82571.c 48.3 KB
Newer Older
1 2 3
/*******************************************************************************

  Intel PRO/1000 Linux driver
B
Bruce Allan 已提交
4
  Copyright(c) 1999 - 2009 Intel Corporation.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

  This program is free software; you can redistribute it and/or modify it
  under the terms and conditions of the GNU General Public License,
  version 2, as published by the Free Software Foundation.

  This program is distributed in the hope it will be useful, but WITHOUT
  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  more details.

  You should have received a copy of the GNU General Public License along with
  this program; if not, write to the Free Software Foundation, Inc.,
  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.

  The full GNU General Public License is included in this distribution in
  the file called "COPYING".

  Contact Information:
  Linux NICS <linux.nics@intel.com>
  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497

*******************************************************************************/

/*
 * 82571EB Gigabit Ethernet Controller
31
 * 82571EB Gigabit Ethernet Controller (Copper)
32
 * 82571EB Gigabit Ethernet Controller (Fiber)
33 34 35
 * 82571EB Dual Port Gigabit Mezzanine Adapter
 * 82571EB Quad Port Gigabit Mezzanine Adapter
 * 82571PT Gigabit PT Quad Port Server ExpressModule
36 37 38 39 40 41
 * 82572EI Gigabit Ethernet Controller (Copper)
 * 82572EI Gigabit Ethernet Controller (Fiber)
 * 82572EI Gigabit Ethernet Controller
 * 82573V Gigabit Ethernet Controller (Copper)
 * 82573E Gigabit Ethernet Controller (Copper)
 * 82573L Gigabit Ethernet Controller
42
 * 82574L Gigabit Network Connection
43
 * 82583V Gigabit Network Connection
44 45 46 47 48 49 50 51 52 53 54 55
 */

#include "e1000.h"

#define ID_LED_RESERVED_F746 0xF746
#define ID_LED_DEFAULT_82573 ((ID_LED_DEF1_DEF2 << 12) | \
			      (ID_LED_OFF1_ON2  <<  8) | \
			      (ID_LED_DEF1_DEF2 <<  4) | \
			      (ID_LED_DEF1_DEF2))

#define E1000_GCR_L1_ACT_WITHOUT_L0S_RX 0x08000000

56 57
#define E1000_NVM_INIT_CTRL2_MNGM 0x6000 /* Manageability Operation Mode mask */

58 59 60
static s32 e1000_get_phy_id_82571(struct e1000_hw *hw);
static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw);
static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw);
61
static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw);
62 63 64 65 66 67
static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
				      u16 words, u16 *data);
static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw);
static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw);
static s32 e1000_setup_link_82571(struct e1000_hw *hw);
static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw);
68
static void e1000_clear_vfta_82571(struct e1000_hw *hw);
69 70
static bool e1000_check_mng_mode_82574(struct e1000_hw *hw);
static s32 e1000_led_on_82574(struct e1000_hw *hw);
71
static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw);
72
static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw);
73 74 75 76 77 78 79 80 81 82

/**
 *  e1000_init_phy_params_82571 - Init PHY func ptrs.
 *  @hw: pointer to the HW structure
 **/
static s32 e1000_init_phy_params_82571(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;

83
	if (hw->phy.media_type != e1000_media_type_copper) {
84 85 86 87 88 89 90 91
		phy->type = e1000_phy_none;
		return 0;
	}

	phy->addr			 = 1;
	phy->autoneg_mask		 = AUTONEG_ADVERTISE_SPEED_DEFAULT;
	phy->reset_delay_us		 = 100;

92 93 94
	phy->ops.power_up		 = e1000_power_up_phy_copper;
	phy->ops.power_down		 = e1000_power_down_phy_copper_82571;

95 96 97 98 99 100 101 102
	switch (hw->mac.type) {
	case e1000_82571:
	case e1000_82572:
		phy->type		 = e1000_phy_igp_2;
		break;
	case e1000_82573:
		phy->type		 = e1000_phy_m88;
		break;
103
	case e1000_82574:
104
	case e1000_82583:
105 106
		phy->type		 = e1000_phy_bm;
		break;
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
	default:
		return -E1000_ERR_PHY;
		break;
	}

	/* This can only be done after all function pointers are setup. */
	ret_val = e1000_get_phy_id_82571(hw);

	/* Verify phy id */
	switch (hw->mac.type) {
	case e1000_82571:
	case e1000_82572:
		if (phy->id != IGP01E1000_I_PHY_ID)
			return -E1000_ERR_PHY;
		break;
	case e1000_82573:
		if (phy->id != M88E1111_I_PHY_ID)
			return -E1000_ERR_PHY;
		break;
126
	case e1000_82574:
127
	case e1000_82583:
128 129 130
		if (phy->id != BME1000_E_PHY_ID_R2)
			return -E1000_ERR_PHY;
		break;
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
	default:
		return -E1000_ERR_PHY;
		break;
	}

	return 0;
}

/**
 *  e1000_init_nvm_params_82571 - Init NVM func ptrs.
 *  @hw: pointer to the HW structure
 **/
static s32 e1000_init_nvm_params_82571(struct e1000_hw *hw)
{
	struct e1000_nvm_info *nvm = &hw->nvm;
	u32 eecd = er32(EECD);
	u16 size;

	nvm->opcode_bits = 8;
	nvm->delay_usec = 1;
	switch (nvm->override) {
	case e1000_nvm_override_spi_large:
		nvm->page_size = 32;
		nvm->address_bits = 16;
		break;
	case e1000_nvm_override_spi_small:
		nvm->page_size = 8;
		nvm->address_bits = 8;
		break;
	default:
		nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
		nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
		break;
	}

	switch (hw->mac.type) {
	case e1000_82573:
168
	case e1000_82574:
169
	case e1000_82583:
170 171 172
		if (((eecd >> 15) & 0x3) == 0x3) {
			nvm->type = e1000_nvm_flash_hw;
			nvm->word_size = 2048;
173 174
			/*
			 * Autonomous Flash update bit must be cleared due
175 176 177 178 179 180 181 182
			 * to Flash update issue.
			 */
			eecd &= ~E1000_EECD_AUPDEN;
			ew32(EECD, eecd);
			break;
		}
		/* Fall Through */
	default:
183
		nvm->type = e1000_nvm_eeprom_spi;
184 185
		size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
				  E1000_EECD_SIZE_EX_SHIFT);
186 187
		/*
		 * Added to a constant, "size" becomes the left-shift value
188 189 190
		 * for setting word_size.
		 */
		size += NVM_WORD_SIZE_BASE_SHIFT;
191 192 193 194

		/* EEPROM access above 16k is unsupported */
		if (size > 14)
			size = 14;
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
		nvm->word_size	= 1 << size;
		break;
	}

	return 0;
}

/**
 *  e1000_init_mac_params_82571 - Init MAC func ptrs.
 *  @hw: pointer to the HW structure
 **/
static s32 e1000_init_mac_params_82571(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct e1000_mac_info *mac = &hw->mac;
	struct e1000_mac_operations *func = &mac->ops;
211 212 213
	u32 swsm = 0;
	u32 swsm2 = 0;
	bool force_clear_smbi = false;
214 215 216 217 218 219

	/* Set media type */
	switch (adapter->pdev->device) {
	case E1000_DEV_ID_82571EB_FIBER:
	case E1000_DEV_ID_82572EI_FIBER:
	case E1000_DEV_ID_82571EB_QUAD_FIBER:
220
		hw->phy.media_type = e1000_media_type_fiber;
221 222 223
		break;
	case E1000_DEV_ID_82571EB_SERDES:
	case E1000_DEV_ID_82572EI_SERDES:
224 225
	case E1000_DEV_ID_82571EB_SERDES_DUAL:
	case E1000_DEV_ID_82571EB_SERDES_QUAD:
226
		hw->phy.media_type = e1000_media_type_internal_serdes;
227 228
		break;
	default:
229
		hw->phy.media_type = e1000_media_type_copper;
230 231 232 233 234 235 236 237
		break;
	}

	/* Set mta register count */
	mac->mta_reg_count = 128;
	/* Set rar entry count */
	mac->rar_entry_count = E1000_RAR_ENTRIES;
	/* Set if manageability features are enabled. */
238 239
	mac->arc_subsystem_valid = (er32(FWSM) & E1000_FWSM_MODE_MASK)
	                ? true : false;
240 241
	/* Adaptive IFS supported */
	mac->adaptive_ifs = true;
242 243

	/* check for link */
244
	switch (hw->phy.media_type) {
245 246 247 248 249 250
	case e1000_media_type_copper:
		func->setup_physical_interface = e1000_setup_copper_link_82571;
		func->check_for_link = e1000e_check_for_copper_link;
		func->get_link_up_info = e1000e_get_speed_and_duplex_copper;
		break;
	case e1000_media_type_fiber:
251 252
		func->setup_physical_interface =
			e1000_setup_fiber_serdes_link_82571;
253
		func->check_for_link = e1000e_check_for_fiber_link;
254 255
		func->get_link_up_info =
			e1000e_get_speed_and_duplex_fiber_serdes;
256 257
		break;
	case e1000_media_type_internal_serdes:
258 259
		func->setup_physical_interface =
			e1000_setup_fiber_serdes_link_82571;
260
		func->check_for_link = e1000_check_for_serdes_link_82571;
261 262
		func->get_link_up_info =
			e1000e_get_speed_and_duplex_fiber_serdes;
263 264 265 266 267 268
		break;
	default:
		return -E1000_ERR_CONFIG;
		break;
	}

269
	switch (hw->mac.type) {
270 271 272 273 274
	case e1000_82573:
		func->set_lan_id = e1000_set_lan_id_single_port;
		func->check_mng_mode = e1000e_check_mng_mode_generic;
		func->led_on = e1000e_led_on_generic;
		break;
275
	case e1000_82574:
276
	case e1000_82583:
277
		func->set_lan_id = e1000_set_lan_id_single_port;
278 279 280 281 282 283 284 285 286
		func->check_mng_mode = e1000_check_mng_mode_82574;
		func->led_on = e1000_led_on_82574;
		break;
	default:
		func->check_mng_mode = e1000e_check_mng_mode_generic;
		func->led_on = e1000e_led_on_generic;
		break;
	}

287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
	/*
	 * Ensure that the inter-port SWSM.SMBI lock bit is clear before
	 * first NVM or PHY acess. This should be done for single-port
	 * devices, and for one port only on dual-port devices so that
	 * for those devices we can still use the SMBI lock to synchronize
	 * inter-port accesses to the PHY & NVM.
	 */
	switch (hw->mac.type) {
	case e1000_82571:
	case e1000_82572:
		swsm2 = er32(SWSM2);

		if (!(swsm2 & E1000_SWSM2_LOCK)) {
			/* Only do this for the first interface on this card */
			ew32(SWSM2,
			    swsm2 | E1000_SWSM2_LOCK);
			force_clear_smbi = true;
		} else
			force_clear_smbi = false;
		break;
	default:
		force_clear_smbi = true;
		break;
	}

	if (force_clear_smbi) {
		/* Make sure SWSM.SMBI is clear */
		swsm = er32(SWSM);
		if (swsm & E1000_SWSM_SMBI) {
			/* This bit should not be set on a first interface, and
			 * indicates that the bootagent or EFI code has
			 * improperly left this bit enabled
			 */
320
			e_dbg("Please update your 82571 Bootagent\n");
321 322 323 324 325
		}
		ew32(SWSM, swsm & ~E1000_SWSM_SMBI);
	}

	/*
J
Joe Perches 已提交
326
	 * Initialize device specific counter of SMBI acquisition
327 328 329 330
	 * timeouts.
	 */
	 hw->dev_spec.e82571.smb_counter = 0;

331 332 333
	return 0;
}

J
Jeff Kirsher 已提交
334
static s32 e1000_get_variants_82571(struct e1000_adapter *adapter)
335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
{
	struct e1000_hw *hw = &adapter->hw;
	static int global_quad_port_a; /* global port a indication */
	struct pci_dev *pdev = adapter->pdev;
	int is_port_b = er32(STATUS) & E1000_STATUS_FUNC_1;
	s32 rc;

	rc = e1000_init_mac_params_82571(adapter);
	if (rc)
		return rc;

	rc = e1000_init_nvm_params_82571(hw);
	if (rc)
		return rc;

	rc = e1000_init_phy_params_82571(hw);
	if (rc)
		return rc;

	/* tag quad port adapters first, it's used below */
	switch (pdev->device) {
	case E1000_DEV_ID_82571EB_QUAD_COPPER:
	case E1000_DEV_ID_82571EB_QUAD_FIBER:
	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
359
	case E1000_DEV_ID_82571PT_QUAD_COPPER:
360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
		adapter->flags |= FLAG_IS_QUAD_PORT;
		/* mark the first port */
		if (global_quad_port_a == 0)
			adapter->flags |= FLAG_IS_QUAD_PORT_A;
		/* Reset for multiple quad port adapters */
		global_quad_port_a++;
		if (global_quad_port_a == 4)
			global_quad_port_a = 0;
		break;
	default:
		break;
	}

	switch (adapter->hw.mac.type) {
	case e1000_82571:
		/* these dual ports don't have WoL on port B at all */
		if (((pdev->device == E1000_DEV_ID_82571EB_FIBER) ||
		     (pdev->device == E1000_DEV_ID_82571EB_SERDES) ||
		     (pdev->device == E1000_DEV_ID_82571EB_COPPER)) &&
		    (is_port_b))
			adapter->flags &= ~FLAG_HAS_WOL;
		/* quad ports only support WoL on port A */
		if (adapter->flags & FLAG_IS_QUAD_PORT &&
R
Roel Kluin 已提交
383
		    (!(adapter->flags & FLAG_IS_QUAD_PORT_A)))
384
			adapter->flags &= ~FLAG_HAS_WOL;
385 386 387
		/* Does not support WoL on any port */
		if (pdev->device == E1000_DEV_ID_82571EB_SERDES_QUAD)
			adapter->flags &= ~FLAG_HAS_WOL;
388 389
		break;
	case e1000_82573:
390 391 392 393 394
	case e1000_82574:
	case e1000_82583:
		/* Disable ASPM L0s due to hardware errata */
		e1000e_disable_aspm(adapter->pdev, PCIE_LINK_STATE_L0S);

395
		if (pdev->device == E1000_DEV_ID_82573L) {
396 397
			adapter->flags |= FLAG_HAS_JUMBO_FRAMES;
			adapter->max_hw_frame_size = DEFAULT_JUMBO;
398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
		}
		break;
	default:
		break;
	}

	return 0;
}

/**
 *  e1000_get_phy_id_82571 - Retrieve the PHY ID and revision
 *  @hw: pointer to the HW structure
 *
 *  Reads the PHY registers and stores the PHY ID and possibly the PHY
 *  revision in the hardware structure.
 **/
static s32 e1000_get_phy_id_82571(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
417 418
	s32 ret_val;
	u16 phy_id = 0;
419 420 421 422

	switch (hw->mac.type) {
	case e1000_82571:
	case e1000_82572:
423 424
		/*
		 * The 82571 firmware may still be configuring the PHY.
425 426
		 * In this case, we cannot access the PHY until the
		 * configuration is done.  So we explicitly set the
427 428
		 * PHY ID.
		 */
429 430 431 432 433
		phy->id = IGP01E1000_I_PHY_ID;
		break;
	case e1000_82573:
		return e1000e_get_phy_id(hw);
		break;
434
	case e1000_82574:
435
	case e1000_82583:
436 437 438 439 440 441 442 443 444 445 446 447 448
		ret_val = e1e_rphy(hw, PHY_ID1, &phy_id);
		if (ret_val)
			return ret_val;

		phy->id = (u32)(phy_id << 16);
		udelay(20);
		ret_val = e1e_rphy(hw, PHY_ID2, &phy_id);
		if (ret_val)
			return ret_val;

		phy->id |= (u32)(phy_id);
		phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
		break;
449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
	default:
		return -E1000_ERR_PHY;
		break;
	}

	return 0;
}

/**
 *  e1000_get_hw_semaphore_82571 - Acquire hardware semaphore
 *  @hw: pointer to the HW structure
 *
 *  Acquire the HW semaphore to access the PHY or NVM
 **/
static s32 e1000_get_hw_semaphore_82571(struct e1000_hw *hw)
{
	u32 swsm;
466 467
	s32 sw_timeout = hw->nvm.word_size + 1;
	s32 fw_timeout = hw->nvm.word_size + 1;
468 469
	s32 i = 0;

470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
	/*
	 * If we have timedout 3 times on trying to acquire
	 * the inter-port SMBI semaphore, there is old code
	 * operating on the other port, and it is not
	 * releasing SMBI. Modify the number of times that
	 * we try for the semaphore to interwork with this
	 * older code.
	 */
	if (hw->dev_spec.e82571.smb_counter > 2)
		sw_timeout = 1;

	/* Get the SW semaphore */
	while (i < sw_timeout) {
		swsm = er32(SWSM);
		if (!(swsm & E1000_SWSM_SMBI))
			break;

		udelay(50);
		i++;
	}

	if (i == sw_timeout) {
492
		e_dbg("Driver can't access device - SMBI bit is set.\n");
493 494
		hw->dev_spec.e82571.smb_counter++;
	}
495
	/* Get the FW semaphore. */
496
	for (i = 0; i < fw_timeout; i++) {
497 498 499 500 501 502 503 504 505 506
		swsm = er32(SWSM);
		ew32(SWSM, swsm | E1000_SWSM_SWESMBI);

		/* Semaphore acquired if bit latched */
		if (er32(SWSM) & E1000_SWSM_SWESMBI)
			break;

		udelay(50);
	}

507
	if (i == fw_timeout) {
508
		/* Release semaphores */
509
		e1000_put_hw_semaphore_82571(hw);
510
		e_dbg("Driver can't access the NVM\n");
511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
		return -E1000_ERR_NVM;
	}

	return 0;
}

/**
 *  e1000_put_hw_semaphore_82571 - Release hardware semaphore
 *  @hw: pointer to the HW structure
 *
 *  Release hardware semaphore used to access the PHY or NVM
 **/
static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw)
{
	u32 swsm;

	swsm = er32(SWSM);
528
	swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
	ew32(SWSM, swsm);
}

/**
 *  e1000_acquire_nvm_82571 - Request for access to the EEPROM
 *  @hw: pointer to the HW structure
 *
 *  To gain access to the EEPROM, first we must obtain a hardware semaphore.
 *  Then for non-82573 hardware, set the EEPROM access request bit and wait
 *  for EEPROM access grant bit.  If the access grant bit is not set, release
 *  hardware semaphore.
 **/
static s32 e1000_acquire_nvm_82571(struct e1000_hw *hw)
{
	s32 ret_val;

	ret_val = e1000_get_hw_semaphore_82571(hw);
	if (ret_val)
		return ret_val;

549 550 551 552 553 554
	switch (hw->mac.type) {
	case e1000_82573:
	case e1000_82574:
	case e1000_82583:
		break;
	default:
555
		ret_val = e1000e_acquire_nvm(hw);
556 557
		break;
	}
558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586

	if (ret_val)
		e1000_put_hw_semaphore_82571(hw);

	return ret_val;
}

/**
 *  e1000_release_nvm_82571 - Release exclusive access to EEPROM
 *  @hw: pointer to the HW structure
 *
 *  Stop any current commands to the EEPROM and clear the EEPROM request bit.
 **/
static void e1000_release_nvm_82571(struct e1000_hw *hw)
{
	e1000e_release_nvm(hw);
	e1000_put_hw_semaphore_82571(hw);
}

/**
 *  e1000_write_nvm_82571 - Write to EEPROM using appropriate interface
 *  @hw: pointer to the HW structure
 *  @offset: offset within the EEPROM to be written to
 *  @words: number of words to write
 *  @data: 16 bit word(s) to be written to the EEPROM
 *
 *  For non-82573 silicon, write data to EEPROM at offset using SPI interface.
 *
 *  If e1000e_update_nvm_checksum is not called after this function, the
587
 *  EEPROM will most likely contain an invalid checksum.
588 589 590 591 592 593 594 595
 **/
static s32 e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset, u16 words,
				 u16 *data)
{
	s32 ret_val;

	switch (hw->mac.type) {
	case e1000_82573:
596
	case e1000_82574:
597
	case e1000_82583:
598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629
		ret_val = e1000_write_nvm_eewr_82571(hw, offset, words, data);
		break;
	case e1000_82571:
	case e1000_82572:
		ret_val = e1000e_write_nvm_spi(hw, offset, words, data);
		break;
	default:
		ret_val = -E1000_ERR_NVM;
		break;
	}

	return ret_val;
}

/**
 *  e1000_update_nvm_checksum_82571 - Update EEPROM checksum
 *  @hw: pointer to the HW structure
 *
 *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
 *  up to the checksum.  Then calculates the EEPROM checksum and writes the
 *  value to the EEPROM.
 **/
static s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw)
{
	u32 eecd;
	s32 ret_val;
	u16 i;

	ret_val = e1000e_update_nvm_checksum_generic(hw);
	if (ret_val)
		return ret_val;

630 631 632 633
	/*
	 * If our nvm is an EEPROM, then we're done
	 * otherwise, commit the checksum to the flash NVM.
	 */
634 635 636 637 638 639 640 641 642 643 644 645 646 647 648
	if (hw->nvm.type != e1000_nvm_flash_hw)
		return ret_val;

	/* Check for pending operations. */
	for (i = 0; i < E1000_FLASH_UPDATES; i++) {
		msleep(1);
		if ((er32(EECD) & E1000_EECD_FLUPD) == 0)
			break;
	}

	if (i == E1000_FLASH_UPDATES)
		return -E1000_ERR_NVM;

	/* Reset the firmware if using STM opcode. */
	if ((er32(FLOP) & 0xFF00) == E1000_STM_OPCODE) {
649 650
		/*
		 * The enabling of and the actual reset must be done
651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700
		 * in two write cycles.
		 */
		ew32(HICR, E1000_HICR_FW_RESET_ENABLE);
		e1e_flush();
		ew32(HICR, E1000_HICR_FW_RESET);
	}

	/* Commit the write to flash */
	eecd = er32(EECD) | E1000_EECD_FLUPD;
	ew32(EECD, eecd);

	for (i = 0; i < E1000_FLASH_UPDATES; i++) {
		msleep(1);
		if ((er32(EECD) & E1000_EECD_FLUPD) == 0)
			break;
	}

	if (i == E1000_FLASH_UPDATES)
		return -E1000_ERR_NVM;

	return 0;
}

/**
 *  e1000_validate_nvm_checksum_82571 - Validate EEPROM checksum
 *  @hw: pointer to the HW structure
 *
 *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
 *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
 **/
static s32 e1000_validate_nvm_checksum_82571(struct e1000_hw *hw)
{
	if (hw->nvm.type == e1000_nvm_flash_hw)
		e1000_fix_nvm_checksum_82571(hw);

	return e1000e_validate_nvm_checksum_generic(hw);
}

/**
 *  e1000_write_nvm_eewr_82571 - Write to EEPROM for 82573 silicon
 *  @hw: pointer to the HW structure
 *  @offset: offset within the EEPROM to be written to
 *  @words: number of words to write
 *  @data: 16 bit word(s) to be written to the EEPROM
 *
 *  After checking for invalid values, poll the EEPROM to ensure the previous
 *  command has completed before trying to write the next word.  After write
 *  poll for completion.
 *
 *  If e1000e_update_nvm_checksum is not called after this function, the
701
 *  EEPROM will most likely contain an invalid checksum.
702 703 704 705 706
 **/
static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
				      u16 words, u16 *data)
{
	struct e1000_nvm_info *nvm = &hw->nvm;
707
	u32 i, eewr = 0;
708 709
	s32 ret_val = 0;

710 711 712 713
	/*
	 * A check for invalid values:  offset too large, too many words,
	 * and not enough words.
	 */
714 715
	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
	    (words == 0)) {
716
		e_dbg("nvm parameter(s) out of bounds\n");
717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756
		return -E1000_ERR_NVM;
	}

	for (i = 0; i < words; i++) {
		eewr = (data[i] << E1000_NVM_RW_REG_DATA) |
		       ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) |
		       E1000_NVM_RW_REG_START;

		ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
		if (ret_val)
			break;

		ew32(EEWR, eewr);

		ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
		if (ret_val)
			break;
	}

	return ret_val;
}

/**
 *  e1000_get_cfg_done_82571 - Poll for configuration done
 *  @hw: pointer to the HW structure
 *
 *  Reads the management control register for the config done bit to be set.
 **/
static s32 e1000_get_cfg_done_82571(struct e1000_hw *hw)
{
	s32 timeout = PHY_CFG_TIMEOUT;

	while (timeout) {
		if (er32(EEMNGCTL) &
		    E1000_NVM_CFG_DONE_PORT_0)
			break;
		msleep(1);
		timeout--;
	}
	if (!timeout) {
757
		e_dbg("MNG configuration cycle has not completed.\n");
758 759 760 761 762 763 764 765 766
		return -E1000_ERR_RESET;
	}

	return 0;
}

/**
 *  e1000_set_d0_lplu_state_82571 - Set Low Power Linkup D0 state
 *  @hw: pointer to the HW structure
767
 *  @active: true to enable LPLU, false to disable
768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799
 *
 *  Sets the LPLU D0 state according to the active flag.  When activating LPLU
 *  this function also disables smart speed and vice versa.  LPLU will not be
 *  activated unless the device autonegotiation advertisement meets standards
 *  of either 10 or 10/100 or 10/100/1000 at all duplexes.  This is a function
 *  pointer entry point only called by PHY setup routines.
 **/
static s32 e1000_set_d0_lplu_state_82571(struct e1000_hw *hw, bool active)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 data;

	ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
	if (ret_val)
		return ret_val;

	if (active) {
		data |= IGP02E1000_PM_D0_LPLU;
		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
		if (ret_val)
			return ret_val;

		/* When LPLU is enabled, we should disable SmartSpeed */
		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
		if (ret_val)
			return ret_val;
	} else {
		data &= ~IGP02E1000_PM_D0_LPLU;
		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
800 801
		/*
		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
802 803
		 * during Dx states where the power conservation is most
		 * important.  During driver activity we should enable
804 805
		 * SmartSpeed, so performance is maintained.
		 */
806 807
		if (phy->smart_speed == e1000_smart_speed_on) {
			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
808
					   &data);
809 810 811 812 813
			if (ret_val)
				return ret_val;

			data |= IGP01E1000_PSCFR_SMART_SPEED;
			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
814
					   data);
815 816 817 818
			if (ret_val)
				return ret_val;
		} else if (phy->smart_speed == e1000_smart_speed_off) {
			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
819
					   &data);
820 821 822 823 824
			if (ret_val)
				return ret_val;

			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
825
					   data);
826 827 828 829 830 831 832 833 834 835 836 837
			if (ret_val)
				return ret_val;
		}
	}

	return 0;
}

/**
 *  e1000_reset_hw_82571 - Reset hardware
 *  @hw: pointer to the HW structure
 *
838
 *  This resets the hardware into a known state.
839 840 841
 **/
static s32 e1000_reset_hw_82571(struct e1000_hw *hw)
{
842
	u32 ctrl, extcnf_ctrl, ctrl_ext, icr;
843 844 845
	s32 ret_val;
	u16 i = 0;

846 847
	/*
	 * Prevent the PCI-E bus from sticking if there is no TLP connection
848 849 850 851
	 * on the last TLP read/write transaction when MAC is reset.
	 */
	ret_val = e1000e_disable_pcie_master(hw);
	if (ret_val)
852
		e_dbg("PCI-E Master disable polling has failed.\n");
853

854
	e_dbg("Masking off all interrupts\n");
855 856 857 858 859 860 861 862
	ew32(IMC, 0xffffffff);

	ew32(RCTL, 0);
	ew32(TCTL, E1000_TCTL_PSP);
	e1e_flush();

	msleep(10);

863 864 865 866
	/*
	 * Must acquire the MDIO ownership before MAC reset.
	 * Ownership defaults to firmware after a reset.
	 */
867 868 869 870
	switch (hw->mac.type) {
	case e1000_82573:
	case e1000_82574:
	case e1000_82583:
871 872 873 874 875 876 877 878 879 880 881 882 883 884 885
		extcnf_ctrl = er32(EXTCNF_CTRL);
		extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;

		do {
			ew32(EXTCNF_CTRL, extcnf_ctrl);
			extcnf_ctrl = er32(EXTCNF_CTRL);

			if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP)
				break;

			extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;

			msleep(2);
			i++;
		} while (i < MDIO_OWNERSHIP_TIMEOUT);
886 887 888
		break;
	default:
		break;
889 890 891 892
	}

	ctrl = er32(CTRL);

893
	e_dbg("Issuing a global reset to MAC\n");
894 895 896 897 898 899 900 901 902 903 904 905 906 907 908
	ew32(CTRL, ctrl | E1000_CTRL_RST);

	if (hw->nvm.type == e1000_nvm_flash_hw) {
		udelay(10);
		ctrl_ext = er32(CTRL_EXT);
		ctrl_ext |= E1000_CTRL_EXT_EE_RST;
		ew32(CTRL_EXT, ctrl_ext);
		e1e_flush();
	}

	ret_val = e1000e_get_auto_rd_done(hw);
	if (ret_val)
		/* We don't want to continue accessing MAC registers. */
		return ret_val;

909 910
	/*
	 * Phy configuration from NVM just starts after EECD_AUTO_RD is set.
911 912 913
	 * Need to wait for Phy configuration completion before accessing
	 * NVM and Phy.
	 */
914 915 916 917 918

	switch (hw->mac.type) {
	case e1000_82573:
	case e1000_82574:
	case e1000_82583:
919
		msleep(25);
920 921 922 923
		break;
	default:
		break;
	}
924 925 926 927 928

	/* Clear any pending interrupt events. */
	ew32(IMC, 0xffffffff);
	icr = er32(ICR);

929 930 931 932 933 934
	/* Install any alternate MAC address into RAR0 */
	ret_val = e1000_check_alt_mac_addr_generic(hw);
	if (ret_val)
		return ret_val;

	e1000e_set_laa_state_82571(hw, true);
935

936 937 938 939
	/* Reinitialize the 82571 serdes link state machine */
	if (hw->phy.media_type == e1000_media_type_internal_serdes)
		hw->mac.serdes_link_state = e1000_serdes_link_down;

940 941 942 943 944 945 946 947 948 949 950 951 952 953
	return 0;
}

/**
 *  e1000_init_hw_82571 - Initialize hardware
 *  @hw: pointer to the HW structure
 *
 *  This inits the hardware readying it for operation.
 **/
static s32 e1000_init_hw_82571(struct e1000_hw *hw)
{
	struct e1000_mac_info *mac = &hw->mac;
	u32 reg_data;
	s32 ret_val;
954
	u16 i, rar_count = mac->rar_entry_count;
955 956 957 958 959

	e1000_initialize_hw_bits_82571(hw);

	/* Initialize identification LED */
	ret_val = e1000e_id_led_init(hw);
960
	if (ret_val)
961
		e_dbg("Error initializing identification LED\n");
962
		/* This is not fatal and we should not stop init due to this */
963 964

	/* Disabling VLAN filtering */
965
	e_dbg("Initializing the IEEE VLAN\n");
966
	mac->ops.clear_vfta(hw);
967 968

	/* Setup the receive address. */
969 970
	/*
	 * If, however, a locally administered address was assigned to the
971 972 973 974 975 976 977 978
	 * 82571, we must reserve a RAR for it to work around an issue where
	 * resetting one port will reload the MAC on the other port.
	 */
	if (e1000e_get_laa_state_82571(hw))
		rar_count--;
	e1000e_init_rx_addrs(hw, rar_count);

	/* Zero out the Multicast HASH table */
979
	e_dbg("Zeroing the MTA\n");
980 981 982 983 984 985 986
	for (i = 0; i < mac->mta_reg_count; i++)
		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);

	/* Setup link and flow control */
	ret_val = e1000_setup_link_82571(hw);

	/* Set the transmit descriptor write-back policy */
987
	reg_data = er32(TXDCTL(0));
988 989 990
	reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
		   E1000_TXDCTL_FULL_TX_DESC_WB |
		   E1000_TXDCTL_COUNT_DESC;
991
	ew32(TXDCTL(0), reg_data);
992 993

	/* ...for both queues. */
994 995 996 997 998 999 1000 1001 1002 1003
	switch (mac->type) {
	case e1000_82573:
	case e1000_82574:
	case e1000_82583:
		e1000e_enable_tx_pkt_filtering(hw);
		reg_data = er32(GCR);
		reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
		ew32(GCR, reg_data);
		break;
	default:
1004
		reg_data = er32(TXDCTL(1));
1005 1006 1007
		reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
			   E1000_TXDCTL_FULL_TX_DESC_WB |
			   E1000_TXDCTL_COUNT_DESC;
1008
		ew32(TXDCTL(1), reg_data);
1009
		break;
1010 1011
	}

1012 1013
	/*
	 * Clear all of the statistics registers (clear on read).  It is
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
	 * important that we do this after we have tried to establish link
	 * because the symbol error count will increment wildly if there
	 * is no link.
	 */
	e1000_clear_hw_cntrs_82571(hw);

	return ret_val;
}

/**
 *  e1000_initialize_hw_bits_82571 - Initialize hardware-dependent bits
 *  @hw: pointer to the HW structure
 *
 *  Initializes required hardware-dependent bits needed for normal operation.
 **/
static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw)
{
	u32 reg;

	/* Transmit Descriptor Control 0 */
1034
	reg = er32(TXDCTL(0));
1035
	reg |= (1 << 22);
1036
	ew32(TXDCTL(0), reg);
1037 1038

	/* Transmit Descriptor Control 1 */
1039
	reg = er32(TXDCTL(1));
1040
	reg |= (1 << 22);
1041
	ew32(TXDCTL(1), reg);
1042 1043

	/* Transmit Arbitration Control 0 */
1044
	reg = er32(TARC(0));
1045 1046 1047 1048 1049 1050 1051 1052 1053
	reg &= ~(0xF << 27); /* 30:27 */
	switch (hw->mac.type) {
	case e1000_82571:
	case e1000_82572:
		reg |= (1 << 23) | (1 << 24) | (1 << 25) | (1 << 26);
		break;
	default:
		break;
	}
1054
	ew32(TARC(0), reg);
1055 1056

	/* Transmit Arbitration Control 1 */
1057
	reg = er32(TARC(1));
1058 1059 1060 1061 1062 1063 1064 1065 1066
	switch (hw->mac.type) {
	case e1000_82571:
	case e1000_82572:
		reg &= ~((1 << 29) | (1 << 30));
		reg |= (1 << 22) | (1 << 24) | (1 << 25) | (1 << 26);
		if (er32(TCTL) & E1000_TCTL_MULR)
			reg &= ~(1 << 28);
		else
			reg |= (1 << 28);
1067
		ew32(TARC(1), reg);
1068 1069 1070 1071 1072 1073
		break;
	default:
		break;
	}

	/* Device Control */
1074 1075 1076 1077
	switch (hw->mac.type) {
	case e1000_82573:
	case e1000_82574:
	case e1000_82583:
1078 1079 1080
		reg = er32(CTRL);
		reg &= ~(1 << 29);
		ew32(CTRL, reg);
1081 1082 1083
		break;
	default:
		break;
1084 1085 1086
	}

	/* Extended Device Control */
1087 1088 1089 1090
	switch (hw->mac.type) {
	case e1000_82573:
	case e1000_82574:
	case e1000_82583:
1091 1092 1093 1094
		reg = er32(CTRL_EXT);
		reg &= ~(1 << 23);
		reg |= (1 << 22);
		ew32(CTRL_EXT, reg);
1095 1096 1097
		break;
	default:
		break;
1098
	}
1099

1100 1101 1102 1103 1104
	if (hw->mac.type == e1000_82571) {
		reg = er32(PBA_ECC);
		reg |= E1000_PBA_ECC_CORR_EN;
		ew32(PBA_ECC, reg);
	}
1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116
	/*
	 * Workaround for hardware errata.
	 * Ensure that DMA Dynamic Clock gating is disabled on 82571 and 82572
	 */

        if ((hw->mac.type == e1000_82571) ||
           (hw->mac.type == e1000_82572)) {
                reg = er32(CTRL_EXT);
                reg &= ~E1000_CTRL_EXT_DMA_DYN_CLK_EN;
                ew32(CTRL_EXT, reg);
        }

1117

J
Jesse Brandeburg 已提交
1118
	/* PCI-Ex Control Registers */
1119 1120 1121
	switch (hw->mac.type) {
	case e1000_82574:
	case e1000_82583:
1122 1123 1124
		reg = er32(GCR);
		reg |= (1 << 22);
		ew32(GCR, reg);
J
Jesse Brandeburg 已提交
1125

1126 1127 1128 1129 1130 1131 1132
		/*
		 * Workaround for hardware errata.
		 * apply workaround for hardware errata documented in errata
		 * docs Fixes issue where some error prone or unreliable PCIe
		 * completions are occurring, particularly with ASPM enabled.
		 * Without fix, issue can cause tx timeouts.
		 */
J
Jesse Brandeburg 已提交
1133 1134 1135
		reg = er32(GCR2);
		reg |= 1;
		ew32(GCR2, reg);
1136 1137 1138
		break;
	default:
		break;
1139 1140 1141
	}

	return;
1142 1143 1144
}

/**
1145
 *  e1000_clear_vfta_82571 - Clear VLAN filter table
1146 1147 1148 1149 1150
 *  @hw: pointer to the HW structure
 *
 *  Clears the register array which contains the VLAN filter table by
 *  setting all the values to 0.
 **/
1151
static void e1000_clear_vfta_82571(struct e1000_hw *hw)
1152 1153 1154 1155 1156 1157
{
	u32 offset;
	u32 vfta_value = 0;
	u32 vfta_offset = 0;
	u32 vfta_bit_in_reg = 0;

1158 1159 1160 1161
	switch (hw->mac.type) {
	case e1000_82573:
	case e1000_82574:
	case e1000_82583:
1162
		if (hw->mng_cookie.vlan_id != 0) {
1163 1164
			/*
			 * The VFTA is a 4096b bit-field, each identifying
1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
			 * a single VLAN ID.  The following operations
			 * determine which 32b entry (i.e. offset) into the
			 * array we want to set the VLAN ID (i.e. bit) of
			 * the manageability unit.
			 */
			vfta_offset = (hw->mng_cookie.vlan_id >>
				       E1000_VFTA_ENTRY_SHIFT) &
				      E1000_VFTA_ENTRY_MASK;
			vfta_bit_in_reg = 1 << (hw->mng_cookie.vlan_id &
					       E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
		}
1176 1177 1178
		break;
	default:
		break;
1179 1180
	}
	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
1181 1182
		/*
		 * If the offset we want to clear is the same offset of the
1183 1184 1185 1186 1187 1188 1189 1190 1191
		 * manageability VLAN ID, then clear all bits except that of
		 * the manageability unit.
		 */
		vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
		E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, vfta_value);
		e1e_flush();
	}
}

1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233
/**
 *  e1000_check_mng_mode_82574 - Check manageability is enabled
 *  @hw: pointer to the HW structure
 *
 *  Reads the NVM Initialization Control Word 2 and returns true
 *  (>0) if any manageability is enabled, else false (0).
 **/
static bool e1000_check_mng_mode_82574(struct e1000_hw *hw)
{
	u16 data;

	e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &data);
	return (data & E1000_NVM_INIT_CTRL2_MNGM) != 0;
}

/**
 *  e1000_led_on_82574 - Turn LED on
 *  @hw: pointer to the HW structure
 *
 *  Turn LED on.
 **/
static s32 e1000_led_on_82574(struct e1000_hw *hw)
{
	u32 ctrl;
	u32 i;

	ctrl = hw->mac.ledctl_mode2;
	if (!(E1000_STATUS_LU & er32(STATUS))) {
		/*
		 * If no link, then turn LED on by setting the invert bit
		 * for each LED that's "on" (0x0E) in ledctl_mode2.
		 */
		for (i = 0; i < 4; i++)
			if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
			    E1000_LEDCTL_MODE_LED_ON)
				ctrl |= (E1000_LEDCTL_LED0_IVRT << (i * 8));
	}
	ew32(LEDCTL, ctrl);

	return 0;
}

1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
/**
 *  e1000_setup_link_82571 - Setup flow control and link settings
 *  @hw: pointer to the HW structure
 *
 *  Determines which flow control settings to use, then configures flow
 *  control.  Calls the appropriate media-specific link configuration
 *  function.  Assuming the adapter has a valid link partner, a valid link
 *  should be established.  Assumes the hardware has previously been reset
 *  and the transmitter and receiver are not enabled.
 **/
static s32 e1000_setup_link_82571(struct e1000_hw *hw)
{
1246 1247
	/*
	 * 82573 does not have a word in the NVM to determine
1248 1249 1250
	 * the default flow control setting, so we explicitly
	 * set it to full.
	 */
1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
	switch (hw->mac.type) {
	case e1000_82573:
	case e1000_82574:
	case e1000_82583:
		if (hw->fc.requested_mode == e1000_fc_default)
			hw->fc.requested_mode = e1000_fc_full;
		break;
	default:
		break;
	}
1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284

	return e1000e_setup_link(hw);
}

/**
 *  e1000_setup_copper_link_82571 - Configure copper link settings
 *  @hw: pointer to the HW structure
 *
 *  Configures the link for auto-neg or forced speed and duplex.  Then we check
 *  for link, once link is established calls to configure collision distance
 *  and flow control are called.
 **/
static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw)
{
	u32 ctrl;
	s32 ret_val;

	ctrl = er32(CTRL);
	ctrl |= E1000_CTRL_SLU;
	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
	ew32(CTRL, ctrl);

	switch (hw->phy.type) {
	case e1000_phy_m88:
1285
	case e1000_phy_bm:
1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315
		ret_val = e1000e_copper_link_setup_m88(hw);
		break;
	case e1000_phy_igp_2:
		ret_val = e1000e_copper_link_setup_igp(hw);
		break;
	default:
		return -E1000_ERR_PHY;
		break;
	}

	if (ret_val)
		return ret_val;

	ret_val = e1000e_setup_copper_link(hw);

	return ret_val;
}

/**
 *  e1000_setup_fiber_serdes_link_82571 - Setup link for fiber/serdes
 *  @hw: pointer to the HW structure
 *
 *  Configures collision distance and flow control for fiber and serdes links.
 *  Upon successful setup, poll for link.
 **/
static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw)
{
	switch (hw->mac.type) {
	case e1000_82571:
	case e1000_82572:
1316 1317
		/*
		 * If SerDes loopback mode is entered, there is no form
1318 1319
		 * of reset to take the adapter out of that mode.  So we
		 * have to explicitly take the adapter out of loopback
1320
		 * mode.  This prevents drivers from twiddling their thumbs
1321 1322
		 * if another tool failed to take it out of loopback mode.
		 */
1323
		ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1324 1325 1326 1327 1328 1329 1330 1331
		break;
	default:
		break;
	}

	return e1000e_setup_fiber_serdes_link(hw);
}

1332 1333 1334 1335
/**
 *  e1000_check_for_serdes_link_82571 - Check for link (Serdes)
 *  @hw: pointer to the HW structure
 *
1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346
 *  Reports the link state as up or down.
 *
 *  If autonegotiation is supported by the link partner, the link state is
 *  determined by the result of autonegotiation. This is the most likely case.
 *  If autonegotiation is not supported by the link partner, and the link
 *  has a valid signal, force the link up.
 *
 *  The link state is represented internally here by 4 states:
 *
 *  1) down
 *  2) autoneg_progress
D
Daniel Mack 已提交
1347
 *  3) autoneg_complete (the link successfully autonegotiated)
1348 1349
 *  4) forced_up (the link has been forced up, it did not autonegotiate)
 *
1350
 **/
1351
static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw)
1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374
{
	struct e1000_mac_info *mac = &hw->mac;
	u32 rxcw;
	u32 ctrl;
	u32 status;
	s32 ret_val = 0;

	ctrl = er32(CTRL);
	status = er32(STATUS);
	rxcw = er32(RXCW);

	if ((rxcw & E1000_RXCW_SYNCH) && !(rxcw & E1000_RXCW_IV)) {

		/* Receiver is synchronized with no invalid bits.  */
		switch (mac->serdes_link_state) {
		case e1000_serdes_link_autoneg_complete:
			if (!(status & E1000_STATUS_LU)) {
				/*
				 * We have lost link, retry autoneg before
				 * reporting link failure
				 */
				mac->serdes_link_state =
				    e1000_serdes_link_autoneg_progress;
1375
				mac->serdes_has_link = false;
1376
				e_dbg("AN_UP     -> AN_PROG\n");
1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389
			}
		break;

		case e1000_serdes_link_forced_up:
			/*
			 * If we are receiving /C/ ordered sets, re-enable
			 * auto-negotiation in the TXCW register and disable
			 * forced link in the Device Control register in an
			 * attempt to auto-negotiate with our link partner.
			 */
			if (rxcw & E1000_RXCW_C) {
				/* Enable autoneg, and unforce link up */
				ew32(TXCW, mac->txcw);
1390
				ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
1391 1392
				mac->serdes_link_state =
				    e1000_serdes_link_autoneg_progress;
1393
				mac->serdes_has_link = false;
1394
				e_dbg("FORCED_UP -> AN_PROG\n");
1395 1396 1397 1398
			}
			break;

		case e1000_serdes_link_autoneg_progress:
1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415
			if (rxcw & E1000_RXCW_C) {
				/*
				 * We received /C/ ordered sets, meaning the
				 * link partner has autonegotiated, and we can
				 * trust the Link Up (LU) status bit.
				 */
				if (status & E1000_STATUS_LU) {
					mac->serdes_link_state =
					    e1000_serdes_link_autoneg_complete;
					e_dbg("AN_PROG   -> AN_UP\n");
					mac->serdes_has_link = true;
				} else {
					/* Autoneg completed, but failed. */
					mac->serdes_link_state =
					    e1000_serdes_link_down;
					e_dbg("AN_PROG   -> DOWN\n");
				}
1416 1417
			} else {
				/*
1418 1419 1420
				 * The link partner did not autoneg.
				 * Force link up and full duplex, and change
				 * state to forced.
1421
				 */
1422
				ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
1423 1424 1425 1426
				ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
				ew32(CTRL, ctrl);

				/* Configure Flow Control after link up. */
1427
				ret_val = e1000e_config_fc_after_link_up(hw);
1428
				if (ret_val) {
1429
					e_dbg("Error config flow control\n");
1430 1431 1432 1433
					break;
				}
				mac->serdes_link_state =
				    e1000_serdes_link_forced_up;
1434
				mac->serdes_has_link = true;
1435
				e_dbg("AN_PROG   -> FORCED_UP\n");
1436 1437 1438 1439 1440
			}
			break;

		case e1000_serdes_link_down:
		default:
1441 1442
			/*
			 * The link was down but the receiver has now gained
1443
			 * valid sync, so lets see if we can bring the link
1444 1445
			 * up.
			 */
1446
			ew32(TXCW, mac->txcw);
1447
			ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
1448 1449
			mac->serdes_link_state =
			    e1000_serdes_link_autoneg_progress;
1450
			e_dbg("DOWN      -> AN_PROG\n");
1451 1452 1453 1454 1455 1456
			break;
		}
	} else {
		if (!(rxcw & E1000_RXCW_SYNCH)) {
			mac->serdes_has_link = false;
			mac->serdes_link_state = e1000_serdes_link_down;
1457
			e_dbg("ANYSTATE  -> DOWN\n");
1458 1459
		} else {
			/*
1460 1461 1462
			 * We have sync, and can tolerate one invalid (IV)
			 * codeword before declaring link down, so reread
			 * to look again.
1463 1464 1465 1466 1467 1468
			 */
			udelay(10);
			rxcw = er32(RXCW);
			if (rxcw & E1000_RXCW_IV) {
				mac->serdes_link_state = e1000_serdes_link_down;
				mac->serdes_has_link = false;
1469
				e_dbg("ANYSTATE  -> DOWN\n");
1470 1471 1472 1473 1474 1475 1476
			}
		}
	}

	return ret_val;
}

1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490
/**
 *  e1000_valid_led_default_82571 - Verify a valid default LED config
 *  @hw: pointer to the HW structure
 *  @data: pointer to the NVM (EEPROM)
 *
 *  Read the EEPROM for the current default LED configuration.  If the
 *  LED configuration is not valid, set to a valid LED configuration.
 **/
static s32 e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data)
{
	s32 ret_val;

	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
	if (ret_val) {
1491
		e_dbg("NVM Read Error\n");
1492 1493 1494
		return ret_val;
	}

1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507
	switch (hw->mac.type) {
	case e1000_82573:
	case e1000_82574:
	case e1000_82583:
		if (*data == ID_LED_RESERVED_F746)
			*data = ID_LED_DEFAULT_82573;
		break;
	default:
		if (*data == ID_LED_RESERVED_0000 ||
		    *data == ID_LED_RESERVED_FFFF)
			*data = ID_LED_DEFAULT;
		break;
	}
1508 1509 1510 1511 1512 1513 1514 1515

	return 0;
}

/**
 *  e1000e_get_laa_state_82571 - Get locally administered address state
 *  @hw: pointer to the HW structure
 *
1516
 *  Retrieve and return the current locally administered address state.
1517 1518 1519 1520
 **/
bool e1000e_get_laa_state_82571(struct e1000_hw *hw)
{
	if (hw->mac.type != e1000_82571)
1521
		return false;
1522 1523 1524 1525 1526 1527 1528 1529 1530

	return hw->dev_spec.e82571.laa_is_present;
}

/**
 *  e1000e_set_laa_state_82571 - Set locally administered address state
 *  @hw: pointer to the HW structure
 *  @state: enable/disable locally administered address
 *
B
Bruce Allan 已提交
1531
 *  Enable/Disable the current locally administered address state.
1532 1533 1534 1535 1536 1537 1538 1539 1540 1541
 **/
void e1000e_set_laa_state_82571(struct e1000_hw *hw, bool state)
{
	if (hw->mac.type != e1000_82571)
		return;

	hw->dev_spec.e82571.laa_is_present = state;

	/* If workaround is activated... */
	if (state)
1542 1543
		/*
		 * Hold a copy of the LAA in RAR[14] This is done so that
1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570
		 * between the time RAR[0] gets clobbered and the time it
		 * gets fixed, the actual LAA is in one of the RARs and no
		 * incoming packets directed to this port are dropped.
		 * Eventually the LAA will be in RAR[0] and RAR[14].
		 */
		e1000e_rar_set(hw, hw->mac.addr, hw->mac.rar_entry_count - 1);
}

/**
 *  e1000_fix_nvm_checksum_82571 - Fix EEPROM checksum
 *  @hw: pointer to the HW structure
 *
 *  Verifies that the EEPROM has completed the update.  After updating the
 *  EEPROM, we need to check bit 15 in work 0x23 for the checksum fix.  If
 *  the checksum fix is not implemented, we need to set the bit and update
 *  the checksum.  Otherwise, if bit 15 is set and the checksum is incorrect,
 *  we need to return bad checksum.
 **/
static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw)
{
	struct e1000_nvm_info *nvm = &hw->nvm;
	s32 ret_val;
	u16 data;

	if (nvm->type != e1000_nvm_flash_hw)
		return 0;

1571 1572
	/*
	 * Check bit 4 of word 10h.  If it is 0, firmware is done updating
1573 1574 1575 1576 1577 1578 1579
	 * 10h-12h.  Checksum may need to be fixed.
	 */
	ret_val = e1000_read_nvm(hw, 0x10, 1, &data);
	if (ret_val)
		return ret_val;

	if (!(data & 0x10)) {
1580 1581
		/*
		 * Read 0x23 and check bit 15.  This bit is a 1
1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603
		 * when the checksum has already been fixed.  If
		 * the checksum is still wrong and this bit is a
		 * 1, we need to return bad checksum.  Otherwise,
		 * we need to set this bit to a 1 and update the
		 * checksum.
		 */
		ret_val = e1000_read_nvm(hw, 0x23, 1, &data);
		if (ret_val)
			return ret_val;

		if (!(data & 0x8000)) {
			data |= 0x8000;
			ret_val = e1000_write_nvm(hw, 0x23, 1, &data);
			if (ret_val)
				return ret_val;
			ret_val = e1000e_update_nvm_checksum(hw);
		}
	}

	return 0;
}

1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626
/**
 *  e1000_read_mac_addr_82571 - Read device MAC address
 *  @hw: pointer to the HW structure
 **/
static s32 e1000_read_mac_addr_82571(struct e1000_hw *hw)
{
	s32 ret_val = 0;

	/*
	 * If there's an alternate MAC address place it in RAR0
	 * so that it will override the Si installed default perm
	 * address.
	 */
	ret_val = e1000_check_alt_mac_addr_generic(hw);
	if (ret_val)
		goto out;

	ret_val = e1000_read_mac_addr_generic(hw);

out:
	return ret_val;
}

1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648
/**
 * e1000_power_down_phy_copper_82571 - Remove link during PHY power down
 * @hw: pointer to the HW structure
 *
 * In the case of a PHY power down to save power, or to turn off link during a
 * driver unload, or wake on lan is not enabled, remove the link.
 **/
static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	struct e1000_mac_info *mac = &hw->mac;

	if (!(phy->ops.check_reset_block))
		return;

	/* If the management interface is not enabled, then power down */
	if (!(mac->ops.check_mng_mode(hw) || phy->ops.check_reset_block(hw)))
		e1000_power_down_phy_copper(hw);

	return;
}

1649 1650 1651 1652 1653 1654 1655 1656 1657 1658
/**
 *  e1000_clear_hw_cntrs_82571 - Clear device specific hardware counters
 *  @hw: pointer to the HW structure
 *
 *  Clears the hardware counters by reading the counter registers.
 **/
static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw)
{
	e1000e_clear_hw_cntrs_base(hw);

1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692
	er32(PRC64);
	er32(PRC127);
	er32(PRC255);
	er32(PRC511);
	er32(PRC1023);
	er32(PRC1522);
	er32(PTC64);
	er32(PTC127);
	er32(PTC255);
	er32(PTC511);
	er32(PTC1023);
	er32(PTC1522);

	er32(ALGNERRC);
	er32(RXERRC);
	er32(TNCRS);
	er32(CEXTERR);
	er32(TSCTC);
	er32(TSCTFC);

	er32(MGTPRC);
	er32(MGTPDC);
	er32(MGTPTC);

	er32(IAC);
	er32(ICRXOC);

	er32(ICRXPTC);
	er32(ICRXATC);
	er32(ICTXPTC);
	er32(ICTXATC);
	er32(ICTXQEC);
	er32(ICTXQMTC);
	er32(ICRXDMTC);
1693 1694 1695
}

static struct e1000_mac_operations e82571_mac_ops = {
1696
	/* .check_mng_mode: mac type dependent */
1697
	/* .check_for_link: media type dependent */
1698
	.id_led_init		= e1000e_id_led_init,
1699 1700 1701
	.cleanup_led		= e1000e_cleanup_led_generic,
	.clear_hw_cntrs		= e1000_clear_hw_cntrs_82571,
	.get_bus_info		= e1000e_get_bus_info_pcie,
1702
	.set_lan_id		= e1000_set_lan_id_multi_port_pcie,
1703
	/* .get_link_up_info: media type dependent */
1704
	/* .led_on: mac type dependent */
1705
	.led_off		= e1000e_led_off_generic,
1706
	.update_mc_addr_list	= e1000e_update_mc_addr_list_generic,
1707 1708
	.write_vfta		= e1000_write_vfta_generic,
	.clear_vfta		= e1000_clear_vfta_82571,
1709 1710 1711 1712
	.reset_hw		= e1000_reset_hw_82571,
	.init_hw		= e1000_init_hw_82571,
	.setup_link		= e1000_setup_link_82571,
	/* .setup_physical_interface: media type dependent */
1713
	.setup_led		= e1000e_setup_led_generic,
1714
	.read_mac_addr		= e1000_read_mac_addr_82571,
1715 1716 1717
};

static struct e1000_phy_operations e82_phy_ops_igp = {
1718
	.acquire		= e1000_get_hw_semaphore_82571,
1719
	.check_polarity		= e1000_check_polarity_igp,
1720
	.check_reset_block	= e1000e_check_reset_block_generic,
1721
	.commit			= NULL,
1722 1723 1724
	.force_speed_duplex	= e1000e_phy_force_speed_duplex_igp,
	.get_cfg_done		= e1000_get_cfg_done_82571,
	.get_cable_length	= e1000e_get_cable_length_igp_2,
1725 1726 1727 1728
	.get_info		= e1000e_get_phy_info_igp,
	.read_reg		= e1000e_read_phy_reg_igp,
	.release		= e1000_put_hw_semaphore_82571,
	.reset			= e1000e_phy_hw_reset_generic,
1729 1730
	.set_d0_lplu_state	= e1000_set_d0_lplu_state_82571,
	.set_d3_lplu_state	= e1000e_set_d3_lplu_state,
1731
	.write_reg		= e1000e_write_phy_reg_igp,
B
Bruce Allan 已提交
1732
	.cfg_on_link_up      	= NULL,
1733 1734 1735
};

static struct e1000_phy_operations e82_phy_ops_m88 = {
1736
	.acquire		= e1000_get_hw_semaphore_82571,
1737
	.check_polarity		= e1000_check_polarity_m88,
1738
	.check_reset_block	= e1000e_check_reset_block_generic,
1739
	.commit			= e1000e_phy_sw_reset,
1740 1741 1742
	.force_speed_duplex	= e1000e_phy_force_speed_duplex_m88,
	.get_cfg_done		= e1000e_get_cfg_done,
	.get_cable_length	= e1000e_get_cable_length_m88,
1743 1744 1745 1746
	.get_info		= e1000e_get_phy_info_m88,
	.read_reg		= e1000e_read_phy_reg_m88,
	.release		= e1000_put_hw_semaphore_82571,
	.reset			= e1000e_phy_hw_reset_generic,
1747 1748
	.set_d0_lplu_state	= e1000_set_d0_lplu_state_82571,
	.set_d3_lplu_state	= e1000e_set_d3_lplu_state,
1749
	.write_reg		= e1000e_write_phy_reg_m88,
B
Bruce Allan 已提交
1750
	.cfg_on_link_up      	= NULL,
1751 1752
};

1753
static struct e1000_phy_operations e82_phy_ops_bm = {
1754
	.acquire		= e1000_get_hw_semaphore_82571,
1755
	.check_polarity		= e1000_check_polarity_m88,
1756
	.check_reset_block	= e1000e_check_reset_block_generic,
1757
	.commit			= e1000e_phy_sw_reset,
1758 1759 1760
	.force_speed_duplex	= e1000e_phy_force_speed_duplex_m88,
	.get_cfg_done		= e1000e_get_cfg_done,
	.get_cable_length	= e1000e_get_cable_length_m88,
1761 1762 1763 1764
	.get_info		= e1000e_get_phy_info_m88,
	.read_reg		= e1000e_read_phy_reg_bm2,
	.release		= e1000_put_hw_semaphore_82571,
	.reset			= e1000e_phy_hw_reset_generic,
1765 1766
	.set_d0_lplu_state	= e1000_set_d0_lplu_state_82571,
	.set_d3_lplu_state	= e1000e_set_d3_lplu_state,
1767
	.write_reg		= e1000e_write_phy_reg_bm2,
B
Bruce Allan 已提交
1768
	.cfg_on_link_up      	= NULL,
1769 1770
};

1771
static struct e1000_nvm_operations e82571_nvm_ops = {
1772 1773 1774 1775
	.acquire		= e1000_acquire_nvm_82571,
	.read			= e1000e_read_nvm_eerd,
	.release		= e1000_release_nvm_82571,
	.update			= e1000_update_nvm_checksum_82571,
1776
	.valid_led_default	= e1000_valid_led_default_82571,
1777 1778
	.validate		= e1000_validate_nvm_checksum_82571,
	.write			= e1000_write_nvm_82571,
1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792
};

struct e1000_info e1000_82571_info = {
	.mac			= e1000_82571,
	.flags			= FLAG_HAS_HW_VLAN_FILTER
				  | FLAG_HAS_JUMBO_FRAMES
				  | FLAG_HAS_WOL
				  | FLAG_APME_IN_CTRL3
				  | FLAG_RX_CSUM_ENABLED
				  | FLAG_HAS_CTRLEXT_ON_LOAD
				  | FLAG_HAS_SMART_POWER_DOWN
				  | FLAG_RESET_OVERWRITES_LAA /* errata */
				  | FLAG_TARC_SPEED_MODE_BIT /* errata */
				  | FLAG_APME_CHECK_PORT_B,
1793
	.flags2			= FLAG2_DISABLE_ASPM_L1, /* errata 13 */
1794
	.pba			= 38,
1795
	.max_hw_frame_size	= DEFAULT_JUMBO,
J
Jeff Kirsher 已提交
1796
	.get_variants		= e1000_get_variants_82571,
1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810
	.mac_ops		= &e82571_mac_ops,
	.phy_ops		= &e82_phy_ops_igp,
	.nvm_ops		= &e82571_nvm_ops,
};

struct e1000_info e1000_82572_info = {
	.mac			= e1000_82572,
	.flags			= FLAG_HAS_HW_VLAN_FILTER
				  | FLAG_HAS_JUMBO_FRAMES
				  | FLAG_HAS_WOL
				  | FLAG_APME_IN_CTRL3
				  | FLAG_RX_CSUM_ENABLED
				  | FLAG_HAS_CTRLEXT_ON_LOAD
				  | FLAG_TARC_SPEED_MODE_BIT, /* errata */
1811
	.flags2			= FLAG2_DISABLE_ASPM_L1, /* errata 13 */
1812
	.pba			= 38,
1813
	.max_hw_frame_size	= DEFAULT_JUMBO,
J
Jeff Kirsher 已提交
1814
	.get_variants		= e1000_get_variants_82571,
1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829
	.mac_ops		= &e82571_mac_ops,
	.phy_ops		= &e82_phy_ops_igp,
	.nvm_ops		= &e82571_nvm_ops,
};

struct e1000_info e1000_82573_info = {
	.mac			= e1000_82573,
	.flags			= FLAG_HAS_HW_VLAN_FILTER
				  | FLAG_HAS_WOL
				  | FLAG_APME_IN_CTRL3
				  | FLAG_RX_CSUM_ENABLED
				  | FLAG_HAS_SMART_POWER_DOWN
				  | FLAG_HAS_AMT
				  | FLAG_HAS_SWSM_ON_LOAD,
	.pba			= 20,
1830
	.max_hw_frame_size	= ETH_FRAME_LEN + ETH_FCS_LEN,
J
Jeff Kirsher 已提交
1831
	.get_variants		= e1000_get_variants_82571,
1832 1833
	.mac_ops		= &e82571_mac_ops,
	.phy_ops		= &e82_phy_ops_m88,
1834
	.nvm_ops		= &e82571_nvm_ops,
1835 1836
};

1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847
struct e1000_info e1000_82574_info = {
	.mac			= e1000_82574,
	.flags			= FLAG_HAS_HW_VLAN_FILTER
				  | FLAG_HAS_MSIX
				  | FLAG_HAS_JUMBO_FRAMES
				  | FLAG_HAS_WOL
				  | FLAG_APME_IN_CTRL3
				  | FLAG_RX_CSUM_ENABLED
				  | FLAG_HAS_SMART_POWER_DOWN
				  | FLAG_HAS_AMT
				  | FLAG_HAS_CTRLEXT_ON_LOAD,
1848
	.pba			= 36,
1849
	.max_hw_frame_size	= DEFAULT_JUMBO,
1850 1851 1852 1853 1854 1855
	.get_variants		= e1000_get_variants_82571,
	.mac_ops		= &e82571_mac_ops,
	.phy_ops		= &e82_phy_ops_bm,
	.nvm_ops		= &e82571_nvm_ops,
};

1856 1857 1858 1859 1860 1861 1862 1863 1864
struct e1000_info e1000_82583_info = {
	.mac			= e1000_82583,
	.flags			= FLAG_HAS_HW_VLAN_FILTER
				  | FLAG_HAS_WOL
				  | FLAG_APME_IN_CTRL3
				  | FLAG_RX_CSUM_ENABLED
				  | FLAG_HAS_SMART_POWER_DOWN
				  | FLAG_HAS_AMT
				  | FLAG_HAS_CTRLEXT_ON_LOAD,
1865
	.pba			= 36,
1866
	.max_hw_frame_size	= ETH_FRAME_LEN + ETH_FCS_LEN,
1867 1868 1869 1870 1871 1872
	.get_variants		= e1000_get_variants_82571,
	.mac_ops		= &e82571_mac_ops,
	.phy_ops		= &e82_phy_ops_bm,
	.nvm_ops		= &e82571_nvm_ops,
};