qla_sup.c 78.0 KB
Newer Older
A
Andrew Vasquez 已提交
1 2
/*
 * QLogic Fibre Channel HBA Driver
3
 * Copyright (c)  2003-2011 QLogic Corporation
L
Linus Torvalds 已提交
4
 *
A
Andrew Vasquez 已提交
5 6
 * See LICENSE.qla2xxx for copyright and licensing details.
 */
L
Linus Torvalds 已提交
7 8 9
#include "qla_def.h"

#include <linux/delay.h>
10
#include <linux/slab.h>
11
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
12 13 14 15 16 17 18
#include <asm/uaccess.h>

/*
 * NVRAM support routines
 */

/**
A
Andrew Vasquez 已提交
19
 * qla2x00_lock_nvram_access() -
L
Linus Torvalds 已提交
20 21
 * @ha: HA context
 */
A
Adrian Bunk 已提交
22
static void
23
qla2x00_lock_nvram_access(struct qla_hw_data *ha)
L
Linus Torvalds 已提交
24 25
{
	uint16_t data;
26
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
L
Linus Torvalds 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

	if (!IS_QLA2100(ha) && !IS_QLA2200(ha) && !IS_QLA2300(ha)) {
		data = RD_REG_WORD(&reg->nvram);
		while (data & NVR_BUSY) {
			udelay(100);
			data = RD_REG_WORD(&reg->nvram);
		}

		/* Lock resource */
		WRT_REG_WORD(&reg->u.isp2300.host_semaphore, 0x1);
		RD_REG_WORD(&reg->u.isp2300.host_semaphore);
		udelay(5);
		data = RD_REG_WORD(&reg->u.isp2300.host_semaphore);
		while ((data & BIT_0) == 0) {
			/* Lock failed */
			udelay(100);
			WRT_REG_WORD(&reg->u.isp2300.host_semaphore, 0x1);
			RD_REG_WORD(&reg->u.isp2300.host_semaphore);
			udelay(5);
			data = RD_REG_WORD(&reg->u.isp2300.host_semaphore);
		}
	}
}

/**
A
Andrew Vasquez 已提交
52
 * qla2x00_unlock_nvram_access() -
L
Linus Torvalds 已提交
53 54
 * @ha: HA context
 */
A
Adrian Bunk 已提交
55
static void
56
qla2x00_unlock_nvram_access(struct qla_hw_data *ha)
L
Linus Torvalds 已提交
57
{
58
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
L
Linus Torvalds 已提交
59 60 61 62 63 64 65

	if (!IS_QLA2100(ha) && !IS_QLA2200(ha) && !IS_QLA2300(ha)) {
		WRT_REG_WORD(&reg->u.isp2300.host_semaphore, 0);
		RD_REG_WORD(&reg->u.isp2300.host_semaphore);
	}
}

66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
/**
 * qla2x00_nv_write() - Prepare for NVRAM read/write operation.
 * @ha: HA context
 * @data: Serial interface selector
 */
static void
qla2x00_nv_write(struct qla_hw_data *ha, uint16_t data)
{
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;

	WRT_REG_WORD(&reg->nvram, data | NVR_SELECT | NVR_WRT_ENABLE);
	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
	NVRAM_DELAY();
	WRT_REG_WORD(&reg->nvram, data | NVR_SELECT | NVR_CLOCK |
	    NVR_WRT_ENABLE);
	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
	NVRAM_DELAY();
	WRT_REG_WORD(&reg->nvram, data | NVR_SELECT | NVR_WRT_ENABLE);
	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
	NVRAM_DELAY();
}

/**
 * qla2x00_nvram_request() - Sends read command to NVRAM and gets data from
 *	NVRAM.
 * @ha: HA context
 * @nv_cmd: NVRAM command
 *
 * Bit definitions for NVRAM command:
 *
 *	Bit 26     = start bit
 *	Bit 25, 24 = opcode
 *	Bit 23-16  = address
 *	Bit 15-0   = write data
 *
 * Returns the word read from nvram @addr.
 */
static uint16_t
qla2x00_nvram_request(struct qla_hw_data *ha, uint32_t nv_cmd)
{
	uint8_t		cnt;
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
	uint16_t	data = 0;
	uint16_t	reg_data;

	/* Send command to NVRAM. */
	nv_cmd <<= 5;
	for (cnt = 0; cnt < 11; cnt++) {
		if (nv_cmd & BIT_31)
			qla2x00_nv_write(ha, NVR_DATA_OUT);
		else
			qla2x00_nv_write(ha, 0);
		nv_cmd <<= 1;
	}

	/* Read data from NVRAM. */
	for (cnt = 0; cnt < 16; cnt++) {
		WRT_REG_WORD(&reg->nvram, NVR_SELECT | NVR_CLOCK);
		RD_REG_WORD(&reg->nvram);	/* PCI Posting. */
		NVRAM_DELAY();
		data <<= 1;
		reg_data = RD_REG_WORD(&reg->nvram);
		if (reg_data & NVR_DATA_IN)
			data |= BIT_0;
		WRT_REG_WORD(&reg->nvram, NVR_SELECT);
		RD_REG_WORD(&reg->nvram);	/* PCI Posting. */
		NVRAM_DELAY();
	}

	/* Deselect chip. */
	WRT_REG_WORD(&reg->nvram, NVR_DESELECT);
	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
	NVRAM_DELAY();

	return data;
}


L
Linus Torvalds 已提交
144 145 146 147 148 149 150 151
/**
 * qla2x00_get_nvram_word() - Calculates word position in NVRAM and calls the
 *	request routine to get the word from NVRAM.
 * @ha: HA context
 * @addr: Address in NVRAM to read
 *
 * Returns the word read from nvram @addr.
 */
A
Adrian Bunk 已提交
152
static uint16_t
153
qla2x00_get_nvram_word(struct qla_hw_data *ha, uint32_t addr)
L
Linus Torvalds 已提交
154 155 156 157 158 159 160 161 162 163 164
{
	uint16_t	data;
	uint32_t	nv_cmd;

	nv_cmd = addr << 16;
	nv_cmd |= NV_READ_OP;
	data = qla2x00_nvram_request(ha, nv_cmd);

	return (data);
}

165 166 167 168 169 170 171 172 173 174 175 176 177 178
/**
 * qla2x00_nv_deselect() - Deselect NVRAM operations.
 * @ha: HA context
 */
static void
qla2x00_nv_deselect(struct qla_hw_data *ha)
{
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;

	WRT_REG_WORD(&reg->nvram, NVR_DESELECT);
	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
	NVRAM_DELAY();
}

L
Linus Torvalds 已提交
179 180 181 182 183 184
/**
 * qla2x00_write_nvram_word() - Write NVRAM data.
 * @ha: HA context
 * @addr: Address in NVRAM to write
 * @data: word to program
 */
A
Adrian Bunk 已提交
185
static void
186
qla2x00_write_nvram_word(struct qla_hw_data *ha, uint32_t addr, uint16_t data)
L
Linus Torvalds 已提交
187 188 189
{
	int count;
	uint16_t word;
190
	uint32_t nv_cmd, wait_cnt;
191
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
192
	scsi_qla_host_t *vha = pci_get_drvdata(ha->pdev);
L
Linus Torvalds 已提交
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219

	qla2x00_nv_write(ha, NVR_DATA_OUT);
	qla2x00_nv_write(ha, 0);
	qla2x00_nv_write(ha, 0);

	for (word = 0; word < 8; word++)
		qla2x00_nv_write(ha, NVR_DATA_OUT);

	qla2x00_nv_deselect(ha);

	/* Write data */
	nv_cmd = (addr << 16) | NV_WRITE_OP;
	nv_cmd |= data;
	nv_cmd <<= 5;
	for (count = 0; count < 27; count++) {
		if (nv_cmd & BIT_31)
			qla2x00_nv_write(ha, NVR_DATA_OUT);
		else
			qla2x00_nv_write(ha, 0);

		nv_cmd <<= 1;
	}

	qla2x00_nv_deselect(ha);

	/* Wait for NVRAM to become ready */
	WRT_REG_WORD(&reg->nvram, NVR_SELECT);
220
	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
221
	wait_cnt = NVR_WAIT_CNT;
L
Linus Torvalds 已提交
222
	do {
223
		if (!--wait_cnt) {
224 225
			ql_dbg(ql_dbg_user, vha, 0x708d,
			    "NVRAM didn't go ready...\n");
226 227
			break;
		}
L
Linus Torvalds 已提交
228 229 230 231 232 233 234 235 236 237 238 239 240 241
		NVRAM_DELAY();
		word = RD_REG_WORD(&reg->nvram);
	} while ((word & NVR_DATA_IN) == 0);

	qla2x00_nv_deselect(ha);

	/* Disable writes */
	qla2x00_nv_write(ha, NVR_DATA_OUT);
	for (count = 0; count < 10; count++)
		qla2x00_nv_write(ha, 0);

	qla2x00_nv_deselect(ha);
}

242
static int
243 244
qla2x00_write_nvram_word_tmo(struct qla_hw_data *ha, uint32_t addr,
	uint16_t data, uint32_t tmo)
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
{
	int ret, count;
	uint16_t word;
	uint32_t nv_cmd;
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;

	ret = QLA_SUCCESS;

	qla2x00_nv_write(ha, NVR_DATA_OUT);
	qla2x00_nv_write(ha, 0);
	qla2x00_nv_write(ha, 0);

	for (word = 0; word < 8; word++)
		qla2x00_nv_write(ha, NVR_DATA_OUT);

	qla2x00_nv_deselect(ha);

	/* Write data */
	nv_cmd = (addr << 16) | NV_WRITE_OP;
	nv_cmd |= data;
	nv_cmd <<= 5;
	for (count = 0; count < 27; count++) {
		if (nv_cmd & BIT_31)
			qla2x00_nv_write(ha, NVR_DATA_OUT);
		else
			qla2x00_nv_write(ha, 0);

		nv_cmd <<= 1;
	}

	qla2x00_nv_deselect(ha);

	/* Wait for NVRAM to become ready */
	WRT_REG_WORD(&reg->nvram, NVR_SELECT);
279
	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
	do {
		NVRAM_DELAY();
		word = RD_REG_WORD(&reg->nvram);
		if (!--tmo) {
			ret = QLA_FUNCTION_FAILED;
			break;
		}
	} while ((word & NVR_DATA_IN) == 0);

	qla2x00_nv_deselect(ha);

	/* Disable writes */
	qla2x00_nv_write(ha, NVR_DATA_OUT);
	for (count = 0; count < 10; count++)
		qla2x00_nv_write(ha, 0);

	qla2x00_nv_deselect(ha);

	return ret;
}

/**
 * qla2x00_clear_nvram_protection() -
 * @ha: HA context
 */
static int
306
qla2x00_clear_nvram_protection(struct qla_hw_data *ha)
307 308 309
{
	int ret, stat;
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
310
	uint32_t word, wait_cnt;
311
	uint16_t wprot, wprot_old;
312
	scsi_qla_host_t *vha = pci_get_drvdata(ha->pdev);
313 314 315

	/* Clear NVRAM write protection. */
	ret = QLA_FUNCTION_FAILED;
316 317 318

	wprot_old = cpu_to_le16(qla2x00_get_nvram_word(ha, ha->nvram_base));
	stat = qla2x00_write_nvram_word_tmo(ha, ha->nvram_base,
319
	    __constant_cpu_to_le16(0x1234), 100000);
320 321
	wprot = cpu_to_le16(qla2x00_get_nvram_word(ha, ha->nvram_base));
	if (stat != QLA_SUCCESS || wprot != 0x1234) {
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
		/* Write enable. */
		qla2x00_nv_write(ha, NVR_DATA_OUT);
		qla2x00_nv_write(ha, 0);
		qla2x00_nv_write(ha, 0);
		for (word = 0; word < 8; word++)
			qla2x00_nv_write(ha, NVR_DATA_OUT);

		qla2x00_nv_deselect(ha);

		/* Enable protection register. */
		qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
		qla2x00_nv_write(ha, NVR_PR_ENABLE);
		qla2x00_nv_write(ha, NVR_PR_ENABLE);
		for (word = 0; word < 8; word++)
			qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE);

		qla2x00_nv_deselect(ha);

		/* Clear protection register (ffff is cleared). */
		qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
		qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
		qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
		for (word = 0; word < 8; word++)
			qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE);

		qla2x00_nv_deselect(ha);

		/* Wait for NVRAM to become ready. */
		WRT_REG_WORD(&reg->nvram, NVR_SELECT);
351
		RD_REG_WORD(&reg->nvram);	/* PCI Posting. */
352
		wait_cnt = NVR_WAIT_CNT;
353
		do {
354
			if (!--wait_cnt) {
355 356
				ql_dbg(ql_dbg_user, vha, 0x708e,
				    "NVRAM didn't go ready...\n");
357 358
				break;
			}
359 360 361 362
			NVRAM_DELAY();
			word = RD_REG_WORD(&reg->nvram);
		} while ((word & NVR_DATA_IN) == 0);

363 364
		if (wait_cnt)
			ret = QLA_SUCCESS;
365
	} else
366
		qla2x00_write_nvram_word(ha, ha->nvram_base, wprot_old);
367 368 369 370 371

	return ret;
}

static void
372
qla2x00_set_nvram_protection(struct qla_hw_data *ha, int stat)
373 374
{
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
375
	uint32_t word, wait_cnt;
376
	scsi_qla_host_t *vha = pci_get_drvdata(ha->pdev);
377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410

	if (stat != QLA_SUCCESS)
		return;

	/* Set NVRAM write protection. */
	/* Write enable. */
	qla2x00_nv_write(ha, NVR_DATA_OUT);
	qla2x00_nv_write(ha, 0);
	qla2x00_nv_write(ha, 0);
	for (word = 0; word < 8; word++)
		qla2x00_nv_write(ha, NVR_DATA_OUT);

	qla2x00_nv_deselect(ha);

	/* Enable protection register. */
	qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
	qla2x00_nv_write(ha, NVR_PR_ENABLE);
	qla2x00_nv_write(ha, NVR_PR_ENABLE);
	for (word = 0; word < 8; word++)
		qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE);

	qla2x00_nv_deselect(ha);

	/* Enable protection register. */
	qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
	qla2x00_nv_write(ha, NVR_PR_ENABLE);
	qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
	for (word = 0; word < 8; word++)
		qla2x00_nv_write(ha, NVR_PR_ENABLE);

	qla2x00_nv_deselect(ha);

	/* Wait for NVRAM to become ready. */
	WRT_REG_WORD(&reg->nvram, NVR_SELECT);
411
	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
412
	wait_cnt = NVR_WAIT_CNT;
413
	do {
414
		if (!--wait_cnt) {
415 416
			ql_dbg(ql_dbg_user, vha, 0x708f,
			    "NVRAM didn't go ready...\n");
417 418
			break;
		}
419 420 421 422 423 424 425 426 427 428 429
		NVRAM_DELAY();
		word = RD_REG_WORD(&reg->nvram);
	} while ((word & NVR_DATA_IN) == 0);
}


/*****************************************************************************/
/* Flash Manipulation Routines                                               */
/*****************************************************************************/

static inline uint32_t
430
flash_conf_addr(struct qla_hw_data *ha, uint32_t faddr)
431
{
432
	return ha->flash_conf_off | faddr;
433 434 435
}

static inline uint32_t
436
flash_data_addr(struct qla_hw_data *ha, uint32_t faddr)
437
{
438
	return ha->flash_data_off | faddr;
439 440 441
}

static inline uint32_t
442
nvram_conf_addr(struct qla_hw_data *ha, uint32_t naddr)
443
{
444
	return ha->nvram_conf_off | naddr;
445 446 447
}

static inline uint32_t
448
nvram_data_addr(struct qla_hw_data *ha, uint32_t naddr)
449
{
450
	return ha->nvram_data_off | naddr;
451 452
}

453
static uint32_t
454
qla24xx_read_flash_dword(struct qla_hw_data *ha, uint32_t addr)
455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
{
	int rval;
	uint32_t cnt, data;
	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;

	WRT_REG_DWORD(&reg->flash_addr, addr & ~FARX_DATA_FLAG);
	/* Wait for READ cycle to complete. */
	rval = QLA_SUCCESS;
	for (cnt = 3000;
	    (RD_REG_DWORD(&reg->flash_addr) & FARX_DATA_FLAG) == 0 &&
	    rval == QLA_SUCCESS; cnt--) {
		if (cnt)
			udelay(10);
		else
			rval = QLA_FUNCTION_TIMEOUT;
470
		cond_resched();
471 472 473 474 475 476 477 478 479 480 481
	}

	/* TODO: What happens if we time out? */
	data = 0xDEADDEAD;
	if (rval == QLA_SUCCESS)
		data = RD_REG_DWORD(&reg->flash_data);

	return data;
}

uint32_t *
482
qla24xx_read_flash_data(scsi_qla_host_t *vha, uint32_t *dwptr, uint32_t faddr,
483 484 485
    uint32_t dwords)
{
	uint32_t i;
486 487
	struct qla_hw_data *ha = vha->hw;

488 489
	/* Dword reads to flash. */
	for (i = 0; i < dwords; i++, faddr++)
490 491
		dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(ha,
		    flash_data_addr(ha, faddr)));
492 493 494 495

	return dwptr;
}

496
static int
497
qla24xx_write_flash_dword(struct qla_hw_data *ha, uint32_t addr, uint32_t data)
498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
{
	int rval;
	uint32_t cnt;
	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;

	WRT_REG_DWORD(&reg->flash_data, data);
	RD_REG_DWORD(&reg->flash_data);		/* PCI Posting. */
	WRT_REG_DWORD(&reg->flash_addr, addr | FARX_DATA_FLAG);
	/* Wait for Write cycle to complete. */
	rval = QLA_SUCCESS;
	for (cnt = 500000; (RD_REG_DWORD(&reg->flash_addr) & FARX_DATA_FLAG) &&
	    rval == QLA_SUCCESS; cnt--) {
		if (cnt)
			udelay(10);
		else
			rval = QLA_FUNCTION_TIMEOUT;
514
		cond_resched();
515 516 517 518
	}
	return rval;
}

519
static void
520
qla24xx_get_flash_manufacturer(struct qla_hw_data *ha, uint8_t *man_id,
521 522 523 524
    uint8_t *flash_id)
{
	uint32_t ids;

525
	ids = qla24xx_read_flash_dword(ha, flash_conf_addr(ha, 0x03ab));
526 527
	*man_id = LSB(ids);
	*flash_id = MSB(ids);
528 529 530 531 532 533 534 535 536

	/* Check if man_id and flash_id are valid. */
	if (ids != 0xDEADDEAD && (*man_id == 0 || *flash_id == 0)) {
		/* Read information using 0x9f opcode
		 * Device ID, Mfg ID would be read in the format:
		 *   <Ext Dev Info><Device ID Part2><Device ID Part 1><Mfg ID>
		 * Example: ATMEL 0x00 01 45 1F
		 * Extract MFG and Dev ID from last two bytes.
		 */
537
		ids = qla24xx_read_flash_dword(ha, flash_conf_addr(ha, 0x009f));
538 539 540
		*man_id = LSB(ids);
		*flash_id = MSB(ids);
	}
541 542
}

543
static int
544
qla2xxx_find_flt_start(scsi_qla_host_t *vha, uint32_t *start)
545 546 547 548 549 550 551
{
	const char *loc, *locations[] = { "DEF", "PCI" };
	uint32_t pcihdr, pcids;
	uint32_t *dcode;
	uint8_t *buf, *bcode, last_image;
	uint16_t cnt, chksum, *wptr;
	struct qla_flt_location *fltl;
552
	struct qla_hw_data *ha = vha->hw;
553
	struct req_que *req = ha->req_q_map[0];
554 555 556 557 558 559 560

	/*
	 * FLT-location structure resides after the last PCI region.
	 */

	/* Begin with sane defaults. */
	loc = locations[0];
561 562 563 564 565 566 567
	*start = 0;
	if (IS_QLA24XX_TYPE(ha))
		*start = FA_FLASH_LAYOUT_ADDR_24;
	else if (IS_QLA25XX(ha))
		*start = FA_FLASH_LAYOUT_ADDR;
	else if (IS_QLA81XX(ha))
		*start = FA_FLASH_LAYOUT_ADDR_81;
568 569 570
	else if (IS_QLA82XX(ha)) {
		*start = FA_FLASH_LAYOUT_ADDR_82;
		goto end;
571 572 573
	} else if (IS_QLA83XX(ha)) {
		*start = FA_FLASH_LAYOUT_ADDR_83;
		goto end;
574
	}
575
	/* Begin with first PCI expansion ROM header. */
576 577
	buf = (uint8_t *)req->ring;
	dcode = (uint32_t *)req->ring;
578 579 580 581
	pcihdr = 0;
	last_image = 1;
	do {
		/* Verify PCI expansion ROM header. */
582
		qla24xx_read_flash_data(vha, dcode, pcihdr >> 2, 0x20);
583 584 585 586 587 588
		bcode = buf + (pcihdr % 4);
		if (bcode[0x0] != 0x55 || bcode[0x1] != 0xaa)
			goto end;

		/* Locate PCI data structure. */
		pcids = pcihdr + ((bcode[0x19] << 8) | bcode[0x18]);
589
		qla24xx_read_flash_data(vha, dcode, pcids >> 2, 0x20);
590 591 592 593 594 595 596 597 598 599 600 601 602 603
		bcode = buf + (pcihdr % 4);

		/* Validate signature of PCI data structure. */
		if (bcode[0x0] != 'P' || bcode[0x1] != 'C' ||
		    bcode[0x2] != 'I' || bcode[0x3] != 'R')
			goto end;

		last_image = bcode[0x15] & BIT_7;

		/* Locate next PCI expansion ROM. */
		pcihdr += ((bcode[0x11] << 8) | bcode[0x10]) * 512;
	} while (!last_image);

	/* Now verify FLT-location structure. */
604 605
	fltl = (struct qla_flt_location *)req->ring;
	qla24xx_read_flash_data(vha, dcode, pcihdr >> 2,
606 607 608 609 610
	    sizeof(struct qla_flt_location) >> 2);
	if (fltl->sig[0] != 'Q' || fltl->sig[1] != 'F' ||
	    fltl->sig[2] != 'L' || fltl->sig[3] != 'T')
		goto end;

611
	wptr = (uint16_t *)req->ring;
612 613 614 615
	cnt = sizeof(struct qla_flt_location) >> 1;
	for (chksum = 0; cnt; cnt--)
		chksum += le16_to_cpu(*wptr++);
	if (chksum) {
616
		ql_log(ql_log_fatal, vha, 0x0045,
617
		    "Inconsistent FLTL detected: checksum=0x%x.\n", chksum);
618 619
		ql_dump_buffer(ql_dbg_init + ql_dbg_buffer, vha, 0x010e,
		    buf, sizeof(struct qla_flt_location));
620 621 622 623 624
		return QLA_FUNCTION_FAILED;
	}

	/* Good data.  Use specified location. */
	loc = locations[1];
625 626
	*start = (le16_to_cpu(fltl->start_hi) << 16 |
	    le16_to_cpu(fltl->start_lo)) >> 2;
627
end:
628 629 630
	ql_dbg(ql_dbg_init, vha, 0x0046,
	    "FLTL[%s] = 0x%x.\n",
	    loc, *start);
631 632 633 634
	return QLA_SUCCESS;
}

static void
635
qla2xxx_get_flt_info(scsi_qla_host_t *vha, uint32_t flt_addr)
636 637
{
	const char *loc, *locations[] = { "DEF", "FLT" };
638 639 640 641 642 643
	const uint32_t def_fw[] =
		{ FA_RISC_CODE_ADDR, FA_RISC_CODE_ADDR, FA_RISC_CODE_ADDR_81 };
	const uint32_t def_boot[] =
		{ FA_BOOT_CODE_ADDR, FA_BOOT_CODE_ADDR, FA_BOOT_CODE_ADDR_81 };
	const uint32_t def_vpd_nvram[] =
		{ FA_VPD_NVRAM_ADDR, FA_VPD_NVRAM_ADDR, FA_VPD_NVRAM_ADDR_81 };
644 645 646 647 648 649 650 651
	const uint32_t def_vpd0[] =
		{ 0, 0, FA_VPD0_ADDR_81 };
	const uint32_t def_vpd1[] =
		{ 0, 0, FA_VPD1_ADDR_81 };
	const uint32_t def_nvram0[] =
		{ 0, 0, FA_NVRAM0_ADDR_81 };
	const uint32_t def_nvram1[] =
		{ 0, 0, FA_NVRAM1_ADDR_81 };
652 653 654 655 656 657 658 659 660
	const uint32_t def_fdt[] =
		{ FA_FLASH_DESCR_ADDR_24, FA_FLASH_DESCR_ADDR,
			FA_FLASH_DESCR_ADDR_81 };
	const uint32_t def_npiv_conf0[] =
		{ FA_NPIV_CONF0_ADDR_24, FA_NPIV_CONF0_ADDR,
			FA_NPIV_CONF0_ADDR_81 };
	const uint32_t def_npiv_conf1[] =
		{ FA_NPIV_CONF1_ADDR_24, FA_NPIV_CONF1_ADDR,
			FA_NPIV_CONF1_ADDR_81 };
S
Sarang Radke 已提交
661 662 663 664 665 666
	const uint32_t fcp_prio_cfg0[] =
		{ FA_FCP_PRIO0_ADDR, FA_FCP_PRIO0_ADDR_25,
			0 };
	const uint32_t fcp_prio_cfg1[] =
		{ FA_FCP_PRIO1_ADDR, FA_FCP_PRIO1_ADDR_25,
			0 };
667
	uint32_t def;
668 669 670 671 672
	uint16_t *wptr;
	uint16_t cnt, chksum;
	uint32_t start;
	struct qla_flt_header *flt;
	struct qla_flt_region *region;
673
	struct qla_hw_data *ha = vha->hw;
674
	struct req_que *req = ha->req_q_map[0];
675

676 677 678 679 680
	def = 0;
	if (IS_QLA25XX(ha))
		def = 1;
	else if (IS_QLA81XX(ha))
		def = 2;
681 682 683 684 685 686 687

	/* Assign FCP prio region since older adapters may not have FLT, or
	   FCP prio region in it's FLT.
	 */
	ha->flt_region_fcp_prio = ha->flags.port0 ?
	    fcp_prio_cfg0[def] : fcp_prio_cfg1[def];

688
	ha->flt_region_flt = flt_addr;
689 690
	wptr = (uint16_t *)req->ring;
	flt = (struct qla_flt_header *)req->ring;
691
	region = (struct qla_flt_region *)&flt[1];
692
	ha->isp_ops->read_optrom(vha, (uint8_t *)req->ring,
693 694 695 696
	    flt_addr << 2, OPTROM_BURST_SIZE);
	if (*wptr == __constant_cpu_to_le16(0xffff))
		goto no_flash_data;
	if (flt->version != __constant_cpu_to_le16(1)) {
697 698
		ql_log(ql_log_warn, vha, 0x0047,
		    "Unsupported FLT detected: version=0x%x length=0x%x checksum=0x%x.\n",
699
		    le16_to_cpu(flt->version), le16_to_cpu(flt->length),
700
		    le16_to_cpu(flt->checksum));
701 702 703 704 705 706 707
		goto no_flash_data;
	}

	cnt = (sizeof(struct qla_flt_header) + le16_to_cpu(flt->length)) >> 1;
	for (chksum = 0; cnt; cnt--)
		chksum += le16_to_cpu(*wptr++);
	if (chksum) {
708 709
		ql_log(ql_log_fatal, vha, 0x0048,
		    "Inconsistent FLT detected: version=0x%x length=0x%x checksum=0x%x.\n",
710
		    le16_to_cpu(flt->version), le16_to_cpu(flt->length),
711
		    le16_to_cpu(flt->checksum));
712 713 714 715 716 717 718 719
		goto no_flash_data;
	}

	loc = locations[1];
	cnt = le16_to_cpu(flt->length) / sizeof(struct qla_flt_region);
	for ( ; cnt; cnt--, region++) {
		/* Store addresses as DWORD offsets. */
		start = le32_to_cpu(region->start) >> 2;
720 721 722 723 724
		ql_dbg(ql_dbg_init, vha, 0x0049,
		    "FLT[%02x]: start=0x%x "
		    "end=0x%x size=0x%x.\n", le32_to_cpu(region->code),
		    start, le32_to_cpu(region->end) >> 2,
		    le32_to_cpu(region->size));
725

726
		switch (le32_to_cpu(region->code) & 0xff) {
727 728 729 730 731
		case FLT_REG_FCOE_FW:
			if (!IS_QLA8031(ha))
				break;
			ha->flt_region_fw = start;
			break;
732
		case FLT_REG_FW:
733 734
			if (IS_QLA8031(ha))
				break;
735 736 737 738 739 740
			ha->flt_region_fw = start;
			break;
		case FLT_REG_BOOT_CODE:
			ha->flt_region_boot = start;
			break;
		case FLT_REG_VPD_0:
741 742
			if (IS_QLA8031(ha))
				break;
743
			ha->flt_region_vpd_nvram = start;
744 745
			if (IS_QLA82XX(ha))
				break;
746
			if (ha->flags.port0)
747 748 749
				ha->flt_region_vpd = start;
			break;
		case FLT_REG_VPD_1:
750
			if (IS_QLA82XX(ha) || IS_QLA8031(ha))
751
				break;
752
			if (!ha->flags.port0)
753 754 755
				ha->flt_region_vpd = start;
			break;
		case FLT_REG_NVRAM_0:
756 757
			if (IS_QLA8031(ha))
				break;
758
			if (ha->flags.port0)
759 760 761
				ha->flt_region_nvram = start;
			break;
		case FLT_REG_NVRAM_1:
762 763
			if (IS_QLA8031(ha))
				break;
764
			if (!ha->flags.port0)
765
				ha->flt_region_nvram = start;
766 767 768 769
			break;
		case FLT_REG_FDT:
			ha->flt_region_fdt = start;
			break;
770
		case FLT_REG_NPIV_CONF_0:
771
			if (ha->flags.port0)
772 773 774
				ha->flt_region_npiv_conf = start;
			break;
		case FLT_REG_NPIV_CONF_1:
775
			if (!ha->flags.port0)
776 777
				ha->flt_region_npiv_conf = start;
			break;
778 779 780
		case FLT_REG_GOLD_FW:
			ha->flt_region_gold_fw = start;
			break;
S
Sarang Radke 已提交
781
		case FLT_REG_FCP_PRIO_0:
782
			if (ha->flags.port0)
S
Sarang Radke 已提交
783 784 785
				ha->flt_region_fcp_prio = start;
			break;
		case FLT_REG_FCP_PRIO_1:
786
			if (!ha->flags.port0)
S
Sarang Radke 已提交
787 788
				ha->flt_region_fcp_prio = start;
			break;
789 790 791 792 793 794 795 796 797 798 799 800 801 802 803
		case FLT_REG_BOOT_CODE_82XX:
			ha->flt_region_boot = start;
			break;
		case FLT_REG_FW_82XX:
			ha->flt_region_fw = start;
			break;
		case FLT_REG_GOLD_FW_82XX:
			ha->flt_region_gold_fw = start;
			break;
		case FLT_REG_BOOTLOAD_82XX:
			ha->flt_region_bootload = start;
			break;
		case FLT_REG_VPD_82XX:
			ha->flt_region_vpd = start;
			break;
804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828
		case FLT_REG_FCOE_VPD_0:
			if (!IS_QLA8031(ha))
				break;
			ha->flt_region_vpd_nvram = start;
			if (ha->flags.port0)
				ha->flt_region_vpd = start;
			break;
		case FLT_REG_FCOE_VPD_1:
			if (!IS_QLA8031(ha))
				break;
			if (!ha->flags.port0)
				ha->flt_region_vpd = start;
			break;
		case FLT_REG_FCOE_NVRAM_0:
			if (!IS_QLA8031(ha))
				break;
			if (ha->flags.port0)
				ha->flt_region_nvram = start;
			break;
		case FLT_REG_FCOE_NVRAM_1:
			if (!IS_QLA8031(ha))
				break;
			if (!ha->flags.port0)
				ha->flt_region_nvram = start;
			break;
829 830 831 832 833 834 835
		}
	}
	goto done;

no_flash_data:
	/* Use hardcoded defaults. */
	loc = locations[0];
836 837 838
	ha->flt_region_fw = def_fw[def];
	ha->flt_region_boot = def_boot[def];
	ha->flt_region_vpd_nvram = def_vpd_nvram[def];
839
	ha->flt_region_vpd = ha->flags.port0 ?
S
Sarang Radke 已提交
840
	    def_vpd0[def] : def_vpd1[def];
841
	ha->flt_region_nvram = ha->flags.port0 ?
S
Sarang Radke 已提交
842
	    def_nvram0[def] : def_nvram1[def];
843
	ha->flt_region_fdt = def_fdt[def];
844
	ha->flt_region_npiv_conf = ha->flags.port0 ?
S
Sarang Radke 已提交
845
	    def_npiv_conf0[def] : def_npiv_conf1[def];
846
done:
847
	ql_dbg(ql_dbg_init, vha, 0x004a,
848 849 850 851 852 853
	    "FLT[%s]: boot=0x%x fw=0x%x vpd_nvram=0x%x vpd=0x%x nvram=0x%x "
	    "fdt=0x%x flt=0x%x npiv=0x%x fcp_prif_cfg=0x%x.\n",
	    loc, ha->flt_region_boot, ha->flt_region_fw,
	    ha->flt_region_vpd_nvram, ha->flt_region_vpd, ha->flt_region_nvram,
	    ha->flt_region_fdt, ha->flt_region_flt, ha->flt_region_npiv_conf,
	    ha->flt_region_fcp_prio);
854 855 856
}

static void
857
qla2xxx_get_fdt_info(scsi_qla_host_t *vha)
858
{
859
#define FLASH_BLK_SIZE_4K	0x1000
860 861
#define FLASH_BLK_SIZE_32K	0x8000
#define FLASH_BLK_SIZE_64K	0x10000
862
	const char *loc, *locations[] = { "MID", "FDT" };
863 864 865 866
	uint16_t cnt, chksum;
	uint16_t *wptr;
	struct qla_fdt_layout *fdt;
	uint8_t	man_id, flash_id;
867
	uint16_t mid = 0, fid = 0;
868
	struct qla_hw_data *ha = vha->hw;
869
	struct req_que *req = ha->req_q_map[0];
870

871 872 873
	wptr = (uint16_t *)req->ring;
	fdt = (struct qla_fdt_layout *)req->ring;
	ha->isp_ops->read_optrom(vha, (uint8_t *)req->ring,
874
	    ha->flt_region_fdt << 2, OPTROM_BURST_SIZE);
875 876 877 878 879 880 881 882 883 884
	if (*wptr == __constant_cpu_to_le16(0xffff))
		goto no_flash_data;
	if (fdt->sig[0] != 'Q' || fdt->sig[1] != 'L' || fdt->sig[2] != 'I' ||
	    fdt->sig[3] != 'D')
		goto no_flash_data;

	for (cnt = 0, chksum = 0; cnt < sizeof(struct qla_fdt_layout) >> 1;
	    cnt++)
		chksum += le16_to_cpu(*wptr++);
	if (chksum) {
885 886 887 888 889 890
		ql_dbg(ql_dbg_init, vha, 0x004c,
		    "Inconsistent FDT detected:"
		    " checksum=0x%x id=%c version0x%x.\n", chksum,
		    fdt->sig[0], le16_to_cpu(fdt->version));
		ql_dump_buffer(ql_dbg_init + ql_dbg_buffer, vha, 0x0113,
		    (uint8_t *)fdt, sizeof(*fdt));
891 892 893
		goto no_flash_data;
	}

894 895 896
	loc = locations[1];
	mid = le16_to_cpu(fdt->man_id);
	fid = le16_to_cpu(fdt->id);
897
	ha->fdt_wrt_disable = fdt->wrt_disable_bits;
898
	ha->fdt_erase_cmd = flash_conf_addr(ha, 0x0300 | fdt->erase_cmd);
899 900
	ha->fdt_block_size = le32_to_cpu(fdt->block_size);
	if (fdt->unprotect_sec_cmd) {
901
		ha->fdt_unprotect_sec_cmd = flash_conf_addr(ha, 0x0300 |
902 903
		    fdt->unprotect_sec_cmd);
		ha->fdt_protect_sec_cmd = fdt->protect_sec_cmd ?
904 905
		    flash_conf_addr(ha, 0x0300 | fdt->protect_sec_cmd):
		    flash_conf_addr(ha, 0x0336);
906
	}
907
	goto done;
908
no_flash_data:
909
	loc = locations[0];
910 911 912 913
	if (IS_QLA82XX(ha)) {
		ha->fdt_block_size = FLASH_BLK_SIZE_64K;
		goto done;
	}
914
	qla24xx_get_flash_manufacturer(ha, &man_id, &flash_id);
915 916
	mid = man_id;
	fid = flash_id;
917
	ha->fdt_wrt_disable = 0x9c;
918
	ha->fdt_erase_cmd = flash_conf_addr(ha, 0x03d8);
919 920 921 922 923 924 925 926
	switch (man_id) {
	case 0xbf: /* STT flash. */
		if (flash_id == 0x8e)
			ha->fdt_block_size = FLASH_BLK_SIZE_64K;
		else
			ha->fdt_block_size = FLASH_BLK_SIZE_32K;

		if (flash_id == 0x80)
927
			ha->fdt_erase_cmd = flash_conf_addr(ha, 0x0352);
928 929 930 931 932
		break;
	case 0x13: /* ST M25P80. */
		ha->fdt_block_size = FLASH_BLK_SIZE_64K;
		break;
	case 0x1f: /* Atmel 26DF081A. */
933
		ha->fdt_block_size = FLASH_BLK_SIZE_4K;
934 935 936
		ha->fdt_erase_cmd = flash_conf_addr(ha, 0x0320);
		ha->fdt_unprotect_sec_cmd = flash_conf_addr(ha, 0x0339);
		ha->fdt_protect_sec_cmd = flash_conf_addr(ha, 0x0336);
937 938 939 940 941 942
		break;
	default:
		/* Default to 64 kb sector size. */
		ha->fdt_block_size = FLASH_BLK_SIZE_64K;
		break;
	}
943
done:
944
	ql_dbg(ql_dbg_init, vha, 0x004d,
945 946 947
	    "FDT[%s]: (0x%x/0x%x) erase=0x%x "
	    "pr=%x wrtd=0x%x blk=0x%x.\n",
	    loc, mid, fid,
948
	    ha->fdt_erase_cmd, ha->fdt_protect_sec_cmd,
949 950
	    ha->fdt_wrt_disable, ha->fdt_block_size);

951 952
}

953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974
static void
qla2xxx_get_idc_param(scsi_qla_host_t *vha)
{
#define QLA82XX_IDC_PARAM_ADDR       0x003e885c
	uint32_t *wptr;
	struct qla_hw_data *ha = vha->hw;
	struct req_que *req = ha->req_q_map[0];

	if (!IS_QLA82XX(ha))
		return;

	wptr = (uint32_t *)req->ring;
	ha->isp_ops->read_optrom(vha, (uint8_t *)req->ring,
		QLA82XX_IDC_PARAM_ADDR , 8);

	if (*wptr == __constant_cpu_to_le32(0xffffffff)) {
		ha->nx_dev_init_timeout = QLA82XX_ROM_DEV_INIT_TIMEOUT;
		ha->nx_reset_timeout = QLA82XX_ROM_DRV_RESET_ACK_TIMEOUT;
	} else {
		ha->nx_dev_init_timeout = le32_to_cpu(*wptr++);
		ha->nx_reset_timeout = le32_to_cpu(*wptr);
	}
975 976 977 978
	ql_dbg(ql_dbg_init, vha, 0x004e,
	    "nx_dev_init_timeout=%d "
	    "nx_reset_timeout=%d.\n", ha->nx_dev_init_timeout,
	    ha->nx_reset_timeout);
979 980 981
	return;
}

982
int
983
qla2xxx_get_flash_info(scsi_qla_host_t *vha)
984 985 986
{
	int ret;
	uint32_t flt_addr;
987
	struct qla_hw_data *ha = vha->hw;
988

989 990
	if (!IS_QLA24XX_TYPE(ha) && !IS_QLA25XX(ha) &&
	    !IS_CNA_CAPABLE(ha) && !IS_QLA2031(ha))
991 992
		return QLA_SUCCESS;

993
	ret = qla2xxx_find_flt_start(vha, &flt_addr);
994 995 996
	if (ret != QLA_SUCCESS)
		return ret;

997 998
	qla2xxx_get_flt_info(vha, flt_addr);
	qla2xxx_get_fdt_info(vha);
999
	qla2xxx_get_idc_param(vha);
1000 1001 1002 1003

	return QLA_SUCCESS;
}

1004
void
1005
qla2xxx_flash_npiv_conf(scsi_qla_host_t *vha)
1006 1007 1008 1009 1010
{
#define NPIV_CONFIG_SIZE	(16*1024)
	void *data;
	uint16_t *wptr;
	uint16_t cnt, chksum;
1011
	int i;
1012 1013
	struct qla_npiv_header hdr;
	struct qla_npiv_entry *entry;
1014
	struct qla_hw_data *ha = vha->hw;
1015

1016 1017
	if (!IS_QLA24XX_TYPE(ha) && !IS_QLA25XX(ha) &&
	    !IS_CNA_CAPABLE(ha) && !IS_QLA2031(ha))
1018 1019
		return;

1020 1021 1022
	if (ha->flags.isp82xx_reset_hdlr_active)
		return;

1023
	ha->isp_ops->read_optrom(vha, (uint8_t *)&hdr,
1024 1025 1026 1027
	    ha->flt_region_npiv_conf << 2, sizeof(struct qla_npiv_header));
	if (hdr.version == __constant_cpu_to_le16(0xffff))
		return;
	if (hdr.version != __constant_cpu_to_le16(1)) {
1028 1029
		ql_dbg(ql_dbg_user, vha, 0x7090,
		    "Unsupported NPIV-Config "
1030 1031
		    "detected: version=0x%x entries=0x%x checksum=0x%x.\n",
		    le16_to_cpu(hdr.version), le16_to_cpu(hdr.entries),
1032
		    le16_to_cpu(hdr.checksum));
1033 1034 1035 1036 1037
		return;
	}

	data = kmalloc(NPIV_CONFIG_SIZE, GFP_KERNEL);
	if (!data) {
1038 1039
		ql_log(ql_log_warn, vha, 0x7091,
		    "Unable to allocate memory for data.\n");
1040 1041 1042
		return;
	}

1043
	ha->isp_ops->read_optrom(vha, (uint8_t *)data,
1044 1045 1046 1047 1048 1049 1050
	    ha->flt_region_npiv_conf << 2, NPIV_CONFIG_SIZE);

	cnt = (sizeof(struct qla_npiv_header) + le16_to_cpu(hdr.entries) *
	    sizeof(struct qla_npiv_entry)) >> 1;
	for (wptr = data, chksum = 0; cnt; cnt--)
		chksum += le16_to_cpu(*wptr++);
	if (chksum) {
1051 1052
		ql_dbg(ql_dbg_user, vha, 0x7092,
		    "Inconsistent NPIV-Config "
1053 1054
		    "detected: version=0x%x entries=0x%x checksum=0x%x.\n",
		    le16_to_cpu(hdr.version), le16_to_cpu(hdr.entries),
1055
		    le16_to_cpu(hdr.checksum));
1056 1057 1058 1059 1060
		goto done;
	}

	entry = data + sizeof(struct qla_npiv_header);
	cnt = le16_to_cpu(hdr.entries);
1061
	for (i = 0; cnt; cnt--, entry++, i++) {
1062 1063 1064 1065
		uint16_t flags;
		struct fc_vport_identifiers vid;
		struct fc_vport *vport;

1066 1067
		memcpy(&ha->npiv_info[i], entry, sizeof(struct qla_npiv_entry));

1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
		flags = le16_to_cpu(entry->flags);
		if (flags == 0xffff)
			continue;
		if ((flags & BIT_0) == 0)
			continue;

		memset(&vid, 0, sizeof(vid));
		vid.roles = FC_PORT_ROLE_FCP_INITIATOR;
		vid.vport_type = FC_PORTTYPE_NPIV;
		vid.disable = false;
		vid.port_name = wwn_to_u64(entry->port_name);
		vid.node_name = wwn_to_u64(entry->node_name);

1081 1082 1083 1084 1085 1086 1087
		ql_dbg(ql_dbg_user, vha, 0x7093,
		    "NPIV[%02x]: wwpn=%llx "
		    "wwnn=%llx vf_id=0x%x Q_qos=0x%x F_qos=0x%x.\n", cnt,
		    (unsigned long long)vid.port_name,
		    (unsigned long long)vid.node_name,
		    le16_to_cpu(entry->vf_id),
		    entry->q_qos, entry->f_qos);
1088 1089 1090 1091

		if (i < QLA_PRECONFIG_VPORTS) {
			vport = fc_vport_create(vha->host, 0, &vid);
			if (!vport)
1092 1093 1094 1095 1096
				ql_log(ql_log_warn, vha, 0x7094,
				    "NPIV-Config Failed to create vport [%02x]: "
				    "wwpn=%llx wwnn=%llx.\n", cnt,
				    (unsigned long long)vid.port_name,
				    (unsigned long long)vid.node_name);
1097
		}
1098 1099 1100 1101 1102
	}
done:
	kfree(data);
}

1103 1104
static int
qla24xx_unprotect_flash(scsi_qla_host_t *vha)
1105
{
1106
	struct qla_hw_data *ha = vha->hw;
1107 1108
	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;

1109 1110 1111
	if (ha->flags.fac_supported)
		return qla81xx_fac_do_write_enable(vha, 1);

1112 1113 1114 1115 1116
	/* Enable flash write. */
	WRT_REG_DWORD(&reg->ctrl_status,
	    RD_REG_DWORD(&reg->ctrl_status) | CSRX_FLASH_ENABLE);
	RD_REG_DWORD(&reg->ctrl_status);	/* PCI Posting. */

1117
	if (!ha->fdt_wrt_disable)
1118
		goto done;
1119

1120
	/* Disable flash write-protection, first clear SR protection bit */
1121
	qla24xx_write_flash_dword(ha, flash_conf_addr(ha, 0x101), 0);
1122
	/* Then write zero again to clear remaining SR bits.*/
1123
	qla24xx_write_flash_dword(ha, flash_conf_addr(ha, 0x101), 0);
1124 1125
done:
	return QLA_SUCCESS;
1126 1127
}

1128 1129
static int
qla24xx_protect_flash(scsi_qla_host_t *vha)
1130 1131
{
	uint32_t cnt;
1132
	struct qla_hw_data *ha = vha->hw;
1133 1134
	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;

1135 1136 1137
	if (ha->flags.fac_supported)
		return qla81xx_fac_do_write_enable(vha, 0);

1138 1139 1140
	if (!ha->fdt_wrt_disable)
		goto skip_wrt_protect;

1141
	/* Enable flash write-protection and wait for completion. */
1142
	qla24xx_write_flash_dword(ha, flash_conf_addr(ha, 0x101),
1143
	    ha->fdt_wrt_disable);
1144
	for (cnt = 300; cnt &&
1145
	    qla24xx_read_flash_dword(ha, flash_conf_addr(ha, 0x005)) & BIT_0;
1146 1147 1148 1149
	    cnt--) {
		udelay(10);
	}

1150
skip_wrt_protect:
1151 1152 1153 1154
	/* Disable flash write. */
	WRT_REG_DWORD(&reg->ctrl_status,
	    RD_REG_DWORD(&reg->ctrl_status) & ~CSRX_FLASH_ENABLE);
	RD_REG_DWORD(&reg->ctrl_status);	/* PCI Posting. */
1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174

	return QLA_SUCCESS;
}

static int
qla24xx_erase_sector(scsi_qla_host_t *vha, uint32_t fdata)
{
	struct qla_hw_data *ha = vha->hw;
	uint32_t start, finish;

	if (ha->flags.fac_supported) {
		start = fdata >> 2;
		finish = start + (ha->fdt_block_size >> 2) - 1;
		return qla81xx_fac_erase_sector(vha, flash_data_addr(ha,
		    start), flash_data_addr(ha, finish));
	}

	return qla24xx_write_flash_dword(ha, ha->fdt_erase_cmd,
	    (fdata & 0xff00) | ((fdata << 16) & 0xff0000) |
	    ((fdata >> 16) & 0xff));
1175 1176
}

1177
static int
1178
qla24xx_write_flash_data(scsi_qla_host_t *vha, uint32_t *dwptr, uint32_t faddr,
1179 1180 1181
    uint32_t dwords)
{
	int ret;
1182
	uint32_t liter;
1183
	uint32_t sec_mask, rest_addr;
1184
	uint32_t fdata;
1185 1186
	dma_addr_t optrom_dma;
	void *optrom = NULL;
1187
	struct qla_hw_data *ha = vha->hw;
1188

1189
	/* Prepare burst-capable write on supported ISPs. */
1190 1191
	if ((IS_QLA25XX(ha) || IS_QLA81XX(ha) || IS_QLA83XX(ha)) &&
	    !(faddr & 0xfff) && dwords > OPTROM_BURST_DWORDS) {
1192 1193 1194
		optrom = dma_alloc_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE,
		    &optrom_dma, GFP_KERNEL);
		if (!optrom) {
1195 1196 1197 1198
			ql_log(ql_log_warn, vha, 0x7095,
			    "Unable to allocate "
			    "memory for optrom burst write (%x KB).\n",
			    OPTROM_BURST_SIZE / 1024);
1199 1200 1201
		}
	}

1202
	rest_addr = (ha->fdt_block_size >> 2) - 1;
1203
	sec_mask = ~rest_addr;
1204

1205 1206
	ret = qla24xx_unprotect_flash(vha);
	if (ret != QLA_SUCCESS) {
1207
		ql_log(ql_log_warn, vha, 0x7096,
1208 1209 1210
		    "Unable to unprotect flash for update.\n");
		goto done;
	}
1211

1212
	for (liter = 0; liter < dwords; liter++, faddr++, dwptr++) {
1213
		fdata = (faddr & sec_mask) << 2;
1214

1215
		/* Are we at the beginning of a sector? */
1216
		if ((faddr & rest_addr) == 0) {
1217 1218
			/* Do sector unprotect. */
			if (ha->fdt_unprotect_sec_cmd)
1219
				qla24xx_write_flash_dword(ha,
1220
				    ha->fdt_unprotect_sec_cmd,
1221
				    (fdata & 0xff00) | ((fdata << 16) &
1222
				    0xff0000) | ((fdata >> 16) & 0xff));
1223
			ret = qla24xx_erase_sector(vha, fdata);
1224
			if (ret != QLA_SUCCESS) {
1225 1226 1227
				ql_dbg(ql_dbg_user, vha, 0x7007,
				    "Unable to erase erase sector: address=%x.\n",
				    faddr);
1228
				break;
1229
			}
1230 1231 1232
		}

		/* Go with burst-write. */
1233
		if (optrom && (liter + OPTROM_BURST_DWORDS) <= dwords) {
1234
			/* Copy data to DMA'ble buffer. */
1235
			memcpy(optrom, dwptr, OPTROM_BURST_SIZE);
1236

1237
			ret = qla2x00_load_ram(vha, optrom_dma,
1238
			    flash_data_addr(ha, faddr),
1239
			    OPTROM_BURST_DWORDS);
1240
			if (ret != QLA_SUCCESS) {
1241
				ql_log(ql_log_warn, vha, 0x7097,
1242 1243
				    "Unable to burst-write optrom segment "
				    "(%x/%x/%llx).\n", ret,
1244
				    flash_data_addr(ha, faddr),
A
Andrew Morton 已提交
1245
				    (unsigned long long)optrom_dma);
1246
				ql_log(ql_log_warn, vha, 0x7098,
1247 1248 1249 1250 1251 1252 1253 1254 1255 1256
				    "Reverting to slow-write.\n");

				dma_free_coherent(&ha->pdev->dev,
				    OPTROM_BURST_SIZE, optrom, optrom_dma);
				optrom = NULL;
			} else {
				liter += OPTROM_BURST_DWORDS - 1;
				faddr += OPTROM_BURST_DWORDS - 1;
				dwptr += OPTROM_BURST_DWORDS - 1;
				continue;
1257
			}
1258
		}
1259

1260
		ret = qla24xx_write_flash_dword(ha,
1261
		    flash_data_addr(ha, faddr), cpu_to_le32(*dwptr));
1262
		if (ret != QLA_SUCCESS) {
1263 1264 1265
			ql_dbg(ql_dbg_user, vha, 0x7006,
			    "Unable to program flash address=%x data=%x.\n",
			    faddr, *dwptr);
1266
			break;
1267
		}
1268

1269 1270
		/* Do sector protect. */
		if (ha->fdt_unprotect_sec_cmd &&
1271 1272
		    ((faddr & rest_addr) == rest_addr))
			qla24xx_write_flash_dword(ha,
1273
			    ha->fdt_protect_sec_cmd,
1274 1275 1276
			    (fdata & 0xff00) | ((fdata << 16) &
			    0xff0000) | ((fdata >> 16) & 0xff));
	}
1277

1278 1279
	ret = qla24xx_protect_flash(vha);
	if (ret != QLA_SUCCESS)
1280
		ql_log(ql_log_warn, vha, 0x7099,
1281 1282
		    "Unable to protect flash after update.\n");
done:
1283 1284 1285 1286
	if (optrom)
		dma_free_coherent(&ha->pdev->dev,
		    OPTROM_BURST_SIZE, optrom, optrom_dma);

1287 1288 1289 1290
	return ret;
}

uint8_t *
1291
qla2x00_read_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1292 1293 1294 1295
    uint32_t bytes)
{
	uint32_t i;
	uint16_t *wptr;
1296
	struct qla_hw_data *ha = vha->hw;
1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309

	/* Word reads to NVRAM via registers. */
	wptr = (uint16_t *)buf;
	qla2x00_lock_nvram_access(ha);
	for (i = 0; i < bytes >> 1; i++, naddr++)
		wptr[i] = cpu_to_le16(qla2x00_get_nvram_word(ha,
		    naddr));
	qla2x00_unlock_nvram_access(ha);

	return buf;
}

uint8_t *
1310
qla24xx_read_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1311 1312 1313 1314
    uint32_t bytes)
{
	uint32_t i;
	uint32_t *dwptr;
1315
	struct qla_hw_data *ha = vha->hw;
1316

1317 1318 1319
	if (IS_QLA82XX(ha))
		return  buf;

1320 1321 1322
	/* Dword reads to flash. */
	dwptr = (uint32_t *)buf;
	for (i = 0; i < bytes >> 2; i++, naddr++)
1323 1324
		dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(ha,
		    nvram_data_addr(ha, naddr)));
1325 1326 1327 1328 1329

	return buf;
}

int
1330
qla2x00_write_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1331 1332 1333 1334 1335
    uint32_t bytes)
{
	int ret, stat;
	uint32_t i;
	uint16_t *wptr;
1336
	unsigned long flags;
1337
	struct qla_hw_data *ha = vha->hw;
1338 1339 1340

	ret = QLA_SUCCESS;

1341
	spin_lock_irqsave(&ha->hardware_lock, flags);
1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357
	qla2x00_lock_nvram_access(ha);

	/* Disable NVRAM write-protection. */
	stat = qla2x00_clear_nvram_protection(ha);

	wptr = (uint16_t *)buf;
	for (i = 0; i < bytes >> 1; i++, naddr++) {
		qla2x00_write_nvram_word(ha, naddr,
		    cpu_to_le16(*wptr));
		wptr++;
	}

	/* Enable NVRAM write-protection. */
	qla2x00_set_nvram_protection(ha, stat);

	qla2x00_unlock_nvram_access(ha);
1358
	spin_unlock_irqrestore(&ha->hardware_lock, flags);
1359 1360 1361 1362 1363

	return ret;
}

int
1364
qla24xx_write_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1365 1366 1367 1368 1369
    uint32_t bytes)
{
	int ret;
	uint32_t i;
	uint32_t *dwptr;
1370
	struct qla_hw_data *ha = vha->hw;
1371 1372 1373 1374
	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;

	ret = QLA_SUCCESS;

1375 1376 1377
	if (IS_QLA82XX(ha))
		return ret;

1378 1379 1380 1381 1382 1383
	/* Enable flash write. */
	WRT_REG_DWORD(&reg->ctrl_status,
	    RD_REG_DWORD(&reg->ctrl_status) | CSRX_FLASH_ENABLE);
	RD_REG_DWORD(&reg->ctrl_status);	/* PCI Posting. */

	/* Disable NVRAM write-protection. */
1384 1385
	qla24xx_write_flash_dword(ha, nvram_conf_addr(ha, 0x101), 0);
	qla24xx_write_flash_dword(ha, nvram_conf_addr(ha, 0x101), 0);
1386 1387 1388 1389 1390

	/* Dword writes to flash. */
	dwptr = (uint32_t *)buf;
	for (i = 0; i < bytes >> 2; i++, naddr++, dwptr++) {
		ret = qla24xx_write_flash_dword(ha,
1391
		    nvram_data_addr(ha, naddr), cpu_to_le32(*dwptr));
1392
		if (ret != QLA_SUCCESS) {
1393
			ql_dbg(ql_dbg_user, vha, 0x709a,
1394
			    "Unable to program nvram address=%x data=%x.\n",
1395
			    naddr, *dwptr);
1396 1397 1398 1399 1400
			break;
		}
	}

	/* Enable NVRAM write-protection. */
1401
	qla24xx_write_flash_dword(ha, nvram_conf_addr(ha, 0x101), 0x8c);
1402 1403 1404 1405 1406 1407 1408 1409

	/* Disable flash write. */
	WRT_REG_DWORD(&reg->ctrl_status,
	    RD_REG_DWORD(&reg->ctrl_status) & ~CSRX_FLASH_ENABLE);
	RD_REG_DWORD(&reg->ctrl_status);	/* PCI Posting. */

	return ret;
}
1410

1411
uint8_t *
1412
qla25xx_read_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1413 1414 1415 1416
    uint32_t bytes)
{
	uint32_t i;
	uint32_t *dwptr;
1417
	struct qla_hw_data *ha = vha->hw;
1418 1419 1420 1421 1422

	/* Dword reads to flash. */
	dwptr = (uint32_t *)buf;
	for (i = 0; i < bytes >> 2; i++, naddr++)
		dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(ha,
1423
		    flash_data_addr(ha, ha->flt_region_vpd_nvram | naddr)));
1424 1425 1426 1427 1428

	return buf;
}

int
1429
qla25xx_write_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1430 1431
    uint32_t bytes)
{
1432
	struct qla_hw_data *ha = vha->hw;
1433 1434 1435 1436 1437 1438
#define RMW_BUFFER_SIZE	(64 * 1024)
	uint8_t *dbuf;

	dbuf = vmalloc(RMW_BUFFER_SIZE);
	if (!dbuf)
		return QLA_MEMORY_ALLOC_FAILED;
1439
	ha->isp_ops->read_optrom(vha, dbuf, ha->flt_region_vpd_nvram << 2,
1440 1441
	    RMW_BUFFER_SIZE);
	memcpy(dbuf + (naddr << 2), buf, bytes);
1442
	ha->isp_ops->write_optrom(vha, dbuf, ha->flt_region_vpd_nvram << 2,
1443 1444 1445 1446
	    RMW_BUFFER_SIZE);
	vfree(dbuf);

	return QLA_SUCCESS;
1447
}
1448 1449

static inline void
1450
qla2x00_flip_colors(struct qla_hw_data *ha, uint16_t *pflags)
1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476
{
	if (IS_QLA2322(ha)) {
		/* Flip all colors. */
		if (ha->beacon_color_state == QLA_LED_ALL_ON) {
			/* Turn off. */
			ha->beacon_color_state = 0;
			*pflags = GPIO_LED_ALL_OFF;
		} else {
			/* Turn on. */
			ha->beacon_color_state = QLA_LED_ALL_ON;
			*pflags = GPIO_LED_RGA_ON;
		}
	} else {
		/* Flip green led only. */
		if (ha->beacon_color_state == QLA_LED_GRN_ON) {
			/* Turn off. */
			ha->beacon_color_state = 0;
			*pflags = GPIO_LED_GREEN_OFF_AMBER_OFF;
		} else {
			/* Turn on. */
			ha->beacon_color_state = QLA_LED_GRN_ON;
			*pflags = GPIO_LED_GREEN_ON_AMBER_OFF;
		}
	}
}

1477 1478
#define PIO_REG(h, r) ((h)->pio_address + offsetof(struct device_reg_2xxx, r))

1479
void
1480
qla2x00_beacon_blink(struct scsi_qla_host *vha)
1481 1482 1483 1484 1485
{
	uint16_t gpio_enable;
	uint16_t gpio_data;
	uint16_t led_color = 0;
	unsigned long flags;
1486
	struct qla_hw_data *ha = vha->hw;
1487 1488
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;

1489 1490 1491
	if (IS_QLA82XX(ha))
		return;

1492 1493 1494 1495
	spin_lock_irqsave(&ha->hardware_lock, flags);

	/* Save the Original GPIOE. */
	if (ha->pio_address) {
1496 1497
		gpio_enable = RD_REG_WORD_PIO(PIO_REG(ha, gpioe));
		gpio_data = RD_REG_WORD_PIO(PIO_REG(ha, gpiod));
1498 1499 1500 1501 1502 1503 1504 1505 1506
	} else {
		gpio_enable = RD_REG_WORD(&reg->gpioe);
		gpio_data = RD_REG_WORD(&reg->gpiod);
	}

	/* Set the modified gpio_enable values */
	gpio_enable |= GPIO_LED_MASK;

	if (ha->pio_address) {
1507
		WRT_REG_WORD_PIO(PIO_REG(ha, gpioe), gpio_enable);
1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522
	} else {
		WRT_REG_WORD(&reg->gpioe, gpio_enable);
		RD_REG_WORD(&reg->gpioe);
	}

	qla2x00_flip_colors(ha, &led_color);

	/* Clear out any previously set LED color. */
	gpio_data &= ~GPIO_LED_MASK;

	/* Set the new input LED color to GPIOD. */
	gpio_data |= led_color;

	/* Set the modified gpio_data values */
	if (ha->pio_address) {
1523
		WRT_REG_WORD_PIO(PIO_REG(ha, gpiod), gpio_data);
1524 1525 1526 1527 1528 1529 1530 1531 1532
	} else {
		WRT_REG_WORD(&reg->gpiod, gpio_data);
		RD_REG_WORD(&reg->gpiod);
	}

	spin_unlock_irqrestore(&ha->hardware_lock, flags);
}

int
1533
qla2x00_beacon_on(struct scsi_qla_host *vha)
1534 1535 1536 1537
{
	uint16_t gpio_enable;
	uint16_t gpio_data;
	unsigned long flags;
1538
	struct qla_hw_data *ha = vha->hw;
1539 1540 1541 1542 1543
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;

	ha->fw_options[1] &= ~FO1_SET_EMPHASIS_SWING;
	ha->fw_options[1] |= FO1_DISABLE_GPIO6_7;

1544
	if (qla2x00_set_fw_options(vha, ha->fw_options) != QLA_SUCCESS) {
1545
		ql_log(ql_log_warn, vha, 0x709b,
1546 1547 1548 1549 1550 1551 1552
		    "Unable to update fw options (beacon on).\n");
		return QLA_FUNCTION_FAILED;
	}

	/* Turn off LEDs. */
	spin_lock_irqsave(&ha->hardware_lock, flags);
	if (ha->pio_address) {
1553 1554
		gpio_enable = RD_REG_WORD_PIO(PIO_REG(ha, gpioe));
		gpio_data = RD_REG_WORD_PIO(PIO_REG(ha, gpiod));
1555 1556 1557 1558 1559 1560 1561 1562
	} else {
		gpio_enable = RD_REG_WORD(&reg->gpioe);
		gpio_data = RD_REG_WORD(&reg->gpiod);
	}
	gpio_enable |= GPIO_LED_MASK;

	/* Set the modified gpio_enable values. */
	if (ha->pio_address) {
1563
		WRT_REG_WORD_PIO(PIO_REG(ha, gpioe), gpio_enable);
1564 1565 1566 1567 1568 1569 1570 1571
	} else {
		WRT_REG_WORD(&reg->gpioe, gpio_enable);
		RD_REG_WORD(&reg->gpioe);
	}

	/* Clear out previously set LED colour. */
	gpio_data &= ~GPIO_LED_MASK;
	if (ha->pio_address) {
1572
		WRT_REG_WORD_PIO(PIO_REG(ha, gpiod), gpio_data);
1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589
	} else {
		WRT_REG_WORD(&reg->gpiod, gpio_data);
		RD_REG_WORD(&reg->gpiod);
	}
	spin_unlock_irqrestore(&ha->hardware_lock, flags);

	/*
	 * Let the per HBA timer kick off the blinking process based on
	 * the following flags. No need to do anything else now.
	 */
	ha->beacon_blink_led = 1;
	ha->beacon_color_state = 0;

	return QLA_SUCCESS;
}

int
1590
qla2x00_beacon_off(struct scsi_qla_host *vha)
1591 1592
{
	int rval = QLA_SUCCESS;
1593
	struct qla_hw_data *ha = vha->hw;
1594 1595 1596 1597 1598 1599 1600 1601 1602

	ha->beacon_blink_led = 0;

	/* Set the on flag so when it gets flipped it will be off. */
	if (IS_QLA2322(ha))
		ha->beacon_color_state = QLA_LED_ALL_ON;
	else
		ha->beacon_color_state = QLA_LED_GRN_ON;

1603
	ha->isp_ops->beacon_blink(vha);	/* This turns green LED off */
1604 1605 1606 1607

	ha->fw_options[1] &= ~FO1_SET_EMPHASIS_SWING;
	ha->fw_options[1] &= ~FO1_DISABLE_GPIO6_7;

1608
	rval = qla2x00_set_fw_options(vha, ha->fw_options);
1609
	if (rval != QLA_SUCCESS)
1610
		ql_log(ql_log_warn, vha, 0x709c,
1611 1612 1613 1614 1615 1616
		    "Unable to update fw options (beacon off).\n");
	return rval;
}


static inline void
1617
qla24xx_flip_colors(struct qla_hw_data *ha, uint16_t *pflags)
1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
{
	/* Flip all colors. */
	if (ha->beacon_color_state == QLA_LED_ALL_ON) {
		/* Turn off. */
		ha->beacon_color_state = 0;
		*pflags = 0;
	} else {
		/* Turn on. */
		ha->beacon_color_state = QLA_LED_ALL_ON;
		*pflags = GPDX_LED_YELLOW_ON | GPDX_LED_AMBER_ON;
	}
}

void
1632
qla24xx_beacon_blink(struct scsi_qla_host *vha)
1633 1634 1635 1636
{
	uint16_t led_color = 0;
	uint32_t gpio_data;
	unsigned long flags;
1637
	struct qla_hw_data *ha = vha->hw;
1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664
	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;

	/* Save the Original GPIOD. */
	spin_lock_irqsave(&ha->hardware_lock, flags);
	gpio_data = RD_REG_DWORD(&reg->gpiod);

	/* Enable the gpio_data reg for update. */
	gpio_data |= GPDX_LED_UPDATE_MASK;

	WRT_REG_DWORD(&reg->gpiod, gpio_data);
	gpio_data = RD_REG_DWORD(&reg->gpiod);

	/* Set the color bits. */
	qla24xx_flip_colors(ha, &led_color);

	/* Clear out any previously set LED color. */
	gpio_data &= ~GPDX_LED_COLOR_MASK;

	/* Set the new input LED color to GPIOD. */
	gpio_data |= led_color;

	/* Set the modified gpio_data values. */
	WRT_REG_DWORD(&reg->gpiod, gpio_data);
	gpio_data = RD_REG_DWORD(&reg->gpiod);
	spin_unlock_irqrestore(&ha->hardware_lock, flags);
}

1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729
void
qla83xx_beacon_blink(struct scsi_qla_host *vha)
{
	uint32_t led_select_value;
	struct qla_hw_data *ha = vha->hw;
	uint16_t led_cfg[6];
	uint16_t orig_led_cfg[6];

	if (!IS_QLA83XX(ha) && !IS_QLA81XX(ha))
		return;

	if (IS_QLA2031(ha) && ha->beacon_blink_led) {
		if (ha->flags.port0)
			led_select_value = 0x00201320;
		else
			led_select_value = 0x00201328;

		qla83xx_write_remote_reg(vha, led_select_value, 0x40002000);
		qla83xx_write_remote_reg(vha, led_select_value + 4, 0x40002000);
		msleep(1000);
		qla83xx_write_remote_reg(vha, led_select_value, 0x40004000);
		qla83xx_write_remote_reg(vha, led_select_value + 4, 0x40004000);
	} else if ((IS_QLA8031(ha) || IS_QLA81XX(ha)) && ha->beacon_blink_led) {
		int rval;

		/* Save Current */
		rval = qla81xx_get_led_config(vha, orig_led_cfg);
		/* Do the blink */
		if (rval == QLA_SUCCESS) {
			if (IS_QLA81XX(ha)) {
				led_cfg[0] = 0x4000;
				led_cfg[1] = 0x2000;
				led_cfg[2] = 0;
				led_cfg[3] = 0;
				led_cfg[4] = 0;
				led_cfg[5] = 0;
			} else {
				led_cfg[0] = 0x4000;
				led_cfg[1] = 0x4000;
				led_cfg[2] = 0x4000;
				led_cfg[3] = 0x2000;
				led_cfg[4] = 0;
				led_cfg[5] = 0x2000;
			}
			rval = qla81xx_set_led_config(vha, led_cfg);
			msleep(1000);
			if (IS_QLA81XX(ha)) {
				led_cfg[0] = 0x4000;
				led_cfg[1] = 0x2000;
				led_cfg[2] = 0;
			} else {
				led_cfg[0] = 0x4000;
				led_cfg[1] = 0x2000;
				led_cfg[2] = 0x4000;
				led_cfg[3] = 0x4000;
				led_cfg[4] = 0;
				led_cfg[5] = 0x2000;
			}
			rval = qla81xx_set_led_config(vha, led_cfg);
		}
		/* On exit, restore original (presumes no status change) */
		qla81xx_set_led_config(vha, orig_led_cfg);
	}
}

1730
int
1731
qla24xx_beacon_on(struct scsi_qla_host *vha)
1732 1733 1734
{
	uint32_t gpio_data;
	unsigned long flags;
1735
	struct qla_hw_data *ha = vha->hw;
1736 1737
	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;

1738 1739 1740
	if (IS_QLA82XX(ha))
		return QLA_SUCCESS;

1741 1742 1743
	if (IS_QLA8031(ha) || IS_QLA81XX(ha))
		goto skip_gpio; /* let blink handle it */

1744 1745 1746 1747
	if (ha->beacon_blink_led == 0) {
		/* Enable firmware for update */
		ha->fw_options[1] |= ADD_FO1_DISABLE_GPIO_LED_CTRL;

1748
		if (qla2x00_set_fw_options(vha, ha->fw_options) != QLA_SUCCESS)
1749 1750
			return QLA_FUNCTION_FAILED;

1751
		if (qla2x00_get_fw_options(vha, ha->fw_options) !=
1752
		    QLA_SUCCESS) {
1753
			ql_log(ql_log_warn, vha, 0x7009,
1754 1755 1756 1757
			    "Unable to update fw options (beacon on).\n");
			return QLA_FUNCTION_FAILED;
		}

1758 1759 1760
		if (IS_QLA2031(ha))
			goto skip_gpio;

1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774
		spin_lock_irqsave(&ha->hardware_lock, flags);
		gpio_data = RD_REG_DWORD(&reg->gpiod);

		/* Enable the gpio_data reg for update. */
		gpio_data |= GPDX_LED_UPDATE_MASK;
		WRT_REG_DWORD(&reg->gpiod, gpio_data);
		RD_REG_DWORD(&reg->gpiod);

		spin_unlock_irqrestore(&ha->hardware_lock, flags);
	}

	/* So all colors blink together. */
	ha->beacon_color_state = 0;

1775
skip_gpio:
1776 1777 1778 1779 1780 1781 1782
	/* Let the per HBA timer kick off the blinking process. */
	ha->beacon_blink_led = 1;

	return QLA_SUCCESS;
}

int
1783
qla24xx_beacon_off(struct scsi_qla_host *vha)
1784 1785 1786
{
	uint32_t gpio_data;
	unsigned long flags;
1787
	struct qla_hw_data *ha = vha->hw;
1788 1789
	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;

1790 1791 1792
	if (IS_QLA82XX(ha))
		return QLA_SUCCESS;

1793
	ha->beacon_blink_led = 0;
1794 1795 1796 1797 1798 1799 1800

	if (IS_QLA2031(ha))
		goto set_fw_options;

	if (IS_QLA8031(ha) || IS_QLA81XX(ha))
		return QLA_SUCCESS;

1801 1802
	ha->beacon_color_state = QLA_LED_ALL_ON;

1803
	ha->isp_ops->beacon_blink(vha);	/* Will flip to all off. */
1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814

	/* Give control back to firmware. */
	spin_lock_irqsave(&ha->hardware_lock, flags);
	gpio_data = RD_REG_DWORD(&reg->gpiod);

	/* Disable the gpio_data reg for update. */
	gpio_data &= ~GPDX_LED_UPDATE_MASK;
	WRT_REG_DWORD(&reg->gpiod, gpio_data);
	RD_REG_DWORD(&reg->gpiod);
	spin_unlock_irqrestore(&ha->hardware_lock, flags);

1815
set_fw_options:
1816 1817
	ha->fw_options[1] &= ~ADD_FO1_DISABLE_GPIO_LED_CTRL;

1818
	if (qla2x00_set_fw_options(vha, ha->fw_options) != QLA_SUCCESS) {
1819 1820
		ql_log(ql_log_warn, vha, 0x704d,
		    "Unable to update fw options (beacon on).\n");
1821 1822 1823
		return QLA_FUNCTION_FAILED;
	}

1824
	if (qla2x00_get_fw_options(vha, ha->fw_options) != QLA_SUCCESS) {
1825 1826
		ql_log(ql_log_warn, vha, 0x704e,
		    "Unable to update fw options (beacon on).\n");
1827 1828 1829 1830 1831
		return QLA_FUNCTION_FAILED;
	}

	return QLA_SUCCESS;
}
1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842


/*
 * Flash support routines
 */

/**
 * qla2x00_flash_enable() - Setup flash for reading and writing.
 * @ha: HA context
 */
static void
1843
qla2x00_flash_enable(struct qla_hw_data *ha)
1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858
{
	uint16_t data;
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;

	data = RD_REG_WORD(&reg->ctrl_status);
	data |= CSR_FLASH_ENABLE;
	WRT_REG_WORD(&reg->ctrl_status, data);
	RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
}

/**
 * qla2x00_flash_disable() - Disable flash and allow RISC to run.
 * @ha: HA context
 */
static void
1859
qla2x00_flash_disable(struct qla_hw_data *ha)
1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879
{
	uint16_t data;
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;

	data = RD_REG_WORD(&reg->ctrl_status);
	data &= ~(CSR_FLASH_ENABLE);
	WRT_REG_WORD(&reg->ctrl_status, data);
	RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
}

/**
 * qla2x00_read_flash_byte() - Reads a byte from flash
 * @ha: HA context
 * @addr: Address in flash to read
 *
 * A word is read from the chip, but, only the lower byte is valid.
 *
 * Returns the byte read from flash @addr.
 */
static uint8_t
1880
qla2x00_read_flash_byte(struct qla_hw_data *ha, uint32_t addr)
1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918
{
	uint16_t data;
	uint16_t bank_select;
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;

	bank_select = RD_REG_WORD(&reg->ctrl_status);

	if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
		/* Specify 64K address range: */
		/*  clear out Module Select and Flash Address bits [19:16]. */
		bank_select &= ~0xf8;
		bank_select |= addr >> 12 & 0xf0;
		bank_select |= CSR_FLASH_64K_BANK;
		WRT_REG_WORD(&reg->ctrl_status, bank_select);
		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */

		WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
		data = RD_REG_WORD(&reg->flash_data);

		return (uint8_t)data;
	}

	/* Setup bit 16 of flash address. */
	if ((addr & BIT_16) && ((bank_select & CSR_FLASH_64K_BANK) == 0)) {
		bank_select |= CSR_FLASH_64K_BANK;
		WRT_REG_WORD(&reg->ctrl_status, bank_select);
		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */
	} else if (((addr & BIT_16) == 0) &&
	    (bank_select & CSR_FLASH_64K_BANK)) {
		bank_select &= ~(CSR_FLASH_64K_BANK);
		WRT_REG_WORD(&reg->ctrl_status, bank_select);
		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */
	}

	/* Always perform IO mapped accesses to the FLASH registers. */
	if (ha->pio_address) {
		uint16_t data2;

1919
		WRT_REG_WORD_PIO(PIO_REG(ha, flash_address), (uint16_t)addr);
1920
		do {
1921
			data = RD_REG_WORD_PIO(PIO_REG(ha, flash_data));
1922 1923
			barrier();
			cpu_relax();
1924
			data2 = RD_REG_WORD_PIO(PIO_REG(ha, flash_data));
1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940
		} while (data != data2);
	} else {
		WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
		data = qla2x00_debounce_register(&reg->flash_data);
	}

	return (uint8_t)data;
}

/**
 * qla2x00_write_flash_byte() - Write a byte to flash
 * @ha: HA context
 * @addr: Address in flash to write
 * @data: Data to write
 */
static void
1941
qla2x00_write_flash_byte(struct qla_hw_data *ha, uint32_t addr, uint8_t data)
1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977
{
	uint16_t bank_select;
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;

	bank_select = RD_REG_WORD(&reg->ctrl_status);
	if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
		/* Specify 64K address range: */
		/*  clear out Module Select and Flash Address bits [19:16]. */
		bank_select &= ~0xf8;
		bank_select |= addr >> 12 & 0xf0;
		bank_select |= CSR_FLASH_64K_BANK;
		WRT_REG_WORD(&reg->ctrl_status, bank_select);
		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */

		WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
		RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
		WRT_REG_WORD(&reg->flash_data, (uint16_t)data);
		RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */

		return;
	}

	/* Setup bit 16 of flash address. */
	if ((addr & BIT_16) && ((bank_select & CSR_FLASH_64K_BANK) == 0)) {
		bank_select |= CSR_FLASH_64K_BANK;
		WRT_REG_WORD(&reg->ctrl_status, bank_select);
		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */
	} else if (((addr & BIT_16) == 0) &&
	    (bank_select & CSR_FLASH_64K_BANK)) {
		bank_select &= ~(CSR_FLASH_64K_BANK);
		WRT_REG_WORD(&reg->ctrl_status, bank_select);
		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */
	}

	/* Always perform IO mapped accesses to the FLASH registers. */
	if (ha->pio_address) {
1978 1979
		WRT_REG_WORD_PIO(PIO_REG(ha, flash_address), (uint16_t)addr);
		WRT_REG_WORD_PIO(PIO_REG(ha, flash_data), (uint16_t)data);
1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003
	} else {
		WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
		RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
		WRT_REG_WORD(&reg->flash_data, (uint16_t)data);
		RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
	}
}

/**
 * qla2x00_poll_flash() - Polls flash for completion.
 * @ha: HA context
 * @addr: Address in flash to poll
 * @poll_data: Data to be polled
 * @man_id: Flash manufacturer ID
 * @flash_id: Flash ID
 *
 * This function polls the device until bit 7 of what is read matches data
 * bit 7 or until data bit 5 becomes a 1.  If that hapens, the flash ROM timed
 * out (a fatal error).  The flash book recommeds reading bit 7 again after
 * reading bit 5 as a 1.
 *
 * Returns 0 on success, else non-zero.
 */
static int
2004
qla2x00_poll_flash(struct qla_hw_data *ha, uint32_t addr, uint8_t poll_data,
2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027
    uint8_t man_id, uint8_t flash_id)
{
	int status;
	uint8_t flash_data;
	uint32_t cnt;

	status = 1;

	/* Wait for 30 seconds for command to finish. */
	poll_data &= BIT_7;
	for (cnt = 3000000; cnt; cnt--) {
		flash_data = qla2x00_read_flash_byte(ha, addr);
		if ((flash_data & BIT_7) == poll_data) {
			status = 0;
			break;
		}

		if (man_id != 0x40 && man_id != 0xda) {
			if ((flash_data & BIT_5) && cnt > 2)
				cnt = 2;
		}
		udelay(10);
		barrier();
2028
		cond_resched();
2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043
	}
	return status;
}

/**
 * qla2x00_program_flash_address() - Programs a flash address
 * @ha: HA context
 * @addr: Address in flash to program
 * @data: Data to be written in flash
 * @man_id: Flash manufacturer ID
 * @flash_id: Flash ID
 *
 * Returns 0 on success, else non-zero.
 */
static int
2044 2045
qla2x00_program_flash_address(struct qla_hw_data *ha, uint32_t addr,
    uint8_t data, uint8_t man_id, uint8_t flash_id)
2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080
{
	/* Write Program Command Sequence. */
	if (IS_OEM_001(ha)) {
		qla2x00_write_flash_byte(ha, 0xaaa, 0xaa);
		qla2x00_write_flash_byte(ha, 0x555, 0x55);
		qla2x00_write_flash_byte(ha, 0xaaa, 0xa0);
		qla2x00_write_flash_byte(ha, addr, data);
	} else {
		if (man_id == 0xda && flash_id == 0xc1) {
			qla2x00_write_flash_byte(ha, addr, data);
			if (addr & 0x7e)
				return 0;
		} else {
			qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
			qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
			qla2x00_write_flash_byte(ha, 0x5555, 0xa0);
			qla2x00_write_flash_byte(ha, addr, data);
		}
	}

	udelay(150);

	/* Wait for write to complete. */
	return qla2x00_poll_flash(ha, addr, data, man_id, flash_id);
}

/**
 * qla2x00_erase_flash() - Erase the flash.
 * @ha: HA context
 * @man_id: Flash manufacturer ID
 * @flash_id: Flash ID
 *
 * Returns 0 on success, else non-zero.
 */
static int
2081
qla2x00_erase_flash(struct qla_hw_data *ha, uint8_t man_id, uint8_t flash_id)
2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116
{
	/* Individual Sector Erase Command Sequence */
	if (IS_OEM_001(ha)) {
		qla2x00_write_flash_byte(ha, 0xaaa, 0xaa);
		qla2x00_write_flash_byte(ha, 0x555, 0x55);
		qla2x00_write_flash_byte(ha, 0xaaa, 0x80);
		qla2x00_write_flash_byte(ha, 0xaaa, 0xaa);
		qla2x00_write_flash_byte(ha, 0x555, 0x55);
		qla2x00_write_flash_byte(ha, 0xaaa, 0x10);
	} else {
		qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
		qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
		qla2x00_write_flash_byte(ha, 0x5555, 0x80);
		qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
		qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
		qla2x00_write_flash_byte(ha, 0x5555, 0x10);
	}

	udelay(150);

	/* Wait for erase to complete. */
	return qla2x00_poll_flash(ha, 0x00, 0x80, man_id, flash_id);
}

/**
 * qla2x00_erase_flash_sector() - Erase a flash sector.
 * @ha: HA context
 * @addr: Flash sector to erase
 * @sec_mask: Sector address mask
 * @man_id: Flash manufacturer ID
 * @flash_id: Flash ID
 *
 * Returns 0 on success, else non-zero.
 */
static int
2117
qla2x00_erase_flash_sector(struct qla_hw_data *ha, uint32_t addr,
2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142
    uint32_t sec_mask, uint8_t man_id, uint8_t flash_id)
{
	/* Individual Sector Erase Command Sequence */
	qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
	qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
	qla2x00_write_flash_byte(ha, 0x5555, 0x80);
	qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
	qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
	if (man_id == 0x1f && flash_id == 0x13)
		qla2x00_write_flash_byte(ha, addr & sec_mask, 0x10);
	else
		qla2x00_write_flash_byte(ha, addr & sec_mask, 0x30);

	udelay(150);

	/* Wait for erase to complete. */
	return qla2x00_poll_flash(ha, addr, 0x80, man_id, flash_id);
}

/**
 * qla2x00_get_flash_manufacturer() - Read manufacturer ID from flash chip.
 * @man_id: Flash manufacturer ID
 * @flash_id: Flash ID
 */
static void
2143
qla2x00_get_flash_manufacturer(struct qla_hw_data *ha, uint8_t *man_id,
2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155
    uint8_t *flash_id)
{
	qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
	qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
	qla2x00_write_flash_byte(ha, 0x5555, 0x90);
	*man_id = qla2x00_read_flash_byte(ha, 0x0000);
	*flash_id = qla2x00_read_flash_byte(ha, 0x0001);
	qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
	qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
	qla2x00_write_flash_byte(ha, 0x5555, 0xf0);
}

2156
static void
2157 2158
qla2x00_read_flash_data(struct qla_hw_data *ha, uint8_t *tmp_buf,
	uint32_t saddr, uint32_t length)
2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176
{
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
	uint32_t midpoint, ilength;
	uint8_t data;

	midpoint = length / 2;

	WRT_REG_WORD(&reg->nvram, 0);
	RD_REG_WORD(&reg->nvram);
	for (ilength = 0; ilength < length; saddr++, ilength++, tmp_buf++) {
		if (ilength == midpoint) {
			WRT_REG_WORD(&reg->nvram, NVR_SELECT);
			RD_REG_WORD(&reg->nvram);
		}
		data = qla2x00_read_flash_byte(ha, saddr);
		if (saddr % 100)
			udelay(10);
		*tmp_buf = data;
2177
		cond_resched();
2178 2179
	}
}
2180 2181

static inline void
2182
qla2x00_suspend_hba(struct scsi_qla_host *vha)
2183 2184 2185
{
	int cnt;
	unsigned long flags;
2186
	struct qla_hw_data *ha = vha->hw;
2187 2188 2189
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;

	/* Suspend HBA. */
2190
	scsi_block_requests(vha->host);
2191
	ha->isp_ops->disable_intrs(ha);
2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210
	set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);

	/* Pause RISC. */
	spin_lock_irqsave(&ha->hardware_lock, flags);
	WRT_REG_WORD(&reg->hccr, HCCR_PAUSE_RISC);
	RD_REG_WORD(&reg->hccr);
	if (IS_QLA2100(ha) || IS_QLA2200(ha) || IS_QLA2300(ha)) {
		for (cnt = 0; cnt < 30000; cnt++) {
			if ((RD_REG_WORD(&reg->hccr) & HCCR_RISC_PAUSE) != 0)
				break;
			udelay(100);
		}
	} else {
		udelay(10);
	}
	spin_unlock_irqrestore(&ha->hardware_lock, flags);
}

static inline void
2211
qla2x00_resume_hba(struct scsi_qla_host *vha)
2212
{
2213 2214
	struct qla_hw_data *ha = vha->hw;

2215 2216
	/* Resume HBA. */
	clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2217 2218
	set_bit(ISP_ABORT_NEEDED, &vha->dpc_flags);
	qla2xxx_wake_dpc(vha);
2219
	qla2x00_wait_for_chip_reset(vha);
2220
	scsi_unblock_requests(vha->host);
2221 2222 2223
}

uint8_t *
2224
qla2x00_read_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
2225 2226 2227 2228
    uint32_t offset, uint32_t length)
{
	uint32_t addr, midpoint;
	uint8_t *data;
2229
	struct qla_hw_data *ha = vha->hw;
2230 2231 2232
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;

	/* Suspend HBA. */
2233
	qla2x00_suspend_hba(vha);
2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251

	/* Go with read. */
	midpoint = ha->optrom_size / 2;

	qla2x00_flash_enable(ha);
	WRT_REG_WORD(&reg->nvram, 0);
	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
	for (addr = offset, data = buf; addr < length; addr++, data++) {
		if (addr == midpoint) {
			WRT_REG_WORD(&reg->nvram, NVR_SELECT);
			RD_REG_WORD(&reg->nvram);	/* PCI Posting. */
		}

		*data = qla2x00_read_flash_byte(ha, addr);
	}
	qla2x00_flash_disable(ha);

	/* Resume HBA. */
2252
	qla2x00_resume_hba(vha);
2253 2254 2255 2256 2257

	return buf;
}

int
2258
qla2x00_write_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
2259 2260 2261 2262 2263 2264 2265
    uint32_t offset, uint32_t length)
{

	int rval;
	uint8_t man_id, flash_id, sec_number, data;
	uint16_t wd;
	uint32_t addr, liter, sec_mask, rest_addr;
2266
	struct qla_hw_data *ha = vha->hw;
2267 2268 2269
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;

	/* Suspend HBA. */
2270
	qla2x00_suspend_hba(vha);
2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463

	rval = QLA_SUCCESS;
	sec_number = 0;

	/* Reset ISP chip. */
	WRT_REG_WORD(&reg->ctrl_status, CSR_ISP_SOFT_RESET);
	pci_read_config_word(ha->pdev, PCI_COMMAND, &wd);

	/* Go with write. */
	qla2x00_flash_enable(ha);
	do {	/* Loop once to provide quick error exit */
		/* Structure of flash memory based on manufacturer */
		if (IS_OEM_001(ha)) {
			/* OEM variant with special flash part. */
			man_id = flash_id = 0;
			rest_addr = 0xffff;
			sec_mask   = 0x10000;
			goto update_flash;
		}
		qla2x00_get_flash_manufacturer(ha, &man_id, &flash_id);
		switch (man_id) {
		case 0x20: /* ST flash. */
			if (flash_id == 0xd2 || flash_id == 0xe3) {
				/*
				 * ST m29w008at part - 64kb sector size with
				 * 32kb,8kb,8kb,16kb sectors at memory address
				 * 0xf0000.
				 */
				rest_addr = 0xffff;
				sec_mask = 0x10000;
				break;   
			}
			/*
			 * ST m29w010b part - 16kb sector size
			 * Default to 16kb sectors
			 */
			rest_addr = 0x3fff;
			sec_mask = 0x1c000;
			break;
		case 0x40: /* Mostel flash. */
			/* Mostel v29c51001 part - 512 byte sector size. */
			rest_addr = 0x1ff;
			sec_mask = 0x1fe00;
			break;
		case 0xbf: /* SST flash. */
			/* SST39sf10 part - 4kb sector size. */
			rest_addr = 0xfff;
			sec_mask = 0x1f000;
			break;
		case 0xda: /* Winbond flash. */
			/* Winbond W29EE011 part - 256 byte sector size. */
			rest_addr = 0x7f;
			sec_mask = 0x1ff80;
			break;
		case 0xc2: /* Macronix flash. */
			/* 64k sector size. */
			if (flash_id == 0x38 || flash_id == 0x4f) {
				rest_addr = 0xffff;
				sec_mask = 0x10000;
				break;
			}
			/* Fall through... */

		case 0x1f: /* Atmel flash. */
			/* 512k sector size. */
			if (flash_id == 0x13) {
				rest_addr = 0x7fffffff;
				sec_mask =   0x80000000;
				break;
			}
			/* Fall through... */

		case 0x01: /* AMD flash. */
			if (flash_id == 0x38 || flash_id == 0x40 ||
			    flash_id == 0x4f) {
				/* Am29LV081 part - 64kb sector size. */
				/* Am29LV002BT part - 64kb sector size. */
				rest_addr = 0xffff;
				sec_mask = 0x10000;
				break;
			} else if (flash_id == 0x3e) {
				/*
				 * Am29LV008b part - 64kb sector size with
				 * 32kb,8kb,8kb,16kb sector at memory address
				 * h0xf0000.
				 */
				rest_addr = 0xffff;
				sec_mask = 0x10000;
				break;
			} else if (flash_id == 0x20 || flash_id == 0x6e) {
				/*
				 * Am29LV010 part or AM29f010 - 16kb sector
				 * size.
				 */
				rest_addr = 0x3fff;
				sec_mask = 0x1c000;
				break;
			} else if (flash_id == 0x6d) {
				/* Am29LV001 part - 8kb sector size. */
				rest_addr = 0x1fff;
				sec_mask = 0x1e000;
				break;
			}
		default:
			/* Default to 16 kb sector size. */
			rest_addr = 0x3fff;
			sec_mask = 0x1c000;
			break;
		}

update_flash:
		if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
			if (qla2x00_erase_flash(ha, man_id, flash_id)) {
				rval = QLA_FUNCTION_FAILED;
				break;
			}
		}

		for (addr = offset, liter = 0; liter < length; liter++,
		    addr++) {
			data = buf[liter];
			/* Are we at the beginning of a sector? */
			if ((addr & rest_addr) == 0) {
				if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
					if (addr >= 0x10000UL) {
						if (((addr >> 12) & 0xf0) &&
						    ((man_id == 0x01 &&
							flash_id == 0x3e) ||
						     (man_id == 0x20 &&
							 flash_id == 0xd2))) {
							sec_number++;
							if (sec_number == 1) {
								rest_addr =
								    0x7fff;
								sec_mask =
								    0x18000;
							} else if (
							    sec_number == 2 ||
							    sec_number == 3) {
								rest_addr =
								    0x1fff;
								sec_mask =
								    0x1e000;
							} else if (
							    sec_number == 4) {
								rest_addr =
								    0x3fff;
								sec_mask =
								    0x1c000;
							}
						}
					}
				} else if (addr == ha->optrom_size / 2) {
					WRT_REG_WORD(&reg->nvram, NVR_SELECT);
					RD_REG_WORD(&reg->nvram);
				}

				if (flash_id == 0xda && man_id == 0xc1) {
					qla2x00_write_flash_byte(ha, 0x5555,
					    0xaa);
					qla2x00_write_flash_byte(ha, 0x2aaa,
					    0x55);
					qla2x00_write_flash_byte(ha, 0x5555,
					    0xa0);
				} else if (!IS_QLA2322(ha) && !IS_QLA6322(ha)) {
					/* Then erase it */
					if (qla2x00_erase_flash_sector(ha,
					    addr, sec_mask, man_id,
					    flash_id)) {
						rval = QLA_FUNCTION_FAILED;
						break;
					}
					if (man_id == 0x01 && flash_id == 0x6d)
						sec_number++;
				}
			}

			if (man_id == 0x01 && flash_id == 0x6d) {
				if (sec_number == 1 &&
				    addr == (rest_addr - 1)) {
					rest_addr = 0x0fff;
					sec_mask   = 0x1f000;
				} else if (sec_number == 3 && (addr & 0x7ffe)) {
					rest_addr = 0x3fff;
					sec_mask   = 0x1c000;
				}
			}

			if (qla2x00_program_flash_address(ha, addr, data,
			    man_id, flash_id)) {
				rval = QLA_FUNCTION_FAILED;
				break;
			}
2464
			cond_resched();
2465 2466 2467 2468 2469
		}
	} while (0);
	qla2x00_flash_disable(ha);

	/* Resume HBA. */
2470
	qla2x00_resume_hba(vha);
2471 2472 2473 2474 2475

	return rval;
}

uint8_t *
2476
qla24xx_read_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
2477 2478
    uint32_t offset, uint32_t length)
{
2479 2480
	struct qla_hw_data *ha = vha->hw;

2481
	/* Suspend HBA. */
2482
	scsi_block_requests(vha->host);
2483 2484 2485
	set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);

	/* Go with read. */
2486
	qla24xx_read_flash_data(vha, (uint32_t *)buf, offset >> 2, length >> 2);
2487 2488 2489

	/* Resume HBA. */
	clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2490
	scsi_unblock_requests(vha->host);
2491 2492 2493 2494 2495

	return buf;
}

int
2496
qla24xx_write_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
2497 2498 2499
    uint32_t offset, uint32_t length)
{
	int rval;
2500
	struct qla_hw_data *ha = vha->hw;
2501 2502

	/* Suspend HBA. */
2503
	scsi_block_requests(vha->host);
2504 2505 2506
	set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);

	/* Go with write. */
2507
	rval = qla24xx_write_flash_data(vha, (uint32_t *)buf, offset >> 2,
2508 2509 2510
	    length >> 2);

	clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2511
	scsi_unblock_requests(vha->host);
2512 2513 2514

	return rval;
}
2515

2516
uint8_t *
2517
qla25xx_read_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
2518 2519 2520 2521 2522 2523 2524
    uint32_t offset, uint32_t length)
{
	int rval;
	dma_addr_t optrom_dma;
	void *optrom;
	uint8_t *pbuf;
	uint32_t faddr, left, burst;
2525
	struct qla_hw_data *ha = vha->hw;
2526

2527 2528
	if (IS_QLA25XX(ha) || IS_QLA81XX(ha))
		goto try_fast;
2529
	if (offset & 0xfff)
2530 2531 2532 2533
		goto slow_read;
	if (length < OPTROM_BURST_SIZE)
		goto slow_read;

2534
try_fast:
2535 2536 2537
	optrom = dma_alloc_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE,
	    &optrom_dma, GFP_KERNEL);
	if (!optrom) {
2538 2539 2540
		ql_log(ql_log_warn, vha, 0x00cc,
		    "Unable to allocate memory for optrom burst read (%x KB).\n",
		    OPTROM_BURST_SIZE / 1024);
2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551
		goto slow_read;
	}

	pbuf = buf;
	faddr = offset >> 2;
	left = length >> 2;
	burst = OPTROM_BURST_DWORDS;
	while (left != 0) {
		if (burst > left)
			burst = left;

2552
		rval = qla2x00_dump_ram(vha, optrom_dma,
2553
		    flash_data_addr(ha, faddr), burst);
2554
		if (rval) {
2555 2556 2557
			ql_log(ql_log_warn, vha, 0x00f5,
			    "Unable to burst-read optrom segment (%x/%x/%llx).\n",
			    rval, flash_data_addr(ha, faddr),
A
Andrew Morton 已提交
2558
			    (unsigned long long)optrom_dma);
2559
			ql_log(ql_log_warn, vha, 0x00f6,
2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579
			    "Reverting to slow-read.\n");

			dma_free_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE,
			    optrom, optrom_dma);
			goto slow_read;
		}

		memcpy(pbuf, optrom, burst * 4);

		left -= burst;
		faddr += burst;
		pbuf += burst * 4;
	}

	dma_free_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE, optrom,
	    optrom_dma);

	return buf;

slow_read:
2580
    return qla24xx_read_optrom_data(vha, buf, offset, length);
2581 2582
}

2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601
/**
 * qla2x00_get_fcode_version() - Determine an FCODE image's version.
 * @ha: HA context
 * @pcids: Pointer to the FCODE PCI data structure
 *
 * The process of retrieving the FCODE version information is at best
 * described as interesting.
 *
 * Within the first 100h bytes of the image an ASCII string is present
 * which contains several pieces of information including the FCODE
 * version.  Unfortunately it seems the only reliable way to retrieve
 * the version is by scanning for another sentinel within the string,
 * the FCODE build date:
 *
 *	... 2.00.02 10/17/02 ...
 *
 * Returns QLA_SUCCESS on successful retrieval of version.
 */
static void
2602
qla2x00_get_fcode_version(struct qla_hw_data *ha, uint32_t pcids)
2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675
{
	int ret = QLA_FUNCTION_FAILED;
	uint32_t istart, iend, iter, vend;
	uint8_t do_next, rbyte, *vbyte;

	memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));

	/* Skip the PCI data structure. */
	istart = pcids +
	    ((qla2x00_read_flash_byte(ha, pcids + 0x0B) << 8) |
		qla2x00_read_flash_byte(ha, pcids + 0x0A));
	iend = istart + 0x100;
	do {
		/* Scan for the sentinel date string...eeewww. */
		do_next = 0;
		iter = istart;
		while ((iter < iend) && !do_next) {
			iter++;
			if (qla2x00_read_flash_byte(ha, iter) == '/') {
				if (qla2x00_read_flash_byte(ha, iter + 2) ==
				    '/')
					do_next++;
				else if (qla2x00_read_flash_byte(ha,
				    iter + 3) == '/')
					do_next++;
			}
		}
		if (!do_next)
			break;

		/* Backtrack to previous ' ' (space). */
		do_next = 0;
		while ((iter > istart) && !do_next) {
			iter--;
			if (qla2x00_read_flash_byte(ha, iter) == ' ')
				do_next++;
		}
		if (!do_next)
			break;

		/*
		 * Mark end of version tag, and find previous ' ' (space) or
		 * string length (recent FCODE images -- major hack ahead!!!).
		 */
		vend = iter - 1;
		do_next = 0;
		while ((iter > istart) && !do_next) {
			iter--;
			rbyte = qla2x00_read_flash_byte(ha, iter);
			if (rbyte == ' ' || rbyte == 0xd || rbyte == 0x10)
				do_next++;
		}
		if (!do_next)
			break;

		/* Mark beginning of version tag, and copy data. */
		iter++;
		if ((vend - iter) &&
		    ((vend - iter) < sizeof(ha->fcode_revision))) {
			vbyte = ha->fcode_revision;
			while (iter <= vend) {
				*vbyte++ = qla2x00_read_flash_byte(ha, iter);
				iter++;
			}
			ret = QLA_SUCCESS;
		}
	} while (0);

	if (ret != QLA_SUCCESS)
		memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
}

int
2676
qla2x00_get_flash_version(scsi_qla_host_t *vha, void *mbuf)
2677 2678 2679 2680 2681 2682
{
	int ret = QLA_SUCCESS;
	uint8_t code_type, last_image;
	uint32_t pcihdr, pcids;
	uint8_t *dbyte;
	uint16_t *dcode;
2683
	struct qla_hw_data *ha = vha->hw;
2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702

	if (!ha->pio_address || !mbuf)
		return QLA_FUNCTION_FAILED;

	memset(ha->bios_revision, 0, sizeof(ha->bios_revision));
	memset(ha->efi_revision, 0, sizeof(ha->efi_revision));
	memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
	memset(ha->fw_revision, 0, sizeof(ha->fw_revision));

	qla2x00_flash_enable(ha);

	/* Begin with first PCI expansion ROM header. */
	pcihdr = 0;
	last_image = 1;
	do {
		/* Verify PCI expansion ROM header. */
		if (qla2x00_read_flash_byte(ha, pcihdr) != 0x55 ||
		    qla2x00_read_flash_byte(ha, pcihdr + 0x01) != 0xaa) {
			/* No signature */
2703 2704
			ql_log(ql_log_fatal, vha, 0x0050,
			    "No matching ROM signature.\n");
2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719
			ret = QLA_FUNCTION_FAILED;
			break;
		}

		/* Locate PCI data structure. */
		pcids = pcihdr +
		    ((qla2x00_read_flash_byte(ha, pcihdr + 0x19) << 8) |
			qla2x00_read_flash_byte(ha, pcihdr + 0x18));

		/* Validate signature of PCI data structure. */
		if (qla2x00_read_flash_byte(ha, pcids) != 'P' ||
		    qla2x00_read_flash_byte(ha, pcids + 0x1) != 'C' ||
		    qla2x00_read_flash_byte(ha, pcids + 0x2) != 'I' ||
		    qla2x00_read_flash_byte(ha, pcids + 0x3) != 'R') {
			/* Incorrect header. */
2720 2721
			ql_log(ql_log_fatal, vha, 0x0051,
			    "PCI data struct not found pcir_adr=%x.\n", pcids);
2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734
			ret = QLA_FUNCTION_FAILED;
			break;
		}

		/* Read version */
		code_type = qla2x00_read_flash_byte(ha, pcids + 0x14);
		switch (code_type) {
		case ROM_CODE_TYPE_BIOS:
			/* Intel x86, PC-AT compatible. */
			ha->bios_revision[0] =
			    qla2x00_read_flash_byte(ha, pcids + 0x12);
			ha->bios_revision[1] =
			    qla2x00_read_flash_byte(ha, pcids + 0x13);
2735 2736 2737
			ql_dbg(ql_dbg_init, vha, 0x0052,
			    "Read BIOS %d.%d.\n",
			    ha->bios_revision[1], ha->bios_revision[0]);
2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749
			break;
		case ROM_CODE_TYPE_FCODE:
			/* Open Firmware standard for PCI (FCode). */
			/* Eeeewww... */
			qla2x00_get_fcode_version(ha, pcids);
			break;
		case ROM_CODE_TYPE_EFI:
			/* Extensible Firmware Interface (EFI). */
			ha->efi_revision[0] =
			    qla2x00_read_flash_byte(ha, pcids + 0x12);
			ha->efi_revision[1] =
			    qla2x00_read_flash_byte(ha, pcids + 0x13);
2750 2751 2752
			ql_dbg(ql_dbg_init, vha, 0x0053,
			    "Read EFI %d.%d.\n",
			    ha->efi_revision[1], ha->efi_revision[0]);
2753 2754
			break;
		default:
2755 2756 2757
			ql_log(ql_log_warn, vha, 0x0054,
			    "Unrecognized code type %x at pcids %x.\n",
			    code_type, pcids);
2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774
			break;
		}

		last_image = qla2x00_read_flash_byte(ha, pcids + 0x15) & BIT_7;

		/* Locate next PCI expansion ROM. */
		pcihdr += ((qla2x00_read_flash_byte(ha, pcids + 0x11) << 8) |
		    qla2x00_read_flash_byte(ha, pcids + 0x10)) * 512;
	} while (!last_image);

	if (IS_QLA2322(ha)) {
		/* Read firmware image information. */
		memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
		dbyte = mbuf;
		memset(dbyte, 0, 8);
		dcode = (uint16_t *)dbyte;

2775
		qla2x00_read_flash_data(ha, dbyte, ha->flt_region_fw * 4 + 10,
2776
		    8);
2777 2778 2779 2780 2781
		ql_dbg(ql_dbg_init + ql_dbg_buffer, vha, 0x010a,
		    "Dumping fw "
		    "ver from flash:.\n");
		ql_dump_buffer(ql_dbg_init + ql_dbg_buffer, vha, 0x010b,
		    (uint8_t *)dbyte, 8);
2782 2783 2784 2785 2786

		if ((dcode[0] == 0xffff && dcode[1] == 0xffff &&
		    dcode[2] == 0xffff && dcode[3] == 0xffff) ||
		    (dcode[0] == 0 && dcode[1] == 0 && dcode[2] == 0 &&
		    dcode[3] == 0)) {
2787 2788 2789
			ql_log(ql_log_warn, vha, 0x0057,
			    "Unrecognized fw revision at %x.\n",
			    ha->flt_region_fw * 4);
2790 2791 2792 2793 2794
		} else {
			/* values are in big endian */
			ha->fw_revision[0] = dbyte[0] << 16 | dbyte[1];
			ha->fw_revision[1] = dbyte[2] << 16 | dbyte[3];
			ha->fw_revision[2] = dbyte[4] << 16 | dbyte[5];
2795 2796 2797 2798
			ql_dbg(ql_dbg_init, vha, 0x0058,
			    "FW Version: "
			    "%d.%d.%d.\n", ha->fw_revision[0],
			    ha->fw_revision[1], ha->fw_revision[2]);
2799 2800 2801 2802 2803 2804 2805 2806 2807
		}
	}

	qla2x00_flash_disable(ha);

	return ret;
}

int
2808
qla24xx_get_flash_version(scsi_qla_host_t *vha, void *mbuf)
2809 2810 2811 2812 2813 2814 2815
{
	int ret = QLA_SUCCESS;
	uint32_t pcihdr, pcids;
	uint32_t *dcode;
	uint8_t *bcode;
	uint8_t code_type, last_image;
	int i;
2816
	struct qla_hw_data *ha = vha->hw;
2817

2818 2819 2820
	if (IS_QLA82XX(ha))
		return ret;

2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831
	if (!mbuf)
		return QLA_FUNCTION_FAILED;

	memset(ha->bios_revision, 0, sizeof(ha->bios_revision));
	memset(ha->efi_revision, 0, sizeof(ha->efi_revision));
	memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
	memset(ha->fw_revision, 0, sizeof(ha->fw_revision));

	dcode = mbuf;

	/* Begin with first PCI expansion ROM header. */
2832
	pcihdr = ha->flt_region_boot << 2;
2833 2834 2835
	last_image = 1;
	do {
		/* Verify PCI expansion ROM header. */
2836
		qla24xx_read_flash_data(vha, dcode, pcihdr >> 2, 0x20);
2837 2838 2839
		bcode = mbuf + (pcihdr % 4);
		if (bcode[0x0] != 0x55 || bcode[0x1] != 0xaa) {
			/* No signature */
2840 2841
			ql_log(ql_log_fatal, vha, 0x0059,
			    "No matching ROM signature.\n");
2842 2843 2844 2845 2846 2847 2848
			ret = QLA_FUNCTION_FAILED;
			break;
		}

		/* Locate PCI data structure. */
		pcids = pcihdr + ((bcode[0x19] << 8) | bcode[0x18]);

2849
		qla24xx_read_flash_data(vha, dcode, pcids >> 2, 0x20);
2850 2851 2852 2853 2854 2855
		bcode = mbuf + (pcihdr % 4);

		/* Validate signature of PCI data structure. */
		if (bcode[0x0] != 'P' || bcode[0x1] != 'C' ||
		    bcode[0x2] != 'I' || bcode[0x3] != 'R') {
			/* Incorrect header. */
2856 2857
			ql_log(ql_log_fatal, vha, 0x005a,
			    "PCI data struct not found pcir_adr=%x.\n", pcids);
2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868
			ret = QLA_FUNCTION_FAILED;
			break;
		}

		/* Read version */
		code_type = bcode[0x14];
		switch (code_type) {
		case ROM_CODE_TYPE_BIOS:
			/* Intel x86, PC-AT compatible. */
			ha->bios_revision[0] = bcode[0x12];
			ha->bios_revision[1] = bcode[0x13];
2869 2870 2871
			ql_dbg(ql_dbg_init, vha, 0x005b,
			    "Read BIOS %d.%d.\n",
			    ha->bios_revision[1], ha->bios_revision[0]);
2872 2873 2874 2875 2876
			break;
		case ROM_CODE_TYPE_FCODE:
			/* Open Firmware standard for PCI (FCode). */
			ha->fcode_revision[0] = bcode[0x12];
			ha->fcode_revision[1] = bcode[0x13];
2877 2878 2879
			ql_dbg(ql_dbg_init, vha, 0x005c,
			    "Read FCODE %d.%d.\n",
			    ha->fcode_revision[1], ha->fcode_revision[0]);
2880 2881 2882 2883 2884
			break;
		case ROM_CODE_TYPE_EFI:
			/* Extensible Firmware Interface (EFI). */
			ha->efi_revision[0] = bcode[0x12];
			ha->efi_revision[1] = bcode[0x13];
2885 2886 2887
			ql_dbg(ql_dbg_init, vha, 0x005d,
			    "Read EFI %d.%d.\n",
			    ha->efi_revision[1], ha->efi_revision[0]);
2888 2889
			break;
		default:
2890 2891 2892
			ql_log(ql_log_warn, vha, 0x005e,
			    "Unrecognized code type %x at pcids %x.\n",
			    code_type, pcids);
2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905
			break;
		}

		last_image = bcode[0x15] & BIT_7;

		/* Locate next PCI expansion ROM. */
		pcihdr += ((bcode[0x11] << 8) | bcode[0x10]) * 512;
	} while (!last_image);

	/* Read firmware image information. */
	memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
	dcode = mbuf;

2906
	qla24xx_read_flash_data(vha, dcode, ha->flt_region_fw + 4, 4);
2907 2908 2909 2910 2911 2912 2913
	for (i = 0; i < 4; i++)
		dcode[i] = be32_to_cpu(dcode[i]);

	if ((dcode[0] == 0xffffffff && dcode[1] == 0xffffffff &&
	    dcode[2] == 0xffffffff && dcode[3] == 0xffffffff) ||
	    (dcode[0] == 0 && dcode[1] == 0 && dcode[2] == 0 &&
	    dcode[3] == 0)) {
2914 2915 2916
		ql_log(ql_log_warn, vha, 0x005f,
		    "Unrecognized fw revision at %x.\n",
		    ha->flt_region_fw * 4);
2917 2918 2919 2920 2921
	} else {
		ha->fw_revision[0] = dcode[0];
		ha->fw_revision[1] = dcode[1];
		ha->fw_revision[2] = dcode[2];
		ha->fw_revision[3] = dcode[3];
2922 2923 2924 2925
		ql_dbg(ql_dbg_init, vha, 0x0060,
		    "Firmware revision %d.%d.%d.%d.\n",
		    ha->fw_revision[0], ha->fw_revision[1],
		    ha->fw_revision[2], ha->fw_revision[3]);
2926 2927
	}

2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940
	/* Check for golden firmware and get version if available */
	if (!IS_QLA81XX(ha)) {
		/* Golden firmware is not present in non 81XX adapters */
		return ret;
	}

	memset(ha->gold_fw_version, 0, sizeof(ha->gold_fw_version));
	dcode = mbuf;
	ha->isp_ops->read_optrom(vha, (uint8_t *)dcode,
	    ha->flt_region_gold_fw << 2, 32);

	if (dcode[4] == 0xFFFFFFFF && dcode[5] == 0xFFFFFFFF &&
	    dcode[6] == 0xFFFFFFFF && dcode[7] == 0xFFFFFFFF) {
2941 2942 2943
		ql_log(ql_log_warn, vha, 0x0056,
		    "Unrecognized golden fw at 0x%x.\n",
		    ha->flt_region_gold_fw * 4);
2944 2945 2946 2947 2948 2949
		return ret;
	}

	for (i = 4; i < 8; i++)
		ha->gold_fw_version[i-4] = be32_to_cpu(dcode[i]);

2950 2951
	return ret;
}
2952

2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970
static int
qla2xxx_is_vpd_valid(uint8_t *pos, uint8_t *end)
{
	if (pos >= end || *pos != 0x82)
		return 0;

	pos += 3 + pos[1];
	if (pos >= end || *pos != 0x90)
		return 0;

	pos += 3 + pos[1];
	if (pos >= end || *pos != 0x78)
		return 0;

	return 1;
}

int
2971
qla2xxx_get_vpd_field(scsi_qla_host_t *vha, char *key, char *str, size_t size)
2972
{
2973
	struct qla_hw_data *ha = vha->hw;
2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997
	uint8_t *pos = ha->vpd;
	uint8_t *end = pos + ha->vpd_size;
	int len = 0;

	if (!IS_FWI2_CAPABLE(ha) || !qla2xxx_is_vpd_valid(pos, end))
		return 0;

	while (pos < end && *pos != 0x78) {
		len = (*pos == 0x82) ? pos[1] : pos[2];

		if (!strncmp(pos, key, strlen(key)))
			break;

		if (*pos != 0x90 && *pos != 0x91)
			pos += len;

		pos += 3;
	}

	if (pos < end - len && *pos != 0x78)
		return snprintf(str, size, "%.*s", len, pos + 3);

	return 0;
}
S
Sarang Radke 已提交
2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008

int
qla24xx_read_fcp_prio_cfg(scsi_qla_host_t *vha)
{
	int len, max_len;
	uint32_t fcp_prio_addr;
	struct qla_hw_data *ha = vha->hw;

	if (!ha->fcp_prio_cfg) {
		ha->fcp_prio_cfg = vmalloc(FCP_PRIO_CFG_SIZE);
		if (!ha->fcp_prio_cfg) {
3009 3010 3011
			ql_log(ql_log_warn, vha, 0x00d5,
			    "Unable to allocate memory for fcp priorty data (%x).\n",
			    FCP_PRIO_CFG_SIZE);
S
Sarang Radke 已提交
3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022
			return QLA_FUNCTION_FAILED;
		}
	}
	memset(ha->fcp_prio_cfg, 0, FCP_PRIO_CFG_SIZE);

	fcp_prio_addr = ha->flt_region_fcp_prio;

	/* first read the fcp priority data header from flash */
	ha->isp_ops->read_optrom(vha, (uint8_t *)ha->fcp_prio_cfg,
			fcp_prio_addr << 2, FCP_PRIO_CFG_HDR_SIZE);

3023
	if (!qla24xx_fcp_prio_cfg_valid(vha, ha->fcp_prio_cfg, 0))
S
Sarang Radke 已提交
3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034
		goto fail;

	/* read remaining FCP CMD config data from flash */
	fcp_prio_addr += (FCP_PRIO_CFG_HDR_SIZE >> 2);
	len = ha->fcp_prio_cfg->num_entries * FCP_PRIO_CFG_ENTRY_SIZE;
	max_len = FCP_PRIO_CFG_SIZE - FCP_PRIO_CFG_HDR_SIZE;

	ha->isp_ops->read_optrom(vha, (uint8_t *)&ha->fcp_prio_cfg->entry[0],
			fcp_prio_addr << 2, (len < max_len ? len : max_len));

	/* revalidate the entire FCP priority config data, including entries */
3035
	if (!qla24xx_fcp_prio_cfg_valid(vha, ha->fcp_prio_cfg, 1))
S
Sarang Radke 已提交
3036 3037 3038 3039 3040 3041 3042 3043 3044
		goto fail;

	ha->flags.fcp_prio_enabled = 1;
	return QLA_SUCCESS;
fail:
	vfree(ha->fcp_prio_cfg);
	ha->fcp_prio_cfg = NULL;
	return QLA_FUNCTION_FAILED;
}