qla_sup.c 69.5 KB
Newer Older
A
Andrew Vasquez 已提交
1 2
/*
 * QLogic Fibre Channel HBA Driver
3
 * Copyright (c)  2003-2008 QLogic Corporation
L
Linus Torvalds 已提交
4
 *
A
Andrew Vasquez 已提交
5 6
 * See LICENSE.qla2xxx for copyright and licensing details.
 */
L
Linus Torvalds 已提交
7 8 9
#include "qla_def.h"

#include <linux/delay.h>
10
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
11 12 13 14 15 16 17
#include <asm/uaccess.h>

/*
 * NVRAM support routines
 */

/**
A
Andrew Vasquez 已提交
18
 * qla2x00_lock_nvram_access() -
L
Linus Torvalds 已提交
19 20
 * @ha: HA context
 */
A
Adrian Bunk 已提交
21
static void
22
qla2x00_lock_nvram_access(struct qla_hw_data *ha)
L
Linus Torvalds 已提交
23 24
{
	uint16_t data;
25
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
L
Linus Torvalds 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

	if (!IS_QLA2100(ha) && !IS_QLA2200(ha) && !IS_QLA2300(ha)) {
		data = RD_REG_WORD(&reg->nvram);
		while (data & NVR_BUSY) {
			udelay(100);
			data = RD_REG_WORD(&reg->nvram);
		}

		/* Lock resource */
		WRT_REG_WORD(&reg->u.isp2300.host_semaphore, 0x1);
		RD_REG_WORD(&reg->u.isp2300.host_semaphore);
		udelay(5);
		data = RD_REG_WORD(&reg->u.isp2300.host_semaphore);
		while ((data & BIT_0) == 0) {
			/* Lock failed */
			udelay(100);
			WRT_REG_WORD(&reg->u.isp2300.host_semaphore, 0x1);
			RD_REG_WORD(&reg->u.isp2300.host_semaphore);
			udelay(5);
			data = RD_REG_WORD(&reg->u.isp2300.host_semaphore);
		}
	}
}

/**
A
Andrew Vasquez 已提交
51
 * qla2x00_unlock_nvram_access() -
L
Linus Torvalds 已提交
52 53
 * @ha: HA context
 */
A
Adrian Bunk 已提交
54
static void
55
qla2x00_unlock_nvram_access(struct qla_hw_data *ha)
L
Linus Torvalds 已提交
56
{
57
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
L
Linus Torvalds 已提交
58 59 60 61 62 63 64

	if (!IS_QLA2100(ha) && !IS_QLA2200(ha) && !IS_QLA2300(ha)) {
		WRT_REG_WORD(&reg->u.isp2300.host_semaphore, 0);
		RD_REG_WORD(&reg->u.isp2300.host_semaphore);
	}
}

65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
/**
 * qla2x00_nv_write() - Prepare for NVRAM read/write operation.
 * @ha: HA context
 * @data: Serial interface selector
 */
static void
qla2x00_nv_write(struct qla_hw_data *ha, uint16_t data)
{
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;

	WRT_REG_WORD(&reg->nvram, data | NVR_SELECT | NVR_WRT_ENABLE);
	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
	NVRAM_DELAY();
	WRT_REG_WORD(&reg->nvram, data | NVR_SELECT | NVR_CLOCK |
	    NVR_WRT_ENABLE);
	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
	NVRAM_DELAY();
	WRT_REG_WORD(&reg->nvram, data | NVR_SELECT | NVR_WRT_ENABLE);
	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
	NVRAM_DELAY();
}

/**
 * qla2x00_nvram_request() - Sends read command to NVRAM and gets data from
 *	NVRAM.
 * @ha: HA context
 * @nv_cmd: NVRAM command
 *
 * Bit definitions for NVRAM command:
 *
 *	Bit 26     = start bit
 *	Bit 25, 24 = opcode
 *	Bit 23-16  = address
 *	Bit 15-0   = write data
 *
 * Returns the word read from nvram @addr.
 */
static uint16_t
qla2x00_nvram_request(struct qla_hw_data *ha, uint32_t nv_cmd)
{
	uint8_t		cnt;
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
	uint16_t	data = 0;
	uint16_t	reg_data;

	/* Send command to NVRAM. */
	nv_cmd <<= 5;
	for (cnt = 0; cnt < 11; cnt++) {
		if (nv_cmd & BIT_31)
			qla2x00_nv_write(ha, NVR_DATA_OUT);
		else
			qla2x00_nv_write(ha, 0);
		nv_cmd <<= 1;
	}

	/* Read data from NVRAM. */
	for (cnt = 0; cnt < 16; cnt++) {
		WRT_REG_WORD(&reg->nvram, NVR_SELECT | NVR_CLOCK);
		RD_REG_WORD(&reg->nvram);	/* PCI Posting. */
		NVRAM_DELAY();
		data <<= 1;
		reg_data = RD_REG_WORD(&reg->nvram);
		if (reg_data & NVR_DATA_IN)
			data |= BIT_0;
		WRT_REG_WORD(&reg->nvram, NVR_SELECT);
		RD_REG_WORD(&reg->nvram);	/* PCI Posting. */
		NVRAM_DELAY();
	}

	/* Deselect chip. */
	WRT_REG_WORD(&reg->nvram, NVR_DESELECT);
	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
	NVRAM_DELAY();

	return data;
}


L
Linus Torvalds 已提交
143 144 145 146 147 148 149 150
/**
 * qla2x00_get_nvram_word() - Calculates word position in NVRAM and calls the
 *	request routine to get the word from NVRAM.
 * @ha: HA context
 * @addr: Address in NVRAM to read
 *
 * Returns the word read from nvram @addr.
 */
A
Adrian Bunk 已提交
151
static uint16_t
152
qla2x00_get_nvram_word(struct qla_hw_data *ha, uint32_t addr)
L
Linus Torvalds 已提交
153 154 155 156 157 158 159 160 161 162 163
{
	uint16_t	data;
	uint32_t	nv_cmd;

	nv_cmd = addr << 16;
	nv_cmd |= NV_READ_OP;
	data = qla2x00_nvram_request(ha, nv_cmd);

	return (data);
}

164 165 166 167 168 169 170 171 172 173 174 175 176 177
/**
 * qla2x00_nv_deselect() - Deselect NVRAM operations.
 * @ha: HA context
 */
static void
qla2x00_nv_deselect(struct qla_hw_data *ha)
{
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;

	WRT_REG_WORD(&reg->nvram, NVR_DESELECT);
	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
	NVRAM_DELAY();
}

L
Linus Torvalds 已提交
178 179 180 181 182 183
/**
 * qla2x00_write_nvram_word() - Write NVRAM data.
 * @ha: HA context
 * @addr: Address in NVRAM to write
 * @data: word to program
 */
A
Adrian Bunk 已提交
184
static void
185
qla2x00_write_nvram_word(struct qla_hw_data *ha, uint32_t addr, uint16_t data)
L
Linus Torvalds 已提交
186 187 188
{
	int count;
	uint16_t word;
189
	uint32_t nv_cmd, wait_cnt;
190
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
L
Linus Torvalds 已提交
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217

	qla2x00_nv_write(ha, NVR_DATA_OUT);
	qla2x00_nv_write(ha, 0);
	qla2x00_nv_write(ha, 0);

	for (word = 0; word < 8; word++)
		qla2x00_nv_write(ha, NVR_DATA_OUT);

	qla2x00_nv_deselect(ha);

	/* Write data */
	nv_cmd = (addr << 16) | NV_WRITE_OP;
	nv_cmd |= data;
	nv_cmd <<= 5;
	for (count = 0; count < 27; count++) {
		if (nv_cmd & BIT_31)
			qla2x00_nv_write(ha, NVR_DATA_OUT);
		else
			qla2x00_nv_write(ha, 0);

		nv_cmd <<= 1;
	}

	qla2x00_nv_deselect(ha);

	/* Wait for NVRAM to become ready */
	WRT_REG_WORD(&reg->nvram, NVR_SELECT);
218
	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
219
	wait_cnt = NVR_WAIT_CNT;
L
Linus Torvalds 已提交
220
	do {
221 222
		if (!--wait_cnt) {
			DEBUG9_10(printk("%s(%ld): NVRAM didn't go ready...\n",
223
			    __func__, vha->host_no));
224 225
			break;
		}
L
Linus Torvalds 已提交
226 227 228 229 230 231 232 233 234 235 236 237 238 239
		NVRAM_DELAY();
		word = RD_REG_WORD(&reg->nvram);
	} while ((word & NVR_DATA_IN) == 0);

	qla2x00_nv_deselect(ha);

	/* Disable writes */
	qla2x00_nv_write(ha, NVR_DATA_OUT);
	for (count = 0; count < 10; count++)
		qla2x00_nv_write(ha, 0);

	qla2x00_nv_deselect(ha);
}

240
static int
241 242
qla2x00_write_nvram_word_tmo(struct qla_hw_data *ha, uint32_t addr,
	uint16_t data, uint32_t tmo)
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
{
	int ret, count;
	uint16_t word;
	uint32_t nv_cmd;
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;

	ret = QLA_SUCCESS;

	qla2x00_nv_write(ha, NVR_DATA_OUT);
	qla2x00_nv_write(ha, 0);
	qla2x00_nv_write(ha, 0);

	for (word = 0; word < 8; word++)
		qla2x00_nv_write(ha, NVR_DATA_OUT);

	qla2x00_nv_deselect(ha);

	/* Write data */
	nv_cmd = (addr << 16) | NV_WRITE_OP;
	nv_cmd |= data;
	nv_cmd <<= 5;
	for (count = 0; count < 27; count++) {
		if (nv_cmd & BIT_31)
			qla2x00_nv_write(ha, NVR_DATA_OUT);
		else
			qla2x00_nv_write(ha, 0);

		nv_cmd <<= 1;
	}

	qla2x00_nv_deselect(ha);

	/* Wait for NVRAM to become ready */
	WRT_REG_WORD(&reg->nvram, NVR_SELECT);
277
	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
	do {
		NVRAM_DELAY();
		word = RD_REG_WORD(&reg->nvram);
		if (!--tmo) {
			ret = QLA_FUNCTION_FAILED;
			break;
		}
	} while ((word & NVR_DATA_IN) == 0);

	qla2x00_nv_deselect(ha);

	/* Disable writes */
	qla2x00_nv_write(ha, NVR_DATA_OUT);
	for (count = 0; count < 10; count++)
		qla2x00_nv_write(ha, 0);

	qla2x00_nv_deselect(ha);

	return ret;
}

/**
 * qla2x00_clear_nvram_protection() -
 * @ha: HA context
 */
static int
304
qla2x00_clear_nvram_protection(struct qla_hw_data *ha)
305 306 307
{
	int ret, stat;
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
308
	uint32_t word, wait_cnt;
309 310 311 312
	uint16_t wprot, wprot_old;

	/* Clear NVRAM write protection. */
	ret = QLA_FUNCTION_FAILED;
313 314 315

	wprot_old = cpu_to_le16(qla2x00_get_nvram_word(ha, ha->nvram_base));
	stat = qla2x00_write_nvram_word_tmo(ha, ha->nvram_base,
316
	    __constant_cpu_to_le16(0x1234), 100000);
317 318
	wprot = cpu_to_le16(qla2x00_get_nvram_word(ha, ha->nvram_base));
	if (stat != QLA_SUCCESS || wprot != 0x1234) {
319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
		/* Write enable. */
		qla2x00_nv_write(ha, NVR_DATA_OUT);
		qla2x00_nv_write(ha, 0);
		qla2x00_nv_write(ha, 0);
		for (word = 0; word < 8; word++)
			qla2x00_nv_write(ha, NVR_DATA_OUT);

		qla2x00_nv_deselect(ha);

		/* Enable protection register. */
		qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
		qla2x00_nv_write(ha, NVR_PR_ENABLE);
		qla2x00_nv_write(ha, NVR_PR_ENABLE);
		for (word = 0; word < 8; word++)
			qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE);

		qla2x00_nv_deselect(ha);

		/* Clear protection register (ffff is cleared). */
		qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
		qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
		qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
		for (word = 0; word < 8; word++)
			qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE);

		qla2x00_nv_deselect(ha);

		/* Wait for NVRAM to become ready. */
		WRT_REG_WORD(&reg->nvram, NVR_SELECT);
348
		RD_REG_WORD(&reg->nvram);	/* PCI Posting. */
349
		wait_cnt = NVR_WAIT_CNT;
350
		do {
351
			if (!--wait_cnt) {
352 353
				DEBUG9_10(qla_printk(
				    "NVRAM didn't go ready...\n"));
354 355
				break;
			}
356 357 358 359
			NVRAM_DELAY();
			word = RD_REG_WORD(&reg->nvram);
		} while ((word & NVR_DATA_IN) == 0);

360 361
		if (wait_cnt)
			ret = QLA_SUCCESS;
362
	} else
363
		qla2x00_write_nvram_word(ha, ha->nvram_base, wprot_old);
364 365 366 367 368

	return ret;
}

static void
369
qla2x00_set_nvram_protection(struct qla_hw_data *ha, int stat)
370 371
{
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
372
	uint32_t word, wait_cnt;
373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406

	if (stat != QLA_SUCCESS)
		return;

	/* Set NVRAM write protection. */
	/* Write enable. */
	qla2x00_nv_write(ha, NVR_DATA_OUT);
	qla2x00_nv_write(ha, 0);
	qla2x00_nv_write(ha, 0);
	for (word = 0; word < 8; word++)
		qla2x00_nv_write(ha, NVR_DATA_OUT);

	qla2x00_nv_deselect(ha);

	/* Enable protection register. */
	qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
	qla2x00_nv_write(ha, NVR_PR_ENABLE);
	qla2x00_nv_write(ha, NVR_PR_ENABLE);
	for (word = 0; word < 8; word++)
		qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE);

	qla2x00_nv_deselect(ha);

	/* Enable protection register. */
	qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
	qla2x00_nv_write(ha, NVR_PR_ENABLE);
	qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
	for (word = 0; word < 8; word++)
		qla2x00_nv_write(ha, NVR_PR_ENABLE);

	qla2x00_nv_deselect(ha);

	/* Wait for NVRAM to become ready. */
	WRT_REG_WORD(&reg->nvram, NVR_SELECT);
407
	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
408
	wait_cnt = NVR_WAIT_CNT;
409
	do {
410
		if (!--wait_cnt) {
411
			DEBUG9_10(qla_printk("NVRAM didn't go ready...\n"));
412 413
			break;
		}
414 415 416 417 418 419 420 421 422 423
		NVRAM_DELAY();
		word = RD_REG_WORD(&reg->nvram);
	} while ((word & NVR_DATA_IN) == 0);
}


/*****************************************************************************/
/* Flash Manipulation Routines                                               */
/*****************************************************************************/

424 425 426
#define OPTROM_BURST_SIZE	0x1000
#define OPTROM_BURST_DWORDS	(OPTROM_BURST_SIZE / 4)

427
static inline uint32_t
428
flash_conf_addr(struct qla_hw_data *ha, uint32_t faddr)
429
{
430
	return ha->flash_conf_off | faddr;
431 432 433
}

static inline uint32_t
434
flash_data_addr(struct qla_hw_data *ha, uint32_t faddr)
435
{
436
	return ha->flash_data_off | faddr;
437 438 439
}

static inline uint32_t
440
nvram_conf_addr(struct qla_hw_data *ha, uint32_t naddr)
441
{
442
	return ha->nvram_conf_off | naddr;
443 444 445
}

static inline uint32_t
446
nvram_data_addr(struct qla_hw_data *ha, uint32_t naddr)
447
{
448
	return ha->nvram_data_off | naddr;
449 450
}

451
static uint32_t
452
qla24xx_read_flash_dword(struct qla_hw_data *ha, uint32_t addr)
453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
{
	int rval;
	uint32_t cnt, data;
	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;

	WRT_REG_DWORD(&reg->flash_addr, addr & ~FARX_DATA_FLAG);
	/* Wait for READ cycle to complete. */
	rval = QLA_SUCCESS;
	for (cnt = 3000;
	    (RD_REG_DWORD(&reg->flash_addr) & FARX_DATA_FLAG) == 0 &&
	    rval == QLA_SUCCESS; cnt--) {
		if (cnt)
			udelay(10);
		else
			rval = QLA_FUNCTION_TIMEOUT;
468
		cond_resched();
469 470 471 472 473 474 475 476 477 478 479
	}

	/* TODO: What happens if we time out? */
	data = 0xDEADDEAD;
	if (rval == QLA_SUCCESS)
		data = RD_REG_DWORD(&reg->flash_data);

	return data;
}

uint32_t *
480
qla24xx_read_flash_data(scsi_qla_host_t *vha, uint32_t *dwptr, uint32_t faddr,
481 482 483
    uint32_t dwords)
{
	uint32_t i;
484 485
	struct qla_hw_data *ha = vha->hw;

486 487
	/* Dword reads to flash. */
	for (i = 0; i < dwords; i++, faddr++)
488 489
		dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(ha,
		    flash_data_addr(ha, faddr)));
490 491 492 493

	return dwptr;
}

494
static int
495
qla24xx_write_flash_dword(struct qla_hw_data *ha, uint32_t addr, uint32_t data)
496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
{
	int rval;
	uint32_t cnt;
	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;

	WRT_REG_DWORD(&reg->flash_data, data);
	RD_REG_DWORD(&reg->flash_data);		/* PCI Posting. */
	WRT_REG_DWORD(&reg->flash_addr, addr | FARX_DATA_FLAG);
	/* Wait for Write cycle to complete. */
	rval = QLA_SUCCESS;
	for (cnt = 500000; (RD_REG_DWORD(&reg->flash_addr) & FARX_DATA_FLAG) &&
	    rval == QLA_SUCCESS; cnt--) {
		if (cnt)
			udelay(10);
		else
			rval = QLA_FUNCTION_TIMEOUT;
512
		cond_resched();
513 514 515 516
	}
	return rval;
}

517
static void
518
qla24xx_get_flash_manufacturer(struct qla_hw_data *ha, uint8_t *man_id,
519 520 521 522
    uint8_t *flash_id)
{
	uint32_t ids;

523
	ids = qla24xx_read_flash_dword(ha, flash_conf_addr(ha, 0x03ab));
524 525
	*man_id = LSB(ids);
	*flash_id = MSB(ids);
526 527 528 529 530 531 532 533 534

	/* Check if man_id and flash_id are valid. */
	if (ids != 0xDEADDEAD && (*man_id == 0 || *flash_id == 0)) {
		/* Read information using 0x9f opcode
		 * Device ID, Mfg ID would be read in the format:
		 *   <Ext Dev Info><Device ID Part2><Device ID Part 1><Mfg ID>
		 * Example: ATMEL 0x00 01 45 1F
		 * Extract MFG and Dev ID from last two bytes.
		 */
535
		ids = qla24xx_read_flash_dword(ha, flash_conf_addr(ha, 0x009f));
536 537 538
		*man_id = LSB(ids);
		*flash_id = MSB(ids);
	}
539 540
}

541
static int
542
qla2xxx_find_flt_start(scsi_qla_host_t *vha, uint32_t *start)
543 544 545 546 547 548 549
{
	const char *loc, *locations[] = { "DEF", "PCI" };
	uint32_t pcihdr, pcids;
	uint32_t *dcode;
	uint8_t *buf, *bcode, last_image;
	uint16_t cnt, chksum, *wptr;
	struct qla_flt_location *fltl;
550
	struct qla_hw_data *ha = vha->hw;
551
	struct req_que *req = ha->req_q_map[0];
552 553 554 555 556 557 558

	/*
	 * FLT-location structure resides after the last PCI region.
	 */

	/* Begin with sane defaults. */
	loc = locations[0];
559 560 561 562 563 564 565
	*start = 0;
	if (IS_QLA24XX_TYPE(ha))
		*start = FA_FLASH_LAYOUT_ADDR_24;
	else if (IS_QLA25XX(ha))
		*start = FA_FLASH_LAYOUT_ADDR;
	else if (IS_QLA81XX(ha))
		*start = FA_FLASH_LAYOUT_ADDR_81;
566
	/* Begin with first PCI expansion ROM header. */
567 568
	buf = (uint8_t *)req->ring;
	dcode = (uint32_t *)req->ring;
569 570 571 572
	pcihdr = 0;
	last_image = 1;
	do {
		/* Verify PCI expansion ROM header. */
573
		qla24xx_read_flash_data(vha, dcode, pcihdr >> 2, 0x20);
574 575 576 577 578 579
		bcode = buf + (pcihdr % 4);
		if (bcode[0x0] != 0x55 || bcode[0x1] != 0xaa)
			goto end;

		/* Locate PCI data structure. */
		pcids = pcihdr + ((bcode[0x19] << 8) | bcode[0x18]);
580
		qla24xx_read_flash_data(vha, dcode, pcids >> 2, 0x20);
581 582 583 584 585 586 587 588 589 590 591 592 593 594
		bcode = buf + (pcihdr % 4);

		/* Validate signature of PCI data structure. */
		if (bcode[0x0] != 'P' || bcode[0x1] != 'C' ||
		    bcode[0x2] != 'I' || bcode[0x3] != 'R')
			goto end;

		last_image = bcode[0x15] & BIT_7;

		/* Locate next PCI expansion ROM. */
		pcihdr += ((bcode[0x11] << 8) | bcode[0x10]) * 512;
	} while (!last_image);

	/* Now verify FLT-location structure. */
595 596
	fltl = (struct qla_flt_location *)req->ring;
	qla24xx_read_flash_data(vha, dcode, pcihdr >> 2,
597 598 599 600 601
	    sizeof(struct qla_flt_location) >> 2);
	if (fltl->sig[0] != 'Q' || fltl->sig[1] != 'F' ||
	    fltl->sig[2] != 'L' || fltl->sig[3] != 'T')
		goto end;

602
	wptr = (uint16_t *)req->ring;
603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622
	cnt = sizeof(struct qla_flt_location) >> 1;
	for (chksum = 0; cnt; cnt--)
		chksum += le16_to_cpu(*wptr++);
	if (chksum) {
		qla_printk(KERN_ERR, ha,
		    "Inconsistent FLTL detected: checksum=0x%x.\n", chksum);
		qla2x00_dump_buffer(buf, sizeof(struct qla_flt_location));
		return QLA_FUNCTION_FAILED;
	}

	/* Good data.  Use specified location. */
	loc = locations[1];
	*start = le16_to_cpu(fltl->start_hi) << 16 |
	    le16_to_cpu(fltl->start_lo);
end:
	DEBUG2(qla_printk(KERN_DEBUG, ha, "FLTL[%s] = 0x%x.\n", loc, *start));
	return QLA_SUCCESS;
}

static void
623
qla2xxx_get_flt_info(scsi_qla_host_t *vha, uint32_t flt_addr)
624 625
{
	const char *loc, *locations[] = { "DEF", "FLT" };
626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641
	const uint32_t def_fw[] =
		{ FA_RISC_CODE_ADDR, FA_RISC_CODE_ADDR, FA_RISC_CODE_ADDR_81 };
	const uint32_t def_boot[] =
		{ FA_BOOT_CODE_ADDR, FA_BOOT_CODE_ADDR, FA_BOOT_CODE_ADDR_81 };
	const uint32_t def_vpd_nvram[] =
		{ FA_VPD_NVRAM_ADDR, FA_VPD_NVRAM_ADDR, FA_VPD_NVRAM_ADDR_81 };
	const uint32_t def_fdt[] =
		{ FA_FLASH_DESCR_ADDR_24, FA_FLASH_DESCR_ADDR,
			FA_FLASH_DESCR_ADDR_81 };
	const uint32_t def_npiv_conf0[] =
		{ FA_NPIV_CONF0_ADDR_24, FA_NPIV_CONF0_ADDR,
			FA_NPIV_CONF0_ADDR_81 };
	const uint32_t def_npiv_conf1[] =
		{ FA_NPIV_CONF1_ADDR_24, FA_NPIV_CONF1_ADDR,
			FA_NPIV_CONF1_ADDR_81 };
	uint32_t def;
642 643 644 645 646
	uint16_t *wptr;
	uint16_t cnt, chksum;
	uint32_t start;
	struct qla_flt_header *flt;
	struct qla_flt_region *region;
647
	struct qla_hw_data *ha = vha->hw;
648
	struct req_que *req = ha->req_q_map[0];
649 650

	ha->flt_region_flt = flt_addr;
651 652
	wptr = (uint16_t *)req->ring;
	flt = (struct qla_flt_header *)req->ring;
653
	region = (struct qla_flt_region *)&flt[1];
654
	ha->isp_ops->read_optrom(vha, (uint8_t *)req->ring,
655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686
	    flt_addr << 2, OPTROM_BURST_SIZE);
	if (*wptr == __constant_cpu_to_le16(0xffff))
		goto no_flash_data;
	if (flt->version != __constant_cpu_to_le16(1)) {
		DEBUG2(qla_printk(KERN_INFO, ha, "Unsupported FLT detected: "
		    "version=0x%x length=0x%x checksum=0x%x.\n",
		    le16_to_cpu(flt->version), le16_to_cpu(flt->length),
		    le16_to_cpu(flt->checksum)));
		goto no_flash_data;
	}

	cnt = (sizeof(struct qla_flt_header) + le16_to_cpu(flt->length)) >> 1;
	for (chksum = 0; cnt; cnt--)
		chksum += le16_to_cpu(*wptr++);
	if (chksum) {
		DEBUG2(qla_printk(KERN_INFO, ha, "Inconsistent FLT detected: "
		    "version=0x%x length=0x%x checksum=0x%x.\n",
		    le16_to_cpu(flt->version), le16_to_cpu(flt->length),
		    chksum));
		goto no_flash_data;
	}

	loc = locations[1];
	cnt = le16_to_cpu(flt->length) / sizeof(struct qla_flt_region);
	for ( ; cnt; cnt--, region++) {
		/* Store addresses as DWORD offsets. */
		start = le32_to_cpu(region->start) >> 2;

		DEBUG3(qla_printk(KERN_DEBUG, ha, "FLT[%02x]: start=0x%x "
		    "end=0x%x size=0x%x.\n", le32_to_cpu(region->code), start,
		    le32_to_cpu(region->end) >> 2, le32_to_cpu(region->size)));

687
		switch (le32_to_cpu(region->code) & 0xff) {
688 689 690 691 692 693 694 695 696 697 698 699
		case FLT_REG_FW:
			ha->flt_region_fw = start;
			break;
		case FLT_REG_BOOT_CODE:
			ha->flt_region_boot = start;
			break;
		case FLT_REG_VPD_0:
			ha->flt_region_vpd_nvram = start;
			break;
		case FLT_REG_FDT:
			ha->flt_region_fdt = start;
			break;
700
		case FLT_REG_NPIV_CONF_0:
701
			if (!(PCI_FUNC(ha->pdev->devfn) & 1))
702 703 704
				ha->flt_region_npiv_conf = start;
			break;
		case FLT_REG_NPIV_CONF_1:
705
			if (PCI_FUNC(ha->pdev->devfn) & 1)
706 707
				ha->flt_region_npiv_conf = start;
			break;
708 709 710 711 712 713 714
		}
	}
	goto done;

no_flash_data:
	/* Use hardcoded defaults. */
	loc = locations[0];
715 716 717 718 719 720 721 722 723 724 725 726 727
	def = 0;
	if (IS_QLA24XX_TYPE(ha))
		def = 0;
	else if (IS_QLA25XX(ha))
		def = 1;
	else if (IS_QLA81XX(ha))
		def = 2;
	ha->flt_region_fw = def_fw[def];
	ha->flt_region_boot = def_boot[def];
	ha->flt_region_vpd_nvram = def_vpd_nvram[def];
	ha->flt_region_fdt = def_fdt[def];
	ha->flt_region_npiv_conf = !(PCI_FUNC(ha->pdev->devfn) & 1) ?
	    def_npiv_conf0[def]: def_npiv_conf1[def];
728 729
done:
	DEBUG2(qla_printk(KERN_DEBUG, ha, "FLT[%s]: boot=0x%x fw=0x%x "
730
	    "vpd_nvram=0x%x fdt=0x%x flt=0x%x npiv=0x%x.\n", loc,
731
	    ha->flt_region_boot, ha->flt_region_fw, ha->flt_region_vpd_nvram,
732
	    ha->flt_region_fdt, ha->flt_region_flt, ha->flt_region_npiv_conf));
733 734 735
}

static void
736
qla2xxx_get_fdt_info(scsi_qla_host_t *vha)
737
{
738
#define FLASH_BLK_SIZE_4K	0x1000
739 740
#define FLASH_BLK_SIZE_32K	0x8000
#define FLASH_BLK_SIZE_64K	0x10000
741
	const char *loc, *locations[] = { "MID", "FDT" };
742 743 744 745
	uint16_t cnt, chksum;
	uint16_t *wptr;
	struct qla_fdt_layout *fdt;
	uint8_t	man_id, flash_id;
746
	uint16_t mid, fid;
747
	struct qla_hw_data *ha = vha->hw;
748
	struct req_que *req = ha->req_q_map[0];
749

750 751 752
	wptr = (uint16_t *)req->ring;
	fdt = (struct qla_fdt_layout *)req->ring;
	ha->isp_ops->read_optrom(vha, (uint8_t *)req->ring,
753
	    ha->flt_region_fdt << 2, OPTROM_BURST_SIZE);
754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770
	if (*wptr == __constant_cpu_to_le16(0xffff))
		goto no_flash_data;
	if (fdt->sig[0] != 'Q' || fdt->sig[1] != 'L' || fdt->sig[2] != 'I' ||
	    fdt->sig[3] != 'D')
		goto no_flash_data;

	for (cnt = 0, chksum = 0; cnt < sizeof(struct qla_fdt_layout) >> 1;
	    cnt++)
		chksum += le16_to_cpu(*wptr++);
	if (chksum) {
		DEBUG2(qla_printk(KERN_INFO, ha, "Inconsistent FDT detected: "
		    "checksum=0x%x id=%c version=0x%x.\n", chksum, fdt->sig[0],
		    le16_to_cpu(fdt->version)));
		DEBUG9(qla2x00_dump_buffer((uint8_t *)fdt, sizeof(*fdt)));
		goto no_flash_data;
	}

771 772 773
	loc = locations[1];
	mid = le16_to_cpu(fdt->man_id);
	fid = le16_to_cpu(fdt->id);
774
	ha->fdt_wrt_disable = fdt->wrt_disable_bits;
775
	ha->fdt_erase_cmd = flash_conf_addr(ha, 0x0300 | fdt->erase_cmd);
776 777
	ha->fdt_block_size = le32_to_cpu(fdt->block_size);
	if (fdt->unprotect_sec_cmd) {
778
		ha->fdt_unprotect_sec_cmd = flash_conf_addr(ha, 0x0300 |
779 780
		    fdt->unprotect_sec_cmd);
		ha->fdt_protect_sec_cmd = fdt->protect_sec_cmd ?
781 782
		    flash_conf_addr(ha, 0x0300 | fdt->protect_sec_cmd):
		    flash_conf_addr(ha, 0x0336);
783
	}
784
	goto done;
785
no_flash_data:
786
	loc = locations[0];
787
	qla24xx_get_flash_manufacturer(ha, &man_id, &flash_id);
788 789
	mid = man_id;
	fid = flash_id;
790
	ha->fdt_wrt_disable = 0x9c;
791
	ha->fdt_erase_cmd = flash_conf_addr(ha, 0x03d8);
792 793 794 795 796 797 798 799
	switch (man_id) {
	case 0xbf: /* STT flash. */
		if (flash_id == 0x8e)
			ha->fdt_block_size = FLASH_BLK_SIZE_64K;
		else
			ha->fdt_block_size = FLASH_BLK_SIZE_32K;

		if (flash_id == 0x80)
800
			ha->fdt_erase_cmd = flash_conf_addr(ha, 0x0352);
801 802 803 804 805
		break;
	case 0x13: /* ST M25P80. */
		ha->fdt_block_size = FLASH_BLK_SIZE_64K;
		break;
	case 0x1f: /* Atmel 26DF081A. */
806
		ha->fdt_block_size = FLASH_BLK_SIZE_4K;
807 808 809
		ha->fdt_erase_cmd = flash_conf_addr(ha, 0x0320);
		ha->fdt_unprotect_sec_cmd = flash_conf_addr(ha, 0x0339);
		ha->fdt_protect_sec_cmd = flash_conf_addr(ha, 0x0336);
810 811 812 813 814 815
		break;
	default:
		/* Default to 64 kb sector size. */
		ha->fdt_block_size = FLASH_BLK_SIZE_64K;
		break;
	}
816 817
done:
	DEBUG2(qla_printk(KERN_DEBUG, ha, "FDT[%s]: (0x%x/0x%x) erase=0x%x "
818
	    "pro=%x upro=%x wrtd=0x%x blk=0x%x.\n", loc, mid, fid,
819
	    ha->fdt_erase_cmd, ha->fdt_protect_sec_cmd,
820
	    ha->fdt_unprotect_sec_cmd, ha->fdt_wrt_disable,
821 822 823
	    ha->fdt_block_size));
}

824
int
825
qla2xxx_get_flash_info(scsi_qla_host_t *vha)
826 827 828
{
	int ret;
	uint32_t flt_addr;
829
	struct qla_hw_data *ha = vha->hw;
830

831
	if (!IS_QLA24XX_TYPE(ha) && !IS_QLA25XX(ha) && !IS_QLA81XX(ha))
832 833
		return QLA_SUCCESS;

834
	ret = qla2xxx_find_flt_start(vha, &flt_addr);
835 836 837
	if (ret != QLA_SUCCESS)
		return ret;

838 839
	qla2xxx_get_flt_info(vha, flt_addr);
	qla2xxx_get_fdt_info(vha);
840 841 842 843

	return QLA_SUCCESS;
}

844
void
845
qla2xxx_flash_npiv_conf(scsi_qla_host_t *vha)
846 847 848 849 850
{
#define NPIV_CONFIG_SIZE	(16*1024)
	void *data;
	uint16_t *wptr;
	uint16_t cnt, chksum;
851
	int i;
852 853
	struct qla_npiv_header hdr;
	struct qla_npiv_entry *entry;
854
	struct qla_hw_data *ha = vha->hw;
855

856
	if (!IS_QLA24XX_TYPE(ha) && !IS_QLA25XX(ha) && !IS_QLA81XX(ha))
857 858
		return;

859
	ha->isp_ops->read_optrom(vha, (uint8_t *)&hdr,
860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877
	    ha->flt_region_npiv_conf << 2, sizeof(struct qla_npiv_header));
	if (hdr.version == __constant_cpu_to_le16(0xffff))
		return;
	if (hdr.version != __constant_cpu_to_le16(1)) {
		DEBUG2(qla_printk(KERN_INFO, ha, "Unsupported NPIV-Config "
		    "detected: version=0x%x entries=0x%x checksum=0x%x.\n",
		    le16_to_cpu(hdr.version), le16_to_cpu(hdr.entries),
		    le16_to_cpu(hdr.checksum)));
		return;
	}

	data = kmalloc(NPIV_CONFIG_SIZE, GFP_KERNEL);
	if (!data) {
		DEBUG2(qla_printk(KERN_INFO, ha, "NPIV-Config: Unable to "
		    "allocate memory.\n"));
		return;
	}

878
	ha->isp_ops->read_optrom(vha, (uint8_t *)data,
879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894
	    ha->flt_region_npiv_conf << 2, NPIV_CONFIG_SIZE);

	cnt = (sizeof(struct qla_npiv_header) + le16_to_cpu(hdr.entries) *
	    sizeof(struct qla_npiv_entry)) >> 1;
	for (wptr = data, chksum = 0; cnt; cnt--)
		chksum += le16_to_cpu(*wptr++);
	if (chksum) {
		DEBUG2(qla_printk(KERN_INFO, ha, "Inconsistent NPIV-Config "
		    "detected: version=0x%x entries=0x%x checksum=0x%x.\n",
		    le16_to_cpu(hdr.version), le16_to_cpu(hdr.entries),
		    chksum));
		goto done;
	}

	entry = data + sizeof(struct qla_npiv_header);
	cnt = le16_to_cpu(hdr.entries);
895
	for (i = 0; cnt; cnt--, entry++, i++) {
896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912
		uint16_t flags;
		struct fc_vport_identifiers vid;
		struct fc_vport *vport;

		flags = le16_to_cpu(entry->flags);
		if (flags == 0xffff)
			continue;
		if ((flags & BIT_0) == 0)
			continue;

		memset(&vid, 0, sizeof(vid));
		vid.roles = FC_PORT_ROLE_FCP_INITIATOR;
		vid.vport_type = FC_PORTTYPE_NPIV;
		vid.disable = false;
		vid.port_name = wwn_to_u64(entry->port_name);
		vid.node_name = wwn_to_u64(entry->node_name);

913 914
		memcpy(&ha->npiv_info[i], entry, sizeof(struct qla_npiv_entry));

915
		DEBUG2(qla_printk(KERN_DEBUG, ha, "NPIV[%02x]: wwpn=%llx "
916 917 918 919 920 921 922 923 924 925 926 927
			"wwnn=%llx vf_id=0x%x Q_qos=0x%x F_qos=0x%x.\n", cnt,
			vid.port_name, vid.node_name, le16_to_cpu(entry->vf_id),
			entry->q_qos, entry->f_qos));

		if (i < QLA_PRECONFIG_VPORTS) {
			vport = fc_vport_create(vha->host, 0, &vid);
			if (!vport)
				qla_printk(KERN_INFO, ha,
				"NPIV-Config: Failed to create vport [%02x]: "
				"wwpn=%llx wwnn=%llx.\n", cnt,
				vid.port_name, vid.node_name);
		}
928 929 930
	}
done:
	kfree(data);
931
	ha->npiv_info = NULL;
932 933
}

934 935
static int
qla24xx_unprotect_flash(scsi_qla_host_t *vha)
936
{
937
	struct qla_hw_data *ha = vha->hw;
938 939
	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;

940 941 942
	if (ha->flags.fac_supported)
		return qla81xx_fac_do_write_enable(vha, 1);

943 944 945 946 947
	/* Enable flash write. */
	WRT_REG_DWORD(&reg->ctrl_status,
	    RD_REG_DWORD(&reg->ctrl_status) | CSRX_FLASH_ENABLE);
	RD_REG_DWORD(&reg->ctrl_status);	/* PCI Posting. */

948
	if (!ha->fdt_wrt_disable)
949
		goto done;
950

951
	/* Disable flash write-protection, first clear SR protection bit */
952
	qla24xx_write_flash_dword(ha, flash_conf_addr(ha, 0x101), 0);
953
	/* Then write zero again to clear remaining SR bits.*/
954
	qla24xx_write_flash_dword(ha, flash_conf_addr(ha, 0x101), 0);
955 956
done:
	return QLA_SUCCESS;
957 958
}

959 960
static int
qla24xx_protect_flash(scsi_qla_host_t *vha)
961 962
{
	uint32_t cnt;
963
	struct qla_hw_data *ha = vha->hw;
964 965
	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;

966 967 968
	if (ha->flags.fac_supported)
		return qla81xx_fac_do_write_enable(vha, 0);

969 970 971
	if (!ha->fdt_wrt_disable)
		goto skip_wrt_protect;

972
	/* Enable flash write-protection and wait for completion. */
973
	qla24xx_write_flash_dword(ha, flash_conf_addr(ha, 0x101),
974
	    ha->fdt_wrt_disable);
975
	for (cnt = 300; cnt &&
976
	    qla24xx_read_flash_dword(ha, flash_conf_addr(ha, 0x005)) & BIT_0;
977 978 979 980
	    cnt--) {
		udelay(10);
	}

981
skip_wrt_protect:
982 983 984 985
	/* Disable flash write. */
	WRT_REG_DWORD(&reg->ctrl_status,
	    RD_REG_DWORD(&reg->ctrl_status) & ~CSRX_FLASH_ENABLE);
	RD_REG_DWORD(&reg->ctrl_status);	/* PCI Posting. */
986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005

	return QLA_SUCCESS;
}

static int
qla24xx_erase_sector(scsi_qla_host_t *vha, uint32_t fdata)
{
	struct qla_hw_data *ha = vha->hw;
	uint32_t start, finish;

	if (ha->flags.fac_supported) {
		start = fdata >> 2;
		finish = start + (ha->fdt_block_size >> 2) - 1;
		return qla81xx_fac_erase_sector(vha, flash_data_addr(ha,
		    start), flash_data_addr(ha, finish));
	}

	return qla24xx_write_flash_dword(ha, ha->fdt_erase_cmd,
	    (fdata & 0xff00) | ((fdata << 16) & 0xff0000) |
	    ((fdata >> 16) & 0xff));
1006 1007
}

1008
static int
1009
qla24xx_write_flash_data(scsi_qla_host_t *vha, uint32_t *dwptr, uint32_t faddr,
1010 1011 1012
    uint32_t dwords)
{
	int ret;
1013
	uint32_t liter;
1014
	uint32_t sec_mask, rest_addr;
1015
	uint32_t fdata;
1016 1017
	dma_addr_t optrom_dma;
	void *optrom = NULL;
1018
	struct qla_hw_data *ha = vha->hw;
1019

1020
	/* Prepare burst-capable write on supported ISPs. */
1021
	if ((IS_QLA25XX(ha) || IS_QLA81XX(ha)) && !(faddr & 0xfff) &&
1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
	    dwords > OPTROM_BURST_DWORDS) {
		optrom = dma_alloc_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE,
		    &optrom_dma, GFP_KERNEL);
		if (!optrom) {
			qla_printk(KERN_DEBUG, ha,
			    "Unable to allocate memory for optrom burst write "
			    "(%x KB).\n", OPTROM_BURST_SIZE / 1024);
		}
	}

1032
	rest_addr = (ha->fdt_block_size >> 2) - 1;
1033
	sec_mask = ~rest_addr;
1034

1035 1036 1037 1038 1039 1040
	ret = qla24xx_unprotect_flash(vha);
	if (ret != QLA_SUCCESS) {
		qla_printk(KERN_WARNING, ha,
		    "Unable to unprotect flash for update.\n");
		goto done;
	}
1041

1042
	for (liter = 0; liter < dwords; liter++, faddr++, dwptr++) {
1043
		fdata = (faddr & sec_mask) << 2;
1044

1045
		/* Are we at the beginning of a sector? */
1046
		if ((faddr & rest_addr) == 0) {
1047 1048
			/* Do sector unprotect. */
			if (ha->fdt_unprotect_sec_cmd)
1049
				qla24xx_write_flash_dword(ha,
1050
				    ha->fdt_unprotect_sec_cmd,
1051
				    (fdata & 0xff00) | ((fdata << 16) &
1052
				    0xff0000) | ((fdata >> 16) & 0xff));
1053
			ret = qla24xx_erase_sector(vha, fdata);
1054
			if (ret != QLA_SUCCESS) {
1055
				DEBUG9(qla_printk("Unable to erase sector: "
1056
				    "address=%x.\n", faddr));
1057
				break;
1058
			}
1059 1060 1061
		}

		/* Go with burst-write. */
1062
		if (optrom && (liter + OPTROM_BURST_DWORDS) <= dwords) {
1063
			/* Copy data to DMA'ble buffer. */
1064
			memcpy(optrom, dwptr, OPTROM_BURST_SIZE);
1065

1066
			ret = qla2x00_load_ram(vha, optrom_dma,
1067
			    flash_data_addr(ha, faddr),
1068
			    OPTROM_BURST_DWORDS);
1069
			if (ret != QLA_SUCCESS) {
1070 1071 1072
				qla_printk(KERN_WARNING, ha,
				    "Unable to burst-write optrom segment "
				    "(%x/%x/%llx).\n", ret,
1073
				    flash_data_addr(ha, faddr),
A
Andrew Morton 已提交
1074
				    (unsigned long long)optrom_dma);
1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
				qla_printk(KERN_WARNING, ha,
				    "Reverting to slow-write.\n");

				dma_free_coherent(&ha->pdev->dev,
				    OPTROM_BURST_SIZE, optrom, optrom_dma);
				optrom = NULL;
			} else {
				liter += OPTROM_BURST_DWORDS - 1;
				faddr += OPTROM_BURST_DWORDS - 1;
				dwptr += OPTROM_BURST_DWORDS - 1;
				continue;
1086
			}
1087
		}
1088

1089
		ret = qla24xx_write_flash_dword(ha,
1090
		    flash_data_addr(ha, faddr), cpu_to_le32(*dwptr));
1091 1092 1093
		if (ret != QLA_SUCCESS) {
			DEBUG9(printk("%s(%ld) Unable to program flash "
			    "address=%x data=%x.\n", __func__,
1094
			    vha->host_no, faddr, *dwptr));
1095
			break;
1096
		}
1097

1098 1099
		/* Do sector protect. */
		if (ha->fdt_unprotect_sec_cmd &&
1100 1101
		    ((faddr & rest_addr) == rest_addr))
			qla24xx_write_flash_dword(ha,
1102
			    ha->fdt_protect_sec_cmd,
1103 1104 1105
			    (fdata & 0xff00) | ((fdata << 16) &
			    0xff0000) | ((fdata >> 16) & 0xff));
	}
1106

1107 1108 1109 1110 1111
	ret = qla24xx_protect_flash(vha);
	if (ret != QLA_SUCCESS)
		qla_printk(KERN_WARNING, ha,
		    "Unable to protect flash after update.\n");
done:
1112 1113 1114 1115
	if (optrom)
		dma_free_coherent(&ha->pdev->dev,
		    OPTROM_BURST_SIZE, optrom, optrom_dma);

1116 1117 1118 1119
	return ret;
}

uint8_t *
1120
qla2x00_read_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1121 1122 1123 1124
    uint32_t bytes)
{
	uint32_t i;
	uint16_t *wptr;
1125
	struct qla_hw_data *ha = vha->hw;
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138

	/* Word reads to NVRAM via registers. */
	wptr = (uint16_t *)buf;
	qla2x00_lock_nvram_access(ha);
	for (i = 0; i < bytes >> 1; i++, naddr++)
		wptr[i] = cpu_to_le16(qla2x00_get_nvram_word(ha,
		    naddr));
	qla2x00_unlock_nvram_access(ha);

	return buf;
}

uint8_t *
1139
qla24xx_read_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1140 1141 1142 1143
    uint32_t bytes)
{
	uint32_t i;
	uint32_t *dwptr;
1144
	struct qla_hw_data *ha = vha->hw;
1145 1146 1147 1148

	/* Dword reads to flash. */
	dwptr = (uint32_t *)buf;
	for (i = 0; i < bytes >> 2; i++, naddr++)
1149 1150
		dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(ha,
		    nvram_data_addr(ha, naddr)));
1151 1152 1153 1154 1155

	return buf;
}

int
1156
qla2x00_write_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1157 1158 1159 1160 1161
    uint32_t bytes)
{
	int ret, stat;
	uint32_t i;
	uint16_t *wptr;
1162
	unsigned long flags;
1163
	struct qla_hw_data *ha = vha->hw;
1164 1165 1166

	ret = QLA_SUCCESS;

1167
	spin_lock_irqsave(&ha->hardware_lock, flags);
1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
	qla2x00_lock_nvram_access(ha);

	/* Disable NVRAM write-protection. */
	stat = qla2x00_clear_nvram_protection(ha);

	wptr = (uint16_t *)buf;
	for (i = 0; i < bytes >> 1; i++, naddr++) {
		qla2x00_write_nvram_word(ha, naddr,
		    cpu_to_le16(*wptr));
		wptr++;
	}

	/* Enable NVRAM write-protection. */
	qla2x00_set_nvram_protection(ha, stat);

	qla2x00_unlock_nvram_access(ha);
1184
	spin_unlock_irqrestore(&ha->hardware_lock, flags);
1185 1186 1187 1188 1189

	return ret;
}

int
1190
qla24xx_write_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1191 1192 1193 1194 1195
    uint32_t bytes)
{
	int ret;
	uint32_t i;
	uint32_t *dwptr;
1196
	struct qla_hw_data *ha = vha->hw;
1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;

	ret = QLA_SUCCESS;

	/* Enable flash write. */
	WRT_REG_DWORD(&reg->ctrl_status,
	    RD_REG_DWORD(&reg->ctrl_status) | CSRX_FLASH_ENABLE);
	RD_REG_DWORD(&reg->ctrl_status);	/* PCI Posting. */

	/* Disable NVRAM write-protection. */
1207 1208
	qla24xx_write_flash_dword(ha, nvram_conf_addr(ha, 0x101), 0);
	qla24xx_write_flash_dword(ha, nvram_conf_addr(ha, 0x101), 0);
1209 1210 1211 1212 1213

	/* Dword writes to flash. */
	dwptr = (uint32_t *)buf;
	for (i = 0; i < bytes >> 2; i++, naddr++, dwptr++) {
		ret = qla24xx_write_flash_dword(ha,
1214
		    nvram_data_addr(ha, naddr), cpu_to_le32(*dwptr));
1215
		if (ret != QLA_SUCCESS) {
1216 1217
			DEBUG9(qla_printk("Unable to program nvram address=%x "
			    "data=%x.\n", naddr, *dwptr));
1218 1219 1220 1221 1222
			break;
		}
	}

	/* Enable NVRAM write-protection. */
1223
	qla24xx_write_flash_dword(ha, nvram_conf_addr(ha, 0x101), 0x8c);
1224 1225 1226 1227 1228 1229 1230 1231

	/* Disable flash write. */
	WRT_REG_DWORD(&reg->ctrl_status,
	    RD_REG_DWORD(&reg->ctrl_status) & ~CSRX_FLASH_ENABLE);
	RD_REG_DWORD(&reg->ctrl_status);	/* PCI Posting. */

	return ret;
}
1232

1233
uint8_t *
1234
qla25xx_read_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1235 1236 1237 1238
    uint32_t bytes)
{
	uint32_t i;
	uint32_t *dwptr;
1239
	struct qla_hw_data *ha = vha->hw;
1240 1241 1242 1243 1244

	/* Dword reads to flash. */
	dwptr = (uint32_t *)buf;
	for (i = 0; i < bytes >> 2; i++, naddr++)
		dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(ha,
1245
		    flash_data_addr(ha, ha->flt_region_vpd_nvram | naddr)));
1246 1247 1248 1249 1250

	return buf;
}

int
1251
qla25xx_write_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1252 1253
    uint32_t bytes)
{
1254
	struct qla_hw_data *ha = vha->hw;
1255 1256 1257 1258 1259 1260
#define RMW_BUFFER_SIZE	(64 * 1024)
	uint8_t *dbuf;

	dbuf = vmalloc(RMW_BUFFER_SIZE);
	if (!dbuf)
		return QLA_MEMORY_ALLOC_FAILED;
1261
	ha->isp_ops->read_optrom(vha, dbuf, ha->flt_region_vpd_nvram << 2,
1262 1263
	    RMW_BUFFER_SIZE);
	memcpy(dbuf + (naddr << 2), buf, bytes);
1264
	ha->isp_ops->write_optrom(vha, dbuf, ha->flt_region_vpd_nvram << 2,
1265 1266 1267 1268
	    RMW_BUFFER_SIZE);
	vfree(dbuf);

	return QLA_SUCCESS;
1269
}
1270 1271

static inline void
1272
qla2x00_flip_colors(struct qla_hw_data *ha, uint16_t *pflags)
1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298
{
	if (IS_QLA2322(ha)) {
		/* Flip all colors. */
		if (ha->beacon_color_state == QLA_LED_ALL_ON) {
			/* Turn off. */
			ha->beacon_color_state = 0;
			*pflags = GPIO_LED_ALL_OFF;
		} else {
			/* Turn on. */
			ha->beacon_color_state = QLA_LED_ALL_ON;
			*pflags = GPIO_LED_RGA_ON;
		}
	} else {
		/* Flip green led only. */
		if (ha->beacon_color_state == QLA_LED_GRN_ON) {
			/* Turn off. */
			ha->beacon_color_state = 0;
			*pflags = GPIO_LED_GREEN_OFF_AMBER_OFF;
		} else {
			/* Turn on. */
			ha->beacon_color_state = QLA_LED_GRN_ON;
			*pflags = GPIO_LED_GREEN_ON_AMBER_OFF;
		}
	}
}

1299 1300
#define PIO_REG(h, r) ((h)->pio_address + offsetof(struct device_reg_2xxx, r))

1301
void
1302
qla2x00_beacon_blink(struct scsi_qla_host *vha)
1303 1304 1305 1306 1307
{
	uint16_t gpio_enable;
	uint16_t gpio_data;
	uint16_t led_color = 0;
	unsigned long flags;
1308
	struct qla_hw_data *ha = vha->hw;
1309 1310 1311 1312 1313 1314
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;

	spin_lock_irqsave(&ha->hardware_lock, flags);

	/* Save the Original GPIOE. */
	if (ha->pio_address) {
1315 1316
		gpio_enable = RD_REG_WORD_PIO(PIO_REG(ha, gpioe));
		gpio_data = RD_REG_WORD_PIO(PIO_REG(ha, gpiod));
1317 1318 1319 1320 1321 1322 1323 1324 1325
	} else {
		gpio_enable = RD_REG_WORD(&reg->gpioe);
		gpio_data = RD_REG_WORD(&reg->gpiod);
	}

	/* Set the modified gpio_enable values */
	gpio_enable |= GPIO_LED_MASK;

	if (ha->pio_address) {
1326
		WRT_REG_WORD_PIO(PIO_REG(ha, gpioe), gpio_enable);
1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341
	} else {
		WRT_REG_WORD(&reg->gpioe, gpio_enable);
		RD_REG_WORD(&reg->gpioe);
	}

	qla2x00_flip_colors(ha, &led_color);

	/* Clear out any previously set LED color. */
	gpio_data &= ~GPIO_LED_MASK;

	/* Set the new input LED color to GPIOD. */
	gpio_data |= led_color;

	/* Set the modified gpio_data values */
	if (ha->pio_address) {
1342
		WRT_REG_WORD_PIO(PIO_REG(ha, gpiod), gpio_data);
1343 1344 1345 1346 1347 1348 1349 1350 1351
	} else {
		WRT_REG_WORD(&reg->gpiod, gpio_data);
		RD_REG_WORD(&reg->gpiod);
	}

	spin_unlock_irqrestore(&ha->hardware_lock, flags);
}

int
1352
qla2x00_beacon_on(struct scsi_qla_host *vha)
1353 1354 1355 1356
{
	uint16_t gpio_enable;
	uint16_t gpio_data;
	unsigned long flags;
1357
	struct qla_hw_data *ha = vha->hw;
1358 1359 1360 1361 1362
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;

	ha->fw_options[1] &= ~FO1_SET_EMPHASIS_SWING;
	ha->fw_options[1] |= FO1_DISABLE_GPIO6_7;

1363
	if (qla2x00_set_fw_options(vha, ha->fw_options) != QLA_SUCCESS) {
1364 1365 1366 1367 1368 1369 1370 1371
		qla_printk(KERN_WARNING, ha,
		    "Unable to update fw options (beacon on).\n");
		return QLA_FUNCTION_FAILED;
	}

	/* Turn off LEDs. */
	spin_lock_irqsave(&ha->hardware_lock, flags);
	if (ha->pio_address) {
1372 1373
		gpio_enable = RD_REG_WORD_PIO(PIO_REG(ha, gpioe));
		gpio_data = RD_REG_WORD_PIO(PIO_REG(ha, gpiod));
1374 1375 1376 1377 1378 1379 1380 1381
	} else {
		gpio_enable = RD_REG_WORD(&reg->gpioe);
		gpio_data = RD_REG_WORD(&reg->gpiod);
	}
	gpio_enable |= GPIO_LED_MASK;

	/* Set the modified gpio_enable values. */
	if (ha->pio_address) {
1382
		WRT_REG_WORD_PIO(PIO_REG(ha, gpioe), gpio_enable);
1383 1384 1385 1386 1387 1388 1389 1390
	} else {
		WRT_REG_WORD(&reg->gpioe, gpio_enable);
		RD_REG_WORD(&reg->gpioe);
	}

	/* Clear out previously set LED colour. */
	gpio_data &= ~GPIO_LED_MASK;
	if (ha->pio_address) {
1391
		WRT_REG_WORD_PIO(PIO_REG(ha, gpiod), gpio_data);
1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
	} else {
		WRT_REG_WORD(&reg->gpiod, gpio_data);
		RD_REG_WORD(&reg->gpiod);
	}
	spin_unlock_irqrestore(&ha->hardware_lock, flags);

	/*
	 * Let the per HBA timer kick off the blinking process based on
	 * the following flags. No need to do anything else now.
	 */
	ha->beacon_blink_led = 1;
	ha->beacon_color_state = 0;

	return QLA_SUCCESS;
}

int
1409
qla2x00_beacon_off(struct scsi_qla_host *vha)
1410 1411
{
	int rval = QLA_SUCCESS;
1412
	struct qla_hw_data *ha = vha->hw;
1413 1414 1415 1416 1417 1418 1419 1420 1421

	ha->beacon_blink_led = 0;

	/* Set the on flag so when it gets flipped it will be off. */
	if (IS_QLA2322(ha))
		ha->beacon_color_state = QLA_LED_ALL_ON;
	else
		ha->beacon_color_state = QLA_LED_GRN_ON;

1422
	ha->isp_ops->beacon_blink(vha);	/* This turns green LED off */
1423 1424 1425 1426

	ha->fw_options[1] &= ~FO1_SET_EMPHASIS_SWING;
	ha->fw_options[1] &= ~FO1_DISABLE_GPIO6_7;

1427
	rval = qla2x00_set_fw_options(vha, ha->fw_options);
1428 1429 1430 1431 1432 1433 1434 1435
	if (rval != QLA_SUCCESS)
		qla_printk(KERN_WARNING, ha,
		    "Unable to update fw options (beacon off).\n");
	return rval;
}


static inline void
1436
qla24xx_flip_colors(struct qla_hw_data *ha, uint16_t *pflags)
1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450
{
	/* Flip all colors. */
	if (ha->beacon_color_state == QLA_LED_ALL_ON) {
		/* Turn off. */
		ha->beacon_color_state = 0;
		*pflags = 0;
	} else {
		/* Turn on. */
		ha->beacon_color_state = QLA_LED_ALL_ON;
		*pflags = GPDX_LED_YELLOW_ON | GPDX_LED_AMBER_ON;
	}
}

void
1451
qla24xx_beacon_blink(struct scsi_qla_host *vha)
1452 1453 1454 1455
{
	uint16_t led_color = 0;
	uint32_t gpio_data;
	unsigned long flags;
1456
	struct qla_hw_data *ha = vha->hw;
1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484
	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;

	/* Save the Original GPIOD. */
	spin_lock_irqsave(&ha->hardware_lock, flags);
	gpio_data = RD_REG_DWORD(&reg->gpiod);

	/* Enable the gpio_data reg for update. */
	gpio_data |= GPDX_LED_UPDATE_MASK;

	WRT_REG_DWORD(&reg->gpiod, gpio_data);
	gpio_data = RD_REG_DWORD(&reg->gpiod);

	/* Set the color bits. */
	qla24xx_flip_colors(ha, &led_color);

	/* Clear out any previously set LED color. */
	gpio_data &= ~GPDX_LED_COLOR_MASK;

	/* Set the new input LED color to GPIOD. */
	gpio_data |= led_color;

	/* Set the modified gpio_data values. */
	WRT_REG_DWORD(&reg->gpiod, gpio_data);
	gpio_data = RD_REG_DWORD(&reg->gpiod);
	spin_unlock_irqrestore(&ha->hardware_lock, flags);
}

int
1485
qla24xx_beacon_on(struct scsi_qla_host *vha)
1486 1487 1488
{
	uint32_t gpio_data;
	unsigned long flags;
1489
	struct qla_hw_data *ha = vha->hw;
1490 1491 1492 1493 1494 1495
	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;

	if (ha->beacon_blink_led == 0) {
		/* Enable firmware for update */
		ha->fw_options[1] |= ADD_FO1_DISABLE_GPIO_LED_CTRL;

1496
		if (qla2x00_set_fw_options(vha, ha->fw_options) != QLA_SUCCESS)
1497 1498
			return QLA_FUNCTION_FAILED;

1499
		if (qla2x00_get_fw_options(vha, ha->fw_options) !=
1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526
		    QLA_SUCCESS) {
			qla_printk(KERN_WARNING, ha,
			    "Unable to update fw options (beacon on).\n");
			return QLA_FUNCTION_FAILED;
		}

		spin_lock_irqsave(&ha->hardware_lock, flags);
		gpio_data = RD_REG_DWORD(&reg->gpiod);

		/* Enable the gpio_data reg for update. */
		gpio_data |= GPDX_LED_UPDATE_MASK;
		WRT_REG_DWORD(&reg->gpiod, gpio_data);
		RD_REG_DWORD(&reg->gpiod);

		spin_unlock_irqrestore(&ha->hardware_lock, flags);
	}

	/* So all colors blink together. */
	ha->beacon_color_state = 0;

	/* Let the per HBA timer kick off the blinking process. */
	ha->beacon_blink_led = 1;

	return QLA_SUCCESS;
}

int
1527
qla24xx_beacon_off(struct scsi_qla_host *vha)
1528 1529 1530
{
	uint32_t gpio_data;
	unsigned long flags;
1531
	struct qla_hw_data *ha = vha->hw;
1532 1533 1534 1535 1536
	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;

	ha->beacon_blink_led = 0;
	ha->beacon_color_state = QLA_LED_ALL_ON;

1537
	ha->isp_ops->beacon_blink(vha);	/* Will flip to all off. */
1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550

	/* Give control back to firmware. */
	spin_lock_irqsave(&ha->hardware_lock, flags);
	gpio_data = RD_REG_DWORD(&reg->gpiod);

	/* Disable the gpio_data reg for update. */
	gpio_data &= ~GPDX_LED_UPDATE_MASK;
	WRT_REG_DWORD(&reg->gpiod, gpio_data);
	RD_REG_DWORD(&reg->gpiod);
	spin_unlock_irqrestore(&ha->hardware_lock, flags);

	ha->fw_options[1] &= ~ADD_FO1_DISABLE_GPIO_LED_CTRL;

1551
	if (qla2x00_set_fw_options(vha, ha->fw_options) != QLA_SUCCESS) {
1552 1553 1554 1555 1556
		qla_printk(KERN_WARNING, ha,
		    "Unable to update fw options (beacon off).\n");
		return QLA_FUNCTION_FAILED;
	}

1557
	if (qla2x00_get_fw_options(vha, ha->fw_options) != QLA_SUCCESS) {
1558 1559 1560 1561 1562 1563 1564
		qla_printk(KERN_WARNING, ha,
		    "Unable to get fw options (beacon off).\n");
		return QLA_FUNCTION_FAILED;
	}

	return QLA_SUCCESS;
}
1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575


/*
 * Flash support routines
 */

/**
 * qla2x00_flash_enable() - Setup flash for reading and writing.
 * @ha: HA context
 */
static void
1576
qla2x00_flash_enable(struct qla_hw_data *ha)
1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591
{
	uint16_t data;
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;

	data = RD_REG_WORD(&reg->ctrl_status);
	data |= CSR_FLASH_ENABLE;
	WRT_REG_WORD(&reg->ctrl_status, data);
	RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
}

/**
 * qla2x00_flash_disable() - Disable flash and allow RISC to run.
 * @ha: HA context
 */
static void
1592
qla2x00_flash_disable(struct qla_hw_data *ha)
1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612
{
	uint16_t data;
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;

	data = RD_REG_WORD(&reg->ctrl_status);
	data &= ~(CSR_FLASH_ENABLE);
	WRT_REG_WORD(&reg->ctrl_status, data);
	RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
}

/**
 * qla2x00_read_flash_byte() - Reads a byte from flash
 * @ha: HA context
 * @addr: Address in flash to read
 *
 * A word is read from the chip, but, only the lower byte is valid.
 *
 * Returns the byte read from flash @addr.
 */
static uint8_t
1613
qla2x00_read_flash_byte(struct qla_hw_data *ha, uint32_t addr)
1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651
{
	uint16_t data;
	uint16_t bank_select;
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;

	bank_select = RD_REG_WORD(&reg->ctrl_status);

	if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
		/* Specify 64K address range: */
		/*  clear out Module Select and Flash Address bits [19:16]. */
		bank_select &= ~0xf8;
		bank_select |= addr >> 12 & 0xf0;
		bank_select |= CSR_FLASH_64K_BANK;
		WRT_REG_WORD(&reg->ctrl_status, bank_select);
		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */

		WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
		data = RD_REG_WORD(&reg->flash_data);

		return (uint8_t)data;
	}

	/* Setup bit 16 of flash address. */
	if ((addr & BIT_16) && ((bank_select & CSR_FLASH_64K_BANK) == 0)) {
		bank_select |= CSR_FLASH_64K_BANK;
		WRT_REG_WORD(&reg->ctrl_status, bank_select);
		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */
	} else if (((addr & BIT_16) == 0) &&
	    (bank_select & CSR_FLASH_64K_BANK)) {
		bank_select &= ~(CSR_FLASH_64K_BANK);
		WRT_REG_WORD(&reg->ctrl_status, bank_select);
		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */
	}

	/* Always perform IO mapped accesses to the FLASH registers. */
	if (ha->pio_address) {
		uint16_t data2;

1652
		WRT_REG_WORD_PIO(PIO_REG(ha, flash_address), (uint16_t)addr);
1653
		do {
1654
			data = RD_REG_WORD_PIO(PIO_REG(ha, flash_data));
1655 1656
			barrier();
			cpu_relax();
1657
			data2 = RD_REG_WORD_PIO(PIO_REG(ha, flash_data));
1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673
		} while (data != data2);
	} else {
		WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
		data = qla2x00_debounce_register(&reg->flash_data);
	}

	return (uint8_t)data;
}

/**
 * qla2x00_write_flash_byte() - Write a byte to flash
 * @ha: HA context
 * @addr: Address in flash to write
 * @data: Data to write
 */
static void
1674
qla2x00_write_flash_byte(struct qla_hw_data *ha, uint32_t addr, uint8_t data)
1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710
{
	uint16_t bank_select;
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;

	bank_select = RD_REG_WORD(&reg->ctrl_status);
	if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
		/* Specify 64K address range: */
		/*  clear out Module Select and Flash Address bits [19:16]. */
		bank_select &= ~0xf8;
		bank_select |= addr >> 12 & 0xf0;
		bank_select |= CSR_FLASH_64K_BANK;
		WRT_REG_WORD(&reg->ctrl_status, bank_select);
		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */

		WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
		RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
		WRT_REG_WORD(&reg->flash_data, (uint16_t)data);
		RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */

		return;
	}

	/* Setup bit 16 of flash address. */
	if ((addr & BIT_16) && ((bank_select & CSR_FLASH_64K_BANK) == 0)) {
		bank_select |= CSR_FLASH_64K_BANK;
		WRT_REG_WORD(&reg->ctrl_status, bank_select);
		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */
	} else if (((addr & BIT_16) == 0) &&
	    (bank_select & CSR_FLASH_64K_BANK)) {
		bank_select &= ~(CSR_FLASH_64K_BANK);
		WRT_REG_WORD(&reg->ctrl_status, bank_select);
		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */
	}

	/* Always perform IO mapped accesses to the FLASH registers. */
	if (ha->pio_address) {
1711 1712
		WRT_REG_WORD_PIO(PIO_REG(ha, flash_address), (uint16_t)addr);
		WRT_REG_WORD_PIO(PIO_REG(ha, flash_data), (uint16_t)data);
1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736
	} else {
		WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
		RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
		WRT_REG_WORD(&reg->flash_data, (uint16_t)data);
		RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
	}
}

/**
 * qla2x00_poll_flash() - Polls flash for completion.
 * @ha: HA context
 * @addr: Address in flash to poll
 * @poll_data: Data to be polled
 * @man_id: Flash manufacturer ID
 * @flash_id: Flash ID
 *
 * This function polls the device until bit 7 of what is read matches data
 * bit 7 or until data bit 5 becomes a 1.  If that hapens, the flash ROM timed
 * out (a fatal error).  The flash book recommeds reading bit 7 again after
 * reading bit 5 as a 1.
 *
 * Returns 0 on success, else non-zero.
 */
static int
1737
qla2x00_poll_flash(struct qla_hw_data *ha, uint32_t addr, uint8_t poll_data,
1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760
    uint8_t man_id, uint8_t flash_id)
{
	int status;
	uint8_t flash_data;
	uint32_t cnt;

	status = 1;

	/* Wait for 30 seconds for command to finish. */
	poll_data &= BIT_7;
	for (cnt = 3000000; cnt; cnt--) {
		flash_data = qla2x00_read_flash_byte(ha, addr);
		if ((flash_data & BIT_7) == poll_data) {
			status = 0;
			break;
		}

		if (man_id != 0x40 && man_id != 0xda) {
			if ((flash_data & BIT_5) && cnt > 2)
				cnt = 2;
		}
		udelay(10);
		barrier();
1761
		cond_resched();
1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776
	}
	return status;
}

/**
 * qla2x00_program_flash_address() - Programs a flash address
 * @ha: HA context
 * @addr: Address in flash to program
 * @data: Data to be written in flash
 * @man_id: Flash manufacturer ID
 * @flash_id: Flash ID
 *
 * Returns 0 on success, else non-zero.
 */
static int
1777 1778
qla2x00_program_flash_address(struct qla_hw_data *ha, uint32_t addr,
    uint8_t data, uint8_t man_id, uint8_t flash_id)
1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813
{
	/* Write Program Command Sequence. */
	if (IS_OEM_001(ha)) {
		qla2x00_write_flash_byte(ha, 0xaaa, 0xaa);
		qla2x00_write_flash_byte(ha, 0x555, 0x55);
		qla2x00_write_flash_byte(ha, 0xaaa, 0xa0);
		qla2x00_write_flash_byte(ha, addr, data);
	} else {
		if (man_id == 0xda && flash_id == 0xc1) {
			qla2x00_write_flash_byte(ha, addr, data);
			if (addr & 0x7e)
				return 0;
		} else {
			qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
			qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
			qla2x00_write_flash_byte(ha, 0x5555, 0xa0);
			qla2x00_write_flash_byte(ha, addr, data);
		}
	}

	udelay(150);

	/* Wait for write to complete. */
	return qla2x00_poll_flash(ha, addr, data, man_id, flash_id);
}

/**
 * qla2x00_erase_flash() - Erase the flash.
 * @ha: HA context
 * @man_id: Flash manufacturer ID
 * @flash_id: Flash ID
 *
 * Returns 0 on success, else non-zero.
 */
static int
1814
qla2x00_erase_flash(struct qla_hw_data *ha, uint8_t man_id, uint8_t flash_id)
1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849
{
	/* Individual Sector Erase Command Sequence */
	if (IS_OEM_001(ha)) {
		qla2x00_write_flash_byte(ha, 0xaaa, 0xaa);
		qla2x00_write_flash_byte(ha, 0x555, 0x55);
		qla2x00_write_flash_byte(ha, 0xaaa, 0x80);
		qla2x00_write_flash_byte(ha, 0xaaa, 0xaa);
		qla2x00_write_flash_byte(ha, 0x555, 0x55);
		qla2x00_write_flash_byte(ha, 0xaaa, 0x10);
	} else {
		qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
		qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
		qla2x00_write_flash_byte(ha, 0x5555, 0x80);
		qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
		qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
		qla2x00_write_flash_byte(ha, 0x5555, 0x10);
	}

	udelay(150);

	/* Wait for erase to complete. */
	return qla2x00_poll_flash(ha, 0x00, 0x80, man_id, flash_id);
}

/**
 * qla2x00_erase_flash_sector() - Erase a flash sector.
 * @ha: HA context
 * @addr: Flash sector to erase
 * @sec_mask: Sector address mask
 * @man_id: Flash manufacturer ID
 * @flash_id: Flash ID
 *
 * Returns 0 on success, else non-zero.
 */
static int
1850
qla2x00_erase_flash_sector(struct qla_hw_data *ha, uint32_t addr,
1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875
    uint32_t sec_mask, uint8_t man_id, uint8_t flash_id)
{
	/* Individual Sector Erase Command Sequence */
	qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
	qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
	qla2x00_write_flash_byte(ha, 0x5555, 0x80);
	qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
	qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
	if (man_id == 0x1f && flash_id == 0x13)
		qla2x00_write_flash_byte(ha, addr & sec_mask, 0x10);
	else
		qla2x00_write_flash_byte(ha, addr & sec_mask, 0x30);

	udelay(150);

	/* Wait for erase to complete. */
	return qla2x00_poll_flash(ha, addr, 0x80, man_id, flash_id);
}

/**
 * qla2x00_get_flash_manufacturer() - Read manufacturer ID from flash chip.
 * @man_id: Flash manufacturer ID
 * @flash_id: Flash ID
 */
static void
1876
qla2x00_get_flash_manufacturer(struct qla_hw_data *ha, uint8_t *man_id,
1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888
    uint8_t *flash_id)
{
	qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
	qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
	qla2x00_write_flash_byte(ha, 0x5555, 0x90);
	*man_id = qla2x00_read_flash_byte(ha, 0x0000);
	*flash_id = qla2x00_read_flash_byte(ha, 0x0001);
	qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
	qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
	qla2x00_write_flash_byte(ha, 0x5555, 0xf0);
}

1889
static void
1890 1891
qla2x00_read_flash_data(struct qla_hw_data *ha, uint8_t *tmp_buf,
	uint32_t saddr, uint32_t length)
1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909
{
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
	uint32_t midpoint, ilength;
	uint8_t data;

	midpoint = length / 2;

	WRT_REG_WORD(&reg->nvram, 0);
	RD_REG_WORD(&reg->nvram);
	for (ilength = 0; ilength < length; saddr++, ilength++, tmp_buf++) {
		if (ilength == midpoint) {
			WRT_REG_WORD(&reg->nvram, NVR_SELECT);
			RD_REG_WORD(&reg->nvram);
		}
		data = qla2x00_read_flash_byte(ha, saddr);
		if (saddr % 100)
			udelay(10);
		*tmp_buf = data;
1910
		cond_resched();
1911 1912
	}
}
1913 1914

static inline void
1915
qla2x00_suspend_hba(struct scsi_qla_host *vha)
1916 1917 1918
{
	int cnt;
	unsigned long flags;
1919
	struct qla_hw_data *ha = vha->hw;
1920 1921 1922
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;

	/* Suspend HBA. */
1923
	scsi_block_requests(vha->host);
1924
	ha->isp_ops->disable_intrs(ha);
1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943
	set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);

	/* Pause RISC. */
	spin_lock_irqsave(&ha->hardware_lock, flags);
	WRT_REG_WORD(&reg->hccr, HCCR_PAUSE_RISC);
	RD_REG_WORD(&reg->hccr);
	if (IS_QLA2100(ha) || IS_QLA2200(ha) || IS_QLA2300(ha)) {
		for (cnt = 0; cnt < 30000; cnt++) {
			if ((RD_REG_WORD(&reg->hccr) & HCCR_RISC_PAUSE) != 0)
				break;
			udelay(100);
		}
	} else {
		udelay(10);
	}
	spin_unlock_irqrestore(&ha->hardware_lock, flags);
}

static inline void
1944
qla2x00_resume_hba(struct scsi_qla_host *vha)
1945
{
1946 1947
	struct qla_hw_data *ha = vha->hw;

1948 1949
	/* Resume HBA. */
	clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
1950 1951 1952 1953
	set_bit(ISP_ABORT_NEEDED, &vha->dpc_flags);
	qla2xxx_wake_dpc(vha);
	qla2x00_wait_for_hba_online(vha);
	scsi_unblock_requests(vha->host);
1954 1955 1956
}

uint8_t *
1957
qla2x00_read_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
1958 1959 1960 1961
    uint32_t offset, uint32_t length)
{
	uint32_t addr, midpoint;
	uint8_t *data;
1962
	struct qla_hw_data *ha = vha->hw;
1963 1964 1965
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;

	/* Suspend HBA. */
1966
	qla2x00_suspend_hba(vha);
1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984

	/* Go with read. */
	midpoint = ha->optrom_size / 2;

	qla2x00_flash_enable(ha);
	WRT_REG_WORD(&reg->nvram, 0);
	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
	for (addr = offset, data = buf; addr < length; addr++, data++) {
		if (addr == midpoint) {
			WRT_REG_WORD(&reg->nvram, NVR_SELECT);
			RD_REG_WORD(&reg->nvram);	/* PCI Posting. */
		}

		*data = qla2x00_read_flash_byte(ha, addr);
	}
	qla2x00_flash_disable(ha);

	/* Resume HBA. */
1985
	qla2x00_resume_hba(vha);
1986 1987 1988 1989 1990

	return buf;
}

int
1991
qla2x00_write_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
1992 1993 1994 1995 1996 1997 1998
    uint32_t offset, uint32_t length)
{

	int rval;
	uint8_t man_id, flash_id, sec_number, data;
	uint16_t wd;
	uint32_t addr, liter, sec_mask, rest_addr;
1999
	struct qla_hw_data *ha = vha->hw;
2000 2001 2002
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;

	/* Suspend HBA. */
2003
	qla2x00_suspend_hba(vha);
2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196

	rval = QLA_SUCCESS;
	sec_number = 0;

	/* Reset ISP chip. */
	WRT_REG_WORD(&reg->ctrl_status, CSR_ISP_SOFT_RESET);
	pci_read_config_word(ha->pdev, PCI_COMMAND, &wd);

	/* Go with write. */
	qla2x00_flash_enable(ha);
	do {	/* Loop once to provide quick error exit */
		/* Structure of flash memory based on manufacturer */
		if (IS_OEM_001(ha)) {
			/* OEM variant with special flash part. */
			man_id = flash_id = 0;
			rest_addr = 0xffff;
			sec_mask   = 0x10000;
			goto update_flash;
		}
		qla2x00_get_flash_manufacturer(ha, &man_id, &flash_id);
		switch (man_id) {
		case 0x20: /* ST flash. */
			if (flash_id == 0xd2 || flash_id == 0xe3) {
				/*
				 * ST m29w008at part - 64kb sector size with
				 * 32kb,8kb,8kb,16kb sectors at memory address
				 * 0xf0000.
				 */
				rest_addr = 0xffff;
				sec_mask = 0x10000;
				break;   
			}
			/*
			 * ST m29w010b part - 16kb sector size
			 * Default to 16kb sectors
			 */
			rest_addr = 0x3fff;
			sec_mask = 0x1c000;
			break;
		case 0x40: /* Mostel flash. */
			/* Mostel v29c51001 part - 512 byte sector size. */
			rest_addr = 0x1ff;
			sec_mask = 0x1fe00;
			break;
		case 0xbf: /* SST flash. */
			/* SST39sf10 part - 4kb sector size. */
			rest_addr = 0xfff;
			sec_mask = 0x1f000;
			break;
		case 0xda: /* Winbond flash. */
			/* Winbond W29EE011 part - 256 byte sector size. */
			rest_addr = 0x7f;
			sec_mask = 0x1ff80;
			break;
		case 0xc2: /* Macronix flash. */
			/* 64k sector size. */
			if (flash_id == 0x38 || flash_id == 0x4f) {
				rest_addr = 0xffff;
				sec_mask = 0x10000;
				break;
			}
			/* Fall through... */

		case 0x1f: /* Atmel flash. */
			/* 512k sector size. */
			if (flash_id == 0x13) {
				rest_addr = 0x7fffffff;
				sec_mask =   0x80000000;
				break;
			}
			/* Fall through... */

		case 0x01: /* AMD flash. */
			if (flash_id == 0x38 || flash_id == 0x40 ||
			    flash_id == 0x4f) {
				/* Am29LV081 part - 64kb sector size. */
				/* Am29LV002BT part - 64kb sector size. */
				rest_addr = 0xffff;
				sec_mask = 0x10000;
				break;
			} else if (flash_id == 0x3e) {
				/*
				 * Am29LV008b part - 64kb sector size with
				 * 32kb,8kb,8kb,16kb sector at memory address
				 * h0xf0000.
				 */
				rest_addr = 0xffff;
				sec_mask = 0x10000;
				break;
			} else if (flash_id == 0x20 || flash_id == 0x6e) {
				/*
				 * Am29LV010 part or AM29f010 - 16kb sector
				 * size.
				 */
				rest_addr = 0x3fff;
				sec_mask = 0x1c000;
				break;
			} else if (flash_id == 0x6d) {
				/* Am29LV001 part - 8kb sector size. */
				rest_addr = 0x1fff;
				sec_mask = 0x1e000;
				break;
			}
		default:
			/* Default to 16 kb sector size. */
			rest_addr = 0x3fff;
			sec_mask = 0x1c000;
			break;
		}

update_flash:
		if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
			if (qla2x00_erase_flash(ha, man_id, flash_id)) {
				rval = QLA_FUNCTION_FAILED;
				break;
			}
		}

		for (addr = offset, liter = 0; liter < length; liter++,
		    addr++) {
			data = buf[liter];
			/* Are we at the beginning of a sector? */
			if ((addr & rest_addr) == 0) {
				if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
					if (addr >= 0x10000UL) {
						if (((addr >> 12) & 0xf0) &&
						    ((man_id == 0x01 &&
							flash_id == 0x3e) ||
						     (man_id == 0x20 &&
							 flash_id == 0xd2))) {
							sec_number++;
							if (sec_number == 1) {
								rest_addr =
								    0x7fff;
								sec_mask =
								    0x18000;
							} else if (
							    sec_number == 2 ||
							    sec_number == 3) {
								rest_addr =
								    0x1fff;
								sec_mask =
								    0x1e000;
							} else if (
							    sec_number == 4) {
								rest_addr =
								    0x3fff;
								sec_mask =
								    0x1c000;
							}
						}
					}
				} else if (addr == ha->optrom_size / 2) {
					WRT_REG_WORD(&reg->nvram, NVR_SELECT);
					RD_REG_WORD(&reg->nvram);
				}

				if (flash_id == 0xda && man_id == 0xc1) {
					qla2x00_write_flash_byte(ha, 0x5555,
					    0xaa);
					qla2x00_write_flash_byte(ha, 0x2aaa,
					    0x55);
					qla2x00_write_flash_byte(ha, 0x5555,
					    0xa0);
				} else if (!IS_QLA2322(ha) && !IS_QLA6322(ha)) {
					/* Then erase it */
					if (qla2x00_erase_flash_sector(ha,
					    addr, sec_mask, man_id,
					    flash_id)) {
						rval = QLA_FUNCTION_FAILED;
						break;
					}
					if (man_id == 0x01 && flash_id == 0x6d)
						sec_number++;
				}
			}

			if (man_id == 0x01 && flash_id == 0x6d) {
				if (sec_number == 1 &&
				    addr == (rest_addr - 1)) {
					rest_addr = 0x0fff;
					sec_mask   = 0x1f000;
				} else if (sec_number == 3 && (addr & 0x7ffe)) {
					rest_addr = 0x3fff;
					sec_mask   = 0x1c000;
				}
			}

			if (qla2x00_program_flash_address(ha, addr, data,
			    man_id, flash_id)) {
				rval = QLA_FUNCTION_FAILED;
				break;
			}
2197
			cond_resched();
2198 2199 2200 2201 2202
		}
	} while (0);
	qla2x00_flash_disable(ha);

	/* Resume HBA. */
2203
	qla2x00_resume_hba(vha);
2204 2205 2206 2207 2208

	return rval;
}

uint8_t *
2209
qla24xx_read_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
2210 2211
    uint32_t offset, uint32_t length)
{
2212 2213
	struct qla_hw_data *ha = vha->hw;

2214
	/* Suspend HBA. */
2215
	scsi_block_requests(vha->host);
2216 2217 2218
	set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);

	/* Go with read. */
2219
	qla24xx_read_flash_data(vha, (uint32_t *)buf, offset >> 2, length >> 2);
2220 2221 2222

	/* Resume HBA. */
	clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2223
	scsi_unblock_requests(vha->host);
2224 2225 2226 2227 2228

	return buf;
}

int
2229
qla24xx_write_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
2230 2231 2232
    uint32_t offset, uint32_t length)
{
	int rval;
2233
	struct qla_hw_data *ha = vha->hw;
2234 2235

	/* Suspend HBA. */
2236
	scsi_block_requests(vha->host);
2237 2238 2239
	set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);

	/* Go with write. */
2240
	rval = qla24xx_write_flash_data(vha, (uint32_t *)buf, offset >> 2,
2241 2242 2243 2244
	    length >> 2);

	/* Resume HBA -- RISC reset needed. */
	clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2245 2246 2247 2248
	set_bit(ISP_ABORT_NEEDED, &vha->dpc_flags);
	qla2xxx_wake_dpc(vha);
	qla2x00_wait_for_hba_online(vha);
	scsi_unblock_requests(vha->host);
2249 2250 2251

	return rval;
}
2252

2253
uint8_t *
2254
qla25xx_read_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
2255 2256 2257 2258 2259 2260 2261
    uint32_t offset, uint32_t length)
{
	int rval;
	dma_addr_t optrom_dma;
	void *optrom;
	uint8_t *pbuf;
	uint32_t faddr, left, burst;
2262
	struct qla_hw_data *ha = vha->hw;
2263

2264
	if (offset & 0xfff)
2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286
		goto slow_read;
	if (length < OPTROM_BURST_SIZE)
		goto slow_read;

	optrom = dma_alloc_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE,
	    &optrom_dma, GFP_KERNEL);
	if (!optrom) {
		qla_printk(KERN_DEBUG, ha,
		    "Unable to allocate memory for optrom burst read "
		    "(%x KB).\n", OPTROM_BURST_SIZE / 1024);

		goto slow_read;
	}

	pbuf = buf;
	faddr = offset >> 2;
	left = length >> 2;
	burst = OPTROM_BURST_DWORDS;
	while (left != 0) {
		if (burst > left)
			burst = left;

2287
		rval = qla2x00_dump_ram(vha, optrom_dma,
2288
		    flash_data_addr(ha, faddr), burst);
2289 2290 2291 2292
		if (rval) {
			qla_printk(KERN_WARNING, ha,
			    "Unable to burst-read optrom segment "
			    "(%x/%x/%llx).\n", rval,
2293
			    flash_data_addr(ha, faddr),
A
Andrew Morton 已提交
2294
			    (unsigned long long)optrom_dma);
2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315
			qla_printk(KERN_WARNING, ha,
			    "Reverting to slow-read.\n");

			dma_free_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE,
			    optrom, optrom_dma);
			goto slow_read;
		}

		memcpy(pbuf, optrom, burst * 4);

		left -= burst;
		faddr += burst;
		pbuf += burst * 4;
	}

	dma_free_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE, optrom,
	    optrom_dma);

	return buf;

slow_read:
2316
    return qla24xx_read_optrom_data(vha, buf, offset, length);
2317 2318
}

2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337
/**
 * qla2x00_get_fcode_version() - Determine an FCODE image's version.
 * @ha: HA context
 * @pcids: Pointer to the FCODE PCI data structure
 *
 * The process of retrieving the FCODE version information is at best
 * described as interesting.
 *
 * Within the first 100h bytes of the image an ASCII string is present
 * which contains several pieces of information including the FCODE
 * version.  Unfortunately it seems the only reliable way to retrieve
 * the version is by scanning for another sentinel within the string,
 * the FCODE build date:
 *
 *	... 2.00.02 10/17/02 ...
 *
 * Returns QLA_SUCCESS on successful retrieval of version.
 */
static void
2338
qla2x00_get_fcode_version(struct qla_hw_data *ha, uint32_t pcids)
2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411
{
	int ret = QLA_FUNCTION_FAILED;
	uint32_t istart, iend, iter, vend;
	uint8_t do_next, rbyte, *vbyte;

	memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));

	/* Skip the PCI data structure. */
	istart = pcids +
	    ((qla2x00_read_flash_byte(ha, pcids + 0x0B) << 8) |
		qla2x00_read_flash_byte(ha, pcids + 0x0A));
	iend = istart + 0x100;
	do {
		/* Scan for the sentinel date string...eeewww. */
		do_next = 0;
		iter = istart;
		while ((iter < iend) && !do_next) {
			iter++;
			if (qla2x00_read_flash_byte(ha, iter) == '/') {
				if (qla2x00_read_flash_byte(ha, iter + 2) ==
				    '/')
					do_next++;
				else if (qla2x00_read_flash_byte(ha,
				    iter + 3) == '/')
					do_next++;
			}
		}
		if (!do_next)
			break;

		/* Backtrack to previous ' ' (space). */
		do_next = 0;
		while ((iter > istart) && !do_next) {
			iter--;
			if (qla2x00_read_flash_byte(ha, iter) == ' ')
				do_next++;
		}
		if (!do_next)
			break;

		/*
		 * Mark end of version tag, and find previous ' ' (space) or
		 * string length (recent FCODE images -- major hack ahead!!!).
		 */
		vend = iter - 1;
		do_next = 0;
		while ((iter > istart) && !do_next) {
			iter--;
			rbyte = qla2x00_read_flash_byte(ha, iter);
			if (rbyte == ' ' || rbyte == 0xd || rbyte == 0x10)
				do_next++;
		}
		if (!do_next)
			break;

		/* Mark beginning of version tag, and copy data. */
		iter++;
		if ((vend - iter) &&
		    ((vend - iter) < sizeof(ha->fcode_revision))) {
			vbyte = ha->fcode_revision;
			while (iter <= vend) {
				*vbyte++ = qla2x00_read_flash_byte(ha, iter);
				iter++;
			}
			ret = QLA_SUCCESS;
		}
	} while (0);

	if (ret != QLA_SUCCESS)
		memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
}

int
2412
qla2x00_get_flash_version(scsi_qla_host_t *vha, void *mbuf)
2413 2414 2415 2416 2417 2418
{
	int ret = QLA_SUCCESS;
	uint8_t code_type, last_image;
	uint32_t pcihdr, pcids;
	uint8_t *dbyte;
	uint16_t *dcode;
2419
	struct qla_hw_data *ha = vha->hw;
2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438

	if (!ha->pio_address || !mbuf)
		return QLA_FUNCTION_FAILED;

	memset(ha->bios_revision, 0, sizeof(ha->bios_revision));
	memset(ha->efi_revision, 0, sizeof(ha->efi_revision));
	memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
	memset(ha->fw_revision, 0, sizeof(ha->fw_revision));

	qla2x00_flash_enable(ha);

	/* Begin with first PCI expansion ROM header. */
	pcihdr = 0;
	last_image = 1;
	do {
		/* Verify PCI expansion ROM header. */
		if (qla2x00_read_flash_byte(ha, pcihdr) != 0x55 ||
		    qla2x00_read_flash_byte(ha, pcihdr + 0x01) != 0xaa) {
			/* No signature */
2439 2440
			DEBUG2(qla_printk(KERN_DEBUG, ha, "No matching ROM "
			    "signature.\n"));
2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455
			ret = QLA_FUNCTION_FAILED;
			break;
		}

		/* Locate PCI data structure. */
		pcids = pcihdr +
		    ((qla2x00_read_flash_byte(ha, pcihdr + 0x19) << 8) |
			qla2x00_read_flash_byte(ha, pcihdr + 0x18));

		/* Validate signature of PCI data structure. */
		if (qla2x00_read_flash_byte(ha, pcids) != 'P' ||
		    qla2x00_read_flash_byte(ha, pcids + 0x1) != 'C' ||
		    qla2x00_read_flash_byte(ha, pcids + 0x2) != 'I' ||
		    qla2x00_read_flash_byte(ha, pcids + 0x3) != 'R') {
			/* Incorrect header. */
2456 2457
			DEBUG2(qla_printk(KERN_INFO, ha, "PCI data struct not "
			    "found pcir_adr=%x.\n", pcids));
2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470
			ret = QLA_FUNCTION_FAILED;
			break;
		}

		/* Read version */
		code_type = qla2x00_read_flash_byte(ha, pcids + 0x14);
		switch (code_type) {
		case ROM_CODE_TYPE_BIOS:
			/* Intel x86, PC-AT compatible. */
			ha->bios_revision[0] =
			    qla2x00_read_flash_byte(ha, pcids + 0x12);
			ha->bios_revision[1] =
			    qla2x00_read_flash_byte(ha, pcids + 0x13);
2471
			DEBUG3(qla_printk(KERN_DEBUG, ha, "read BIOS %d.%d.\n",
2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484
			    ha->bios_revision[1], ha->bios_revision[0]));
			break;
		case ROM_CODE_TYPE_FCODE:
			/* Open Firmware standard for PCI (FCode). */
			/* Eeeewww... */
			qla2x00_get_fcode_version(ha, pcids);
			break;
		case ROM_CODE_TYPE_EFI:
			/* Extensible Firmware Interface (EFI). */
			ha->efi_revision[0] =
			    qla2x00_read_flash_byte(ha, pcids + 0x12);
			ha->efi_revision[1] =
			    qla2x00_read_flash_byte(ha, pcids + 0x13);
2485
			DEBUG3(qla_printk(KERN_DEBUG, ha, "read EFI %d.%d.\n",
2486 2487 2488
			    ha->efi_revision[1], ha->efi_revision[0]));
			break;
		default:
2489 2490
			DEBUG2(qla_printk(KERN_INFO, ha, "Unrecognized code "
			    "type %x at pcids %x.\n", code_type, pcids));
2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507
			break;
		}

		last_image = qla2x00_read_flash_byte(ha, pcids + 0x15) & BIT_7;

		/* Locate next PCI expansion ROM. */
		pcihdr += ((qla2x00_read_flash_byte(ha, pcids + 0x11) << 8) |
		    qla2x00_read_flash_byte(ha, pcids + 0x10)) * 512;
	} while (!last_image);

	if (IS_QLA2322(ha)) {
		/* Read firmware image information. */
		memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
		dbyte = mbuf;
		memset(dbyte, 0, 8);
		dcode = (uint16_t *)dbyte;

2508
		qla2x00_read_flash_data(ha, dbyte, ha->flt_region_fw * 4 + 10,
2509
		    8);
2510 2511
		DEBUG3(qla_printk(KERN_DEBUG, ha, "dumping fw ver from "
		    "flash:\n"));
2512 2513 2514 2515 2516 2517
		DEBUG3(qla2x00_dump_buffer((uint8_t *)dbyte, 8));

		if ((dcode[0] == 0xffff && dcode[1] == 0xffff &&
		    dcode[2] == 0xffff && dcode[3] == 0xffff) ||
		    (dcode[0] == 0 && dcode[1] == 0 && dcode[2] == 0 &&
		    dcode[3] == 0)) {
2518 2519
			DEBUG2(qla_printk(KERN_INFO, ha, "Unrecognized fw "
			    "revision at %x.\n", ha->flt_region_fw * 4));
2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533
		} else {
			/* values are in big endian */
			ha->fw_revision[0] = dbyte[0] << 16 | dbyte[1];
			ha->fw_revision[1] = dbyte[2] << 16 | dbyte[3];
			ha->fw_revision[2] = dbyte[4] << 16 | dbyte[5];
		}
	}

	qla2x00_flash_disable(ha);

	return ret;
}

int
2534
qla24xx_get_flash_version(scsi_qla_host_t *vha, void *mbuf)
2535 2536 2537 2538 2539 2540 2541
{
	int ret = QLA_SUCCESS;
	uint32_t pcihdr, pcids;
	uint32_t *dcode;
	uint8_t *bcode;
	uint8_t code_type, last_image;
	int i;
2542
	struct qla_hw_data *ha = vha->hw;
2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554

	if (!mbuf)
		return QLA_FUNCTION_FAILED;

	memset(ha->bios_revision, 0, sizeof(ha->bios_revision));
	memset(ha->efi_revision, 0, sizeof(ha->efi_revision));
	memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
	memset(ha->fw_revision, 0, sizeof(ha->fw_revision));

	dcode = mbuf;

	/* Begin with first PCI expansion ROM header. */
2555
	pcihdr = ha->flt_region_boot << 2;
2556 2557 2558
	last_image = 1;
	do {
		/* Verify PCI expansion ROM header. */
2559
		qla24xx_read_flash_data(vha, dcode, pcihdr >> 2, 0x20);
2560 2561 2562
		bcode = mbuf + (pcihdr % 4);
		if (bcode[0x0] != 0x55 || bcode[0x1] != 0xaa) {
			/* No signature */
2563 2564
			DEBUG2(qla_printk(KERN_DEBUG, ha, "No matching ROM "
			    "signature.\n"));
2565 2566 2567 2568 2569 2570 2571
			ret = QLA_FUNCTION_FAILED;
			break;
		}

		/* Locate PCI data structure. */
		pcids = pcihdr + ((bcode[0x19] << 8) | bcode[0x18]);

2572
		qla24xx_read_flash_data(vha, dcode, pcids >> 2, 0x20);
2573 2574 2575 2576 2577 2578
		bcode = mbuf + (pcihdr % 4);

		/* Validate signature of PCI data structure. */
		if (bcode[0x0] != 'P' || bcode[0x1] != 'C' ||
		    bcode[0x2] != 'I' || bcode[0x3] != 'R') {
			/* Incorrect header. */
2579 2580
			DEBUG2(qla_printk(KERN_INFO, ha, "PCI data struct not "
			    "found pcir_adr=%x.\n", pcids));
2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591
			ret = QLA_FUNCTION_FAILED;
			break;
		}

		/* Read version */
		code_type = bcode[0x14];
		switch (code_type) {
		case ROM_CODE_TYPE_BIOS:
			/* Intel x86, PC-AT compatible. */
			ha->bios_revision[0] = bcode[0x12];
			ha->bios_revision[1] = bcode[0x13];
2592
			DEBUG3(qla_printk(KERN_DEBUG, ha, "read BIOS %d.%d.\n",
2593 2594 2595 2596 2597 2598
			    ha->bios_revision[1], ha->bios_revision[0]));
			break;
		case ROM_CODE_TYPE_FCODE:
			/* Open Firmware standard for PCI (FCode). */
			ha->fcode_revision[0] = bcode[0x12];
			ha->fcode_revision[1] = bcode[0x13];
2599
			DEBUG3(qla_printk(KERN_DEBUG, ha, "read FCODE %d.%d.\n",
2600 2601 2602 2603 2604 2605
			    ha->fcode_revision[1], ha->fcode_revision[0]));
			break;
		case ROM_CODE_TYPE_EFI:
			/* Extensible Firmware Interface (EFI). */
			ha->efi_revision[0] = bcode[0x12];
			ha->efi_revision[1] = bcode[0x13];
2606
			DEBUG3(qla_printk(KERN_DEBUG, ha, "read EFI %d.%d.\n",
2607 2608 2609
			    ha->efi_revision[1], ha->efi_revision[0]));
			break;
		default:
2610 2611
			DEBUG2(qla_printk(KERN_INFO, ha, "Unrecognized code "
			    "type %x at pcids %x.\n", code_type, pcids));
2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624
			break;
		}

		last_image = bcode[0x15] & BIT_7;

		/* Locate next PCI expansion ROM. */
		pcihdr += ((bcode[0x11] << 8) | bcode[0x10]) * 512;
	} while (!last_image);

	/* Read firmware image information. */
	memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
	dcode = mbuf;

2625
	qla24xx_read_flash_data(vha, dcode, ha->flt_region_fw + 4, 4);
2626 2627 2628 2629 2630 2631 2632
	for (i = 0; i < 4; i++)
		dcode[i] = be32_to_cpu(dcode[i]);

	if ((dcode[0] == 0xffffffff && dcode[1] == 0xffffffff &&
	    dcode[2] == 0xffffffff && dcode[3] == 0xffffffff) ||
	    (dcode[0] == 0 && dcode[1] == 0 && dcode[2] == 0 &&
	    dcode[3] == 0)) {
2633 2634
		DEBUG2(qla_printk(KERN_INFO, ha, "Unrecognized fw "
		    "revision at %x.\n", ha->flt_region_fw * 4));
2635 2636 2637 2638 2639 2640 2641 2642 2643
	} else {
		ha->fw_revision[0] = dcode[0];
		ha->fw_revision[1] = dcode[1];
		ha->fw_revision[2] = dcode[2];
		ha->fw_revision[3] = dcode[3];
	}

	return ret;
}
2644

2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662
static int
qla2xxx_is_vpd_valid(uint8_t *pos, uint8_t *end)
{
	if (pos >= end || *pos != 0x82)
		return 0;

	pos += 3 + pos[1];
	if (pos >= end || *pos != 0x90)
		return 0;

	pos += 3 + pos[1];
	if (pos >= end || *pos != 0x78)
		return 0;

	return 1;
}

int
2663
qla2xxx_get_vpd_field(scsi_qla_host_t *vha, char *key, char *str, size_t size)
2664
{
2665
	struct qla_hw_data *ha = vha->hw;
2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689
	uint8_t *pos = ha->vpd;
	uint8_t *end = pos + ha->vpd_size;
	int len = 0;

	if (!IS_FWI2_CAPABLE(ha) || !qla2xxx_is_vpd_valid(pos, end))
		return 0;

	while (pos < end && *pos != 0x78) {
		len = (*pos == 0x82) ? pos[1] : pos[2];

		if (!strncmp(pos, key, strlen(key)))
			break;

		if (*pos != 0x90 && *pos != 0x91)
			pos += len;

		pos += 3;
	}

	if (pos < end - len && *pos != 0x78)
		return snprintf(str, size, "%.*s", len, pos + 3);

	return 0;
}