82571.c 46.8 KB
Newer Older
1 2 3
/*******************************************************************************

  Intel PRO/1000 Linux driver
B
Bruce Allan 已提交
4
  Copyright(c) 1999 - 2009 Intel Corporation.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

  This program is free software; you can redistribute it and/or modify it
  under the terms and conditions of the GNU General Public License,
  version 2, as published by the Free Software Foundation.

  This program is distributed in the hope it will be useful, but WITHOUT
  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  more details.

  You should have received a copy of the GNU General Public License along with
  this program; if not, write to the Free Software Foundation, Inc.,
  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.

  The full GNU General Public License is included in this distribution in
  the file called "COPYING".

  Contact Information:
  Linux NICS <linux.nics@intel.com>
  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497

*******************************************************************************/

/*
 * 82571EB Gigabit Ethernet Controller
31
 * 82571EB Gigabit Ethernet Controller (Copper)
32
 * 82571EB Gigabit Ethernet Controller (Fiber)
33 34 35
 * 82571EB Dual Port Gigabit Mezzanine Adapter
 * 82571EB Quad Port Gigabit Mezzanine Adapter
 * 82571PT Gigabit PT Quad Port Server ExpressModule
36 37 38 39 40 41
 * 82572EI Gigabit Ethernet Controller (Copper)
 * 82572EI Gigabit Ethernet Controller (Fiber)
 * 82572EI Gigabit Ethernet Controller
 * 82573V Gigabit Ethernet Controller (Copper)
 * 82573E Gigabit Ethernet Controller (Copper)
 * 82573L Gigabit Ethernet Controller
42
 * 82574L Gigabit Network Connection
43
 * 82583V Gigabit Network Connection
44 45 46 47 48 49 50 51 52 53 54 55
 */

#include "e1000.h"

#define ID_LED_RESERVED_F746 0xF746
#define ID_LED_DEFAULT_82573 ((ID_LED_DEF1_DEF2 << 12) | \
			      (ID_LED_OFF1_ON2  <<  8) | \
			      (ID_LED_DEF1_DEF2 <<  4) | \
			      (ID_LED_DEF1_DEF2))

#define E1000_GCR_L1_ACT_WITHOUT_L0S_RX 0x08000000

56 57
#define E1000_NVM_INIT_CTRL2_MNGM 0x6000 /* Manageability Operation Mode mask */

58 59 60
static s32 e1000_get_phy_id_82571(struct e1000_hw *hw);
static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw);
static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw);
61
static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw);
62 63 64 65 66 67
static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
				      u16 words, u16 *data);
static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw);
static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw);
static s32 e1000_setup_link_82571(struct e1000_hw *hw);
static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw);
68 69
static bool e1000_check_mng_mode_82574(struct e1000_hw *hw);
static s32 e1000_led_on_82574(struct e1000_hw *hw);
70
static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw);
71 72 73 74 75 76 77 78 79 80

/**
 *  e1000_init_phy_params_82571 - Init PHY func ptrs.
 *  @hw: pointer to the HW structure
 **/
static s32 e1000_init_phy_params_82571(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;

81
	if (hw->phy.media_type != e1000_media_type_copper) {
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
		phy->type = e1000_phy_none;
		return 0;
	}

	phy->addr			 = 1;
	phy->autoneg_mask		 = AUTONEG_ADVERTISE_SPEED_DEFAULT;
	phy->reset_delay_us		 = 100;

	switch (hw->mac.type) {
	case e1000_82571:
	case e1000_82572:
		phy->type		 = e1000_phy_igp_2;
		break;
	case e1000_82573:
		phy->type		 = e1000_phy_m88;
		break;
98
	case e1000_82574:
99
	case e1000_82583:
100 101
		phy->type		 = e1000_phy_bm;
		break;
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
	default:
		return -E1000_ERR_PHY;
		break;
	}

	/* This can only be done after all function pointers are setup. */
	ret_val = e1000_get_phy_id_82571(hw);

	/* Verify phy id */
	switch (hw->mac.type) {
	case e1000_82571:
	case e1000_82572:
		if (phy->id != IGP01E1000_I_PHY_ID)
			return -E1000_ERR_PHY;
		break;
	case e1000_82573:
		if (phy->id != M88E1111_I_PHY_ID)
			return -E1000_ERR_PHY;
		break;
121
	case e1000_82574:
122
	case e1000_82583:
123 124 125
		if (phy->id != BME1000_E_PHY_ID_R2)
			return -E1000_ERR_PHY;
		break;
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
	default:
		return -E1000_ERR_PHY;
		break;
	}

	return 0;
}

/**
 *  e1000_init_nvm_params_82571 - Init NVM func ptrs.
 *  @hw: pointer to the HW structure
 **/
static s32 e1000_init_nvm_params_82571(struct e1000_hw *hw)
{
	struct e1000_nvm_info *nvm = &hw->nvm;
	u32 eecd = er32(EECD);
	u16 size;

	nvm->opcode_bits = 8;
	nvm->delay_usec = 1;
	switch (nvm->override) {
	case e1000_nvm_override_spi_large:
		nvm->page_size = 32;
		nvm->address_bits = 16;
		break;
	case e1000_nvm_override_spi_small:
		nvm->page_size = 8;
		nvm->address_bits = 8;
		break;
	default:
		nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
		nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
		break;
	}

	switch (hw->mac.type) {
	case e1000_82573:
163
	case e1000_82574:
164
	case e1000_82583:
165 166 167
		if (((eecd >> 15) & 0x3) == 0x3) {
			nvm->type = e1000_nvm_flash_hw;
			nvm->word_size = 2048;
168 169
			/*
			 * Autonomous Flash update bit must be cleared due
170 171 172 173 174 175 176 177
			 * to Flash update issue.
			 */
			eecd &= ~E1000_EECD_AUPDEN;
			ew32(EECD, eecd);
			break;
		}
		/* Fall Through */
	default:
178
		nvm->type = e1000_nvm_eeprom_spi;
179 180
		size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
				  E1000_EECD_SIZE_EX_SHIFT);
181 182
		/*
		 * Added to a constant, "size" becomes the left-shift value
183 184 185
		 * for setting word_size.
		 */
		size += NVM_WORD_SIZE_BASE_SHIFT;
186 187 188 189

		/* EEPROM access above 16k is unsupported */
		if (size > 14)
			size = 14;
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
		nvm->word_size	= 1 << size;
		break;
	}

	return 0;
}

/**
 *  e1000_init_mac_params_82571 - Init MAC func ptrs.
 *  @hw: pointer to the HW structure
 **/
static s32 e1000_init_mac_params_82571(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct e1000_mac_info *mac = &hw->mac;
	struct e1000_mac_operations *func = &mac->ops;
206 207 208
	u32 swsm = 0;
	u32 swsm2 = 0;
	bool force_clear_smbi = false;
209 210 211 212 213 214

	/* Set media type */
	switch (adapter->pdev->device) {
	case E1000_DEV_ID_82571EB_FIBER:
	case E1000_DEV_ID_82572EI_FIBER:
	case E1000_DEV_ID_82571EB_QUAD_FIBER:
215
		hw->phy.media_type = e1000_media_type_fiber;
216 217 218
		break;
	case E1000_DEV_ID_82571EB_SERDES:
	case E1000_DEV_ID_82572EI_SERDES:
219 220
	case E1000_DEV_ID_82571EB_SERDES_DUAL:
	case E1000_DEV_ID_82571EB_SERDES_QUAD:
221
		hw->phy.media_type = e1000_media_type_internal_serdes;
222 223
		break;
	default:
224
		hw->phy.media_type = e1000_media_type_copper;
225 226 227 228 229 230 231 232
		break;
	}

	/* Set mta register count */
	mac->mta_reg_count = 128;
	/* Set rar entry count */
	mac->rar_entry_count = E1000_RAR_ENTRIES;
	/* Set if manageability features are enabled. */
233 234
	mac->arc_subsystem_valid = (er32(FWSM) & E1000_FWSM_MODE_MASK)
	                ? true : false;
235 236

	/* check for link */
237
	switch (hw->phy.media_type) {
238 239 240 241 242 243
	case e1000_media_type_copper:
		func->setup_physical_interface = e1000_setup_copper_link_82571;
		func->check_for_link = e1000e_check_for_copper_link;
		func->get_link_up_info = e1000e_get_speed_and_duplex_copper;
		break;
	case e1000_media_type_fiber:
244 245
		func->setup_physical_interface =
			e1000_setup_fiber_serdes_link_82571;
246
		func->check_for_link = e1000e_check_for_fiber_link;
247 248
		func->get_link_up_info =
			e1000e_get_speed_and_duplex_fiber_serdes;
249 250
		break;
	case e1000_media_type_internal_serdes:
251 252
		func->setup_physical_interface =
			e1000_setup_fiber_serdes_link_82571;
253
		func->check_for_link = e1000_check_for_serdes_link_82571;
254 255
		func->get_link_up_info =
			e1000e_get_speed_and_duplex_fiber_serdes;
256 257 258 259 260 261
		break;
	default:
		return -E1000_ERR_CONFIG;
		break;
	}

262 263
	switch (hw->mac.type) {
	case e1000_82574:
264
	case e1000_82583:
265 266 267 268 269 270 271 272 273
		func->check_mng_mode = e1000_check_mng_mode_82574;
		func->led_on = e1000_led_on_82574;
		break;
	default:
		func->check_mng_mode = e1000e_check_mng_mode_generic;
		func->led_on = e1000e_led_on_generic;
		break;
	}

274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
	/*
	 * Ensure that the inter-port SWSM.SMBI lock bit is clear before
	 * first NVM or PHY acess. This should be done for single-port
	 * devices, and for one port only on dual-port devices so that
	 * for those devices we can still use the SMBI lock to synchronize
	 * inter-port accesses to the PHY & NVM.
	 */
	switch (hw->mac.type) {
	case e1000_82571:
	case e1000_82572:
		swsm2 = er32(SWSM2);

		if (!(swsm2 & E1000_SWSM2_LOCK)) {
			/* Only do this for the first interface on this card */
			ew32(SWSM2,
			    swsm2 | E1000_SWSM2_LOCK);
			force_clear_smbi = true;
		} else
			force_clear_smbi = false;
		break;
	default:
		force_clear_smbi = true;
		break;
	}

	if (force_clear_smbi) {
		/* Make sure SWSM.SMBI is clear */
		swsm = er32(SWSM);
		if (swsm & E1000_SWSM_SMBI) {
			/* This bit should not be set on a first interface, and
			 * indicates that the bootagent or EFI code has
			 * improperly left this bit enabled
			 */
307
			e_dbg("Please update your 82571 Bootagent\n");
308 309 310 311 312 313 314 315 316 317
		}
		ew32(SWSM, swsm & ~E1000_SWSM_SMBI);
	}

	/*
	 * Initialze device specific counter of SMBI acquisition
	 * timeouts.
	 */
	 hw->dev_spec.e82571.smb_counter = 0;

318 319 320
	return 0;
}

J
Jeff Kirsher 已提交
321
static s32 e1000_get_variants_82571(struct e1000_adapter *adapter)
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
{
	struct e1000_hw *hw = &adapter->hw;
	static int global_quad_port_a; /* global port a indication */
	struct pci_dev *pdev = adapter->pdev;
	u16 eeprom_data = 0;
	int is_port_b = er32(STATUS) & E1000_STATUS_FUNC_1;
	s32 rc;

	rc = e1000_init_mac_params_82571(adapter);
	if (rc)
		return rc;

	rc = e1000_init_nvm_params_82571(hw);
	if (rc)
		return rc;

	rc = e1000_init_phy_params_82571(hw);
	if (rc)
		return rc;

	/* tag quad port adapters first, it's used below */
	switch (pdev->device) {
	case E1000_DEV_ID_82571EB_QUAD_COPPER:
	case E1000_DEV_ID_82571EB_QUAD_FIBER:
	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
347
	case E1000_DEV_ID_82571PT_QUAD_COPPER:
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
		adapter->flags |= FLAG_IS_QUAD_PORT;
		/* mark the first port */
		if (global_quad_port_a == 0)
			adapter->flags |= FLAG_IS_QUAD_PORT_A;
		/* Reset for multiple quad port adapters */
		global_quad_port_a++;
		if (global_quad_port_a == 4)
			global_quad_port_a = 0;
		break;
	default:
		break;
	}

	switch (adapter->hw.mac.type) {
	case e1000_82571:
		/* these dual ports don't have WoL on port B at all */
		if (((pdev->device == E1000_DEV_ID_82571EB_FIBER) ||
		     (pdev->device == E1000_DEV_ID_82571EB_SERDES) ||
		     (pdev->device == E1000_DEV_ID_82571EB_COPPER)) &&
		    (is_port_b))
			adapter->flags &= ~FLAG_HAS_WOL;
		/* quad ports only support WoL on port A */
		if (adapter->flags & FLAG_IS_QUAD_PORT &&
R
Roel Kluin 已提交
371
		    (!(adapter->flags & FLAG_IS_QUAD_PORT_A)))
372
			adapter->flags &= ~FLAG_HAS_WOL;
373 374 375
		/* Does not support WoL on any port */
		if (pdev->device == E1000_DEV_ID_82571EB_SERDES_QUAD)
			adapter->flags &= ~FLAG_HAS_WOL;
376 377 378 379
		break;

	case e1000_82573:
		if (pdev->device == E1000_DEV_ID_82573L) {
380 381 382
			if (e1000_read_nvm(&adapter->hw, NVM_INIT_3GIO_3, 1,
				       &eeprom_data) < 0)
				break;
383 384 385 386
			if (!(eeprom_data & NVM_WORD1A_ASPM_MASK)) {
				adapter->flags |= FLAG_HAS_JUMBO_FRAMES;
				adapter->max_hw_frame_size = DEFAULT_JUMBO;
			}
387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
		}
		break;
	default:
		break;
	}

	return 0;
}

/**
 *  e1000_get_phy_id_82571 - Retrieve the PHY ID and revision
 *  @hw: pointer to the HW structure
 *
 *  Reads the PHY registers and stores the PHY ID and possibly the PHY
 *  revision in the hardware structure.
 **/
static s32 e1000_get_phy_id_82571(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
406 407
	s32 ret_val;
	u16 phy_id = 0;
408 409 410 411

	switch (hw->mac.type) {
	case e1000_82571:
	case e1000_82572:
412 413
		/*
		 * The 82571 firmware may still be configuring the PHY.
414 415
		 * In this case, we cannot access the PHY until the
		 * configuration is done.  So we explicitly set the
416 417
		 * PHY ID.
		 */
418 419 420 421 422
		phy->id = IGP01E1000_I_PHY_ID;
		break;
	case e1000_82573:
		return e1000e_get_phy_id(hw);
		break;
423
	case e1000_82574:
424
	case e1000_82583:
425 426 427 428 429 430 431 432 433 434 435 436 437
		ret_val = e1e_rphy(hw, PHY_ID1, &phy_id);
		if (ret_val)
			return ret_val;

		phy->id = (u32)(phy_id << 16);
		udelay(20);
		ret_val = e1e_rphy(hw, PHY_ID2, &phy_id);
		if (ret_val)
			return ret_val;

		phy->id |= (u32)(phy_id);
		phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
		break;
438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
	default:
		return -E1000_ERR_PHY;
		break;
	}

	return 0;
}

/**
 *  e1000_get_hw_semaphore_82571 - Acquire hardware semaphore
 *  @hw: pointer to the HW structure
 *
 *  Acquire the HW semaphore to access the PHY or NVM
 **/
static s32 e1000_get_hw_semaphore_82571(struct e1000_hw *hw)
{
	u32 swsm;
455 456
	s32 sw_timeout = hw->nvm.word_size + 1;
	s32 fw_timeout = hw->nvm.word_size + 1;
457 458
	s32 i = 0;

459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
	/*
	 * If we have timedout 3 times on trying to acquire
	 * the inter-port SMBI semaphore, there is old code
	 * operating on the other port, and it is not
	 * releasing SMBI. Modify the number of times that
	 * we try for the semaphore to interwork with this
	 * older code.
	 */
	if (hw->dev_spec.e82571.smb_counter > 2)
		sw_timeout = 1;

	/* Get the SW semaphore */
	while (i < sw_timeout) {
		swsm = er32(SWSM);
		if (!(swsm & E1000_SWSM_SMBI))
			break;

		udelay(50);
		i++;
	}

	if (i == sw_timeout) {
481
		e_dbg("Driver can't access device - SMBI bit is set.\n");
482 483
		hw->dev_spec.e82571.smb_counter++;
	}
484
	/* Get the FW semaphore. */
485
	for (i = 0; i < fw_timeout; i++) {
486 487 488 489 490 491 492 493 494 495
		swsm = er32(SWSM);
		ew32(SWSM, swsm | E1000_SWSM_SWESMBI);

		/* Semaphore acquired if bit latched */
		if (er32(SWSM) & E1000_SWSM_SWESMBI)
			break;

		udelay(50);
	}

496
	if (i == fw_timeout) {
497
		/* Release semaphores */
498
		e1000_put_hw_semaphore_82571(hw);
499
		e_dbg("Driver can't access the NVM\n");
500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
		return -E1000_ERR_NVM;
	}

	return 0;
}

/**
 *  e1000_put_hw_semaphore_82571 - Release hardware semaphore
 *  @hw: pointer to the HW structure
 *
 *  Release hardware semaphore used to access the PHY or NVM
 **/
static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw)
{
	u32 swsm;

	swsm = er32(SWSM);
517
	swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
	ew32(SWSM, swsm);
}

/**
 *  e1000_acquire_nvm_82571 - Request for access to the EEPROM
 *  @hw: pointer to the HW structure
 *
 *  To gain access to the EEPROM, first we must obtain a hardware semaphore.
 *  Then for non-82573 hardware, set the EEPROM access request bit and wait
 *  for EEPROM access grant bit.  If the access grant bit is not set, release
 *  hardware semaphore.
 **/
static s32 e1000_acquire_nvm_82571(struct e1000_hw *hw)
{
	s32 ret_val;

	ret_val = e1000_get_hw_semaphore_82571(hw);
	if (ret_val)
		return ret_val;

538 539 540 541 542 543
	switch (hw->mac.type) {
	case e1000_82573:
	case e1000_82574:
	case e1000_82583:
		break;
	default:
544
		ret_val = e1000e_acquire_nvm(hw);
545 546
		break;
	}
547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575

	if (ret_val)
		e1000_put_hw_semaphore_82571(hw);

	return ret_val;
}

/**
 *  e1000_release_nvm_82571 - Release exclusive access to EEPROM
 *  @hw: pointer to the HW structure
 *
 *  Stop any current commands to the EEPROM and clear the EEPROM request bit.
 **/
static void e1000_release_nvm_82571(struct e1000_hw *hw)
{
	e1000e_release_nvm(hw);
	e1000_put_hw_semaphore_82571(hw);
}

/**
 *  e1000_write_nvm_82571 - Write to EEPROM using appropriate interface
 *  @hw: pointer to the HW structure
 *  @offset: offset within the EEPROM to be written to
 *  @words: number of words to write
 *  @data: 16 bit word(s) to be written to the EEPROM
 *
 *  For non-82573 silicon, write data to EEPROM at offset using SPI interface.
 *
 *  If e1000e_update_nvm_checksum is not called after this function, the
576
 *  EEPROM will most likely contain an invalid checksum.
577 578 579 580 581 582 583 584
 **/
static s32 e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset, u16 words,
				 u16 *data)
{
	s32 ret_val;

	switch (hw->mac.type) {
	case e1000_82573:
585
	case e1000_82574:
586
	case e1000_82583:
587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618
		ret_val = e1000_write_nvm_eewr_82571(hw, offset, words, data);
		break;
	case e1000_82571:
	case e1000_82572:
		ret_val = e1000e_write_nvm_spi(hw, offset, words, data);
		break;
	default:
		ret_val = -E1000_ERR_NVM;
		break;
	}

	return ret_val;
}

/**
 *  e1000_update_nvm_checksum_82571 - Update EEPROM checksum
 *  @hw: pointer to the HW structure
 *
 *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
 *  up to the checksum.  Then calculates the EEPROM checksum and writes the
 *  value to the EEPROM.
 **/
static s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw)
{
	u32 eecd;
	s32 ret_val;
	u16 i;

	ret_val = e1000e_update_nvm_checksum_generic(hw);
	if (ret_val)
		return ret_val;

619 620 621 622
	/*
	 * If our nvm is an EEPROM, then we're done
	 * otherwise, commit the checksum to the flash NVM.
	 */
623 624 625 626 627 628 629 630 631 632 633 634 635 636 637
	if (hw->nvm.type != e1000_nvm_flash_hw)
		return ret_val;

	/* Check for pending operations. */
	for (i = 0; i < E1000_FLASH_UPDATES; i++) {
		msleep(1);
		if ((er32(EECD) & E1000_EECD_FLUPD) == 0)
			break;
	}

	if (i == E1000_FLASH_UPDATES)
		return -E1000_ERR_NVM;

	/* Reset the firmware if using STM opcode. */
	if ((er32(FLOP) & 0xFF00) == E1000_STM_OPCODE) {
638 639
		/*
		 * The enabling of and the actual reset must be done
640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
		 * in two write cycles.
		 */
		ew32(HICR, E1000_HICR_FW_RESET_ENABLE);
		e1e_flush();
		ew32(HICR, E1000_HICR_FW_RESET);
	}

	/* Commit the write to flash */
	eecd = er32(EECD) | E1000_EECD_FLUPD;
	ew32(EECD, eecd);

	for (i = 0; i < E1000_FLASH_UPDATES; i++) {
		msleep(1);
		if ((er32(EECD) & E1000_EECD_FLUPD) == 0)
			break;
	}

	if (i == E1000_FLASH_UPDATES)
		return -E1000_ERR_NVM;

	return 0;
}

/**
 *  e1000_validate_nvm_checksum_82571 - Validate EEPROM checksum
 *  @hw: pointer to the HW structure
 *
 *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
 *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
 **/
static s32 e1000_validate_nvm_checksum_82571(struct e1000_hw *hw)
{
	if (hw->nvm.type == e1000_nvm_flash_hw)
		e1000_fix_nvm_checksum_82571(hw);

	return e1000e_validate_nvm_checksum_generic(hw);
}

/**
 *  e1000_write_nvm_eewr_82571 - Write to EEPROM for 82573 silicon
 *  @hw: pointer to the HW structure
 *  @offset: offset within the EEPROM to be written to
 *  @words: number of words to write
 *  @data: 16 bit word(s) to be written to the EEPROM
 *
 *  After checking for invalid values, poll the EEPROM to ensure the previous
 *  command has completed before trying to write the next word.  After write
 *  poll for completion.
 *
 *  If e1000e_update_nvm_checksum is not called after this function, the
690
 *  EEPROM will most likely contain an invalid checksum.
691 692 693 694 695
 **/
static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
				      u16 words, u16 *data)
{
	struct e1000_nvm_info *nvm = &hw->nvm;
696
	u32 i, eewr = 0;
697 698
	s32 ret_val = 0;

699 700 701 702
	/*
	 * A check for invalid values:  offset too large, too many words,
	 * and not enough words.
	 */
703 704
	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
	    (words == 0)) {
705
		e_dbg("nvm parameter(s) out of bounds\n");
706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745
		return -E1000_ERR_NVM;
	}

	for (i = 0; i < words; i++) {
		eewr = (data[i] << E1000_NVM_RW_REG_DATA) |
		       ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) |
		       E1000_NVM_RW_REG_START;

		ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
		if (ret_val)
			break;

		ew32(EEWR, eewr);

		ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
		if (ret_val)
			break;
	}

	return ret_val;
}

/**
 *  e1000_get_cfg_done_82571 - Poll for configuration done
 *  @hw: pointer to the HW structure
 *
 *  Reads the management control register for the config done bit to be set.
 **/
static s32 e1000_get_cfg_done_82571(struct e1000_hw *hw)
{
	s32 timeout = PHY_CFG_TIMEOUT;

	while (timeout) {
		if (er32(EEMNGCTL) &
		    E1000_NVM_CFG_DONE_PORT_0)
			break;
		msleep(1);
		timeout--;
	}
	if (!timeout) {
746
		e_dbg("MNG configuration cycle has not completed.\n");
747 748 749 750 751 752 753 754 755
		return -E1000_ERR_RESET;
	}

	return 0;
}

/**
 *  e1000_set_d0_lplu_state_82571 - Set Low Power Linkup D0 state
 *  @hw: pointer to the HW structure
756
 *  @active: true to enable LPLU, false to disable
757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788
 *
 *  Sets the LPLU D0 state according to the active flag.  When activating LPLU
 *  this function also disables smart speed and vice versa.  LPLU will not be
 *  activated unless the device autonegotiation advertisement meets standards
 *  of either 10 or 10/100 or 10/100/1000 at all duplexes.  This is a function
 *  pointer entry point only called by PHY setup routines.
 **/
static s32 e1000_set_d0_lplu_state_82571(struct e1000_hw *hw, bool active)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 data;

	ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
	if (ret_val)
		return ret_val;

	if (active) {
		data |= IGP02E1000_PM_D0_LPLU;
		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
		if (ret_val)
			return ret_val;

		/* When LPLU is enabled, we should disable SmartSpeed */
		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
		if (ret_val)
			return ret_val;
	} else {
		data &= ~IGP02E1000_PM_D0_LPLU;
		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
789 790
		/*
		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
791 792
		 * during Dx states where the power conservation is most
		 * important.  During driver activity we should enable
793 794
		 * SmartSpeed, so performance is maintained.
		 */
795 796
		if (phy->smart_speed == e1000_smart_speed_on) {
			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
797
					   &data);
798 799 800 801 802
			if (ret_val)
				return ret_val;

			data |= IGP01E1000_PSCFR_SMART_SPEED;
			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
803
					   data);
804 805 806 807
			if (ret_val)
				return ret_val;
		} else if (phy->smart_speed == e1000_smart_speed_off) {
			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
808
					   &data);
809 810 811 812 813
			if (ret_val)
				return ret_val;

			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
814
					   data);
815 816 817 818 819 820 821 822 823 824 825 826
			if (ret_val)
				return ret_val;
		}
	}

	return 0;
}

/**
 *  e1000_reset_hw_82571 - Reset hardware
 *  @hw: pointer to the HW structure
 *
827
 *  This resets the hardware into a known state.
828 829 830
 **/
static s32 e1000_reset_hw_82571(struct e1000_hw *hw)
{
831
	u32 ctrl, extcnf_ctrl, ctrl_ext, icr;
832 833 834
	s32 ret_val;
	u16 i = 0;

835 836
	/*
	 * Prevent the PCI-E bus from sticking if there is no TLP connection
837 838 839 840
	 * on the last TLP read/write transaction when MAC is reset.
	 */
	ret_val = e1000e_disable_pcie_master(hw);
	if (ret_val)
841
		e_dbg("PCI-E Master disable polling has failed.\n");
842

843
	e_dbg("Masking off all interrupts\n");
844 845 846 847 848 849 850 851
	ew32(IMC, 0xffffffff);

	ew32(RCTL, 0);
	ew32(TCTL, E1000_TCTL_PSP);
	e1e_flush();

	msleep(10);

852 853 854 855
	/*
	 * Must acquire the MDIO ownership before MAC reset.
	 * Ownership defaults to firmware after a reset.
	 */
856 857 858 859
	switch (hw->mac.type) {
	case e1000_82573:
	case e1000_82574:
	case e1000_82583:
860 861 862 863 864 865 866 867 868 869 870 871 872 873 874
		extcnf_ctrl = er32(EXTCNF_CTRL);
		extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;

		do {
			ew32(EXTCNF_CTRL, extcnf_ctrl);
			extcnf_ctrl = er32(EXTCNF_CTRL);

			if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP)
				break;

			extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;

			msleep(2);
			i++;
		} while (i < MDIO_OWNERSHIP_TIMEOUT);
875 876 877
		break;
	default:
		break;
878 879 880 881
	}

	ctrl = er32(CTRL);

882
	e_dbg("Issuing a global reset to MAC\n");
883 884 885 886 887 888 889 890 891 892 893 894 895 896 897
	ew32(CTRL, ctrl | E1000_CTRL_RST);

	if (hw->nvm.type == e1000_nvm_flash_hw) {
		udelay(10);
		ctrl_ext = er32(CTRL_EXT);
		ctrl_ext |= E1000_CTRL_EXT_EE_RST;
		ew32(CTRL_EXT, ctrl_ext);
		e1e_flush();
	}

	ret_val = e1000e_get_auto_rd_done(hw);
	if (ret_val)
		/* We don't want to continue accessing MAC registers. */
		return ret_val;

898 899
	/*
	 * Phy configuration from NVM just starts after EECD_AUTO_RD is set.
900 901 902
	 * Need to wait for Phy configuration completion before accessing
	 * NVM and Phy.
	 */
903 904 905 906 907

	switch (hw->mac.type) {
	case e1000_82573:
	case e1000_82574:
	case e1000_82583:
908
		msleep(25);
909 910 911 912
		break;
	default:
		break;
	}
913 914 915 916 917

	/* Clear any pending interrupt events. */
	ew32(IMC, 0xffffffff);
	icr = er32(ICR);

918 919 920 921
	if (hw->mac.type == e1000_82571 &&
		hw->dev_spec.e82571.alt_mac_addr_is_present)
			e1000e_set_laa_state_82571(hw, true);

922 923 924 925
	/* Reinitialize the 82571 serdes link state machine */
	if (hw->phy.media_type == e1000_media_type_internal_serdes)
		hw->mac.serdes_link_state = e1000_serdes_link_down;

926 927 928 929 930 931 932 933 934 935 936 937 938 939
	return 0;
}

/**
 *  e1000_init_hw_82571 - Initialize hardware
 *  @hw: pointer to the HW structure
 *
 *  This inits the hardware readying it for operation.
 **/
static s32 e1000_init_hw_82571(struct e1000_hw *hw)
{
	struct e1000_mac_info *mac = &hw->mac;
	u32 reg_data;
	s32 ret_val;
940
	u16 i, rar_count = mac->rar_entry_count;
941 942 943 944 945

	e1000_initialize_hw_bits_82571(hw);

	/* Initialize identification LED */
	ret_val = e1000e_id_led_init(hw);
946
	if (ret_val)
947
		e_dbg("Error initializing identification LED\n");
948
		/* This is not fatal and we should not stop init due to this */
949 950

	/* Disabling VLAN filtering */
951
	e_dbg("Initializing the IEEE VLAN\n");
952 953 954
	e1000e_clear_vfta(hw);

	/* Setup the receive address. */
955 956
	/*
	 * If, however, a locally administered address was assigned to the
957 958 959 960 961 962 963 964
	 * 82571, we must reserve a RAR for it to work around an issue where
	 * resetting one port will reload the MAC on the other port.
	 */
	if (e1000e_get_laa_state_82571(hw))
		rar_count--;
	e1000e_init_rx_addrs(hw, rar_count);

	/* Zero out the Multicast HASH table */
965
	e_dbg("Zeroing the MTA\n");
966 967 968 969 970 971 972
	for (i = 0; i < mac->mta_reg_count; i++)
		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);

	/* Setup link and flow control */
	ret_val = e1000_setup_link_82571(hw);

	/* Set the transmit descriptor write-back policy */
973
	reg_data = er32(TXDCTL(0));
974 975 976
	reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
		   E1000_TXDCTL_FULL_TX_DESC_WB |
		   E1000_TXDCTL_COUNT_DESC;
977
	ew32(TXDCTL(0), reg_data);
978 979

	/* ...for both queues. */
980 981 982 983 984 985 986 987 988 989
	switch (mac->type) {
	case e1000_82573:
	case e1000_82574:
	case e1000_82583:
		e1000e_enable_tx_pkt_filtering(hw);
		reg_data = er32(GCR);
		reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
		ew32(GCR, reg_data);
		break;
	default:
990
		reg_data = er32(TXDCTL(1));
991 992 993
		reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
			   E1000_TXDCTL_FULL_TX_DESC_WB |
			   E1000_TXDCTL_COUNT_DESC;
994
		ew32(TXDCTL(1), reg_data);
995
		break;
996 997
	}

998 999
	/*
	 * Clear all of the statistics registers (clear on read).  It is
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
	 * important that we do this after we have tried to establish link
	 * because the symbol error count will increment wildly if there
	 * is no link.
	 */
	e1000_clear_hw_cntrs_82571(hw);

	return ret_val;
}

/**
 *  e1000_initialize_hw_bits_82571 - Initialize hardware-dependent bits
 *  @hw: pointer to the HW structure
 *
 *  Initializes required hardware-dependent bits needed for normal operation.
 **/
static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw)
{
	u32 reg;

	/* Transmit Descriptor Control 0 */
1020
	reg = er32(TXDCTL(0));
1021
	reg |= (1 << 22);
1022
	ew32(TXDCTL(0), reg);
1023 1024

	/* Transmit Descriptor Control 1 */
1025
	reg = er32(TXDCTL(1));
1026
	reg |= (1 << 22);
1027
	ew32(TXDCTL(1), reg);
1028 1029

	/* Transmit Arbitration Control 0 */
1030
	reg = er32(TARC(0));
1031 1032 1033 1034 1035 1036 1037 1038 1039
	reg &= ~(0xF << 27); /* 30:27 */
	switch (hw->mac.type) {
	case e1000_82571:
	case e1000_82572:
		reg |= (1 << 23) | (1 << 24) | (1 << 25) | (1 << 26);
		break;
	default:
		break;
	}
1040
	ew32(TARC(0), reg);
1041 1042

	/* Transmit Arbitration Control 1 */
1043
	reg = er32(TARC(1));
1044 1045 1046 1047 1048 1049 1050 1051 1052
	switch (hw->mac.type) {
	case e1000_82571:
	case e1000_82572:
		reg &= ~((1 << 29) | (1 << 30));
		reg |= (1 << 22) | (1 << 24) | (1 << 25) | (1 << 26);
		if (er32(TCTL) & E1000_TCTL_MULR)
			reg &= ~(1 << 28);
		else
			reg |= (1 << 28);
1053
		ew32(TARC(1), reg);
1054 1055 1056 1057 1058 1059
		break;
	default:
		break;
	}

	/* Device Control */
1060 1061 1062 1063
	switch (hw->mac.type) {
	case e1000_82573:
	case e1000_82574:
	case e1000_82583:
1064 1065 1066
		reg = er32(CTRL);
		reg &= ~(1 << 29);
		ew32(CTRL, reg);
1067 1068 1069
		break;
	default:
		break;
1070 1071 1072
	}

	/* Extended Device Control */
1073 1074 1075 1076
	switch (hw->mac.type) {
	case e1000_82573:
	case e1000_82574:
	case e1000_82583:
1077 1078 1079 1080
		reg = er32(CTRL_EXT);
		reg &= ~(1 << 23);
		reg |= (1 << 22);
		ew32(CTRL_EXT, reg);
1081 1082 1083
		break;
	default:
		break;
1084
	}
1085

1086 1087 1088 1089 1090
	if (hw->mac.type == e1000_82571) {
		reg = er32(PBA_ECC);
		reg |= E1000_PBA_ECC_CORR_EN;
		ew32(PBA_ECC, reg);
	}
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
	/*
	 * Workaround for hardware errata.
	 * Ensure that DMA Dynamic Clock gating is disabled on 82571 and 82572
	 */

        if ((hw->mac.type == e1000_82571) ||
           (hw->mac.type == e1000_82572)) {
                reg = er32(CTRL_EXT);
                reg &= ~E1000_CTRL_EXT_DMA_DYN_CLK_EN;
                ew32(CTRL_EXT, reg);
        }

1103

J
Jesse Brandeburg 已提交
1104
	/* PCI-Ex Control Registers */
1105 1106 1107
	switch (hw->mac.type) {
	case e1000_82574:
	case e1000_82583:
1108 1109 1110
		reg = er32(GCR);
		reg |= (1 << 22);
		ew32(GCR, reg);
J
Jesse Brandeburg 已提交
1111

1112 1113 1114 1115 1116 1117 1118
		/*
		 * Workaround for hardware errata.
		 * apply workaround for hardware errata documented in errata
		 * docs Fixes issue where some error prone or unreliable PCIe
		 * completions are occurring, particularly with ASPM enabled.
		 * Without fix, issue can cause tx timeouts.
		 */
J
Jesse Brandeburg 已提交
1119 1120 1121
		reg = er32(GCR2);
		reg |= 1;
		ew32(GCR2, reg);
1122 1123 1124
		break;
	default:
		break;
1125 1126 1127
	}

	return;
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143
}

/**
 *  e1000e_clear_vfta - Clear VLAN filter table
 *  @hw: pointer to the HW structure
 *
 *  Clears the register array which contains the VLAN filter table by
 *  setting all the values to 0.
 **/
void e1000e_clear_vfta(struct e1000_hw *hw)
{
	u32 offset;
	u32 vfta_value = 0;
	u32 vfta_offset = 0;
	u32 vfta_bit_in_reg = 0;

1144 1145 1146 1147
	switch (hw->mac.type) {
	case e1000_82573:
	case e1000_82574:
	case e1000_82583:
1148
		if (hw->mng_cookie.vlan_id != 0) {
1149 1150
			/*
			 * The VFTA is a 4096b bit-field, each identifying
1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
			 * a single VLAN ID.  The following operations
			 * determine which 32b entry (i.e. offset) into the
			 * array we want to set the VLAN ID (i.e. bit) of
			 * the manageability unit.
			 */
			vfta_offset = (hw->mng_cookie.vlan_id >>
				       E1000_VFTA_ENTRY_SHIFT) &
				      E1000_VFTA_ENTRY_MASK;
			vfta_bit_in_reg = 1 << (hw->mng_cookie.vlan_id &
					       E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
		}
1162 1163 1164
		break;
	default:
		break;
1165 1166
	}
	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
1167 1168
		/*
		 * If the offset we want to clear is the same offset of the
1169 1170 1171 1172 1173 1174 1175 1176 1177
		 * manageability VLAN ID, then clear all bits except that of
		 * the manageability unit.
		 */
		vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
		E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, vfta_value);
		e1e_flush();
	}
}

1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
/**
 *  e1000_check_mng_mode_82574 - Check manageability is enabled
 *  @hw: pointer to the HW structure
 *
 *  Reads the NVM Initialization Control Word 2 and returns true
 *  (>0) if any manageability is enabled, else false (0).
 **/
static bool e1000_check_mng_mode_82574(struct e1000_hw *hw)
{
	u16 data;

	e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &data);
	return (data & E1000_NVM_INIT_CTRL2_MNGM) != 0;
}

/**
 *  e1000_led_on_82574 - Turn LED on
 *  @hw: pointer to the HW structure
 *
 *  Turn LED on.
 **/
static s32 e1000_led_on_82574(struct e1000_hw *hw)
{
	u32 ctrl;
	u32 i;

	ctrl = hw->mac.ledctl_mode2;
	if (!(E1000_STATUS_LU & er32(STATUS))) {
		/*
		 * If no link, then turn LED on by setting the invert bit
		 * for each LED that's "on" (0x0E) in ledctl_mode2.
		 */
		for (i = 0; i < 4; i++)
			if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
			    E1000_LEDCTL_MODE_LED_ON)
				ctrl |= (E1000_LEDCTL_LED0_IVRT << (i * 8));
	}
	ew32(LEDCTL, ctrl);

	return 0;
}

1220
/**
1221
 *  e1000_update_mc_addr_list_82571 - Update Multicast addresses
1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
 *  @hw: pointer to the HW structure
 *  @mc_addr_list: array of multicast addresses to program
 *  @mc_addr_count: number of multicast addresses to program
 *  @rar_used_count: the first RAR register free to program
 *  @rar_count: total number of supported Receive Address Registers
 *
 *  Updates the Receive Address Registers and Multicast Table Array.
 *  The caller must have a packed mc_addr_list of multicast addresses.
 *  The parameter rar_count will usually be hw->mac.rar_entry_count
 *  unless there are workarounds that change this.
 **/
1233
static void e1000_update_mc_addr_list_82571(struct e1000_hw *hw,
1234 1235 1236 1237 1238 1239 1240 1241
					    u8 *mc_addr_list,
					    u32 mc_addr_count,
					    u32 rar_used_count,
					    u32 rar_count)
{
	if (e1000e_get_laa_state_82571(hw))
		rar_count--;

1242 1243
	e1000e_update_mc_addr_list_generic(hw, mc_addr_list, mc_addr_count,
					   rar_used_count, rar_count);
1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257
}

/**
 *  e1000_setup_link_82571 - Setup flow control and link settings
 *  @hw: pointer to the HW structure
 *
 *  Determines which flow control settings to use, then configures flow
 *  control.  Calls the appropriate media-specific link configuration
 *  function.  Assuming the adapter has a valid link partner, a valid link
 *  should be established.  Assumes the hardware has previously been reset
 *  and the transmitter and receiver are not enabled.
 **/
static s32 e1000_setup_link_82571(struct e1000_hw *hw)
{
1258 1259
	/*
	 * 82573 does not have a word in the NVM to determine
1260 1261 1262
	 * the default flow control setting, so we explicitly
	 * set it to full.
	 */
1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
	switch (hw->mac.type) {
	case e1000_82573:
	case e1000_82574:
	case e1000_82583:
		if (hw->fc.requested_mode == e1000_fc_default)
			hw->fc.requested_mode = e1000_fc_full;
		break;
	default:
		break;
	}
1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297

	return e1000e_setup_link(hw);
}

/**
 *  e1000_setup_copper_link_82571 - Configure copper link settings
 *  @hw: pointer to the HW structure
 *
 *  Configures the link for auto-neg or forced speed and duplex.  Then we check
 *  for link, once link is established calls to configure collision distance
 *  and flow control are called.
 **/
static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw)
{
	u32 ctrl;
	u32 led_ctrl;
	s32 ret_val;

	ctrl = er32(CTRL);
	ctrl |= E1000_CTRL_SLU;
	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
	ew32(CTRL, ctrl);

	switch (hw->phy.type) {
	case e1000_phy_m88:
1298
	case e1000_phy_bm:
1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333
		ret_val = e1000e_copper_link_setup_m88(hw);
		break;
	case e1000_phy_igp_2:
		ret_val = e1000e_copper_link_setup_igp(hw);
		/* Setup activity LED */
		led_ctrl = er32(LEDCTL);
		led_ctrl &= IGP_ACTIVITY_LED_MASK;
		led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
		ew32(LEDCTL, led_ctrl);
		break;
	default:
		return -E1000_ERR_PHY;
		break;
	}

	if (ret_val)
		return ret_val;

	ret_val = e1000e_setup_copper_link(hw);

	return ret_val;
}

/**
 *  e1000_setup_fiber_serdes_link_82571 - Setup link for fiber/serdes
 *  @hw: pointer to the HW structure
 *
 *  Configures collision distance and flow control for fiber and serdes links.
 *  Upon successful setup, poll for link.
 **/
static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw)
{
	switch (hw->mac.type) {
	case e1000_82571:
	case e1000_82572:
1334 1335
		/*
		 * If SerDes loopback mode is entered, there is no form
1336 1337
		 * of reset to take the adapter out of that mode.  So we
		 * have to explicitly take the adapter out of loopback
1338
		 * mode.  This prevents drivers from twiddling their thumbs
1339 1340
		 * if another tool failed to take it out of loopback mode.
		 */
1341
		ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1342 1343 1344 1345 1346 1347 1348 1349
		break;
	default:
		break;
	}

	return e1000e_setup_fiber_serdes_link(hw);
}

1350 1351 1352 1353 1354 1355 1356
/**
 *  e1000_check_for_serdes_link_82571 - Check for link (Serdes)
 *  @hw: pointer to the HW structure
 *
 *  Checks for link up on the hardware.  If link is not up and we have
 *  a signal, then we need to force link up.
 **/
1357
static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw)
1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
{
	struct e1000_mac_info *mac = &hw->mac;
	u32 rxcw;
	u32 ctrl;
	u32 status;
	s32 ret_val = 0;

	ctrl = er32(CTRL);
	status = er32(STATUS);
	rxcw = er32(RXCW);

	if ((rxcw & E1000_RXCW_SYNCH) && !(rxcw & E1000_RXCW_IV)) {

		/* Receiver is synchronized with no invalid bits.  */
		switch (mac->serdes_link_state) {
		case e1000_serdes_link_autoneg_complete:
			if (!(status & E1000_STATUS_LU)) {
				/*
				 * We have lost link, retry autoneg before
				 * reporting link failure
				 */
				mac->serdes_link_state =
				    e1000_serdes_link_autoneg_progress;
1381
				e_dbg("AN_UP     -> AN_PROG\n");
1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398
			}
		break;

		case e1000_serdes_link_forced_up:
			/*
			 * If we are receiving /C/ ordered sets, re-enable
			 * auto-negotiation in the TXCW register and disable
			 * forced link in the Device Control register in an
			 * attempt to auto-negotiate with our link partner.
			 */
			if (rxcw & E1000_RXCW_C) {
				/* Enable autoneg, and unforce link up */
				ew32(TXCW, mac->txcw);
				ew32(CTRL,
				    (ctrl & ~E1000_CTRL_SLU));
				mac->serdes_link_state =
				    e1000_serdes_link_autoneg_progress;
1399
				e_dbg("FORCED_UP -> AN_PROG\n");
1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412
			}
			break;

		case e1000_serdes_link_autoneg_progress:
			/*
			 * If the LU bit is set in the STATUS register,
			 * autoneg has completed sucessfully. If not,
			 * try foring the link because the far end may be
			 * available but not capable of autonegotiation.
			 */
			if (status & E1000_STATUS_LU)  {
				mac->serdes_link_state =
				    e1000_serdes_link_autoneg_complete;
1413
				e_dbg("AN_PROG   -> AN_UP\n");
1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427
			} else {
				/*
				 * Disable autoneg, force link up and
				 * full duplex, and change state to forced
				 */
				ew32(TXCW,
				    (mac->txcw & ~E1000_TXCW_ANE));
				ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
				ew32(CTRL, ctrl);

				/* Configure Flow Control after link up. */
				ret_val =
				    e1000e_config_fc_after_link_up(hw);
				if (ret_val) {
1428
					e_dbg("Error config flow control\n");
1429 1430 1431 1432
					break;
				}
				mac->serdes_link_state =
				    e1000_serdes_link_forced_up;
1433
				e_dbg("AN_PROG   -> FORCED_UP\n");
1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447
			}
			mac->serdes_has_link = true;
			break;

		case e1000_serdes_link_down:
		default:
			/* The link was down but the receiver has now gained
			 * valid sync, so lets see if we can bring the link
			 * up. */
			ew32(TXCW, mac->txcw);
			ew32(CTRL,
			    (ctrl & ~E1000_CTRL_SLU));
			mac->serdes_link_state =
			    e1000_serdes_link_autoneg_progress;
1448
			e_dbg("DOWN      -> AN_PROG\n");
1449 1450 1451 1452 1453 1454
			break;
		}
	} else {
		if (!(rxcw & E1000_RXCW_SYNCH)) {
			mac->serdes_has_link = false;
			mac->serdes_link_state = e1000_serdes_link_down;
1455
			e_dbg("ANYSTATE  -> DOWN\n");
1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466
		} else {
			/*
			 * We have sync, and can tolerate one
			 * invalid (IV) codeword before declaring
			 * link down, so reread to look again
			 */
			udelay(10);
			rxcw = er32(RXCW);
			if (rxcw & E1000_RXCW_IV) {
				mac->serdes_link_state = e1000_serdes_link_down;
				mac->serdes_has_link = false;
1467
				e_dbg("ANYSTATE  -> DOWN\n");
1468 1469 1470 1471 1472 1473 1474
			}
		}
	}

	return ret_val;
}

1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488
/**
 *  e1000_valid_led_default_82571 - Verify a valid default LED config
 *  @hw: pointer to the HW structure
 *  @data: pointer to the NVM (EEPROM)
 *
 *  Read the EEPROM for the current default LED configuration.  If the
 *  LED configuration is not valid, set to a valid LED configuration.
 **/
static s32 e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data)
{
	s32 ret_val;

	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
	if (ret_val) {
1489
		e_dbg("NVM Read Error\n");
1490 1491 1492
		return ret_val;
	}

1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
	switch (hw->mac.type) {
	case e1000_82573:
	case e1000_82574:
	case e1000_82583:
		if (*data == ID_LED_RESERVED_F746)
			*data = ID_LED_DEFAULT_82573;
		break;
	default:
		if (*data == ID_LED_RESERVED_0000 ||
		    *data == ID_LED_RESERVED_FFFF)
			*data = ID_LED_DEFAULT;
		break;
	}
1506 1507 1508 1509 1510 1511 1512 1513

	return 0;
}

/**
 *  e1000e_get_laa_state_82571 - Get locally administered address state
 *  @hw: pointer to the HW structure
 *
1514
 *  Retrieve and return the current locally administered address state.
1515 1516 1517 1518
 **/
bool e1000e_get_laa_state_82571(struct e1000_hw *hw)
{
	if (hw->mac.type != e1000_82571)
1519
		return false;
1520 1521 1522 1523 1524 1525 1526 1527 1528

	return hw->dev_spec.e82571.laa_is_present;
}

/**
 *  e1000e_set_laa_state_82571 - Set locally administered address state
 *  @hw: pointer to the HW structure
 *  @state: enable/disable locally administered address
 *
1529
 *  Enable/Disable the current locally administers address state.
1530 1531 1532 1533 1534 1535 1536 1537 1538 1539
 **/
void e1000e_set_laa_state_82571(struct e1000_hw *hw, bool state)
{
	if (hw->mac.type != e1000_82571)
		return;

	hw->dev_spec.e82571.laa_is_present = state;

	/* If workaround is activated... */
	if (state)
1540 1541
		/*
		 * Hold a copy of the LAA in RAR[14] This is done so that
1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568
		 * between the time RAR[0] gets clobbered and the time it
		 * gets fixed, the actual LAA is in one of the RARs and no
		 * incoming packets directed to this port are dropped.
		 * Eventually the LAA will be in RAR[0] and RAR[14].
		 */
		e1000e_rar_set(hw, hw->mac.addr, hw->mac.rar_entry_count - 1);
}

/**
 *  e1000_fix_nvm_checksum_82571 - Fix EEPROM checksum
 *  @hw: pointer to the HW structure
 *
 *  Verifies that the EEPROM has completed the update.  After updating the
 *  EEPROM, we need to check bit 15 in work 0x23 for the checksum fix.  If
 *  the checksum fix is not implemented, we need to set the bit and update
 *  the checksum.  Otherwise, if bit 15 is set and the checksum is incorrect,
 *  we need to return bad checksum.
 **/
static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw)
{
	struct e1000_nvm_info *nvm = &hw->nvm;
	s32 ret_val;
	u16 data;

	if (nvm->type != e1000_nvm_flash_hw)
		return 0;

1569 1570
	/*
	 * Check bit 4 of word 10h.  If it is 0, firmware is done updating
1571 1572 1573 1574 1575 1576 1577
	 * 10h-12h.  Checksum may need to be fixed.
	 */
	ret_val = e1000_read_nvm(hw, 0x10, 1, &data);
	if (ret_val)
		return ret_val;

	if (!(data & 0x10)) {
1578 1579
		/*
		 * Read 0x23 and check bit 15.  This bit is a 1
1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611
		 * when the checksum has already been fixed.  If
		 * the checksum is still wrong and this bit is a
		 * 1, we need to return bad checksum.  Otherwise,
		 * we need to set this bit to a 1 and update the
		 * checksum.
		 */
		ret_val = e1000_read_nvm(hw, 0x23, 1, &data);
		if (ret_val)
			return ret_val;

		if (!(data & 0x8000)) {
			data |= 0x8000;
			ret_val = e1000_write_nvm(hw, 0x23, 1, &data);
			if (ret_val)
				return ret_val;
			ret_val = e1000e_update_nvm_checksum(hw);
		}
	}

	return 0;
}

/**
 *  e1000_clear_hw_cntrs_82571 - Clear device specific hardware counters
 *  @hw: pointer to the HW structure
 *
 *  Clears the hardware counters by reading the counter registers.
 **/
static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw)
{
	e1000e_clear_hw_cntrs_base(hw);

1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645
	er32(PRC64);
	er32(PRC127);
	er32(PRC255);
	er32(PRC511);
	er32(PRC1023);
	er32(PRC1522);
	er32(PTC64);
	er32(PTC127);
	er32(PTC255);
	er32(PTC511);
	er32(PTC1023);
	er32(PTC1522);

	er32(ALGNERRC);
	er32(RXERRC);
	er32(TNCRS);
	er32(CEXTERR);
	er32(TSCTC);
	er32(TSCTFC);

	er32(MGTPRC);
	er32(MGTPDC);
	er32(MGTPTC);

	er32(IAC);
	er32(ICRXOC);

	er32(ICRXPTC);
	er32(ICRXATC);
	er32(ICTXPTC);
	er32(ICTXATC);
	er32(ICTXQEC);
	er32(ICTXQMTC);
	er32(ICRXDMTC);
1646 1647 1648
}

static struct e1000_mac_operations e82571_mac_ops = {
1649
	/* .check_mng_mode: mac type dependent */
1650
	/* .check_for_link: media type dependent */
1651
	.id_led_init		= e1000e_id_led_init,
1652 1653 1654 1655
	.cleanup_led		= e1000e_cleanup_led_generic,
	.clear_hw_cntrs		= e1000_clear_hw_cntrs_82571,
	.get_bus_info		= e1000e_get_bus_info_pcie,
	/* .get_link_up_info: media type dependent */
1656
	/* .led_on: mac type dependent */
1657
	.led_off		= e1000e_led_off_generic,
1658
	.update_mc_addr_list	= e1000_update_mc_addr_list_82571,
1659 1660 1661 1662
	.reset_hw		= e1000_reset_hw_82571,
	.init_hw		= e1000_init_hw_82571,
	.setup_link		= e1000_setup_link_82571,
	/* .setup_physical_interface: media type dependent */
1663
	.setup_led		= e1000e_setup_led_generic,
1664 1665 1666
};

static struct e1000_phy_operations e82_phy_ops_igp = {
1667
	.acquire		= e1000_get_hw_semaphore_82571,
1668
	.check_reset_block	= e1000e_check_reset_block_generic,
1669
	.commit			= NULL,
1670 1671 1672
	.force_speed_duplex	= e1000e_phy_force_speed_duplex_igp,
	.get_cfg_done		= e1000_get_cfg_done_82571,
	.get_cable_length	= e1000e_get_cable_length_igp_2,
1673 1674 1675 1676
	.get_info		= e1000e_get_phy_info_igp,
	.read_reg		= e1000e_read_phy_reg_igp,
	.release		= e1000_put_hw_semaphore_82571,
	.reset			= e1000e_phy_hw_reset_generic,
1677 1678
	.set_d0_lplu_state	= e1000_set_d0_lplu_state_82571,
	.set_d3_lplu_state	= e1000e_set_d3_lplu_state,
1679
	.write_reg		= e1000e_write_phy_reg_igp,
B
Bruce Allan 已提交
1680
	.cfg_on_link_up      	= NULL,
1681 1682 1683
};

static struct e1000_phy_operations e82_phy_ops_m88 = {
1684
	.acquire		= e1000_get_hw_semaphore_82571,
1685
	.check_reset_block	= e1000e_check_reset_block_generic,
1686
	.commit			= e1000e_phy_sw_reset,
1687 1688 1689
	.force_speed_duplex	= e1000e_phy_force_speed_duplex_m88,
	.get_cfg_done		= e1000e_get_cfg_done,
	.get_cable_length	= e1000e_get_cable_length_m88,
1690 1691 1692 1693
	.get_info		= e1000e_get_phy_info_m88,
	.read_reg		= e1000e_read_phy_reg_m88,
	.release		= e1000_put_hw_semaphore_82571,
	.reset			= e1000e_phy_hw_reset_generic,
1694 1695
	.set_d0_lplu_state	= e1000_set_d0_lplu_state_82571,
	.set_d3_lplu_state	= e1000e_set_d3_lplu_state,
1696
	.write_reg		= e1000e_write_phy_reg_m88,
B
Bruce Allan 已提交
1697
	.cfg_on_link_up      	= NULL,
1698 1699
};

1700
static struct e1000_phy_operations e82_phy_ops_bm = {
1701
	.acquire		= e1000_get_hw_semaphore_82571,
1702
	.check_reset_block	= e1000e_check_reset_block_generic,
1703
	.commit			= e1000e_phy_sw_reset,
1704 1705 1706
	.force_speed_duplex	= e1000e_phy_force_speed_duplex_m88,
	.get_cfg_done		= e1000e_get_cfg_done,
	.get_cable_length	= e1000e_get_cable_length_m88,
1707 1708 1709 1710
	.get_info		= e1000e_get_phy_info_m88,
	.read_reg		= e1000e_read_phy_reg_bm2,
	.release		= e1000_put_hw_semaphore_82571,
	.reset			= e1000e_phy_hw_reset_generic,
1711 1712
	.set_d0_lplu_state	= e1000_set_d0_lplu_state_82571,
	.set_d3_lplu_state	= e1000e_set_d3_lplu_state,
1713
	.write_reg		= e1000e_write_phy_reg_bm2,
B
Bruce Allan 已提交
1714
	.cfg_on_link_up      	= NULL,
1715 1716
};

1717
static struct e1000_nvm_operations e82571_nvm_ops = {
1718 1719 1720 1721
	.acquire		= e1000_acquire_nvm_82571,
	.read			= e1000e_read_nvm_eerd,
	.release		= e1000_release_nvm_82571,
	.update			= e1000_update_nvm_checksum_82571,
1722
	.valid_led_default	= e1000_valid_led_default_82571,
1723 1724
	.validate		= e1000_validate_nvm_checksum_82571,
	.write			= e1000_write_nvm_82571,
1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739
};

struct e1000_info e1000_82571_info = {
	.mac			= e1000_82571,
	.flags			= FLAG_HAS_HW_VLAN_FILTER
				  | FLAG_HAS_JUMBO_FRAMES
				  | FLAG_HAS_WOL
				  | FLAG_APME_IN_CTRL3
				  | FLAG_RX_CSUM_ENABLED
				  | FLAG_HAS_CTRLEXT_ON_LOAD
				  | FLAG_HAS_SMART_POWER_DOWN
				  | FLAG_RESET_OVERWRITES_LAA /* errata */
				  | FLAG_TARC_SPEED_MODE_BIT /* errata */
				  | FLAG_APME_CHECK_PORT_B,
	.pba			= 38,
1740
	.max_hw_frame_size	= DEFAULT_JUMBO,
J
Jeff Kirsher 已提交
1741
	.get_variants		= e1000_get_variants_82571,
1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756
	.mac_ops		= &e82571_mac_ops,
	.phy_ops		= &e82_phy_ops_igp,
	.nvm_ops		= &e82571_nvm_ops,
};

struct e1000_info e1000_82572_info = {
	.mac			= e1000_82572,
	.flags			= FLAG_HAS_HW_VLAN_FILTER
				  | FLAG_HAS_JUMBO_FRAMES
				  | FLAG_HAS_WOL
				  | FLAG_APME_IN_CTRL3
				  | FLAG_RX_CSUM_ENABLED
				  | FLAG_HAS_CTRLEXT_ON_LOAD
				  | FLAG_TARC_SPEED_MODE_BIT, /* errata */
	.pba			= 38,
1757
	.max_hw_frame_size	= DEFAULT_JUMBO,
J
Jeff Kirsher 已提交
1758
	.get_variants		= e1000_get_variants_82571,
1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775
	.mac_ops		= &e82571_mac_ops,
	.phy_ops		= &e82_phy_ops_igp,
	.nvm_ops		= &e82571_nvm_ops,
};

struct e1000_info e1000_82573_info = {
	.mac			= e1000_82573,
	.flags			= FLAG_HAS_HW_VLAN_FILTER
				  | FLAG_HAS_JUMBO_FRAMES
				  | FLAG_HAS_WOL
				  | FLAG_APME_IN_CTRL3
				  | FLAG_RX_CSUM_ENABLED
				  | FLAG_HAS_SMART_POWER_DOWN
				  | FLAG_HAS_AMT
				  | FLAG_HAS_ERT
				  | FLAG_HAS_SWSM_ON_LOAD,
	.pba			= 20,
1776
	.max_hw_frame_size	= ETH_FRAME_LEN + ETH_FCS_LEN,
J
Jeff Kirsher 已提交
1777
	.get_variants		= e1000_get_variants_82571,
1778 1779
	.mac_ops		= &e82571_mac_ops,
	.phy_ops		= &e82_phy_ops_m88,
1780
	.nvm_ops		= &e82571_nvm_ops,
1781 1782
};

1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794
struct e1000_info e1000_82574_info = {
	.mac			= e1000_82574,
	.flags			= FLAG_HAS_HW_VLAN_FILTER
				  | FLAG_HAS_MSIX
				  | FLAG_HAS_JUMBO_FRAMES
				  | FLAG_HAS_WOL
				  | FLAG_APME_IN_CTRL3
				  | FLAG_RX_CSUM_ENABLED
				  | FLAG_HAS_SMART_POWER_DOWN
				  | FLAG_HAS_AMT
				  | FLAG_HAS_CTRLEXT_ON_LOAD,
	.pba			= 20,
1795
	.max_hw_frame_size	= DEFAULT_JUMBO,
1796 1797 1798 1799 1800 1801
	.get_variants		= e1000_get_variants_82571,
	.mac_ops		= &e82571_mac_ops,
	.phy_ops		= &e82_phy_ops_bm,
	.nvm_ops		= &e82571_nvm_ops,
};

1802 1803 1804 1805 1806 1807 1808 1809 1810 1811
struct e1000_info e1000_82583_info = {
	.mac			= e1000_82583,
	.flags			= FLAG_HAS_HW_VLAN_FILTER
				  | FLAG_HAS_WOL
				  | FLAG_APME_IN_CTRL3
				  | FLAG_RX_CSUM_ENABLED
				  | FLAG_HAS_SMART_POWER_DOWN
				  | FLAG_HAS_AMT
				  | FLAG_HAS_CTRLEXT_ON_LOAD,
	.pba			= 20,
1812
	.max_hw_frame_size	= ETH_FRAME_LEN + ETH_FCS_LEN,
1813 1814 1815 1816 1817 1818
	.get_variants		= e1000_get_variants_82571,
	.mac_ops		= &e82571_mac_ops,
	.phy_ops		= &e82_phy_ops_bm,
	.nvm_ops		= &e82571_nvm_ops,
};