82571.c 44.0 KB
Newer Older
1 2 3
/*******************************************************************************

  Intel PRO/1000 Linux driver
4
  Copyright(c) 1999 - 2008 Intel Corporation.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

  This program is free software; you can redistribute it and/or modify it
  under the terms and conditions of the GNU General Public License,
  version 2, as published by the Free Software Foundation.

  This program is distributed in the hope it will be useful, but WITHOUT
  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  more details.

  You should have received a copy of the GNU General Public License along with
  this program; if not, write to the Free Software Foundation, Inc.,
  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.

  The full GNU General Public License is included in this distribution in
  the file called "COPYING".

  Contact Information:
  Linux NICS <linux.nics@intel.com>
  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497

*******************************************************************************/

/*
 * 82571EB Gigabit Ethernet Controller
31
 * 82571EB Gigabit Ethernet Controller (Copper)
32
 * 82571EB Gigabit Ethernet Controller (Fiber)
33 34 35
 * 82571EB Dual Port Gigabit Mezzanine Adapter
 * 82571EB Quad Port Gigabit Mezzanine Adapter
 * 82571PT Gigabit PT Quad Port Server ExpressModule
36 37 38 39 40 41
 * 82572EI Gigabit Ethernet Controller (Copper)
 * 82572EI Gigabit Ethernet Controller (Fiber)
 * 82572EI Gigabit Ethernet Controller
 * 82573V Gigabit Ethernet Controller (Copper)
 * 82573E Gigabit Ethernet Controller (Copper)
 * 82573L Gigabit Ethernet Controller
42
 * 82574L Gigabit Network Connection
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
 */

#include <linux/netdevice.h>
#include <linux/delay.h>
#include <linux/pci.h>

#include "e1000.h"

#define ID_LED_RESERVED_F746 0xF746
#define ID_LED_DEFAULT_82573 ((ID_LED_DEF1_DEF2 << 12) | \
			      (ID_LED_OFF1_ON2  <<  8) | \
			      (ID_LED_DEF1_DEF2 <<  4) | \
			      (ID_LED_DEF1_DEF2))

#define E1000_GCR_L1_ACT_WITHOUT_L0S_RX 0x08000000

59 60
#define E1000_NVM_INIT_CTRL2_MNGM 0x6000 /* Manageability Operation Mode mask */

61 62 63
static s32 e1000_get_phy_id_82571(struct e1000_hw *hw);
static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw);
static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw);
64
static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw);
65 66 67 68 69 70
static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
				      u16 words, u16 *data);
static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw);
static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw);
static s32 e1000_setup_link_82571(struct e1000_hw *hw);
static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw);
71 72
static bool e1000_check_mng_mode_82574(struct e1000_hw *hw);
static s32 e1000_led_on_82574(struct e1000_hw *hw);
73 74 75 76 77 78 79 80 81 82 83 84

/**
 *  e1000_init_phy_params_82571 - Init PHY func ptrs.
 *  @hw: pointer to the HW structure
 *
 *  This is a function pointer entry point called by the api module.
 **/
static s32 e1000_init_phy_params_82571(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;

85
	if (hw->phy.media_type != e1000_media_type_copper) {
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
		phy->type = e1000_phy_none;
		return 0;
	}

	phy->addr			 = 1;
	phy->autoneg_mask		 = AUTONEG_ADVERTISE_SPEED_DEFAULT;
	phy->reset_delay_us		 = 100;

	switch (hw->mac.type) {
	case e1000_82571:
	case e1000_82572:
		phy->type		 = e1000_phy_igp_2;
		break;
	case e1000_82573:
		phy->type		 = e1000_phy_m88;
		break;
102 103 104
	case e1000_82574:
		phy->type		 = e1000_phy_bm;
		break;
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
	default:
		return -E1000_ERR_PHY;
		break;
	}

	/* This can only be done after all function pointers are setup. */
	ret_val = e1000_get_phy_id_82571(hw);

	/* Verify phy id */
	switch (hw->mac.type) {
	case e1000_82571:
	case e1000_82572:
		if (phy->id != IGP01E1000_I_PHY_ID)
			return -E1000_ERR_PHY;
		break;
	case e1000_82573:
		if (phy->id != M88E1111_I_PHY_ID)
			return -E1000_ERR_PHY;
		break;
124 125 126 127
	case e1000_82574:
		if (phy->id != BME1000_E_PHY_ID_R2)
			return -E1000_ERR_PHY;
		break;
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
	default:
		return -E1000_ERR_PHY;
		break;
	}

	return 0;
}

/**
 *  e1000_init_nvm_params_82571 - Init NVM func ptrs.
 *  @hw: pointer to the HW structure
 *
 *  This is a function pointer entry point called by the api module.
 **/
static s32 e1000_init_nvm_params_82571(struct e1000_hw *hw)
{
	struct e1000_nvm_info *nvm = &hw->nvm;
	u32 eecd = er32(EECD);
	u16 size;

	nvm->opcode_bits = 8;
	nvm->delay_usec = 1;
	switch (nvm->override) {
	case e1000_nvm_override_spi_large:
		nvm->page_size = 32;
		nvm->address_bits = 16;
		break;
	case e1000_nvm_override_spi_small:
		nvm->page_size = 8;
		nvm->address_bits = 8;
		break;
	default:
		nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
		nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
		break;
	}

	switch (hw->mac.type) {
	case e1000_82573:
167
	case e1000_82574:
168 169 170
		if (((eecd >> 15) & 0x3) == 0x3) {
			nvm->type = e1000_nvm_flash_hw;
			nvm->word_size = 2048;
171 172
			/*
			 * Autonomous Flash update bit must be cleared due
173 174 175 176 177 178 179 180
			 * to Flash update issue.
			 */
			eecd &= ~E1000_EECD_AUPDEN;
			ew32(EECD, eecd);
			break;
		}
		/* Fall Through */
	default:
181
		nvm->type = e1000_nvm_eeprom_spi;
182 183
		size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
				  E1000_EECD_SIZE_EX_SHIFT);
184 185
		/*
		 * Added to a constant, "size" becomes the left-shift value
186 187 188
		 * for setting word_size.
		 */
		size += NVM_WORD_SIZE_BASE_SHIFT;
189 190 191 192

		/* EEPROM access above 16k is unsupported */
		if (size > 14)
			size = 14;
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
		nvm->word_size	= 1 << size;
		break;
	}

	return 0;
}

/**
 *  e1000_init_mac_params_82571 - Init MAC func ptrs.
 *  @hw: pointer to the HW structure
 *
 *  This is a function pointer entry point called by the api module.
 **/
static s32 e1000_init_mac_params_82571(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct e1000_mac_info *mac = &hw->mac;
	struct e1000_mac_operations *func = &mac->ops;

	/* Set media type */
	switch (adapter->pdev->device) {
	case E1000_DEV_ID_82571EB_FIBER:
	case E1000_DEV_ID_82572EI_FIBER:
	case E1000_DEV_ID_82571EB_QUAD_FIBER:
217
		hw->phy.media_type = e1000_media_type_fiber;
218 219 220
		break;
	case E1000_DEV_ID_82571EB_SERDES:
	case E1000_DEV_ID_82572EI_SERDES:
221 222
	case E1000_DEV_ID_82571EB_SERDES_DUAL:
	case E1000_DEV_ID_82571EB_SERDES_QUAD:
223
		hw->phy.media_type = e1000_media_type_internal_serdes;
224 225
		break;
	default:
226
		hw->phy.media_type = e1000_media_type_copper;
227 228 229 230 231 232 233 234
		break;
	}

	/* Set mta register count */
	mac->mta_reg_count = 128;
	/* Set rar entry count */
	mac->rar_entry_count = E1000_RAR_ENTRIES;
	/* Set if manageability features are enabled. */
235
	mac->arc_subsystem_valid = (er32(FWSM) & E1000_FWSM_MODE_MASK) ? 1 : 0;
236 237

	/* check for link */
238
	switch (hw->phy.media_type) {
239 240 241 242 243 244
	case e1000_media_type_copper:
		func->setup_physical_interface = e1000_setup_copper_link_82571;
		func->check_for_link = e1000e_check_for_copper_link;
		func->get_link_up_info = e1000e_get_speed_and_duplex_copper;
		break;
	case e1000_media_type_fiber:
245 246
		func->setup_physical_interface =
			e1000_setup_fiber_serdes_link_82571;
247
		func->check_for_link = e1000e_check_for_fiber_link;
248 249
		func->get_link_up_info =
			e1000e_get_speed_and_duplex_fiber_serdes;
250 251
		break;
	case e1000_media_type_internal_serdes:
252 253
		func->setup_physical_interface =
			e1000_setup_fiber_serdes_link_82571;
254
		func->check_for_link = e1000_check_for_serdes_link_82571;
255 256
		func->get_link_up_info =
			e1000e_get_speed_and_duplex_fiber_serdes;
257 258 259 260 261 262
		break;
	default:
		return -E1000_ERR_CONFIG;
		break;
	}

263 264 265 266 267 268 269 270 271 272 273
	switch (hw->mac.type) {
	case e1000_82574:
		func->check_mng_mode = e1000_check_mng_mode_82574;
		func->led_on = e1000_led_on_82574;
		break;
	default:
		func->check_mng_mode = e1000e_check_mng_mode_generic;
		func->led_on = e1000e_led_on_generic;
		break;
	}

274 275 276
	return 0;
}

J
Jeff Kirsher 已提交
277
static s32 e1000_get_variants_82571(struct e1000_adapter *adapter)
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
{
	struct e1000_hw *hw = &adapter->hw;
	static int global_quad_port_a; /* global port a indication */
	struct pci_dev *pdev = adapter->pdev;
	u16 eeprom_data = 0;
	int is_port_b = er32(STATUS) & E1000_STATUS_FUNC_1;
	s32 rc;

	rc = e1000_init_mac_params_82571(adapter);
	if (rc)
		return rc;

	rc = e1000_init_nvm_params_82571(hw);
	if (rc)
		return rc;

	rc = e1000_init_phy_params_82571(hw);
	if (rc)
		return rc;

	/* tag quad port adapters first, it's used below */
	switch (pdev->device) {
	case E1000_DEV_ID_82571EB_QUAD_COPPER:
	case E1000_DEV_ID_82571EB_QUAD_FIBER:
	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
303
	case E1000_DEV_ID_82571PT_QUAD_COPPER:
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
		adapter->flags |= FLAG_IS_QUAD_PORT;
		/* mark the first port */
		if (global_quad_port_a == 0)
			adapter->flags |= FLAG_IS_QUAD_PORT_A;
		/* Reset for multiple quad port adapters */
		global_quad_port_a++;
		if (global_quad_port_a == 4)
			global_quad_port_a = 0;
		break;
	default:
		break;
	}

	switch (adapter->hw.mac.type) {
	case e1000_82571:
		/* these dual ports don't have WoL on port B at all */
		if (((pdev->device == E1000_DEV_ID_82571EB_FIBER) ||
		     (pdev->device == E1000_DEV_ID_82571EB_SERDES) ||
		     (pdev->device == E1000_DEV_ID_82571EB_COPPER)) &&
		    (is_port_b))
			adapter->flags &= ~FLAG_HAS_WOL;
		/* quad ports only support WoL on port A */
		if (adapter->flags & FLAG_IS_QUAD_PORT &&
R
Roel Kluin 已提交
327
		    (!(adapter->flags & FLAG_IS_QUAD_PORT_A)))
328
			adapter->flags &= ~FLAG_HAS_WOL;
329 330 331
		/* Does not support WoL on any port */
		if (pdev->device == E1000_DEV_ID_82571EB_SERDES_QUAD)
			adapter->flags &= ~FLAG_HAS_WOL;
332 333 334 335
		break;

	case e1000_82573:
		if (pdev->device == E1000_DEV_ID_82573L) {
336 337 338
			if (e1000_read_nvm(&adapter->hw, NVM_INIT_3GIO_3, 1,
				       &eeprom_data) < 0)
				break;
339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
			if (eeprom_data & NVM_WORD1A_ASPM_MASK)
				adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
		}
		break;
	default:
		break;
	}

	return 0;
}

/**
 *  e1000_get_phy_id_82571 - Retrieve the PHY ID and revision
 *  @hw: pointer to the HW structure
 *
 *  Reads the PHY registers and stores the PHY ID and possibly the PHY
 *  revision in the hardware structure.
 **/
static s32 e1000_get_phy_id_82571(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
360 361
	s32 ret_val;
	u16 phy_id = 0;
362 363 364 365

	switch (hw->mac.type) {
	case e1000_82571:
	case e1000_82572:
366 367
		/*
		 * The 82571 firmware may still be configuring the PHY.
368 369
		 * In this case, we cannot access the PHY until the
		 * configuration is done.  So we explicitly set the
370 371
		 * PHY ID.
		 */
372 373 374 375 376
		phy->id = IGP01E1000_I_PHY_ID;
		break;
	case e1000_82573:
		return e1000e_get_phy_id(hw);
		break;
377 378 379 380 381 382 383 384 385 386 387 388 389 390
	case e1000_82574:
		ret_val = e1e_rphy(hw, PHY_ID1, &phy_id);
		if (ret_val)
			return ret_val;

		phy->id = (u32)(phy_id << 16);
		udelay(20);
		ret_val = e1e_rphy(hw, PHY_ID2, &phy_id);
		if (ret_val)
			return ret_val;

		phy->id |= (u32)(phy_id);
		phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
		break;
391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
	default:
		return -E1000_ERR_PHY;
		break;
	}

	return 0;
}

/**
 *  e1000_get_hw_semaphore_82571 - Acquire hardware semaphore
 *  @hw: pointer to the HW structure
 *
 *  Acquire the HW semaphore to access the PHY or NVM
 **/
static s32 e1000_get_hw_semaphore_82571(struct e1000_hw *hw)
{
	u32 swsm;
	s32 timeout = hw->nvm.word_size + 1;
	s32 i = 0;

	/* Get the FW semaphore. */
	for (i = 0; i < timeout; i++) {
		swsm = er32(SWSM);
		ew32(SWSM, swsm | E1000_SWSM_SWESMBI);

		/* Semaphore acquired if bit latched */
		if (er32(SWSM) & E1000_SWSM_SWESMBI)
			break;

		udelay(50);
	}

	if (i == timeout) {
		/* Release semaphores */
		e1000e_put_hw_semaphore(hw);
		hw_dbg(hw, "Driver can't access the NVM\n");
		return -E1000_ERR_NVM;
	}

	return 0;
}

/**
 *  e1000_put_hw_semaphore_82571 - Release hardware semaphore
 *  @hw: pointer to the HW structure
 *
 *  Release hardware semaphore used to access the PHY or NVM
 **/
static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw)
{
	u32 swsm;

	swsm = er32(SWSM);

	swsm &= ~E1000_SWSM_SWESMBI;

	ew32(SWSM, swsm);
}

/**
 *  e1000_acquire_nvm_82571 - Request for access to the EEPROM
 *  @hw: pointer to the HW structure
 *
 *  To gain access to the EEPROM, first we must obtain a hardware semaphore.
 *  Then for non-82573 hardware, set the EEPROM access request bit and wait
 *  for EEPROM access grant bit.  If the access grant bit is not set, release
 *  hardware semaphore.
 **/
static s32 e1000_acquire_nvm_82571(struct e1000_hw *hw)
{
	s32 ret_val;

	ret_val = e1000_get_hw_semaphore_82571(hw);
	if (ret_val)
		return ret_val;

467
	if (hw->mac.type != e1000_82573 && hw->mac.type != e1000_82574)
468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
		ret_val = e1000e_acquire_nvm(hw);

	if (ret_val)
		e1000_put_hw_semaphore_82571(hw);

	return ret_val;
}

/**
 *  e1000_release_nvm_82571 - Release exclusive access to EEPROM
 *  @hw: pointer to the HW structure
 *
 *  Stop any current commands to the EEPROM and clear the EEPROM request bit.
 **/
static void e1000_release_nvm_82571(struct e1000_hw *hw)
{
	e1000e_release_nvm(hw);
	e1000_put_hw_semaphore_82571(hw);
}

/**
 *  e1000_write_nvm_82571 - Write to EEPROM using appropriate interface
 *  @hw: pointer to the HW structure
 *  @offset: offset within the EEPROM to be written to
 *  @words: number of words to write
 *  @data: 16 bit word(s) to be written to the EEPROM
 *
 *  For non-82573 silicon, write data to EEPROM at offset using SPI interface.
 *
 *  If e1000e_update_nvm_checksum is not called after this function, the
498
 *  EEPROM will most likely contain an invalid checksum.
499 500 501 502 503 504 505 506
 **/
static s32 e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset, u16 words,
				 u16 *data)
{
	s32 ret_val;

	switch (hw->mac.type) {
	case e1000_82573:
507
	case e1000_82574:
508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
		ret_val = e1000_write_nvm_eewr_82571(hw, offset, words, data);
		break;
	case e1000_82571:
	case e1000_82572:
		ret_val = e1000e_write_nvm_spi(hw, offset, words, data);
		break;
	default:
		ret_val = -E1000_ERR_NVM;
		break;
	}

	return ret_val;
}

/**
 *  e1000_update_nvm_checksum_82571 - Update EEPROM checksum
 *  @hw: pointer to the HW structure
 *
 *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
 *  up to the checksum.  Then calculates the EEPROM checksum and writes the
 *  value to the EEPROM.
 **/
static s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw)
{
	u32 eecd;
	s32 ret_val;
	u16 i;

	ret_val = e1000e_update_nvm_checksum_generic(hw);
	if (ret_val)
		return ret_val;

540 541 542 543
	/*
	 * If our nvm is an EEPROM, then we're done
	 * otherwise, commit the checksum to the flash NVM.
	 */
544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
	if (hw->nvm.type != e1000_nvm_flash_hw)
		return ret_val;

	/* Check for pending operations. */
	for (i = 0; i < E1000_FLASH_UPDATES; i++) {
		msleep(1);
		if ((er32(EECD) & E1000_EECD_FLUPD) == 0)
			break;
	}

	if (i == E1000_FLASH_UPDATES)
		return -E1000_ERR_NVM;

	/* Reset the firmware if using STM opcode. */
	if ((er32(FLOP) & 0xFF00) == E1000_STM_OPCODE) {
559 560
		/*
		 * The enabling of and the actual reset must be done
561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610
		 * in two write cycles.
		 */
		ew32(HICR, E1000_HICR_FW_RESET_ENABLE);
		e1e_flush();
		ew32(HICR, E1000_HICR_FW_RESET);
	}

	/* Commit the write to flash */
	eecd = er32(EECD) | E1000_EECD_FLUPD;
	ew32(EECD, eecd);

	for (i = 0; i < E1000_FLASH_UPDATES; i++) {
		msleep(1);
		if ((er32(EECD) & E1000_EECD_FLUPD) == 0)
			break;
	}

	if (i == E1000_FLASH_UPDATES)
		return -E1000_ERR_NVM;

	return 0;
}

/**
 *  e1000_validate_nvm_checksum_82571 - Validate EEPROM checksum
 *  @hw: pointer to the HW structure
 *
 *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
 *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
 **/
static s32 e1000_validate_nvm_checksum_82571(struct e1000_hw *hw)
{
	if (hw->nvm.type == e1000_nvm_flash_hw)
		e1000_fix_nvm_checksum_82571(hw);

	return e1000e_validate_nvm_checksum_generic(hw);
}

/**
 *  e1000_write_nvm_eewr_82571 - Write to EEPROM for 82573 silicon
 *  @hw: pointer to the HW structure
 *  @offset: offset within the EEPROM to be written to
 *  @words: number of words to write
 *  @data: 16 bit word(s) to be written to the EEPROM
 *
 *  After checking for invalid values, poll the EEPROM to ensure the previous
 *  command has completed before trying to write the next word.  After write
 *  poll for completion.
 *
 *  If e1000e_update_nvm_checksum is not called after this function, the
611
 *  EEPROM will most likely contain an invalid checksum.
612 613 614 615 616 617 618 619 620
 **/
static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
				      u16 words, u16 *data)
{
	struct e1000_nvm_info *nvm = &hw->nvm;
	u32 i;
	u32 eewr = 0;
	s32 ret_val = 0;

621 622 623 624
	/*
	 * A check for invalid values:  offset too large, too many words,
	 * and not enough words.
	 */
625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710
	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
	    (words == 0)) {
		hw_dbg(hw, "nvm parameter(s) out of bounds\n");
		return -E1000_ERR_NVM;
	}

	for (i = 0; i < words; i++) {
		eewr = (data[i] << E1000_NVM_RW_REG_DATA) |
		       ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) |
		       E1000_NVM_RW_REG_START;

		ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
		if (ret_val)
			break;

		ew32(EEWR, eewr);

		ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
		if (ret_val)
			break;
	}

	return ret_val;
}

/**
 *  e1000_get_cfg_done_82571 - Poll for configuration done
 *  @hw: pointer to the HW structure
 *
 *  Reads the management control register for the config done bit to be set.
 **/
static s32 e1000_get_cfg_done_82571(struct e1000_hw *hw)
{
	s32 timeout = PHY_CFG_TIMEOUT;

	while (timeout) {
		if (er32(EEMNGCTL) &
		    E1000_NVM_CFG_DONE_PORT_0)
			break;
		msleep(1);
		timeout--;
	}
	if (!timeout) {
		hw_dbg(hw, "MNG configuration cycle has not completed.\n");
		return -E1000_ERR_RESET;
	}

	return 0;
}

/**
 *  e1000_set_d0_lplu_state_82571 - Set Low Power Linkup D0 state
 *  @hw: pointer to the HW structure
 *  @active: TRUE to enable LPLU, FALSE to disable
 *
 *  Sets the LPLU D0 state according to the active flag.  When activating LPLU
 *  this function also disables smart speed and vice versa.  LPLU will not be
 *  activated unless the device autonegotiation advertisement meets standards
 *  of either 10 or 10/100 or 10/100/1000 at all duplexes.  This is a function
 *  pointer entry point only called by PHY setup routines.
 **/
static s32 e1000_set_d0_lplu_state_82571(struct e1000_hw *hw, bool active)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 data;

	ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
	if (ret_val)
		return ret_val;

	if (active) {
		data |= IGP02E1000_PM_D0_LPLU;
		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
		if (ret_val)
			return ret_val;

		/* When LPLU is enabled, we should disable SmartSpeed */
		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
		if (ret_val)
			return ret_val;
	} else {
		data &= ~IGP02E1000_PM_D0_LPLU;
		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
711 712
		/*
		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
713 714
		 * during Dx states where the power conservation is most
		 * important.  During driver activity we should enable
715 716
		 * SmartSpeed, so performance is maintained.
		 */
717 718
		if (phy->smart_speed == e1000_smart_speed_on) {
			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
719
					   &data);
720 721 722 723 724
			if (ret_val)
				return ret_val;

			data |= IGP01E1000_PSCFR_SMART_SPEED;
			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
725
					   data);
726 727 728 729
			if (ret_val)
				return ret_val;
		} else if (phy->smart_speed == e1000_smart_speed_off) {
			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
730
					   &data);
731 732 733 734 735
			if (ret_val)
				return ret_val;

			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
736
					   data);
737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760
			if (ret_val)
				return ret_val;
		}
	}

	return 0;
}

/**
 *  e1000_reset_hw_82571 - Reset hardware
 *  @hw: pointer to the HW structure
 *
 *  This resets the hardware into a known state.  This is a
 *  function pointer entry point called by the api module.
 **/
static s32 e1000_reset_hw_82571(struct e1000_hw *hw)
{
	u32 ctrl;
	u32 extcnf_ctrl;
	u32 ctrl_ext;
	u32 icr;
	s32 ret_val;
	u16 i = 0;

761 762
	/*
	 * Prevent the PCI-E bus from sticking if there is no TLP connection
763 764 765 766 767 768 769 770 771 772 773 774 775 776 777
	 * on the last TLP read/write transaction when MAC is reset.
	 */
	ret_val = e1000e_disable_pcie_master(hw);
	if (ret_val)
		hw_dbg(hw, "PCI-E Master disable polling has failed.\n");

	hw_dbg(hw, "Masking off all interrupts\n");
	ew32(IMC, 0xffffffff);

	ew32(RCTL, 0);
	ew32(TCTL, E1000_TCTL_PSP);
	e1e_flush();

	msleep(10);

778 779 780 781
	/*
	 * Must acquire the MDIO ownership before MAC reset.
	 * Ownership defaults to firmware after a reset.
	 */
782
	if (hw->mac.type == e1000_82573 || hw->mac.type == e1000_82574) {
783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817
		extcnf_ctrl = er32(EXTCNF_CTRL);
		extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;

		do {
			ew32(EXTCNF_CTRL, extcnf_ctrl);
			extcnf_ctrl = er32(EXTCNF_CTRL);

			if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP)
				break;

			extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;

			msleep(2);
			i++;
		} while (i < MDIO_OWNERSHIP_TIMEOUT);
	}

	ctrl = er32(CTRL);

	hw_dbg(hw, "Issuing a global reset to MAC\n");
	ew32(CTRL, ctrl | E1000_CTRL_RST);

	if (hw->nvm.type == e1000_nvm_flash_hw) {
		udelay(10);
		ctrl_ext = er32(CTRL_EXT);
		ctrl_ext |= E1000_CTRL_EXT_EE_RST;
		ew32(CTRL_EXT, ctrl_ext);
		e1e_flush();
	}

	ret_val = e1000e_get_auto_rd_done(hw);
	if (ret_val)
		/* We don't want to continue accessing MAC registers. */
		return ret_val;

818 819
	/*
	 * Phy configuration from NVM just starts after EECD_AUTO_RD is set.
820 821 822
	 * Need to wait for Phy configuration completion before accessing
	 * NVM and Phy.
	 */
823
	if (hw->mac.type == e1000_82573 || hw->mac.type == e1000_82574)
824 825 826 827 828 829
		msleep(25);

	/* Clear any pending interrupt events. */
	ew32(IMC, 0xffffffff);
	icr = er32(ICR);

830 831 832 833
	if (hw->mac.type == e1000_82571 &&
		hw->dev_spec.e82571.alt_mac_addr_is_present)
			e1000e_set_laa_state_82571(hw, true);

834 835 836 837
	/* Reinitialize the 82571 serdes link state machine */
	if (hw->phy.media_type == e1000_media_type_internal_serdes)
		hw->mac.serdes_link_state = e1000_serdes_link_down;

838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868
	return 0;
}

/**
 *  e1000_init_hw_82571 - Initialize hardware
 *  @hw: pointer to the HW structure
 *
 *  This inits the hardware readying it for operation.
 **/
static s32 e1000_init_hw_82571(struct e1000_hw *hw)
{
	struct e1000_mac_info *mac = &hw->mac;
	u32 reg_data;
	s32 ret_val;
	u16 i;
	u16 rar_count = mac->rar_entry_count;

	e1000_initialize_hw_bits_82571(hw);

	/* Initialize identification LED */
	ret_val = e1000e_id_led_init(hw);
	if (ret_val) {
		hw_dbg(hw, "Error initializing identification LED\n");
		return ret_val;
	}

	/* Disabling VLAN filtering */
	hw_dbg(hw, "Initializing the IEEE VLAN\n");
	e1000e_clear_vfta(hw);

	/* Setup the receive address. */
869 870
	/*
	 * If, however, a locally administered address was assigned to the
871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886
	 * 82571, we must reserve a RAR for it to work around an issue where
	 * resetting one port will reload the MAC on the other port.
	 */
	if (e1000e_get_laa_state_82571(hw))
		rar_count--;
	e1000e_init_rx_addrs(hw, rar_count);

	/* Zero out the Multicast HASH table */
	hw_dbg(hw, "Zeroing the MTA\n");
	for (i = 0; i < mac->mta_reg_count; i++)
		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);

	/* Setup link and flow control */
	ret_val = e1000_setup_link_82571(hw);

	/* Set the transmit descriptor write-back policy */
887
	reg_data = er32(TXDCTL(0));
888 889 890
	reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
		   E1000_TXDCTL_FULL_TX_DESC_WB |
		   E1000_TXDCTL_COUNT_DESC;
891
	ew32(TXDCTL(0), reg_data);
892 893

	/* ...for both queues. */
894
	if (mac->type != e1000_82573 && mac->type != e1000_82574) {
895
		reg_data = er32(TXDCTL(1));
896 897 898
		reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
			   E1000_TXDCTL_FULL_TX_DESC_WB |
			   E1000_TXDCTL_COUNT_DESC;
899
		ew32(TXDCTL(1), reg_data);
900 901 902 903 904 905 906
	} else {
		e1000e_enable_tx_pkt_filtering(hw);
		reg_data = er32(GCR);
		reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
		ew32(GCR, reg_data);
	}

907 908
	/*
	 * Clear all of the statistics registers (clear on read).  It is
909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928
	 * important that we do this after we have tried to establish link
	 * because the symbol error count will increment wildly if there
	 * is no link.
	 */
	e1000_clear_hw_cntrs_82571(hw);

	return ret_val;
}

/**
 *  e1000_initialize_hw_bits_82571 - Initialize hardware-dependent bits
 *  @hw: pointer to the HW structure
 *
 *  Initializes required hardware-dependent bits needed for normal operation.
 **/
static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw)
{
	u32 reg;

	/* Transmit Descriptor Control 0 */
929
	reg = er32(TXDCTL(0));
930
	reg |= (1 << 22);
931
	ew32(TXDCTL(0), reg);
932 933

	/* Transmit Descriptor Control 1 */
934
	reg = er32(TXDCTL(1));
935
	reg |= (1 << 22);
936
	ew32(TXDCTL(1), reg);
937 938

	/* Transmit Arbitration Control 0 */
939
	reg = er32(TARC(0));
940 941 942 943 944 945 946 947 948
	reg &= ~(0xF << 27); /* 30:27 */
	switch (hw->mac.type) {
	case e1000_82571:
	case e1000_82572:
		reg |= (1 << 23) | (1 << 24) | (1 << 25) | (1 << 26);
		break;
	default:
		break;
	}
949
	ew32(TARC(0), reg);
950 951

	/* Transmit Arbitration Control 1 */
952
	reg = er32(TARC(1));
953 954 955 956 957 958 959 960 961
	switch (hw->mac.type) {
	case e1000_82571:
	case e1000_82572:
		reg &= ~((1 << 29) | (1 << 30));
		reg |= (1 << 22) | (1 << 24) | (1 << 25) | (1 << 26);
		if (er32(TCTL) & E1000_TCTL_MULR)
			reg &= ~(1 << 28);
		else
			reg |= (1 << 28);
962
		ew32(TARC(1), reg);
963 964 965 966 967 968
		break;
	default:
		break;
	}

	/* Device Control */
969
	if (hw->mac.type == e1000_82573 || hw->mac.type == e1000_82574) {
970 971 972 973 974 975
		reg = er32(CTRL);
		reg &= ~(1 << 29);
		ew32(CTRL, reg);
	}

	/* Extended Device Control */
976
	if (hw->mac.type == e1000_82573 || hw->mac.type == e1000_82574) {
977 978 979 980 981
		reg = er32(CTRL_EXT);
		reg &= ~(1 << 23);
		reg |= (1 << 22);
		ew32(CTRL_EXT, reg);
	}
982

983 984 985 986 987
	if (hw->mac.type == e1000_82571) {
		reg = er32(PBA_ECC);
		reg |= E1000_PBA_ECC_CORR_EN;
		ew32(PBA_ECC, reg);
	}
988 989 990 991 992 993 994 995 996 997 998 999
	/*
	 * Workaround for hardware errata.
	 * Ensure that DMA Dynamic Clock gating is disabled on 82571 and 82572
	 */

        if ((hw->mac.type == e1000_82571) ||
           (hw->mac.type == e1000_82572)) {
                reg = er32(CTRL_EXT);
                reg &= ~E1000_CTRL_EXT_DMA_DYN_CLK_EN;
                ew32(CTRL_EXT, reg);
        }

1000

J
Jesse Brandeburg 已提交
1001
	/* PCI-Ex Control Registers */
1002 1003 1004 1005
	if (hw->mac.type == e1000_82574) {
		reg = er32(GCR);
		reg |= (1 << 22);
		ew32(GCR, reg);
J
Jesse Brandeburg 已提交
1006 1007 1008 1009

		reg = er32(GCR2);
		reg |= 1;
		ew32(GCR2, reg);
1010 1011 1012
	}

	return;
1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
}

/**
 *  e1000e_clear_vfta - Clear VLAN filter table
 *  @hw: pointer to the HW structure
 *
 *  Clears the register array which contains the VLAN filter table by
 *  setting all the values to 0.
 **/
void e1000e_clear_vfta(struct e1000_hw *hw)
{
	u32 offset;
	u32 vfta_value = 0;
	u32 vfta_offset = 0;
	u32 vfta_bit_in_reg = 0;

1029
	if (hw->mac.type == e1000_82573 || hw->mac.type == e1000_82574) {
1030
		if (hw->mng_cookie.vlan_id != 0) {
1031 1032
			/*
			 * The VFTA is a 4096b bit-field, each identifying
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
			 * a single VLAN ID.  The following operations
			 * determine which 32b entry (i.e. offset) into the
			 * array we want to set the VLAN ID (i.e. bit) of
			 * the manageability unit.
			 */
			vfta_offset = (hw->mng_cookie.vlan_id >>
				       E1000_VFTA_ENTRY_SHIFT) &
				      E1000_VFTA_ENTRY_MASK;
			vfta_bit_in_reg = 1 << (hw->mng_cookie.vlan_id &
					       E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
		}
	}
	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
1046 1047
		/*
		 * If the offset we want to clear is the same offset of the
1048 1049 1050 1051 1052 1053 1054 1055 1056
		 * manageability VLAN ID, then clear all bits except that of
		 * the manageability unit.
		 */
		vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
		E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, vfta_value);
		e1e_flush();
	}
}

1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098
/**
 *  e1000_check_mng_mode_82574 - Check manageability is enabled
 *  @hw: pointer to the HW structure
 *
 *  Reads the NVM Initialization Control Word 2 and returns true
 *  (>0) if any manageability is enabled, else false (0).
 **/
static bool e1000_check_mng_mode_82574(struct e1000_hw *hw)
{
	u16 data;

	e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &data);
	return (data & E1000_NVM_INIT_CTRL2_MNGM) != 0;
}

/**
 *  e1000_led_on_82574 - Turn LED on
 *  @hw: pointer to the HW structure
 *
 *  Turn LED on.
 **/
static s32 e1000_led_on_82574(struct e1000_hw *hw)
{
	u32 ctrl;
	u32 i;

	ctrl = hw->mac.ledctl_mode2;
	if (!(E1000_STATUS_LU & er32(STATUS))) {
		/*
		 * If no link, then turn LED on by setting the invert bit
		 * for each LED that's "on" (0x0E) in ledctl_mode2.
		 */
		for (i = 0; i < 4; i++)
			if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
			    E1000_LEDCTL_MODE_LED_ON)
				ctrl |= (E1000_LEDCTL_LED0_IVRT << (i * 8));
	}
	ew32(LEDCTL, ctrl);

	return 0;
}

1099
/**
1100
 *  e1000_update_mc_addr_list_82571 - Update Multicast addresses
1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111
 *  @hw: pointer to the HW structure
 *  @mc_addr_list: array of multicast addresses to program
 *  @mc_addr_count: number of multicast addresses to program
 *  @rar_used_count: the first RAR register free to program
 *  @rar_count: total number of supported Receive Address Registers
 *
 *  Updates the Receive Address Registers and Multicast Table Array.
 *  The caller must have a packed mc_addr_list of multicast addresses.
 *  The parameter rar_count will usually be hw->mac.rar_entry_count
 *  unless there are workarounds that change this.
 **/
1112
static void e1000_update_mc_addr_list_82571(struct e1000_hw *hw,
1113 1114 1115 1116 1117 1118 1119 1120
					    u8 *mc_addr_list,
					    u32 mc_addr_count,
					    u32 rar_used_count,
					    u32 rar_count)
{
	if (e1000e_get_laa_state_82571(hw))
		rar_count--;

1121 1122
	e1000e_update_mc_addr_list_generic(hw, mc_addr_list, mc_addr_count,
					   rar_used_count, rar_count);
1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
}

/**
 *  e1000_setup_link_82571 - Setup flow control and link settings
 *  @hw: pointer to the HW structure
 *
 *  Determines which flow control settings to use, then configures flow
 *  control.  Calls the appropriate media-specific link configuration
 *  function.  Assuming the adapter has a valid link partner, a valid link
 *  should be established.  Assumes the hardware has previously been reset
 *  and the transmitter and receiver are not enabled.
 **/
static s32 e1000_setup_link_82571(struct e1000_hw *hw)
{
1137 1138
	/*
	 * 82573 does not have a word in the NVM to determine
1139 1140 1141
	 * the default flow control setting, so we explicitly
	 * set it to full.
	 */
1142
	if ((hw->mac.type == e1000_82573 || hw->mac.type == e1000_82574) &&
1143 1144
	    hw->fc.requested_mode == e1000_fc_default)
		hw->fc.requested_mode = e1000_fc_full;
1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169

	return e1000e_setup_link(hw);
}

/**
 *  e1000_setup_copper_link_82571 - Configure copper link settings
 *  @hw: pointer to the HW structure
 *
 *  Configures the link for auto-neg or forced speed and duplex.  Then we check
 *  for link, once link is established calls to configure collision distance
 *  and flow control are called.
 **/
static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw)
{
	u32 ctrl;
	u32 led_ctrl;
	s32 ret_val;

	ctrl = er32(CTRL);
	ctrl |= E1000_CTRL_SLU;
	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
	ew32(CTRL, ctrl);

	switch (hw->phy.type) {
	case e1000_phy_m88:
1170
	case e1000_phy_bm:
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
		ret_val = e1000e_copper_link_setup_m88(hw);
		break;
	case e1000_phy_igp_2:
		ret_val = e1000e_copper_link_setup_igp(hw);
		/* Setup activity LED */
		led_ctrl = er32(LEDCTL);
		led_ctrl &= IGP_ACTIVITY_LED_MASK;
		led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
		ew32(LEDCTL, led_ctrl);
		break;
	default:
		return -E1000_ERR_PHY;
		break;
	}

	if (ret_val)
		return ret_val;

	ret_val = e1000e_setup_copper_link(hw);

	return ret_val;
}

/**
 *  e1000_setup_fiber_serdes_link_82571 - Setup link for fiber/serdes
 *  @hw: pointer to the HW structure
 *
 *  Configures collision distance and flow control for fiber and serdes links.
 *  Upon successful setup, poll for link.
 **/
static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw)
{
	switch (hw->mac.type) {
	case e1000_82571:
	case e1000_82572:
1206 1207
		/*
		 * If SerDes loopback mode is entered, there is no form
1208 1209
		 * of reset to take the adapter out of that mode.  So we
		 * have to explicitly take the adapter out of loopback
1210
		 * mode.  This prevents drivers from twiddling their thumbs
1211 1212
		 * if another tool failed to take it out of loopback mode.
		 */
1213
		ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1214 1215 1216 1217 1218 1219 1220 1221
		break;
	default:
		break;
	}

	return e1000e_setup_fiber_serdes_link(hw);
}

1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346
/**
 *  e1000_check_for_serdes_link_82571 - Check for link (Serdes)
 *  @hw: pointer to the HW structure
 *
 *  Checks for link up on the hardware.  If link is not up and we have
 *  a signal, then we need to force link up.
 **/
s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw)
{
	struct e1000_mac_info *mac = &hw->mac;
	u32 rxcw;
	u32 ctrl;
	u32 status;
	s32 ret_val = 0;

	ctrl = er32(CTRL);
	status = er32(STATUS);
	rxcw = er32(RXCW);

	if ((rxcw & E1000_RXCW_SYNCH) && !(rxcw & E1000_RXCW_IV)) {

		/* Receiver is synchronized with no invalid bits.  */
		switch (mac->serdes_link_state) {
		case e1000_serdes_link_autoneg_complete:
			if (!(status & E1000_STATUS_LU)) {
				/*
				 * We have lost link, retry autoneg before
				 * reporting link failure
				 */
				mac->serdes_link_state =
				    e1000_serdes_link_autoneg_progress;
				hw_dbg(hw, "AN_UP     -> AN_PROG\n");
			}
		break;

		case e1000_serdes_link_forced_up:
			/*
			 * If we are receiving /C/ ordered sets, re-enable
			 * auto-negotiation in the TXCW register and disable
			 * forced link in the Device Control register in an
			 * attempt to auto-negotiate with our link partner.
			 */
			if (rxcw & E1000_RXCW_C) {
				/* Enable autoneg, and unforce link up */
				ew32(TXCW, mac->txcw);
				ew32(CTRL,
				    (ctrl & ~E1000_CTRL_SLU));
				mac->serdes_link_state =
				    e1000_serdes_link_autoneg_progress;
				hw_dbg(hw, "FORCED_UP -> AN_PROG\n");
			}
			break;

		case e1000_serdes_link_autoneg_progress:
			/*
			 * If the LU bit is set in the STATUS register,
			 * autoneg has completed sucessfully. If not,
			 * try foring the link because the far end may be
			 * available but not capable of autonegotiation.
			 */
			if (status & E1000_STATUS_LU)  {
				mac->serdes_link_state =
				    e1000_serdes_link_autoneg_complete;
				hw_dbg(hw, "AN_PROG   -> AN_UP\n");
			} else {
				/*
				 * Disable autoneg, force link up and
				 * full duplex, and change state to forced
				 */
				ew32(TXCW,
				    (mac->txcw & ~E1000_TXCW_ANE));
				ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
				ew32(CTRL, ctrl);

				/* Configure Flow Control after link up. */
				ret_val =
				    e1000e_config_fc_after_link_up(hw);
				if (ret_val) {
					hw_dbg(hw, "Error config flow control\n");
					break;
				}
				mac->serdes_link_state =
				    e1000_serdes_link_forced_up;
				hw_dbg(hw, "AN_PROG   -> FORCED_UP\n");
			}
			mac->serdes_has_link = true;
			break;

		case e1000_serdes_link_down:
		default:
			/* The link was down but the receiver has now gained
			 * valid sync, so lets see if we can bring the link
			 * up. */
			ew32(TXCW, mac->txcw);
			ew32(CTRL,
			    (ctrl & ~E1000_CTRL_SLU));
			mac->serdes_link_state =
			    e1000_serdes_link_autoneg_progress;
			hw_dbg(hw, "DOWN      -> AN_PROG\n");
			break;
		}
	} else {
		if (!(rxcw & E1000_RXCW_SYNCH)) {
			mac->serdes_has_link = false;
			mac->serdes_link_state = e1000_serdes_link_down;
			hw_dbg(hw, "ANYSTATE  -> DOWN\n");
		} else {
			/*
			 * We have sync, and can tolerate one
			 * invalid (IV) codeword before declaring
			 * link down, so reread to look again
			 */
			udelay(10);
			rxcw = er32(RXCW);
			if (rxcw & E1000_RXCW_IV) {
				mac->serdes_link_state = e1000_serdes_link_down;
				mac->serdes_has_link = false;
				hw_dbg(hw, "ANYSTATE  -> DOWN\n");
			}
		}
	}

	return ret_val;
}

1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364
/**
 *  e1000_valid_led_default_82571 - Verify a valid default LED config
 *  @hw: pointer to the HW structure
 *  @data: pointer to the NVM (EEPROM)
 *
 *  Read the EEPROM for the current default LED configuration.  If the
 *  LED configuration is not valid, set to a valid LED configuration.
 **/
static s32 e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data)
{
	s32 ret_val;

	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
	if (ret_val) {
		hw_dbg(hw, "NVM Read Error\n");
		return ret_val;
	}

1365
	if ((hw->mac.type == e1000_82573 || hw->mac.type == e1000_82574) &&
1366 1367
	    *data == ID_LED_RESERVED_F746)
		*data = ID_LED_DEFAULT_82573;
1368
	else if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
1369 1370 1371 1372 1373 1374 1375 1376 1377
		*data = ID_LED_DEFAULT;

	return 0;
}

/**
 *  e1000e_get_laa_state_82571 - Get locally administered address state
 *  @hw: pointer to the HW structure
 *
1378
 *  Retrieve and return the current locally administered address state.
1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
 **/
bool e1000e_get_laa_state_82571(struct e1000_hw *hw)
{
	if (hw->mac.type != e1000_82571)
		return 0;

	return hw->dev_spec.e82571.laa_is_present;
}

/**
 *  e1000e_set_laa_state_82571 - Set locally administered address state
 *  @hw: pointer to the HW structure
 *  @state: enable/disable locally administered address
 *
1393
 *  Enable/Disable the current locally administers address state.
1394 1395 1396 1397 1398 1399 1400 1401 1402 1403
 **/
void e1000e_set_laa_state_82571(struct e1000_hw *hw, bool state)
{
	if (hw->mac.type != e1000_82571)
		return;

	hw->dev_spec.e82571.laa_is_present = state;

	/* If workaround is activated... */
	if (state)
1404 1405
		/*
		 * Hold a copy of the LAA in RAR[14] This is done so that
1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432
		 * between the time RAR[0] gets clobbered and the time it
		 * gets fixed, the actual LAA is in one of the RARs and no
		 * incoming packets directed to this port are dropped.
		 * Eventually the LAA will be in RAR[0] and RAR[14].
		 */
		e1000e_rar_set(hw, hw->mac.addr, hw->mac.rar_entry_count - 1);
}

/**
 *  e1000_fix_nvm_checksum_82571 - Fix EEPROM checksum
 *  @hw: pointer to the HW structure
 *
 *  Verifies that the EEPROM has completed the update.  After updating the
 *  EEPROM, we need to check bit 15 in work 0x23 for the checksum fix.  If
 *  the checksum fix is not implemented, we need to set the bit and update
 *  the checksum.  Otherwise, if bit 15 is set and the checksum is incorrect,
 *  we need to return bad checksum.
 **/
static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw)
{
	struct e1000_nvm_info *nvm = &hw->nvm;
	s32 ret_val;
	u16 data;

	if (nvm->type != e1000_nvm_flash_hw)
		return 0;

1433 1434
	/*
	 * Check bit 4 of word 10h.  If it is 0, firmware is done updating
1435 1436 1437 1438 1439 1440 1441
	 * 10h-12h.  Checksum may need to be fixed.
	 */
	ret_val = e1000_read_nvm(hw, 0x10, 1, &data);
	if (ret_val)
		return ret_val;

	if (!(data & 0x10)) {
1442 1443
		/*
		 * Read 0x23 and check bit 15.  This bit is a 1
1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514
		 * when the checksum has already been fixed.  If
		 * the checksum is still wrong and this bit is a
		 * 1, we need to return bad checksum.  Otherwise,
		 * we need to set this bit to a 1 and update the
		 * checksum.
		 */
		ret_val = e1000_read_nvm(hw, 0x23, 1, &data);
		if (ret_val)
			return ret_val;

		if (!(data & 0x8000)) {
			data |= 0x8000;
			ret_val = e1000_write_nvm(hw, 0x23, 1, &data);
			if (ret_val)
				return ret_val;
			ret_val = e1000e_update_nvm_checksum(hw);
		}
	}

	return 0;
}

/**
 *  e1000_clear_hw_cntrs_82571 - Clear device specific hardware counters
 *  @hw: pointer to the HW structure
 *
 *  Clears the hardware counters by reading the counter registers.
 **/
static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw)
{
	u32 temp;

	e1000e_clear_hw_cntrs_base(hw);

	temp = er32(PRC64);
	temp = er32(PRC127);
	temp = er32(PRC255);
	temp = er32(PRC511);
	temp = er32(PRC1023);
	temp = er32(PRC1522);
	temp = er32(PTC64);
	temp = er32(PTC127);
	temp = er32(PTC255);
	temp = er32(PTC511);
	temp = er32(PTC1023);
	temp = er32(PTC1522);

	temp = er32(ALGNERRC);
	temp = er32(RXERRC);
	temp = er32(TNCRS);
	temp = er32(CEXTERR);
	temp = er32(TSCTC);
	temp = er32(TSCTFC);

	temp = er32(MGTPRC);
	temp = er32(MGTPDC);
	temp = er32(MGTPTC);

	temp = er32(IAC);
	temp = er32(ICRXOC);

	temp = er32(ICRXPTC);
	temp = er32(ICRXATC);
	temp = er32(ICTXPTC);
	temp = er32(ICTXATC);
	temp = er32(ICTXQEC);
	temp = er32(ICTXQMTC);
	temp = er32(ICRXDMTC);
}

static struct e1000_mac_operations e82571_mac_ops = {
1515
	/* .check_mng_mode: mac type dependent */
1516 1517 1518 1519 1520
	/* .check_for_link: media type dependent */
	.cleanup_led		= e1000e_cleanup_led_generic,
	.clear_hw_cntrs		= e1000_clear_hw_cntrs_82571,
	.get_bus_info		= e1000e_get_bus_info_pcie,
	/* .get_link_up_info: media type dependent */
1521
	/* .led_on: mac type dependent */
1522
	.led_off		= e1000e_led_off_generic,
1523
	.update_mc_addr_list	= e1000_update_mc_addr_list_82571,
1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543
	.reset_hw		= e1000_reset_hw_82571,
	.init_hw		= e1000_init_hw_82571,
	.setup_link		= e1000_setup_link_82571,
	/* .setup_physical_interface: media type dependent */
};

static struct e1000_phy_operations e82_phy_ops_igp = {
	.acquire_phy		= e1000_get_hw_semaphore_82571,
	.check_reset_block	= e1000e_check_reset_block_generic,
	.commit_phy		= NULL,
	.force_speed_duplex	= e1000e_phy_force_speed_duplex_igp,
	.get_cfg_done		= e1000_get_cfg_done_82571,
	.get_cable_length	= e1000e_get_cable_length_igp_2,
	.get_phy_info		= e1000e_get_phy_info_igp,
	.read_phy_reg		= e1000e_read_phy_reg_igp,
	.release_phy		= e1000_put_hw_semaphore_82571,
	.reset_phy		= e1000e_phy_hw_reset_generic,
	.set_d0_lplu_state	= e1000_set_d0_lplu_state_82571,
	.set_d3_lplu_state	= e1000e_set_d3_lplu_state,
	.write_phy_reg		= e1000e_write_phy_reg_igp,
B
Bruce Allan 已提交
1544
	.cfg_on_link_up      	= NULL,
1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560
};

static struct e1000_phy_operations e82_phy_ops_m88 = {
	.acquire_phy		= e1000_get_hw_semaphore_82571,
	.check_reset_block	= e1000e_check_reset_block_generic,
	.commit_phy		= e1000e_phy_sw_reset,
	.force_speed_duplex	= e1000e_phy_force_speed_duplex_m88,
	.get_cfg_done		= e1000e_get_cfg_done,
	.get_cable_length	= e1000e_get_cable_length_m88,
	.get_phy_info		= e1000e_get_phy_info_m88,
	.read_phy_reg		= e1000e_read_phy_reg_m88,
	.release_phy		= e1000_put_hw_semaphore_82571,
	.reset_phy		= e1000e_phy_hw_reset_generic,
	.set_d0_lplu_state	= e1000_set_d0_lplu_state_82571,
	.set_d3_lplu_state	= e1000e_set_d3_lplu_state,
	.write_phy_reg		= e1000e_write_phy_reg_m88,
B
Bruce Allan 已提交
1561
	.cfg_on_link_up      	= NULL,
1562 1563
};

1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577
static struct e1000_phy_operations e82_phy_ops_bm = {
	.acquire_phy		= e1000_get_hw_semaphore_82571,
	.check_reset_block	= e1000e_check_reset_block_generic,
	.commit_phy		= e1000e_phy_sw_reset,
	.force_speed_duplex	= e1000e_phy_force_speed_duplex_m88,
	.get_cfg_done		= e1000e_get_cfg_done,
	.get_cable_length	= e1000e_get_cable_length_m88,
	.get_phy_info		= e1000e_get_phy_info_m88,
	.read_phy_reg		= e1000e_read_phy_reg_bm2,
	.release_phy		= e1000_put_hw_semaphore_82571,
	.reset_phy		= e1000e_phy_hw_reset_generic,
	.set_d0_lplu_state	= e1000_set_d0_lplu_state_82571,
	.set_d3_lplu_state	= e1000e_set_d3_lplu_state,
	.write_phy_reg		= e1000e_write_phy_reg_bm2,
B
Bruce Allan 已提交
1578
	.cfg_on_link_up      	= NULL,
1579 1580
};

1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603
static struct e1000_nvm_operations e82571_nvm_ops = {
	.acquire_nvm		= e1000_acquire_nvm_82571,
	.read_nvm		= e1000e_read_nvm_eerd,
	.release_nvm		= e1000_release_nvm_82571,
	.update_nvm		= e1000_update_nvm_checksum_82571,
	.valid_led_default	= e1000_valid_led_default_82571,
	.validate_nvm		= e1000_validate_nvm_checksum_82571,
	.write_nvm		= e1000_write_nvm_82571,
};

struct e1000_info e1000_82571_info = {
	.mac			= e1000_82571,
	.flags			= FLAG_HAS_HW_VLAN_FILTER
				  | FLAG_HAS_JUMBO_FRAMES
				  | FLAG_HAS_WOL
				  | FLAG_APME_IN_CTRL3
				  | FLAG_RX_CSUM_ENABLED
				  | FLAG_HAS_CTRLEXT_ON_LOAD
				  | FLAG_HAS_SMART_POWER_DOWN
				  | FLAG_RESET_OVERWRITES_LAA /* errata */
				  | FLAG_TARC_SPEED_MODE_BIT /* errata */
				  | FLAG_APME_CHECK_PORT_B,
	.pba			= 38,
J
Jeff Kirsher 已提交
1604
	.get_variants		= e1000_get_variants_82571,
1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619
	.mac_ops		= &e82571_mac_ops,
	.phy_ops		= &e82_phy_ops_igp,
	.nvm_ops		= &e82571_nvm_ops,
};

struct e1000_info e1000_82572_info = {
	.mac			= e1000_82572,
	.flags			= FLAG_HAS_HW_VLAN_FILTER
				  | FLAG_HAS_JUMBO_FRAMES
				  | FLAG_HAS_WOL
				  | FLAG_APME_IN_CTRL3
				  | FLAG_RX_CSUM_ENABLED
				  | FLAG_HAS_CTRLEXT_ON_LOAD
				  | FLAG_TARC_SPEED_MODE_BIT, /* errata */
	.pba			= 38,
J
Jeff Kirsher 已提交
1620
	.get_variants		= e1000_get_variants_82571,
1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637
	.mac_ops		= &e82571_mac_ops,
	.phy_ops		= &e82_phy_ops_igp,
	.nvm_ops		= &e82571_nvm_ops,
};

struct e1000_info e1000_82573_info = {
	.mac			= e1000_82573,
	.flags			= FLAG_HAS_HW_VLAN_FILTER
				  | FLAG_HAS_JUMBO_FRAMES
				  | FLAG_HAS_WOL
				  | FLAG_APME_IN_CTRL3
				  | FLAG_RX_CSUM_ENABLED
				  | FLAG_HAS_SMART_POWER_DOWN
				  | FLAG_HAS_AMT
				  | FLAG_HAS_ERT
				  | FLAG_HAS_SWSM_ON_LOAD,
	.pba			= 20,
J
Jeff Kirsher 已提交
1638
	.get_variants		= e1000_get_variants_82571,
1639 1640
	.mac_ops		= &e82571_mac_ops,
	.phy_ops		= &e82_phy_ops_m88,
1641
	.nvm_ops		= &e82571_nvm_ops,
1642 1643
};

1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661
struct e1000_info e1000_82574_info = {
	.mac			= e1000_82574,
	.flags			= FLAG_HAS_HW_VLAN_FILTER
				  | FLAG_HAS_MSIX
				  | FLAG_HAS_JUMBO_FRAMES
				  | FLAG_HAS_WOL
				  | FLAG_APME_IN_CTRL3
				  | FLAG_RX_CSUM_ENABLED
				  | FLAG_HAS_SMART_POWER_DOWN
				  | FLAG_HAS_AMT
				  | FLAG_HAS_CTRLEXT_ON_LOAD,
	.pba			= 20,
	.get_variants		= e1000_get_variants_82571,
	.mac_ops		= &e82571_mac_ops,
	.phy_ops		= &e82_phy_ops_bm,
	.nvm_ops		= &e82571_nvm_ops,
};