ((fdata >> 16) & 0xff));
1253
			ret = qla24xx_erase_sector(vha, fdata);
1254
			if (ret != QLA_SUCCESS) {
1255 1256 1257
				ql_dbg(ql_dbg_user, vha, 0x7007,
				    "Unable to erase erase sector: address=%x.\n",
				    faddr);
1258
				break;
1259
			}
1260 1261 1262
		}

		/* Go with burst-write. */
1263
		if (optrom && (liter + OPTROM_BURST_DWORDS) <= dwords) {
1264
			/* Copy data to DMA'ble buffer. */
1265
			memcpy(optrom, dwptr, OPTROM_BURST_SIZE);
1266

1267
			ret = qla2x00_load_ram(vha, optrom_dma,
1268
			    flash_data_addr(ha, faddr),
1269
			    OPTROM_BURST_DWORDS);
1270
			if (ret != QLA_SUCCESS) {
1271
				ql_log(ql_log_warn, vha, 0x7097,
1272 1273
				    "Unable to burst-write optrom segment "
				    "(%x/%x/%llx).\n", ret,
1274
				    flash_data_addr(ha, faddr),
A
Andrew Morton 已提交
1275
				    (unsigned long long)optrom_dma);
1276
				ql_log(ql_log_warn, vha, 0x7098,
1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
				    "Reverting to slow-write.\n");

				dma_free_coherent(&ha->pdev->dev,
				    OPTROM_BURST_SIZE, optrom, optrom_dma);
				optrom = NULL;
			} else {
				liter += OPTROM_BURST_DWORDS - 1;
				faddr += OPTROM_BURST_DWORDS - 1;
				dwptr += OPTROM_BURST_DWORDS - 1;
				continue;
1287
			}
1288
		}
1289

1290
		ret = qla24xx_write_flash_dword(ha,
1291
		    flash_data_addr(ha, faddr), cpu_to_le32(*dwptr));
1292
		if (ret != QLA_SUCCESS) {
1293 1294 1295
			ql_dbg(ql_dbg_user, vha, 0x7006,
			    "Unable to program flash address=%x data=%x.\n",
			    faddr, *dwptr);
1296
			break;
1297
		}
1298

1299 1300
		/* Do sector protect. */
		if (ha->fdt_unprotect_sec_cmd &&
1301 1302
		    ((faddr & rest_addr) == rest_addr))
			qla24xx_write_flash_dword(ha,
1303
			    ha->fdt_protect_sec_cmd,
1304 1305 1306
			    (fdata & 0xff00) | ((fdata << 16) &
			    0xff0000) | ((fdata >> 16) & 0xff));
	}
1307

1308 1309
	ret = qla24xx_protect_flash(vha);
	if (ret != QLA_SUCCESS)
1310
		ql_log(ql_log_warn, vha, 0x7099,
1311 1312
		    "Unable to protect flash after update.\n");
done:
1313 1314 1315 1316
	if (optrom)
		dma_free_coherent(&ha->pdev->dev,
		    OPTROM_BURST_SIZE, optrom, optrom_dma);

1317 1318 1319 1320
	return ret;
}

uint8_t *
1321
qla2x00_read_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1322 1323 1324 1325
    uint32_t bytes)
{
	uint32_t i;
	uint16_t *wptr;
1326
	struct qla_hw_data *ha = vha->hw;
1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339

	/* Word reads to NVRAM via registers. */
	wptr = (uint16_t *)buf;
	qla2x00_lock_nvram_access(ha);
	for (i = 0; i < bytes >> 1; i++, naddr++)
		wptr[i] = cpu_to_le16(qla2x00_get_nvram_word(ha,
		    naddr));
	qla2x00_unlock_nvram_access(ha);

	return buf;
}

uint8_t *
1340
qla24xx_read_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1341 1342 1343 1344
    uint32_t bytes)
{
	uint32_t i;
	uint32_t *dwptr;
1345
	struct qla_hw_data *ha = vha->hw;
1346

1347
	if (IS_P3P_TYPE(ha))
1348 1349
		return  buf;

1350 1351 1352
	/* Dword reads to flash. */
	dwptr = (uint32_t *)buf;
	for (i = 0; i < bytes >> 2; i++, naddr++)
1353 1354
		dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(ha,
		    nvram_data_addr(ha, naddr)));
1355 1356 1357 1358 1359

	return buf;
}

int
1360
qla2x00_write_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1361 1362 1363 1364 1365
    uint32_t bytes)
{
	int ret, stat;
	uint32_t i;
	uint16_t *wptr;
1366
	unsigned long flags;
1367
	struct qla_hw_data *ha = vha->hw;
1368 1369 1370

	ret = QLA_SUCCESS;

1371
	spin_lock_irqsave(&ha->hardware_lock, flags);
1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
	qla2x00_lock_nvram_access(ha);

	/* Disable NVRAM write-protection. */
	stat = qla2x00_clear_nvram_protection(ha);

	wptr = (uint16_t *)buf;
	for (i = 0; i < bytes >> 1; i++, naddr++) {
		qla2x00_write_nvram_word(ha, naddr,
		    cpu_to_le16(*wptr));
		wptr++;
	}

	/* Enable NVRAM write-protection. */
	qla2x00_set_nvram_protection(ha, stat);

	qla2x00_unlock_nvram_access(ha);
1388
	spin_unlock_irqrestore(&ha->hardware_lock, flags);
1389 1390 1391 1392 1393

	return ret;
}

int
1394
qla24xx_write_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1395 1396 1397 1398 1399
    uint32_t bytes)
{
	int ret;
	uint32_t i;
	uint32_t *dwptr;
1400
	struct qla_hw_data *ha = vha->hw;
1401 1402 1403 1404
	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;

	ret = QLA_SUCCESS;

1405
	if (IS_P3P_TYPE(ha))
1406 1407
		return ret;

1408 1409 1410 1411 1412 1413
	/* Enable flash write. */
	WRT_REG_DWORD(&reg->ctrl_status,
	    RD_REG_DWORD(&reg->ctrl_status) | CSRX_FLASH_ENABLE);
	RD_REG_DWORD(&reg->ctrl_status);	/* PCI Posting. */

	/* Disable NVRAM write-protection. */
1414 1415
	qla24xx_write_flash_dword(ha, nvram_conf_addr(ha, 0x101), 0);
	qla24xx_write_flash_dword(ha, nvram_conf_addr(ha, 0x101), 0);
1416 1417 1418 1419 1420

	/* Dword writes to flash. */
	dwptr = (uint32_t *)buf;
	for (i = 0; i < bytes >> 2; i++, naddr++, dwptr++) {
		ret = qla24xx_write_flash_dword(ha,
1421
		    nvram_data_addr(ha, naddr), cpu_to_le32(*dwptr));
1422
		if (ret != QLA_SUCCESS) {
1423
			ql_dbg(ql_dbg_user, vha, 0x709a,
1424
			    "Unable to program nvram address=%x data=%x.\n",
1425
			    naddr, *dwptr);
1426 1427 1428 1429 1430
			break;
		}
	}

	/* Enable NVRAM write-protection. */
1431
	qla24xx_write_flash_dword(ha, nvram_conf_addr(ha, 0x101), 0x8c);
1432 1433 1434 1435 1436 1437 1438 1439

	/* Disable flash write. */
	WRT_REG_DWORD(&reg->ctrl_status,
	    RD_REG_DWORD(&reg->ctrl_status) & ~CSRX_FLASH_ENABLE);
	RD_REG_DWORD(&reg->ctrl_status);	/* PCI Posting. */

	return ret;
}
1440

1441
uint8_t *
1442
qla25xx_read_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1443 1444 1445 1446
    uint32_t bytes)
{
	uint32_t i;
	uint32_t *dwptr;
1447
	struct qla_hw_data *ha = vha->hw;
1448 1449 1450 1451 1452

	/* Dword reads to flash. */
	dwptr = (uint32_t *)buf;
	for (i = 0; i < bytes >> 2; i++, naddr++)
		dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(ha,
1453
		    flash_data_addr(ha, ha->flt_region_vpd_nvram | naddr)));
1454 1455 1456 1457 1458

	return buf;
}

int
1459
qla25xx_write_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1460 1461
    uint32_t bytes)
{
1462
	struct qla_hw_data *ha = vha->hw;
1463 1464 1465 1466 1467 1468
#define RMW_BUFFER_SIZE	(64 * 1024)
	uint8_t *dbuf;

	dbuf = vmalloc(RMW_BUFFER_SIZE);
	if (!dbuf)
		return QLA_MEMORY_ALLOC_FAILED;
1469
	ha->isp_ops->read_optrom(vha, dbuf, ha->flt_region_vpd_nvram << 2,
1470 1471
	    RMW_BUFFER_SIZE);
	memcpy(dbuf + (naddr << 2), buf, bytes);
1472
	ha->isp_ops->write_optrom(vha, dbuf, ha->flt_region_vpd_nvram << 2,
1473 1474 1475 1476
	    RMW_BUFFER_SIZE);
	vfree(dbuf);

	return QLA_SUCCESS;
1477
}
1478 1479

static inline void
1480
qla2x00_flip_colors(struct qla_hw_data *ha, uint16_t *pflags)
1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506
{
	if (IS_QLA2322(ha)) {
		/* Flip all colors. */
		if (ha->beacon_color_state == QLA_LED_ALL_ON) {
			/* Turn off. */
			ha->beacon_color_state = 0;
			*pflags = GPIO_LED_ALL_OFF;
		} else {
			/* Turn on. */
			ha->beacon_color_state = QLA_LED_ALL_ON;
			*pflags = GPIO_LED_RGA_ON;
		}
	} else {
		/* Flip green led only. */
		if (ha->beacon_color_state == QLA_LED_GRN_ON) {
			/* Turn off. */
			ha->beacon_color_state = 0;
			*pflags = GPIO_LED_GREEN_OFF_AMBER_OFF;
		} else {
			/* Turn on. */
			ha->beacon_color_state = QLA_LED_GRN_ON;
			*pflags = GPIO_LED_GREEN_ON_AMBER_OFF;
		}
	}
}

1507 1508
#define PIO_REG(h, r) ((h)->pio_address + offsetof(struct device_reg_2xxx, r))

1509
void
1510
qla2x00_beacon_blink(struct scsi_qla_host *vha)
1511 1512 1513 1514 1515
{
	uint16_t gpio_enable;
	uint16_t gpio_data;
	uint16_t led_color = 0;
	unsigned long flags;
1516
	struct qla_hw_data *ha = vha->hw;
1517 1518
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;

1519
	if (IS_P3P_TYPE(ha))
1520 1521
		return;

1522 1523 1524 1525
	spin_lock_irqsave(&ha->hardware_lock, flags);

	/* Save the Original GPIOE. */
	if (ha->pio_address) {
1526 1527
		gpio_enable = RD_REG_WORD_PIO(PIO_REG(ha, gpioe));
		gpio_data = RD_REG_WORD_PIO(PIO_REG(ha, gpiod));
1528 1529 1530 1531 1532 1533 1534 1535 1536
	} else {
		gpio_enable = RD_REG_WORD(&reg->gpioe);
		gpio_data = RD_REG_WORD(&reg->gpiod);
	}

	/* Set the modified gpio_enable values */
	gpio_enable |= GPIO_LED_MASK;

	if (ha->pio_address) {
1537
		WRT_REG_WORD_PIO(PIO_REG(ha, gpioe), gpio_enable);
1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552
	} else {
		WRT_REG_WORD(&reg->gpioe, gpio_enable);
		RD_REG_WORD(&reg->gpioe);
	}

	qla2x00_flip_colors(ha, &led_color);

	/* Clear out any previously set LED color. */
	gpio_data &= ~GPIO_LED_MASK;

	/* Set the new input LED color to GPIOD. */
	gpio_data |= led_color;

	/* Set the modified gpio_data values */
	if (ha->pio_address) {
1553
		WRT_REG_WORD_PIO(PIO_REG(ha, gpiod), gpio_data);
1554 1555 1556 1557 1558 1559 1560 1561 1562
	} else {
		WRT_REG_WORD(&reg->gpiod, gpio_data);
		RD_REG_WORD(&reg->gpiod);
	}

	spin_unlock_irqrestore(&ha->hardware_lock, flags);
}

int
1563
qla2x00_beacon_on(struct scsi_qla_host *vha)
1564 1565 1566 1567
{
	uint16_t gpio_enable;
	uint16_t gpio_data;
	unsigned long flags;
1568
	struct qla_hw_data *ha = vha->hw;
1569 1570 1571 1572 1573
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;

	ha->fw_options[1] &= ~FO1_SET_EMPHASIS_SWING;
	ha->fw_options[1] |= FO1_DISABLE_GPIO6_7;

1574
	if (qla2x00_set_fw_options(vha, ha->fw_options) != QLA_SUCCESS) {
1575
		ql_log(ql_log_warn, vha, 0x709b,
1576 1577 1578 1579 1580 1581 1582
		    "Unable to update fw options (beacon on).\n");
		return QLA_FUNCTION_FAILED;
	}

	/* Turn off LEDs. */
	spin_lock_irqsave(&ha->hardware_lock, flags);
	if (ha->pio_address) {
1583 1584
		gpio_enable = RD_REG_WORD_PIO(PIO_REG(ha, gpioe));
		gpio_data = RD_REG_WORD_PIO(PIO_REG(ha, gpiod));
1585 1586 1587 1588 1589 1590 1591 1592
	} else {
		gpio_enable = RD_REG_WORD(&reg->gpioe);
		gpio_data = RD_REG_WORD(&reg->gpiod);
	}
	gpio_enable |= GPIO_LED_MASK;

	/* Set the modified gpio_enable values. */
	if (ha->pio_address) {
1593
		WRT_REG_WORD_PIO(PIO_REG(ha, gpioe), gpio_enable);
1594 1595 1596 1597 1598 1599 1600 1601
	} else {
		WRT_REG_WORD(&reg->gpioe, gpio_enable);
		RD_REG_WORD(&reg->gpioe);
	}

	/* Clear out previously set LED colour. */
	gpio_data &= ~GPIO_LED_MASK;
	if (ha->pio_address) {
1602
		WRT_REG_WORD_PIO(PIO_REG(ha, gpiod), gpio_data);
1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619
	} else {
		WRT_REG_WORD(&reg->gpiod, gpio_data);
		RD_REG_WORD(&reg->gpiod);
	}
	spin_unlock_irqrestore(&ha->hardware_lock, flags);

	/*
	 * Let the per HBA timer kick off the blinking process based on
	 * the following flags. No need to do anything else now.
	 */
	ha->beacon_blink_led = 1;
	ha->beacon_color_state = 0;

	return QLA_SUCCESS;
}

int
1620
qla2x00_beacon_off(struct scsi_qla_host *vha)
1621 1622
{
	int rval = QLA_SUCCESS;
1623
	struct qla_hw_data *ha = vha->hw;
1624 1625 1626 1627 1628 1629 1630 1631 1632

	ha->beacon_blink_led = 0;

	/* Set the on flag so when it gets flipped it will be off. */
	if (IS_QLA2322(ha))
		ha->beacon_color_state = QLA_LED_ALL_ON;
	else
		ha->beacon_color_state = QLA_LED_GRN_ON;

1633
	ha->isp_ops->beacon_blink(vha);	/* This turns green LED off */
1634 1635 1636 1637

	ha->fw_options[1] &= ~FO1_SET_EMPHASIS_SWING;
	ha->fw_options[1] &= ~FO1_DISABLE_GPIO6_7;

1638
	rval = qla2x00_set_fw_options(vha, ha->fw_options);
1639
	if (rval != QLA_SUCCESS)
1640
		ql_log(ql_log_warn, vha, 0x709c,
1641 1642 1643 1644 1645 1646
		    "Unable to update fw options (beacon off).\n");
	return rval;
}


static inline void
1647
qla24xx_flip_colors(struct qla_hw_data *ha, uint16_t *pflags)
1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661
{
	/* Flip all colors. */
	if (ha->beacon_color_state == QLA_LED_ALL_ON) {
		/* Turn off. */
		ha->beacon_color_state = 0;
		*pflags = 0;
	} else {
		/* Turn on. */
		ha->beacon_color_state = QLA_LED_ALL_ON;
		*pflags = GPDX_LED_YELLOW_ON | GPDX_LED_AMBER_ON;
	}
}

void
1662
qla24xx_beacon_blink(struct scsi_qla_host *vha)
1663 1664 1665 1666
{
	uint16_t led_color = 0;
	uint32_t gpio_data;
	unsigned long flags;
1667
	struct qla_hw_data *ha = vha->hw;
1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694
	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;

	/* Save the Original GPIOD. */
	spin_lock_irqsave(&ha->hardware_lock, flags);
	gpio_data = RD_REG_DWORD(&reg->gpiod);

	/* Enable the gpio_data reg for update. */
	gpio_data |= GPDX_LED_UPDATE_MASK;

	WRT_REG_DWORD(&reg->gpiod, gpio_data);
	gpio_data = RD_REG_DWORD(&reg->gpiod);

	/* Set the color bits. */
	qla24xx_flip_colors(ha, &led_color);

	/* Clear out any previously set LED color. */
	gpio_data &= ~GPDX_LED_COLOR_MASK;

	/* Set the new input LED color to GPIOD. */
	gpio_data |= led_color;

	/* Set the modified gpio_data values. */
	WRT_REG_DWORD(&reg->gpiod, gpio_data);
	gpio_data = RD_REG_DWORD(&reg->gpiod);
	spin_unlock_irqrestore(&ha->hardware_lock, flags);
}

1695 1696 1697 1698 1699 1700 1701 1702
static uint32_t
qla83xx_select_led_port(struct qla_hw_data *ha)
{
	uint32_t led_select_value = 0;

	if (!IS_QLA83XX(ha))
		goto out;

1703
	if (ha->port_no == 0)
1704 1705 1706 1707 1708 1709 1710 1711
		led_select_value = QLA83XX_LED_PORT0;
	else
		led_select_value = QLA83XX_LED_PORT1;

out:
	return led_select_value;
}

1712 1713 1714 1715 1716 1717 1718
void
qla83xx_beacon_blink(struct scsi_qla_host *vha)
{
	uint32_t led_select_value;
	struct qla_hw_data *ha = vha->hw;
	uint16_t led_cfg[6];
	uint16_t orig_led_cfg[6];
1719
	uint32_t led_10_value, led_43_value;
1720 1721 1722 1723

	if (!IS_QLA83XX(ha) && !IS_QLA81XX(ha))
		return;

1724 1725 1726 1727 1728
	if (!ha->beacon_blink_led)
		return;

	if (IS_QLA2031(ha)) {
		led_select_value = qla83xx_select_led_port(ha);
1729

1730 1731
		qla83xx_wr_reg(vha, led_select_value, 0x40002000);
		qla83xx_wr_reg(vha, led_select_value + 4, 0x40002000);
1732
		msleep(1000);
1733 1734
		qla83xx_wr_reg(vha, led_select_value, 0x40004000);
		qla83xx_wr_reg(vha, led_select_value + 4, 0x40004000);
1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746
	} else if (IS_QLA8031(ha)) {
		led_select_value = qla83xx_select_led_port(ha);

		qla83xx_rd_reg(vha, led_select_value, &led_10_value);
		qla83xx_rd_reg(vha, led_select_value + 0x10, &led_43_value);
		qla83xx_wr_reg(vha, led_select_value, 0x01f44000);
		msleep(500);
		qla83xx_wr_reg(vha, led_select_value, 0x400001f4);
		msleep(1000);
		qla83xx_wr_reg(vha, led_select_value, led_10_value);
		qla83xx_wr_reg(vha, led_select_value + 0x10, led_43_value);
	} else if (IS_QLA81XX(ha)) {
1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788
		int rval;

		/* Save Current */
		rval = qla81xx_get_led_config(vha, orig_led_cfg);
		/* Do the blink */
		if (rval == QLA_SUCCESS) {
			if (IS_QLA81XX(ha)) {
				led_cfg[0] = 0x4000;
				led_cfg[1] = 0x2000;
				led_cfg[2] = 0;
				led_cfg[3] = 0;
				led_cfg[4] = 0;
				led_cfg[5] = 0;
			} else {
				led_cfg[0] = 0x4000;
				led_cfg[1] = 0x4000;
				led_cfg[2] = 0x4000;
				led_cfg[3] = 0x2000;
				led_cfg[4] = 0;
				led_cfg[5] = 0x2000;
			}
			rval = qla81xx_set_led_config(vha, led_cfg);
			msleep(1000);
			if (IS_QLA81XX(ha)) {
				led_cfg[0] = 0x4000;
				led_cfg[1] = 0x2000;
				led_cfg[2] = 0;
			} else {
				led_cfg[0] = 0x4000;
				led_cfg[1] = 0x2000;
				led_cfg[2] = 0x4000;
				led_cfg[3] = 0x4000;
				led_cfg[4] = 0;
				led_cfg[5] = 0x2000;
			}
			rval = qla81xx_set_led_config(vha, led_cfg);
		}
		/* On exit, restore original (presumes no status change) */
		qla81xx_set_led_config(vha, orig_led_cfg);
	}
}

1789
int
1790
qla24xx_beacon_on(struct scsi_qla_host *vha)
1791 1792 1793
{
	uint32_t gpio_data;
	unsigned long flags;
1794
	struct qla_hw_data *ha = vha->hw;
1795 1796
	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;

1797
	if (IS_P3P_TYPE(ha))
1798 1799
		return QLA_SUCCESS;

1800 1801 1802
	if (IS_QLA8031(ha) || IS_QLA81XX(ha))
		goto skip_gpio; /* let blink handle it */

1803 1804 1805 1806
	if (ha->beacon_blink_led == 0) {
		/* Enable firmware for update */
		ha->fw_options[1] |= ADD_FO1_DISABLE_GPIO_LED_CTRL;

1807
		if (qla2x00_set_fw_options(vha, ha->fw_options) != QLA_SUCCESS)
1808 1809
			return QLA_FUNCTION_FAILED;

1810
		if (qla2x00_get_fw_options(vha, ha->fw_options) !=
1811
		    QLA_SUCCESS) {
1812
			ql_log(ql_log_warn, vha, 0x7009,
1813 1814 1815 1816
			    "Unable to update fw options (beacon on).\n");
			return QLA_FUNCTION_FAILED;
		}

1817 1818 1819
		if (IS_QLA2031(ha))
			goto skip_gpio;

1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833
		spin_lock_irqsave(&ha->hardware_lock, flags);
		gpio_data = RD_REG_DWORD(&reg->gpiod);

		/* Enable the gpio_data reg for update. */
		gpio_data |= GPDX_LED_UPDATE_MASK;
		WRT_REG_DWORD(&reg->gpiod, gpio_data);
		RD_REG_DWORD(&reg->gpiod);

		spin_unlock_irqrestore(&ha->hardware_lock, flags);
	}

	/* So all colors blink together. */
	ha->beacon_color_state = 0;

1834
skip_gpio:
1835 1836 1837 1838 1839 1840 1841
	/* Let the per HBA timer kick off the blinking process. */
	ha->beacon_blink_led = 1;

	return QLA_SUCCESS;
}

int
1842
qla24xx_beacon_off(struct scsi_qla_host *vha)
1843 1844 1845
{
	uint32_t gpio_data;
	unsigned long flags;
1846
	struct qla_hw_data *ha = vha->hw;
1847 1848
	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;

1849
	if (IS_P3P_TYPE(ha))
1850 1851
		return QLA_SUCCESS;

1852
	ha->beacon_blink_led = 0;
1853 1854 1855 1856 1857 1858 1859

	if (IS_QLA2031(ha))
		goto set_fw_options;

	if (IS_QLA8031(ha) || IS_QLA81XX(ha))
		return QLA_SUCCESS;

1860 1861
	ha->beacon_color_state = QLA_LED_ALL_ON;

1862
	ha->isp_ops->beacon_blink(vha);	/* Will flip to all off. */
1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873

	/* Give control back to firmware. */
	spin_lock_irqsave(&ha->hardware_lock, flags);
	gpio_data = RD_REG_DWORD(&reg->gpiod);

	/* Disable the gpio_data reg for update. */
	gpio_data &= ~GPDX_LED_UPDATE_MASK;
	WRT_REG_DWORD(&reg->gpiod, gpio_data);
	RD_REG_DWORD(&reg->gpiod);
	spin_unlock_irqrestore(&ha->hardware_lock, flags);

1874
set_fw_options:
1875 1876
	ha->fw_options[1] &= ~ADD_FO1_DISABLE_GPIO_LED_CTRL;

1877
	if (qla2x00_set_fw_options(vha, ha->fw_options) != QLA_SUCCESS) {
1878 1879
		ql_log(ql_log_warn, vha, 0x704d,
		    "Unable to update fw options (beacon on).\n");
1880 1881 1882
		return QLA_FUNCTION_FAILED;
	}

1883
	if (qla2x00_get_fw_options(vha, ha->fw_options) != QLA_SUCCESS) {
1884 1885
		ql_log(ql_log_warn, vha, 0x704e,
		    "Unable to update fw options (beacon on).\n");
1886 1887 1888 1889 1890
		return QLA_FUNCTION_FAILED;
	}

	return QLA_SUCCESS;
}
1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901


/*
 * Flash support routines
 */

/**
 * qla2x00_flash_enable() - Setup flash for reading and writing.
 * @ha: HA context
 */
static void
1902
qla2x00_flash_enable(struct qla_hw_data *ha)
1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917
{
	uint16_t data;
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;

	data = RD_REG_WORD(&reg->ctrl_status);
	data |= CSR_FLASH_ENABLE;
	WRT_REG_WORD(&reg->ctrl_status, data);
	RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
}

/**
 * qla2x00_flash_disable() - Disable flash and allow RISC to run.
 * @ha: HA context
 */
static void
1918
qla2x00_flash_disable(struct qla_hw_data *ha)
1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938
{
	uint16_t data;
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;

	data = RD_REG_WORD(&reg->ctrl_status);
	data &= ~(CSR_FLASH_ENABLE);
	WRT_REG_WORD(&reg->ctrl_status, data);
	RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
}

/**
 * qla2x00_read_flash_byte() - Reads a byte from flash
 * @ha: HA context
 * @addr: Address in flash to read
 *
 * A word is read from the chip, but, only the lower byte is valid.
 *
 * Returns the byte read from flash @addr.
 */
static uint8_t
1939
qla2x00_read_flash_byte(struct qla_hw_data *ha, uint32_t addr)
1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977
{
	uint16_t data;
	uint16_t bank_select;
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;

	bank_select = RD_REG_WORD(&reg->ctrl_status);

	if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
		/* Specify 64K address range: */
		/*  clear out Module Select and Flash Address bits [19:16]. */
		bank_select &= ~0xf8;
		bank_select |= addr >> 12 & 0xf0;
		bank_select |= CSR_FLASH_64K_BANK;
		WRT_REG_WORD(&reg->ctrl_status, bank_select);
		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */

		WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
		data = RD_REG_WORD(&reg->flash_data);

		return (uint8_t)data;
	}

	/* Setup bit 16 of flash address. */
	if ((addr & BIT_16) && ((bank_select & CSR_FLASH_64K_BANK) == 0)) {
		bank_select |= CSR_FLASH_64K_BANK;
		WRT_REG_WORD(&reg->ctrl_status, bank_select);
		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */
	} else if (((addr & BIT_16) == 0) &&
	    (bank_select & CSR_FLASH_64K_BANK)) {
		bank_select &= ~(CSR_FLASH_64K_BANK);
		WRT_REG_WORD(&reg->ctrl_status, bank_select);
		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */
	}

	/* Always perform IO mapped accesses to the FLASH registers. */
	if (ha->pio_address) {
		uint16_t data2;

1978
		WRT_REG_WORD_PIO(PIO_REG(ha, flash_address), (uint16_t)addr);
1979
		do {
1980
			data = RD_REG_WORD_PIO(PIO_REG(ha, flash_data));
1981 1982
			barrier();
			cpu_relax();
1983
			data2 = RD_REG_WORD_PIO(PIO_REG(ha, flash_data));
1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
		} while (data != data2);
	} else {
		WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
		data = qla2x00_debounce_register(&reg->flash_data);
	}

	return (uint8_t)data;
}

/**
 * qla2x00_write_flash_byte() - Write a byte to flash
 * @ha: HA context
 * @addr: Address in flash to write
 * @data: Data to write
 */
static void
2000
qla2x00_write_flash_byte(struct qla_hw_data *ha, uint32_t addr, uint8_t data)
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036
{
	uint16_t bank_select;
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;

	bank_select = RD_REG_WORD(&reg->ctrl_status);
	if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
		/* Specify 64K address range: */
		/*  clear out Module Select and Flash Address bits [19:16]. */
		bank_select &= ~0xf8;
		bank_select |= addr >> 12 & 0xf0;
		bank_select |= CSR_FLASH_64K_BANK;
		WRT_REG_WORD(&reg->ctrl_status, bank_select);
		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */

		WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
		RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
		WRT_REG_WORD(&reg->flash_data, (uint16_t)data);
		RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */

		return;
	}

	/* Setup bit 16 of flash address. */
	if ((addr & BIT_16) && ((bank_select & CSR_FLASH_64K_BANK) == 0)) {
		bank_select |= CSR_FLASH_64K_BANK;
		WRT_REG_WORD(&reg->ctrl_status, bank_select);
		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */
	} else if (((addr & BIT_16) == 0) &&
	    (bank_select & CSR_FLASH_64K_BANK)) {
		bank_select &= ~(CSR_FLASH_64K_BANK);
		WRT_REG_WORD(&reg->ctrl_status, bank_select);
		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */
	}

	/* Always perform IO mapped accesses to the FLASH registers. */
	if (ha->pio_address) {
2037 2038
		WRT_REG_WORD_PIO(PIO_REG(ha, flash_address), (uint16_t)addr);
		WRT_REG_WORD_PIO(PIO_REG(ha, flash_data), (uint16_t)data);
2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062
	} else {
		WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
		RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
		WRT_REG_WORD(&reg->flash_data, (uint16_t)data);
		RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
	}
}

/**
 * qla2x00_poll_flash() - Polls flash for completion.
 * @ha: HA context
 * @addr: Address in flash to poll
 * @poll_data: Data to be polled
 * @man_id: Flash manufacturer ID
 * @flash_id: Flash ID
 *
 * This function polls the device until bit 7 of what is read matches data
 * bit 7 or until data bit 5 becomes a 1.  If that hapens, the flash ROM timed
 * out (a fatal error).  The flash book recommeds reading bit 7 again after
 * reading bit 5 as a 1.
 *
 * Returns 0 on success, else non-zero.
 */
static int
2063
qla2x00_poll_flash(struct qla_hw_data *ha, uint32_t addr, uint8_t poll_data,
2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086
    uint8_t man_id, uint8_t flash_id)
{
	int status;
	uint8_t flash_data;
	uint32_t cnt;

	status = 1;

	/* Wait for 30 seconds for command to finish. */
	poll_data &= BIT_7;
	for (cnt = 3000000; cnt; cnt--) {
		flash_data = qla2x00_read_flash_byte(ha, addr);
		if ((flash_data & BIT_7) == poll_data) {
			status = 0;
			break;
		}

		if (man_id != 0x40 && man_id != 0xda) {
			if ((flash_data & BIT_5) && cnt > 2)
				cnt = 2;
		}
		udelay(10);
		barrier();
2087
		cond_resched();
2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102
	}
	return status;
}

/**
 * qla2x00_program_flash_address() - Programs a flash address
 * @ha: HA context
 * @addr: Address in flash to program
 * @data: Data to be written in flash
 * @man_id: Flash manufacturer ID
 * @flash_id: Flash ID
 *
 * Returns 0 on success, else non-zero.
 */
static int
2103 2104
qla2x00_program_flash_address(struct qla_hw_data *ha, uint32_t addr,
    uint8_t data, uint8_t man_id, uint8_t flash_id)
2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139
{
	/* Write Program Command Sequence. */
	if (IS_OEM_001(ha)) {
		qla2x00_write_flash_byte(ha, 0xaaa, 0xaa);
		qla2x00_write_flash_byte(ha, 0x555, 0x55);
		qla2x00_write_flash_byte(ha, 0xaaa, 0xa0);
		qla2x00_write_flash_byte(ha, addr, data);
	} else {
		if (man_id == 0xda && flash_id == 0xc1) {
			qla2x00_write_flash_byte(ha, addr, data);
			if (addr & 0x7e)
				return 0;
		} else {
			qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
			qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
			qla2x00_write_flash_byte(ha, 0x5555, 0xa0);
			qla2x00_write_flash_byte(ha, addr, data);
		}
	}

	udelay(150);

	/* Wait for write to complete. */
	return qla2x00_poll_flash(ha, addr, data, man_id, flash_id);
}

/**
 * qla2x00_erase_flash() - Erase the flash.
 * @ha: HA context
 * @man_id: Flash manufacturer ID
 * @flash_id: Flash ID
 *
 * Returns 0 on success, else non-zero.
 */
static int
2140
qla2x00_erase_flash(struct qla_hw_data *ha, uint8_t man_id, uint8_t flash_id)
2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175
{
	/* Individual Sector Erase Command Sequence */
	if (IS_OEM_001(ha)) {
		qla2x00_write_flash_byte(ha, 0xaaa, 0xaa);
		qla2x00_write_flash_byte(ha, 0x555, 0x55);
		qla2x00_write_flash_byte(ha, 0xaaa, 0x80);
		qla2x00_write_flash_byte(ha, 0xaaa, 0xaa);
		qla2x00_write_flash_byte(ha, 0x555, 0x55);
		qla2x00_write_flash_byte(ha, 0xaaa, 0x10);
	} else {
		qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
		qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
		qla2x00_write_flash_byte(ha, 0x5555, 0x80);
		qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
		qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
		qla2x00_write_flash_byte(ha, 0x5555, 0x10);
	}

	udelay(150);

	/* Wait for erase to complete. */
	return qla2x00_poll_flash(ha, 0x00, 0x80, man_id, flash_id);
}

/**
 * qla2x00_erase_flash_sector() - Erase a flash sector.
 * @ha: HA context
 * @addr: Flash sector to erase
 * @sec_mask: Sector address mask
 * @man_id: Flash manufacturer ID
 * @flash_id: Flash ID
 *
 * Returns 0 on success, else non-zero.
 */
static int
2176
qla2x00_erase_flash_sector(struct qla_hw_data *ha, uint32_t addr,
2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201
    uint32_t sec_mask, uint8_t man_id, uint8_t flash_id)
{
	/* Individual Sector Erase Command Sequence */
	qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
	qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
	qla2x00_write_flash_byte(ha, 0x5555, 0x80);
	qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
	qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
	if (man_id == 0x1f && flash_id == 0x13)
		qla2x00_write_flash_byte(ha, addr & sec_mask, 0x10);
	else
		qla2x00_write_flash_byte(ha, addr & sec_mask, 0x30);

	udelay(150);

	/* Wait for erase to complete. */
	return qla2x00_poll_flash(ha, addr, 0x80, man_id, flash_id);
}

/**
 * qla2x00_get_flash_manufacturer() - Read manufacturer ID from flash chip.
 * @man_id: Flash manufacturer ID
 * @flash_id: Flash ID
 */
static void
2202
qla2x00_get_flash_manufacturer(struct qla_hw_data *ha, uint8_t *man_id,
2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214
    uint8_t *flash_id)
{
	qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
	qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
	qla2x00_write_flash_byte(ha, 0x5555, 0x90);
	*man_id = qla2x00_read_flash_byte(ha, 0x0000);
	*flash_id = qla2x00_read_flash_byte(ha, 0x0001);
	qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
	qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
	qla2x00_write_flash_byte(ha, 0x5555, 0xf0);
}

2215
static void
2216 2217
qla2x00_read_flash_data(struct qla_hw_data *ha, uint8_t *tmp_buf,
	uint32_t saddr, uint32_t length)
2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235
{
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
	uint32_t midpoint, ilength;
	uint8_t data;

	midpoint = length / 2;

	WRT_REG_WORD(&reg->nvram, 0);
	RD_REG_WORD(&reg->nvram);
	for (ilength = 0; ilength < length; saddr++, ilength++, tmp_buf++) {
		if (ilength == midpoint) {
			WRT_REG_WORD(&reg->nvram, NVR_SELECT);
			RD_REG_WORD(&reg->nvram);
		}
		data = qla2x00_read_flash_byte(ha, saddr);
		if (saddr % 100)
			udelay(10);
		*tmp_buf = data;
2236
		cond_resched();
2237 2238
	}
}
2239 2240

static inline void
2241
qla2x00_suspend_hba(struct scsi_qla_host *vha)
2242 2243 2244
{
	int cnt;
	unsigned long flags;
2245
	struct qla_hw_data *ha = vha->hw;
2246 2247 2248
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;

	/* Suspend HBA. */
2249
	scsi_block_requests(vha->host);
2250
	ha->isp_ops->disable_intrs(ha);
2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269
	set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);

	/* Pause RISC. */
	spin_lock_irqsave(&ha->hardware_lock, flags);
	WRT_REG_WORD(&reg->hccr, HCCR_PAUSE_RISC);
	RD_REG_WORD(&reg->hccr);
	if (IS_QLA2100(ha) || IS_QLA2200(ha) || IS_QLA2300(ha)) {
		for (cnt = 0; cnt < 30000; cnt++) {
			if ((RD_REG_WORD(&reg->hccr) & HCCR_RISC_PAUSE) != 0)
				break;
			udelay(100);
		}
	} else {
		udelay(10);
	}
	spin_unlock_irqrestore(&ha->hardware_lock, flags);
}

static inline void
2270
qla2x00_resume_hba(struct scsi_qla_host *vha)
2271
{
2272 2273
	struct qla_hw_data *ha = vha->hw;

2274 2275
	/* Resume HBA. */
	clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2276 2277
	set_bit(ISP_ABORT_NEEDED, &vha->dpc_flags);
	qla2xxx_wake_dpc(vha);
2278
	qla2x00_wait_for_chip_reset(vha);
2279
	scsi_unblock_requests(vha->host);
2280 2281 2282
}

uint8_t *
2283
qla2x00_read_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
2284 2285 2286 2287
    uint32_t offset, uint32_t length)
{
	uint32_t addr, midpoint;
	uint8_t *data;
2288
	struct qla_hw_data *ha = vha->hw;
2289 2290 2291
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;

	/* Suspend HBA. */
2292
	qla2x00_suspend_hba(vha);
2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310

	/* Go with read. */
	midpoint = ha->optrom_size / 2;

	qla2x00_flash_enable(ha);
	WRT_REG_WORD(&reg->nvram, 0);
	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
	for (addr = offset, data = buf; addr < length; addr++, data++) {
		if (addr == midpoint) {
			WRT_REG_WORD(&reg->nvram, NVR_SELECT);
			RD_REG_WORD(&reg->nvram);	/* PCI Posting. */
		}

		*data = qla2x00_read_flash_byte(ha, addr);
	}
	qla2x00_flash_disable(ha);

	/* Resume HBA. */
2311
	qla2x00_resume_hba(vha);
2312 2313 2314 2315 2316

	return buf;
}

int
2317
qla2x00_write_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
2318 2319 2320 2321 2322 2323 2324
    uint32_t offset, uint32_t length)
{

	int rval;
	uint8_t man_id, flash_id, sec_number, data;
	uint16_t wd;
	uint32_t addr, liter, sec_mask, rest_addr;
2325
	struct qla_hw_data *ha = vha->hw;
2326 2327 2328
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;

	/* Suspend HBA. */
2329
	qla2x00_suspend_hba(vha);
2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359

	rval = QLA_SUCCESS;
	sec_number = 0;

	/* Reset ISP chip. */
	WRT_REG_WORD(&reg->ctrl_status, CSR_ISP_SOFT_RESET);
	pci_read_config_word(ha->pdev, PCI_COMMAND, &wd);

	/* Go with write. */
	qla2x00_flash_enable(ha);
	do {	/* Loop once to provide quick error exit */
		/* Structure of flash memory based on manufacturer */
		if (IS_OEM_001(ha)) {
			/* OEM variant with special flash part. */
			man_id = flash_id = 0;
			rest_addr = 0xffff;
			sec_mask   = 0x10000;
			goto update_flash;
		}
		qla2x00_get_flash_manufacturer(ha, &man_id, &flash_id);
		switch (man_id) {
		case 0x20: /* ST flash. */
			if (flash_id == 0xd2 || flash_id == 0xe3) {
				/*
				 * ST m29w008at part - 64kb sector size with
				 * 32kb,8kb,8kb,16kb sectors at memory address
				 * 0xf0000.
				 */
				rest_addr = 0xffff;
				sec_mask = 0x10000;
2360
				break;
2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522
			}
			/*
			 * ST m29w010b part - 16kb sector size
			 * Default to 16kb sectors
			 */
			rest_addr = 0x3fff;
			sec_mask = 0x1c000;
			break;
		case 0x40: /* Mostel flash. */
			/* Mostel v29c51001 part - 512 byte sector size. */
			rest_addr = 0x1ff;
			sec_mask = 0x1fe00;
			break;
		case 0xbf: /* SST flash. */
			/* SST39sf10 part - 4kb sector size. */
			rest_addr = 0xfff;
			sec_mask = 0x1f000;
			break;
		case 0xda: /* Winbond flash. */
			/* Winbond W29EE011 part - 256 byte sector size. */
			rest_addr = 0x7f;
			sec_mask = 0x1ff80;
			break;
		case 0xc2: /* Macronix flash. */
			/* 64k sector size. */
			if (flash_id == 0x38 || flash_id == 0x4f) {
				rest_addr = 0xffff;
				sec_mask = 0x10000;
				break;
			}
			/* Fall through... */

		case 0x1f: /* Atmel flash. */
			/* 512k sector size. */
			if (flash_id == 0x13) {
				rest_addr = 0x7fffffff;
				sec_mask =   0x80000000;
				break;
			}
			/* Fall through... */

		case 0x01: /* AMD flash. */
			if (flash_id == 0x38 || flash_id == 0x40 ||
			    flash_id == 0x4f) {
				/* Am29LV081 part - 64kb sector size. */
				/* Am29LV002BT part - 64kb sector size. */
				rest_addr = 0xffff;
				sec_mask = 0x10000;
				break;
			} else if (flash_id == 0x3e) {
				/*
				 * Am29LV008b part - 64kb sector size with
				 * 32kb,8kb,8kb,16kb sector at memory address
				 * h0xf0000.
				 */
				rest_addr = 0xffff;
				sec_mask = 0x10000;
				break;
			} else if (flash_id == 0x20 || flash_id == 0x6e) {
				/*
				 * Am29LV010 part or AM29f010 - 16kb sector
				 * size.
				 */
				rest_addr = 0x3fff;
				sec_mask = 0x1c000;
				break;
			} else if (flash_id == 0x6d) {
				/* Am29LV001 part - 8kb sector size. */
				rest_addr = 0x1fff;
				sec_mask = 0x1e000;
				break;
			}
		default:
			/* Default to 16 kb sector size. */
			rest_addr = 0x3fff;
			sec_mask = 0x1c000;
			break;
		}

update_flash:
		if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
			if (qla2x00_erase_flash(ha, man_id, flash_id)) {
				rval = QLA_FUNCTION_FAILED;
				break;
			}
		}

		for (addr = offset, liter = 0; liter < length; liter++,
		    addr++) {
			data = buf[liter];
			/* Are we at the beginning of a sector? */
			if ((addr & rest_addr) == 0) {
				if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
					if (addr >= 0x10000UL) {
						if (((addr >> 12) & 0xf0) &&
						    ((man_id == 0x01 &&
							flash_id == 0x3e) ||
						     (man_id == 0x20 &&
							 flash_id == 0xd2))) {
							sec_number++;
							if (sec_number == 1) {
								rest_addr =
								    0x7fff;
								sec_mask =
								    0x18000;
							} else if (
							    sec_number == 2 ||
							    sec_number == 3) {
								rest_addr =
								    0x1fff;
								sec_mask =
								    0x1e000;
							} else if (
							    sec_number == 4) {
								rest_addr =
								    0x3fff;
								sec_mask =
								    0x1c000;
							}
						}
					}
				} else if (addr == ha->optrom_size / 2) {
					WRT_REG_WORD(&reg->nvram, NVR_SELECT);
					RD_REG_WORD(&reg->nvram);
				}

				if (flash_id == 0xda && man_id == 0xc1) {
					qla2x00_write_flash_byte(ha, 0x5555,
					    0xaa);
					qla2x00_write_flash_byte(ha, 0x2aaa,
					    0x55);
					qla2x00_write_flash_byte(ha, 0x5555,
					    0xa0);
				} else if (!IS_QLA2322(ha) && !IS_QLA6322(ha)) {
					/* Then erase it */
					if (qla2x00_erase_flash_sector(ha,
					    addr, sec_mask, man_id,
					    flash_id)) {
						rval = QLA_FUNCTION_FAILED;
						break;
					}
					if (man_id == 0x01 && flash_id == 0x6d)
						sec_number++;
				}
			}

			if (man_id == 0x01 && flash_id == 0x6d) {
				if (sec_number == 1 &&
				    addr == (rest_addr - 1)) {
					rest_addr = 0x0fff;
					sec_mask   = 0x1f000;
				} else if (sec_number == 3 && (addr & 0x7ffe)) {
					rest_addr = 0x3fff;
					sec_mask   = 0x1c000;
				}
			}

			if (qla2x00_program_flash_address(ha, addr, data,
			    man_id, flash_id)) {
				rval = QLA_FUNCTION_FAILED;
				break;
			}
2523
			cond_resched();
2524 2525 2526 2527 2528
		}
	} while (0);
	qla2x00_flash_disable(ha);

	/* Resume HBA. */
2529
	qla2x00_resume_hba(vha);
2530 2531 2532 2533 2534

	return rval;
}

uint8_t *
2535
qla24xx_read_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
2536 2537
    uint32_t offset, uint32_t length)
{
2538 2539
	struct qla_hw_data *ha = vha->hw;

2540
	/* Suspend HBA. */
2541
	scsi_block_requests(vha->host);
2542 2543 2544
	set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);

	/* Go with read. */
2545
	qla24xx_read_flash_data(vha, (uint32_t *)buf, offset >> 2, length >> 2);
2546 2547 2548

	/* Resume HBA. */
	clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2549
	scsi_unblock_requests(vha->host);
2550 2551 2552 2553 2554

	return buf;
}

int
2555
qla24xx_write_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
2556 2557 2558
    uint32_t offset, uint32_t length)
{
	int rval;
2559
	struct qla_hw_data *ha = vha->hw;
2560 2561

	/* Suspend HBA. */
2562
	scsi_block_requests(vha->host);
2563 2564 2565
	set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);

	/* Go with write. */
2566
	rval = qla24xx_write_flash_data(vha, (uint32_t *)buf, offset >> 2,
2567 2568 2569
	    length >> 2);

	clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2570
	scsi_unblock_requests(vha->host);
2571 2572 2573

	return rval;
}
2574

2575
uint8_t *
2576
qla25xx_read_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
2577 2578 2579 2580 2581 2582 2583
    uint32_t offset, uint32_t length)
{
	int rval;
	dma_addr_t optrom_dma;
	void *optrom;
	uint8_t *pbuf;
	uint32_t faddr, left, burst;
2584
	struct qla_hw_data *ha = vha->hw;
2585

2586
	if (IS_QLA25XX(ha) || IS_QLA81XX(ha) || IS_QLA27XX(ha))
2587
		goto try_fast;
2588
	if (offset & 0xfff)
2589 2590 2591 2592
		goto slow_read;
	if (length < OPTROM_BURST_SIZE)
		goto slow_read;

2593
try_fast:
2594 2595 2596
	optrom = dma_alloc_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE,
	    &optrom_dma, GFP_KERNEL);
	if (!optrom) {
2597 2598 2599
		ql_log(ql_log_warn, vha, 0x00cc,
		    "Unable to allocate memory for optrom burst read (%x KB).\n",
		    OPTROM_BURST_SIZE / 1024);
2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610
		goto slow_read;
	}

	pbuf = buf;
	faddr = offset >> 2;
	left = length >> 2;
	burst = OPTROM_BURST_DWORDS;
	while (left != 0) {
		if (burst > left)
			burst = left;

2611
		rval = qla2x00_dump_ram(vha, optrom_dma,
2612
		    flash_data_addr(ha, faddr), burst);
2613
		if (rval) {
2614 2615 2616
			ql_log(ql_log_warn, vha, 0x00f5,
			    "Unable to burst-read optrom segment (%x/%x/%llx).\n",
			    rval, flash_data_addr(ha, faddr),
A
Andrew Morton 已提交
2617
			    (unsigned long long)optrom_dma);
2618
			ql_log(ql_log_warn, vha, 0x00f6,
2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638
			    "Reverting to slow-read.\n");

			dma_free_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE,
			    optrom, optrom_dma);
			goto slow_read;
		}

		memcpy(pbuf, optrom, burst * 4);

		left -= burst;
		faddr += burst;
		pbuf += burst * 4;
	}

	dma_free_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE, optrom,
	    optrom_dma);

	return buf;

slow_read:
2639
    return qla24xx_read_optrom_data(vha, buf, offset, length);
2640 2641
}

2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660
/**
 * qla2x00_get_fcode_version() - Determine an FCODE image's version.
 * @ha: HA context
 * @pcids: Pointer to the FCODE PCI data structure
 *
 * The process of retrieving the FCODE version information is at best
 * described as interesting.
 *
 * Within the first 100h bytes of the image an ASCII string is present
 * which contains several pieces of information including the FCODE
 * version.  Unfortunately it seems the only reliable way to retrieve
 * the version is by scanning for another sentinel within the string,
 * the FCODE build date:
 *
 *	... 2.00.02 10/17/02 ...
 *
 * Returns QLA_SUCCESS on successful retrieval of version.
 */
static void
2661
qla2x00_get_fcode_version(struct qla_hw_data *ha, uint32_t pcids)
2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734
{
	int ret = QLA_FUNCTION_FAILED;
	uint32_t istart, iend, iter, vend;
	uint8_t do_next, rbyte, *vbyte;

	memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));

	/* Skip the PCI data structure. */
	istart = pcids +
	    ((qla2x00_read_flash_byte(ha, pcids + 0x0B) << 8) |
		qla2x00_read_flash_byte(ha, pcids + 0x0A));
	iend = istart + 0x100;
	do {
		/* Scan for the sentinel date string...eeewww. */
		do_next = 0;
		iter = istart;
		while ((iter < iend) && !do_next) {
			iter++;
			if (qla2x00_read_flash_byte(ha, iter) == '/') {
				if (qla2x00_read_flash_byte(ha, iter + 2) ==
				    '/')
					do_next++;
				else if (qla2x00_read_flash_byte(ha,
				    iter + 3) == '/')
					do_next++;
			}
		}
		if (!do_next)
			break;

		/* Backtrack to previous ' ' (space). */
		do_next = 0;
		while ((iter > istart) && !do_next) {
			iter--;
			if (qla2x00_read_flash_byte(ha, iter) == ' ')
				do_next++;
		}
		if (!do_next)
			break;

		/*
		 * Mark end of version tag, and find previous ' ' (space) or
		 * string length (recent FCODE images -- major hack ahead!!!).
		 */
		vend = iter - 1;
		do_next = 0;
		while ((iter > istart) && !do_next) {
			iter--;
			rbyte = qla2x00_read_flash_byte(ha, iter);
			if (rbyte == ' ' || rbyte == 0xd || rbyte == 0x10)
				do_next++;
		}
		if (!do_next)
			break;

		/* Mark beginning of version tag, and copy data. */
		iter++;
		if ((vend - iter) &&
		    ((vend - iter) < sizeof(ha->fcode_revision))) {
			vbyte = ha->fcode_revision;
			while (iter <= vend) {
				*vbyte++ = qla2x00_read_flash_byte(ha, iter);
				iter++;
			}
			ret = QLA_SUCCESS;
		}
	} while (0);

	if (ret != QLA_SUCCESS)
		memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
}

int
2735
qla2x00_get_flash_version(scsi_qla_host_t *vha, void *mbuf)
2736 2737 2738 2739 2740 2741
{
	int ret = QLA_SUCCESS;
	uint8_t code_type, last_image;
	uint32_t pcihdr, pcids;
	uint8_t *dbyte;
	uint16_t *dcode;
2742
	struct qla_hw_data *ha = vha->hw;
2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761

	if (!ha->pio_address || !mbuf)
		return QLA_FUNCTION_FAILED;

	memset(ha->bios_revision, 0, sizeof(ha->bios_revision));
	memset(ha->efi_revision, 0, sizeof(ha->efi_revision));
	memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
	memset(ha->fw_revision, 0, sizeof(ha->fw_revision));

	qla2x00_flash_enable(ha);

	/* Begin with first PCI expansion ROM header. */
	pcihdr = 0;
	last_image = 1;
	do {
		/* Verify PCI expansion ROM header. */
		if (qla2x00_read_flash_byte(ha, pcihdr) != 0x55 ||
		    qla2x00_read_flash_byte(ha, pcihdr + 0x01) != 0xaa) {
			/* No signature */
2762 2763
			ql_log(ql_log_fatal, vha, 0x0050,
			    "No matching ROM signature.\n");
2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778
			ret = QLA_FUNCTION_FAILED;
			break;
		}

		/* Locate PCI data structure. */
		pcids = pcihdr +
		    ((qla2x00_read_flash_byte(ha, pcihdr + 0x19) << 8) |
			qla2x00_read_flash_byte(ha, pcihdr + 0x18));

		/* Validate signature of PCI data structure. */
		if (qla2x00_read_flash_byte(ha, pcids) != 'P' ||
		    qla2x00_read_flash_byte(ha, pcids + 0x1) != 'C' ||
		    qla2x00_read_flash_byte(ha, pcids + 0x2) != 'I' ||
		    qla2x00_read_flash_byte(ha, pcids + 0x3) != 'R') {
			/* Incorrect header. */
2779 2780
			ql_log(ql_log_fatal, vha, 0x0051,
			    "PCI data struct not found pcir_adr=%x.\n", pcids);
2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793
			ret = QLA_FUNCTION_FAILED;
			break;
		}

		/* Read version */
		code_type = qla2x00_read_flash_byte(ha, pcids + 0x14);
		switch (code_type) {
		case ROM_CODE_TYPE_BIOS:
			/* Intel x86, PC-AT compatible. */
			ha->bios_revision[0] =
			    qla2x00_read_flash_byte(ha, pcids + 0x12);
			ha->bios_revision[1] =
			    qla2x00_read_flash_byte(ha, pcids + 0x13);
2794 2795 2796
			ql_dbg(ql_dbg_init, vha, 0x0052,
			    "Read BIOS %d.%d.\n",
			    ha->bios_revision[1], ha->bios_revision[0]);
2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808
			break;
		case ROM_CODE_TYPE_FCODE:
			/* Open Firmware standard for PCI (FCode). */
			/* Eeeewww... */
			qla2x00_get_fcode_version(ha, pcids);
			break;
		case ROM_CODE_TYPE_EFI:
			/* Extensible Firmware Interface (EFI). */
			ha->efi_revision[0] =
			    qla2x00_read_flash_byte(ha, pcids + 0x12);
			ha->efi_revision[1] =
			    qla2x00_read_flash_byte(ha, pcids + 0x13);
2809 2810 2811
			ql_dbg(ql_dbg_init, vha, 0x0053,
			    "Read EFI %d.%d.\n",
			    ha->efi_revision[1], ha->efi_revision[0]);
2812 2813
			break;
		default:
2814 2815 2816
			ql_log(ql_log_warn, vha, 0x0054,
			    "Unrecognized code type %x at pcids %x.\n",
			    code_type, pcids);
2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833
			break;
		}

		last_image = qla2x00_read_flash_byte(ha, pcids + 0x15) & BIT_7;

		/* Locate next PCI expansion ROM. */
		pcihdr += ((qla2x00_read_flash_byte(ha, pcids + 0x11) << 8) |
		    qla2x00_read_flash_byte(ha, pcids + 0x10)) * 512;
	} while (!last_image);

	if (IS_QLA2322(ha)) {
		/* Read firmware image information. */
		memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
		dbyte = mbuf;
		memset(dbyte, 0, 8);
		dcode = (uint16_t *)dbyte;

2834
		qla2x00_read_flash_data(ha, dbyte, ha->flt_region_fw * 4 + 10,
2835
		    8);
2836 2837 2838 2839 2840
		ql_dbg(ql_dbg_init + ql_dbg_buffer, vha, 0x010a,
		    "Dumping fw "
		    "ver from flash:.\n");
		ql_dump_buffer(ql_dbg_init + ql_dbg_buffer, vha, 0x010b,
		    (uint8_t *)dbyte, 8);
2841 2842 2843 2844 2845

		if ((dcode[0] == 0xffff && dcode[1] == 0xffff &&
		    dcode[2] == 0xffff && dcode[3] == 0xffff) ||
		    (dcode[0] == 0 && dcode[1] == 0 && dcode[2] == 0 &&
		    dcode[3] == 0)) {
2846 2847 2848
			ql_log(ql_log_warn, vha, 0x0057,
			    "Unrecognized fw revision at %x.\n",
			    ha->flt_region_fw * 4);
2849 2850 2851 2852 2853
		} else {
			/* values are in big endian */
			ha->fw_revision[0] = dbyte[0] << 16 | dbyte[1];
			ha->fw_revision[1] = dbyte[2] << 16 | dbyte[3];
			ha->fw_revision[2] = dbyte[4] << 16 | dbyte[5];
2854 2855 2856 2857
			ql_dbg(ql_dbg_init, vha, 0x0058,
			    "FW Version: "
			    "%d.%d.%d.\n", ha->fw_revision[0],
			    ha->fw_revision[1], ha->fw_revision[2]);
2858 2859 2860 2861 2862 2863 2864 2865
		}
	}

	qla2x00_flash_disable(ha);

	return ret;
}

2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971
int
qla82xx_get_flash_version(scsi_qla_host_t *vha, void *mbuf)
{
	int ret = QLA_SUCCESS;
	uint32_t pcihdr, pcids;
	uint32_t *dcode;
	uint8_t *bcode;
	uint8_t code_type, last_image;
	struct qla_hw_data *ha = vha->hw;

	if (!mbuf)
		return QLA_FUNCTION_FAILED;

	memset(ha->bios_revision, 0, sizeof(ha->bios_revision));
	memset(ha->efi_revision, 0, sizeof(ha->efi_revision));
	memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
	memset(ha->fw_revision, 0, sizeof(ha->fw_revision));

	dcode = mbuf;

	/* Begin with first PCI expansion ROM header. */
	pcihdr = ha->flt_region_boot << 2;
	last_image = 1;
	do {
		/* Verify PCI expansion ROM header. */
		ha->isp_ops->read_optrom(vha, (uint8_t *)dcode, pcihdr,
		    0x20 * 4);
		bcode = mbuf + (pcihdr % 4);
		if (bcode[0x0] != 0x55 || bcode[0x1] != 0xaa) {
			/* No signature */
			ql_log(ql_log_fatal, vha, 0x0154,
			    "No matching ROM signature.\n");
			ret = QLA_FUNCTION_FAILED;
			break;
		}

		/* Locate PCI data structure. */
		pcids = pcihdr + ((bcode[0x19] << 8) | bcode[0x18]);

		ha->isp_ops->read_optrom(vha, (uint8_t *)dcode, pcids,
		    0x20 * 4);
		bcode = mbuf + (pcihdr % 4);

		/* Validate signature of PCI data structure. */
		if (bcode[0x0] != 'P' || bcode[0x1] != 'C' ||
		    bcode[0x2] != 'I' || bcode[0x3] != 'R') {
			/* Incorrect header. */
			ql_log(ql_log_fatal, vha, 0x0155,
			    "PCI data struct not found pcir_adr=%x.\n", pcids);
			ret = QLA_FUNCTION_FAILED;
			break;
		}

		/* Read version */
		code_type = bcode[0x14];
		switch (code_type) {
		case ROM_CODE_TYPE_BIOS:
			/* Intel x86, PC-AT compatible. */
			ha->bios_revision[0] = bcode[0x12];
			ha->bios_revision[1] = bcode[0x13];
			ql_dbg(ql_dbg_init, vha, 0x0156,
			    "Read BIOS %d.%d.\n",
			    ha->bios_revision[1], ha->bios_revision[0]);
			break;
		case ROM_CODE_TYPE_FCODE:
			/* Open Firmware standard for PCI (FCode). */
			ha->fcode_revision[0] = bcode[0x12];
			ha->fcode_revision[1] = bcode[0x13];
			ql_dbg(ql_dbg_init, vha, 0x0157,
			    "Read FCODE %d.%d.\n",
			    ha->fcode_revision[1], ha->fcode_revision[0]);
			break;
		case ROM_CODE_TYPE_EFI:
			/* Extensible Firmware Interface (EFI). */
			ha->efi_revision[0] = bcode[0x12];
			ha->efi_revision[1] = bcode[0x13];
			ql_dbg(ql_dbg_init, vha, 0x0158,
			    "Read EFI %d.%d.\n",
			    ha->efi_revision[1], ha->efi_revision[0]);
			break;
		default:
			ql_log(ql_log_warn, vha, 0x0159,
			    "Unrecognized code type %x at pcids %x.\n",
			    code_type, pcids);
			break;
		}

		last_image = bcode[0x15] & BIT_7;

		/* Locate next PCI expansion ROM. */
		pcihdr += ((bcode[0x11] << 8) | bcode[0x10]) * 512;
	} while (!last_image);

	/* Read firmware image information. */
	memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
	dcode = mbuf;
	ha->isp_ops->read_optrom(vha, (uint8_t *)dcode, ha->flt_region_fw << 2,
	    0x20);
	bcode = mbuf + (pcihdr % 4);

	/* Validate signature of PCI data structure. */
	if (bcode[0x0] == 0x3 && bcode[0x1] == 0x0 &&
	    bcode[0x2] == 0x40 && bcode[0x3] == 0x40) {
		ha->fw_revision[0] = bcode[0x4];
		ha->fw_revision[1] = bcode[0x5];
		ha->fw_revision[2] = bcode[0x6];
2972
		ql_dbg(ql_dbg_init, vha, 0x0153,
2973 2974 2975 2976 2977 2978 2979 2980
		    "Firmware revision %d.%d.%d\n",
		    ha->fw_revision[0], ha->fw_revision[1],
		    ha->fw_revision[2]);
	}

	return ret;
}

2981
int
2982
qla24xx_get_flash_version(scsi_qla_host_t *vha, void *mbuf)
2983 2984 2985 2986 2987 2988 2989
{
	int ret = QLA_SUCCESS;
	uint32_t pcihdr, pcids;
	uint32_t *dcode;
	uint8_t *bcode;
	uint8_t code_type, last_image;
	int i;
2990
	struct qla_hw_data *ha = vha->hw;
2991

2992
	if (IS_P3P_TYPE(ha))
2993 2994
		return ret;

2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005
	if (!mbuf)
		return QLA_FUNCTION_FAILED;

	memset(ha->bios_revision, 0, sizeof(ha->bios_revision));
	memset(ha->efi_revision, 0, sizeof(ha->efi_revision));
	memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
	memset(ha->fw_revision, 0, sizeof(ha->fw_revision));

	dcode = mbuf;

	/* Begin with first PCI expansion ROM header. */
3006
	pcihdr = ha->flt_region_boot << 2;
3007 3008 3009
	last_image = 1;
	do {
		/* Verify PCI expansion ROM header. */
3010
		qla24xx_read_flash_data(vha, dcode, pcihdr >> 2, 0x20);
3011 3012 3013
		bcode = mbuf + (pcihdr % 4);
		if (bcode[0x0] != 0x55 || bcode[0x1] != 0xaa) {
			/* No signature */
3014 3015
			ql_log(ql_log_fatal, vha, 0x0059,
			    "No matching ROM signature.\n");
3016 3017 3018 3019 3020 3021 3022
			ret = QLA_FUNCTION_FAILED;
			break;
		}

		/* Locate PCI data structure. */
		pcids = pcihdr + ((bcode[0x19] << 8) | bcode[0x18]);

3023
		qla24xx_read_flash_data(vha, dcode, pcids >> 2, 0x20);
3024 3025 3026 3027 3028 3029
		bcode = mbuf + (pcihdr % 4);

		/* Validate signature of PCI data structure. */
		if (bcode[0x0] != 'P' || bcode[0x1] != 'C' ||
		    bcode[0x2] != 'I' || bcode[0x3] != 'R') {
			/* Incorrect header. */
3030 3031
			ql_log(ql_log_fatal, vha, 0x005a,
			    "PCI data struct not found pcir_adr=%x.\n", pcids);
3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042
			ret = QLA_FUNCTION_FAILED;
			break;
		}

		/* Read version */
		code_type = bcode[0x14];
		switch (code_type) {
		case ROM_CODE_TYPE_BIOS:
			/* Intel x86, PC-AT compatible. */
			ha->bios_revision[0] = bcode[0x12];
			ha->bios_revision[1] = bcode[0x13];
3043 3044 3045
			ql_dbg(ql_dbg_init, vha, 0x005b,
			    "Read BIOS %d.%d.\n",
			    ha->bios_revision[1], ha->bios_revision[0]);
3046 3047 3048 3049 3050
			break;
		case ROM_CODE_TYPE_FCODE:
			/* Open Firmware standard for PCI (FCode). */
			ha->fcode_revision[0] = bcode[0x12];
			ha->fcode_revision[1] = bcode[0x13];
3051 3052 3053
			ql_dbg(ql_dbg_init, vha, 0x005c,
			    "Read FCODE %d.%d.\n",
			    ha->fcode_revision[1], ha->fcode_revision[0]);
3054 3055 3056 3057 3058
			break;
		case ROM_CODE_TYPE_EFI:
			/* Extensible Firmware Interface (EFI). */
			ha->efi_revision[0] = bcode[0x12];
			ha->efi_revision[1] = bcode[0x13];
3059 3060 3061
			ql_dbg(ql_dbg_init, vha, 0x005d,
			    "Read EFI %d.%d.\n",
			    ha->efi_revision[1], ha->efi_revision[0]);
3062 3063
			break;
		default:
3064 3065 3066
			ql_log(ql_log_warn, vha, 0x005e,
			    "Unrecognized code type %x at pcids %x.\n",
			    code_type, pcids);
3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079
			break;
		}

		last_image = bcode[0x15] & BIT_7;

		/* Locate next PCI expansion ROM. */
		pcihdr += ((bcode[0x11] << 8) | bcode[0x10]) * 512;
	} while (!last_image);

	/* Read firmware image information. */
	memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
	dcode = mbuf;

3080
	qla24xx_read_flash_data(vha, dcode, ha->flt_region_fw + 4, 4);
3081 3082 3083 3084 3085 3086 3087
	for (i = 0; i < 4; i++)
		dcode[i] = be32_to_cpu(dcode[i]);

	if ((dcode[0] == 0xffffffff && dcode[1] == 0xffffffff &&
	    dcode[2] == 0xffffffff && dcode[3] == 0xffffffff) ||
	    (dcode[0] == 0 && dcode[1] == 0 && dcode[2] == 0 &&
	    dcode[3] == 0)) {
3088 3089 3090
		ql_log(ql_log_warn, vha, 0x005f,
		    "Unrecognized fw revision at %x.\n",
		    ha->flt_region_fw * 4);
3091 3092 3093 3094 3095
	} else {
		ha->fw_revision[0] = dcode[0];
		ha->fw_revision[1] = dcode[1];
		ha->fw_revision[2] = dcode[2];
		ha->fw_revision[3] = dcode[3];
3096 3097 3098 3099
		ql_dbg(ql_dbg_init, vha, 0x0060,
		    "Firmware revision %d.%d.%d.%d.\n",
		    ha->fw_revision[0], ha->fw_revision[1],
		    ha->fw_revision[2], ha->fw_revision[3]);
3100 3101
	}

3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114
	/* Check for golden firmware and get version if available */
	if (!IS_QLA81XX(ha)) {
		/* Golden firmware is not present in non 81XX adapters */
		return ret;
	}

	memset(ha->gold_fw_version, 0, sizeof(ha->gold_fw_version));
	dcode = mbuf;
	ha->isp_ops->read_optrom(vha, (uint8_t *)dcode,
	    ha->flt_region_gold_fw << 2, 32);

	if (dcode[4] == 0xFFFFFFFF && dcode[5] == 0xFFFFFFFF &&
	    dcode[6] == 0xFFFFFFFF && dcode[7] == 0xFFFFFFFF) {
3115 3116 3117
		ql_log(ql_log_warn, vha, 0x0056,
		    "Unrecognized golden fw at 0x%x.\n",
		    ha->flt_region_gold_fw * 4);
3118 3119 3120 3121 3122 3123
		return ret;
	}

	for (i = 4; i < 8; i++)
		ha->gold_fw_version[i-4] = be32_to_cpu(dcode[i]);

3124 3125
	return ret;
}
3126

3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144
static int
qla2xxx_is_vpd_valid(uint8_t *pos, uint8_t *end)
{
	if (pos >= end || *pos != 0x82)
		return 0;

	pos += 3 + pos[1];
	if (pos >= end || *pos != 0x90)
		return 0;

	pos += 3 + pos[1];
	if (pos >= end || *pos != 0x78)
		return 0;

	return 1;
}

int
3145
qla2xxx_get_vpd_field(scsi_qla_host_t *vha, char *key, char *str, size_t size)
3146
{
3147
	struct qla_hw_data *ha = vha->hw;
3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171
	uint8_t *pos = ha->vpd;
	uint8_t *end = pos + ha->vpd_size;
	int len = 0;

	if (!IS_FWI2_CAPABLE(ha) || !qla2xxx_is_vpd_valid(pos, end))
		return 0;

	while (pos < end && *pos != 0x78) {
		len = (*pos == 0x82) ? pos[1] : pos[2];

		if (!strncmp(pos, key, strlen(key)))
			break;

		if (*pos != 0x90 && *pos != 0x91)
			pos += len;

		pos += 3;
	}

	if (pos < end - len && *pos != 0x78)
		return snprintf(str, size, "%.*s", len, pos + 3);

	return 0;
}
S
Sarang Radke 已提交
3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182

int
qla24xx_read_fcp_prio_cfg(scsi_qla_host_t *vha)
{
	int len, max_len;
	uint32_t fcp_prio_addr;
	struct qla_hw_data *ha = vha->hw;

	if (!ha->fcp_prio_cfg) {
		ha->fcp_prio_cfg = vmalloc(FCP_PRIO_CFG_SIZE);
		if (!ha->fcp_prio_cfg) {
3183 3184 3185
			ql_log(ql_log_warn, vha, 0x00d5,
			    "Unable to allocate memory for fcp priorty data (%x).\n",
			    FCP_PRIO_CFG_SIZE);
S
Sarang Radke 已提交
3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196
			return QLA_FUNCTION_FAILED;
		}
	}
	memset(ha->fcp_prio_cfg, 0, FCP_PRIO_CFG_SIZE);

	fcp_prio_addr = ha->flt_region_fcp_prio;

	/* first read the fcp priority data header from flash */
	ha->isp_ops->read_optrom(vha, (uint8_t *)ha->fcp_prio_cfg,
			fcp_prio_addr << 2, FCP_PRIO_CFG_HDR_SIZE);

3197
	if (!qla24xx_fcp_prio_cfg_valid(vha, ha->fcp_prio_cfg, 0))
S
Sarang Radke 已提交
3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208
		goto fail;

	/* read remaining FCP CMD config data from flash */
	fcp_prio_addr += (FCP_PRIO_CFG_HDR_SIZE >> 2);
	len = ha->fcp_prio_cfg->num_entries * FCP_PRIO_CFG_ENTRY_SIZE;
	max_len = FCP_PRIO_CFG_SIZE - FCP_PRIO_CFG_HDR_SIZE;

	ha->isp_ops->read_optrom(vha, (uint8_t *)&ha->fcp_prio_cfg->entry[0],
			fcp_prio_addr << 2, (len < max_len ? len : max_len));

	/* revalidate the entire FCP priority config data, including entries */
3209
	if (!qla24xx_fcp_prio_cfg_valid(vha, ha->fcp_prio_cfg, 1))
S
Sarang Radke 已提交
3210 3211 3212 3213 3214 3215 3216 3217 3218
		goto fail;

	ha->flags.fcp_prio_enabled = 1;
	return QLA_SUCCESS;
fail:
	vfree(ha->fcp_prio_cfg);
	ha->fcp_prio_cfg = NULL;
	return QLA_FUNCTION_FAILED;
}