ftgmac100.c 37.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/*
 * Faraday FTGMAC100 Gigabit Ethernet
 *
 * (C) Copyright 2009-2011 Faraday Technology
 * Po-Yu Chuang <ratbert@faraday-tech.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

#define pr_fmt(fmt)	KBUILD_MODNAME ": " fmt

#include <linux/dma-mapping.h>
#include <linux/etherdevice.h>
#include <linux/ethtool.h>
27
#include <linux/interrupt.h>
28 29 30
#include <linux/io.h>
#include <linux/module.h>
#include <linux/netdevice.h>
31
#include <linux/of.h>
32 33
#include <linux/phy.h>
#include <linux/platform_device.h>
34
#include <linux/property.h>
35
#include <net/ip.h>
G
Gavin Shan 已提交
36
#include <net/ncsi.h>
37 38 39 40 41 42 43 44 45

#include "ftgmac100.h"

#define DRV_NAME	"ftgmac100"
#define DRV_VERSION	"0.7"

#define RX_QUEUE_ENTRIES	256	/* must be power of 2 */
#define TX_QUEUE_ENTRIES	512	/* must be power of 2 */

46 47
#define MAX_PKT_SIZE		1536
#define RX_BUF_SIZE		MAX_PKT_SIZE	/* must be smaller than 0x3fff */
48

49 50 51
/* Min number of tx ring entries before stopping queue */
#define TX_THRESHOLD		(1)

52 53 54 55 56 57
struct ftgmac100_descs {
	struct ftgmac100_rxdes rxdes[RX_QUEUE_ENTRIES];
	struct ftgmac100_txdes txdes[TX_QUEUE_ENTRIES];
};

struct ftgmac100 {
58
	/* Registers */
59 60 61 62 63 64
	struct resource *res;
	void __iomem *base;

	struct ftgmac100_descs *descs;
	dma_addr_t descs_dma_addr;

65
	/* Rx ring */
66
	struct sk_buff *rx_skbs[RX_QUEUE_ENTRIES];
67
	unsigned int rx_pointer;
68 69 70
	u32 rxdes0_edorr_mask;

	/* Tx ring */
71
	struct sk_buff *tx_skbs[TX_QUEUE_ENTRIES];
72 73
	unsigned int tx_clean_pointer;
	unsigned int tx_pointer;
74
	u32 txdes0_edotr_mask;
75

76 77 78 79
	/* Scratch page to use when rx skb alloc fails */
	void *rx_scratch;
	dma_addr_t rx_scratch_dma;

80
	/* Component structures */
81 82
	struct net_device *netdev;
	struct device *dev;
G
Gavin Shan 已提交
83
	struct ncsi_dev *ndev;
84
	struct napi_struct napi;
85
	struct work_struct reset_task;
86
	struct mii_bus *mii_bus;
87 88

	/* Link management */
89 90
	int cur_speed;
	int cur_duplex;
G
Gavin Shan 已提交
91
	bool use_ncsi;
92

93
	/* Misc */
94
	bool need_mac_restart;
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
};

static void ftgmac100_set_rx_ring_base(struct ftgmac100 *priv, dma_addr_t addr)
{
	iowrite32(addr, priv->base + FTGMAC100_OFFSET_RXR_BADR);
}

static void ftgmac100_set_rx_buffer_size(struct ftgmac100 *priv,
		unsigned int size)
{
	size = FTGMAC100_RBSR_SIZE(size);
	iowrite32(size, priv->base + FTGMAC100_OFFSET_RBSR);
}

static void ftgmac100_set_normal_prio_tx_ring_base(struct ftgmac100 *priv,
						   dma_addr_t addr)
{
	iowrite32(addr, priv->base + FTGMAC100_OFFSET_NPTXR_BADR);
}

static void ftgmac100_txdma_normal_prio_start_polling(struct ftgmac100 *priv)
{
	iowrite32(1, priv->base + FTGMAC100_OFFSET_NPTXPD);
}

120
static int ftgmac100_reset_mac(struct ftgmac100 *priv, u32 maccr)
121 122 123 124 125
{
	struct net_device *netdev = priv->netdev;
	int i;

	/* NOTE: reset clears all registers */
126 127 128 129
	iowrite32(maccr, priv->base + FTGMAC100_OFFSET_MACCR);
	iowrite32(maccr | FTGMAC100_MACCR_SW_RST,
		  priv->base + FTGMAC100_OFFSET_MACCR);
	for (i = 0; i < 50; i++) {
130 131 132 133 134 135
		unsigned int maccr;

		maccr = ioread32(priv->base + FTGMAC100_OFFSET_MACCR);
		if (!(maccr & FTGMAC100_MACCR_SW_RST))
			return 0;

136
		udelay(1);
137 138
	}

139
	netdev_err(netdev, "Hardware reset failed\n");
140 141 142
	return -EIO;
}

143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
static int ftgmac100_reset_and_config_mac(struct ftgmac100 *priv)
{
	u32 maccr = 0;

	switch (priv->cur_speed) {
	case SPEED_10:
	case 0: /* no link */
		break;

	case SPEED_100:
		maccr |= FTGMAC100_MACCR_FAST_MODE;
		break;

	case SPEED_1000:
		maccr |= FTGMAC100_MACCR_GIGA_MODE;
		break;
	default:
		netdev_err(priv->netdev, "Unknown speed %d !\n",
			   priv->cur_speed);
		break;
	}

	/* (Re)initialize the queue pointers */
	priv->rx_pointer = 0;
	priv->tx_clean_pointer = 0;
	priv->tx_pointer = 0;

	/* The doc says reset twice with 10us interval */
	if (ftgmac100_reset_mac(priv, maccr))
		return -EIO;
	usleep_range(10, 1000);
	return ftgmac100_reset_mac(priv, maccr);
}

177 178 179 180 181 182 183 184 185
static void ftgmac100_set_mac(struct ftgmac100 *priv, const unsigned char *mac)
{
	unsigned int maddr = mac[0] << 8 | mac[1];
	unsigned int laddr = mac[2] << 24 | mac[3] << 16 | mac[4] << 8 | mac[5];

	iowrite32(maddr, priv->base + FTGMAC100_OFFSET_MAC_MADR);
	iowrite32(laddr, priv->base + FTGMAC100_OFFSET_MAC_LADR);
}

186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
static void ftgmac100_setup_mac(struct ftgmac100 *priv)
{
	u8 mac[ETH_ALEN];
	unsigned int m;
	unsigned int l;
	void *addr;

	addr = device_get_mac_address(priv->dev, mac, ETH_ALEN);
	if (addr) {
		ether_addr_copy(priv->netdev->dev_addr, mac);
		dev_info(priv->dev, "Read MAC address %pM from device tree\n",
			 mac);
		return;
	}

	m = ioread32(priv->base + FTGMAC100_OFFSET_MAC_MADR);
	l = ioread32(priv->base + FTGMAC100_OFFSET_MAC_LADR);

	mac[0] = (m >> 8) & 0xff;
	mac[1] = m & 0xff;
	mac[2] = (l >> 24) & 0xff;
	mac[3] = (l >> 16) & 0xff;
	mac[4] = (l >> 8) & 0xff;
	mac[5] = l & 0xff;

	if (is_valid_ether_addr(mac)) {
		ether_addr_copy(priv->netdev->dev_addr, mac);
		dev_info(priv->dev, "Read MAC address %pM from chip\n", mac);
	} else {
		eth_hw_addr_random(priv->netdev);
		dev_info(priv->dev, "Generated random MAC address %pM\n",
			 priv->netdev->dev_addr);
	}
}

static int ftgmac100_set_mac_addr(struct net_device *dev, void *p)
{
	int ret;

	ret = eth_prepare_mac_addr_change(dev, p);
	if (ret < 0)
		return ret;

	eth_commit_mac_addr_change(dev, p);
	ftgmac100_set_mac(netdev_priv(dev), dev->dev_addr);

	return 0;
}

235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
static void ftgmac100_init_hw(struct ftgmac100 *priv)
{
	/* setup ring buffer base registers */
	ftgmac100_set_rx_ring_base(priv,
				   priv->descs_dma_addr +
				   offsetof(struct ftgmac100_descs, rxdes));
	ftgmac100_set_normal_prio_tx_ring_base(priv,
					       priv->descs_dma_addr +
					       offsetof(struct ftgmac100_descs, txdes));

	ftgmac100_set_rx_buffer_size(priv, RX_BUF_SIZE);

	iowrite32(FTGMAC100_APTC_RXPOLL_CNT(1), priv->base + FTGMAC100_OFFSET_APTC);

	ftgmac100_set_mac(priv, priv->netdev->dev_addr);
}

252
static void ftgmac100_start_hw(struct ftgmac100 *priv)
253
{
254
	u32 maccr = ioread32(priv->base + FTGMAC100_OFFSET_MACCR);
255

256 257
	/* Keep the original GMAC and FAST bits */
	maccr &= (FTGMAC100_MACCR_FAST_MODE | FTGMAC100_MACCR_GIGA_MODE);
258

259 260 261 262 263 264 265 266 267
	/* Add all the main enable bits */
	maccr |= FTGMAC100_MACCR_TXDMA_EN	|
		 FTGMAC100_MACCR_RXDMA_EN	|
		 FTGMAC100_MACCR_TXMAC_EN	|
		 FTGMAC100_MACCR_RXMAC_EN	|
		 FTGMAC100_MACCR_CRC_APD	|
		 FTGMAC100_MACCR_PHY_LINK_LEVEL	|
		 FTGMAC100_MACCR_RX_RUNT	|
		 FTGMAC100_MACCR_RX_BROADPKT;
268

269
	/* Add other bits as needed */
270 271 272
	if (priv->cur_duplex == DUPLEX_FULL)
		maccr |= FTGMAC100_MACCR_FULLDUP;

273
	/* Hit the HW */
274 275 276 277 278 279 280 281
	iowrite32(maccr, priv->base + FTGMAC100_OFFSET_MACCR);
}

static void ftgmac100_stop_hw(struct ftgmac100 *priv)
{
	iowrite32(0, priv->base + FTGMAC100_OFFSET_MACCR);
}

282 283
static int ftgmac100_alloc_rx_buf(struct ftgmac100 *priv, unsigned int entry,
				  struct ftgmac100_rxdes *rxdes, gfp_t gfp)
284 285
{
	struct net_device *netdev = priv->netdev;
286
	struct sk_buff *skb;
287
	dma_addr_t map;
288
	int err;
289

290 291
	skb = netdev_alloc_skb_ip_align(netdev, RX_BUF_SIZE);
	if (unlikely(!skb)) {
292
		if (net_ratelimit())
293
			netdev_warn(netdev, "failed to allocate rx skb\n");
294 295
		err = -ENOMEM;
		map = priv->rx_scratch_dma;
296 297 298 299 300 301 302 303 304 305 306
	} else {
		map = dma_map_single(priv->dev, skb->data, RX_BUF_SIZE,
				     DMA_FROM_DEVICE);
		if (unlikely(dma_mapping_error(priv->dev, map))) {
			if (net_ratelimit())
				netdev_err(netdev, "failed to map rx page\n");
			dev_kfree_skb_any(skb);
			map = priv->rx_scratch_dma;
			skb = NULL;
			err = -ENOMEM;
		}
307 308
	}

309 310
	/* Store skb */
	priv->rx_skbs[entry] = skb;
311

312
	/* Store DMA address into RX desc */
313
	rxdes->rxdes3 = cpu_to_le32(map);
314 315 316 317

	/* Ensure the above is ordered vs clearing the OWN bit */
	dma_wmb();

318 319 320 321 322
	/* Clean status (which resets own bit) */
	if (entry == (RX_QUEUE_ENTRIES - 1))
		rxdes->rxdes0 = cpu_to_le32(priv->rxdes0_edorr_mask);
	else
		rxdes->rxdes0 = 0;
323

324 325 326
	return 0;
}

327 328 329 330 331
static int ftgmac100_next_rx_pointer(int pointer)
{
	return (pointer + 1) & (RX_QUEUE_ENTRIES - 1);
}

332
static void ftgmac100_rx_packet_error(struct ftgmac100 *priv, u32 status)
333 334 335
{
	struct net_device *netdev = priv->netdev;

336
	if (status & FTGMAC100_RXDES0_RX_ERR)
337 338
		netdev->stats.rx_errors++;

339
	if (status & FTGMAC100_RXDES0_CRC_ERR)
340 341
		netdev->stats.rx_crc_errors++;

342 343 344
	if (status & (FTGMAC100_RXDES0_FTL |
		      FTGMAC100_RXDES0_RUNT |
		      FTGMAC100_RXDES0_RX_ODD_NB))
345 346 347 348 349 350 351 352
		netdev->stats.rx_length_errors++;
}

static bool ftgmac100_rx_packet(struct ftgmac100 *priv, int *processed)
{
	struct net_device *netdev = priv->netdev;
	struct ftgmac100_rxdes *rxdes;
	struct sk_buff *skb;
353
	unsigned int pointer, size;
354
	u32 status, csum_vlan;
355
	dma_addr_t map;
356

357 358 359 360
	/* Grab next RX descriptor */
	pointer = priv->rx_pointer;
	rxdes = &priv->descs->rxdes[pointer];

361 362 363
	/* Grab descriptor status */
	status = le32_to_cpu(rxdes->rxdes0);

364
	/* Do we have a packet ? */
365
	if (!(status & FTGMAC100_RXDES0_RXPKT_RDY))
366 367
		return false;

368 369 370
	/* Order subsequent reads with the test for the ready bit */
	dma_rmb();

371
	/* We don't cope with fragmented RX packets */
372 373
	if (unlikely(!(status & FTGMAC100_RXDES0_FRS) ||
		     !(status & FTGMAC100_RXDES0_LRS)))
374 375
		goto drop;

376 377 378 379
	/* Grab received size and csum vlan field in the descriptor */
	size = status & FTGMAC100_RXDES0_VDBC;
	csum_vlan = le32_to_cpu(rxdes->rxdes1);

380
	/* Any error (other than csum offload) flagged ? */
381
	if (unlikely(status & RXDES0_ANY_ERROR)) {
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
		/* Correct for incorrect flagging of runt packets
		 * with vlan tags... Just accept a runt packet that
		 * has been flagged as vlan and whose size is at
		 * least 60 bytes.
		 */
		if ((status & FTGMAC100_RXDES0_RUNT) &&
		    (csum_vlan & FTGMAC100_RXDES1_VLANTAG_AVAIL) &&
		    (size >= 60))
			status &= ~FTGMAC100_RXDES0_RUNT;

		/* Any error still in there ? */
		if (status & RXDES0_ANY_ERROR) {
			ftgmac100_rx_packet_error(priv, status);
			goto drop;
		}
397 398
	}

399
	/* If the packet had no skb (failed to allocate earlier)
400 401
	 * then try to allocate one and skip
	 */
402 403 404
	skb = priv->rx_skbs[pointer];
	if (!unlikely(skb)) {
		ftgmac100_alloc_rx_buf(priv, pointer, rxdes, GFP_ATOMIC);
405
		goto drop;
406 407
	}

408
	if (unlikely(status & FTGMAC100_RXDES0_MULTICAST))
409 410
		netdev->stats.multicast++;

411 412 413 414 415
	/* If the HW found checksum errors, bounce it to software.
	 *
	 * If we didn't, we need to see if the packet was recognized
	 * by HW as one of the supported checksummed protocols before
	 * we accept the HW test results.
416
	 */
417
	if (netdev->features & NETIF_F_RXCSUM) {
418 419 420
		u32 err_bits = FTGMAC100_RXDES1_TCP_CHKSUM_ERR |
			FTGMAC100_RXDES1_UDP_CHKSUM_ERR |
			FTGMAC100_RXDES1_IP_CHKSUM_ERR;
421
		if ((csum_vlan & err_bits) ||
422
		    !(csum_vlan & FTGMAC100_RXDES1_PROT_MASK))
423 424 425 426
			skb->ip_summed = CHECKSUM_NONE;
		else
			skb->ip_summed = CHECKSUM_UNNECESSARY;
	}
427

428
	/* Transfer received size to skb */
429
	skb_put(skb, size);
430

431
	/* Tear down DMA mapping, do necessary cache management */
432 433
	map = le32_to_cpu(rxdes->rxdes3);

434 435 436 437 438 439 440 441 442
#if defined(CONFIG_ARM) && !defined(CONFIG_ARM_DMA_USE_IOMMU)
	/* When we don't have an iommu, we can save cycles by not
	 * invalidating the cache for the part of the packet that
	 * wasn't received.
	 */
	dma_unmap_single(priv->dev, map, size, DMA_FROM_DEVICE);
#else
	dma_unmap_single(priv->dev, map, RX_BUF_SIZE, DMA_FROM_DEVICE);
#endif
443 444


445 446
	/* Resplenish rx ring */
	ftgmac100_alloc_rx_buf(priv, pointer, rxdes, GFP_ATOMIC);
447
	priv->rx_pointer = ftgmac100_next_rx_pointer(pointer);
448 449 450 451

	skb->protocol = eth_type_trans(skb, netdev);

	netdev->stats.rx_packets++;
452
	netdev->stats.rx_bytes += size;
453 454

	/* push packet to protocol stack */
455 456 457 458
	if (skb->ip_summed == CHECKSUM_NONE)
		netif_receive_skb(skb);
	else
		napi_gro_receive(&priv->napi, skb);
459 460 461

	(*processed)++;
	return true;
462 463 464

 drop:
	/* Clean rxdes0 (which resets own bit) */
465
	rxdes->rxdes0 = cpu_to_le32(status & priv->rxdes0_edorr_mask);
466 467 468
	priv->rx_pointer = ftgmac100_next_rx_pointer(pointer);
	netdev->stats.rx_dropped++;
	return true;
469 470
}

471 472
static void ftgmac100_txdes_reset(const struct ftgmac100 *priv,
				  struct ftgmac100_txdes *txdes)
473 474
{
	/* clear all except end of ring bit */
475
	txdes->txdes0 &= cpu_to_le32(priv->txdes0_edotr_mask);
476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
	txdes->txdes1 = 0;
	txdes->txdes2 = 0;
	txdes->txdes3 = 0;
}

static bool ftgmac100_txdes_owned_by_dma(struct ftgmac100_txdes *txdes)
{
	return txdes->txdes0 & cpu_to_le32(FTGMAC100_TXDES0_TXDMA_OWN);
}

static void ftgmac100_txdes_set_dma_own(struct ftgmac100_txdes *txdes)
{
	txdes->txdes0 |= cpu_to_le32(FTGMAC100_TXDES0_TXDMA_OWN);
}

491 492
static void ftgmac100_txdes_set_end_of_ring(const struct ftgmac100 *priv,
					    struct ftgmac100_txdes *txdes)
493
{
494
	txdes->txdes0 |= cpu_to_le32(priv->txdes0_edotr_mask);
495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
}

static void ftgmac100_txdes_set_first_segment(struct ftgmac100_txdes *txdes)
{
	txdes->txdes0 |= cpu_to_le32(FTGMAC100_TXDES0_FTS);
}

static void ftgmac100_txdes_set_last_segment(struct ftgmac100_txdes *txdes)
{
	txdes->txdes0 |= cpu_to_le32(FTGMAC100_TXDES0_LTS);
}

static void ftgmac100_txdes_set_buffer_size(struct ftgmac100_txdes *txdes,
					    unsigned int len)
{
	txdes->txdes0 |= cpu_to_le32(FTGMAC100_TXDES0_TXBUF_SIZE(len));
}

static void ftgmac100_txdes_set_txint(struct ftgmac100_txdes *txdes)
{
	txdes->txdes1 |= cpu_to_le32(FTGMAC100_TXDES1_TXIC);
}

static void ftgmac100_txdes_set_tcpcs(struct ftgmac100_txdes *txdes)
{
	txdes->txdes1 |= cpu_to_le32(FTGMAC100_TXDES1_TCP_CHKSUM);
}

static void ftgmac100_txdes_set_udpcs(struct ftgmac100_txdes *txdes)
{
	txdes->txdes1 |= cpu_to_le32(FTGMAC100_TXDES1_UDP_CHKSUM);
}

static void ftgmac100_txdes_set_ipcs(struct ftgmac100_txdes *txdes)
{
	txdes->txdes1 |= cpu_to_le32(FTGMAC100_TXDES1_IP_CHKSUM);
}

static void ftgmac100_txdes_set_dma_addr(struct ftgmac100_txdes *txdes,
					 dma_addr_t addr)
{
	txdes->txdes3 = cpu_to_le32(addr);
}

static dma_addr_t ftgmac100_txdes_get_dma_addr(struct ftgmac100_txdes *txdes)
{
	return le32_to_cpu(txdes->txdes3);
}

static int ftgmac100_next_tx_pointer(int pointer)
{
	return (pointer + 1) & (TX_QUEUE_ENTRIES - 1);
}

549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565
static u32 ftgmac100_tx_buf_avail(struct ftgmac100 *priv)
{
	/* Returns the number of available slots in the TX queue
	 *
	 * This always leaves one free slot so we don't have to
	 * worry about empty vs. full, and this simplifies the
	 * test for ftgmac100_tx_buf_cleanable() below
	 */
	return (priv->tx_clean_pointer - priv->tx_pointer - 1) &
		(TX_QUEUE_ENTRIES - 1);
}

static bool ftgmac100_tx_buf_cleanable(struct ftgmac100 *priv)
{
	return priv->tx_pointer != priv->tx_clean_pointer;
}

566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582
static void ftgmac100_free_tx_packet(struct ftgmac100 *priv,
				     unsigned int pointer,
				     struct sk_buff *skb,
				     struct ftgmac100_txdes *txdes)
{
	dma_addr_t map;

	map = ftgmac100_txdes_get_dma_addr(txdes);

	dma_unmap_single(priv->dev, map, skb_headlen(skb), DMA_TO_DEVICE);

	dev_kfree_skb(skb);
	priv->tx_skbs[pointer] = NULL;

	ftgmac100_txdes_reset(priv, txdes);
}

583 584 585 586 587
static bool ftgmac100_tx_complete_packet(struct ftgmac100 *priv)
{
	struct net_device *netdev = priv->netdev;
	struct ftgmac100_txdes *txdes;
	struct sk_buff *skb;
588
	unsigned int pointer;
589

590 591
	pointer = priv->tx_clean_pointer;
	txdes = &priv->descs->txdes[pointer];
592 593 594 595

	if (ftgmac100_txdes_owned_by_dma(txdes))
		return false;

596
	skb = priv->tx_skbs[pointer];
597 598
	netdev->stats.tx_packets++;
	netdev->stats.tx_bytes += skb->len;
599
	ftgmac100_free_tx_packet(priv, pointer, skb, txdes);
600

601
	priv->tx_clean_pointer = ftgmac100_next_tx_pointer(pointer);
602 603 604 605 606 607

	return true;
}

static void ftgmac100_tx_complete(struct ftgmac100 *priv)
{
608 609 610 611 612
	struct net_device *netdev = priv->netdev;

	/* Process all completed packets */
	while (ftgmac100_tx_buf_cleanable(priv) &&
	       ftgmac100_tx_complete_packet(priv))
613
		;
614 615 616 617 618 619 620 621 622 623 624 625 626 627

	/* Restart queue if needed */
	smp_mb();
	if (unlikely(netif_queue_stopped(netdev) &&
		     ftgmac100_tx_buf_avail(priv) >= TX_THRESHOLD)) {
		struct netdev_queue *txq;

		txq = netdev_get_tx_queue(netdev, 0);
		__netif_tx_lock(txq, smp_processor_id());
		if (netif_queue_stopped(netdev) &&
		    ftgmac100_tx_buf_avail(priv) >= TX_THRESHOLD)
			netif_wake_queue(netdev);
		__netif_tx_unlock(txq);
	}
628 629
}

630 631
static int ftgmac100_hard_start_xmit(struct sk_buff *skb,
				     struct net_device *netdev)
632
{
633 634
	struct ftgmac100 *priv = netdev_priv(netdev);
	struct ftgmac100_txdes *txdes;
635
	unsigned int pointer;
636 637
	dma_addr_t map;

638 639 640 641 642 643 644
	/* The HW doesn't pad small frames */
	if (eth_skb_pad(skb)) {
		netdev->stats.tx_dropped++;
		return NETDEV_TX_OK;
	}

	/* Reject oversize packets */
645 646 647
	if (unlikely(skb->len > MAX_PKT_SIZE)) {
		if (net_ratelimit())
			netdev_dbg(netdev, "tx packet too big\n");
648
		goto drop;
649 650 651 652 653 654 655
	}

	map = dma_map_single(priv->dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE);
	if (unlikely(dma_mapping_error(priv->dev, map))) {
		/* drop packet */
		if (net_ratelimit())
			netdev_err(netdev, "map socket buffer failed\n");
656
		goto drop;
657
	}
658

659 660 661
	/* Grab the next free tx descriptor */
	pointer = priv->tx_pointer;
	txdes = &priv->descs->txdes[pointer];
662 663

	/* setup TX descriptor */
664
	priv->tx_skbs[pointer] = skb;
665
	ftgmac100_txdes_set_dma_addr(txdes, map);
666
	ftgmac100_txdes_set_buffer_size(txdes, skb->len);
667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684

	ftgmac100_txdes_set_first_segment(txdes);
	ftgmac100_txdes_set_last_segment(txdes);
	ftgmac100_txdes_set_txint(txdes);
	if (skb->ip_summed == CHECKSUM_PARTIAL) {
		__be16 protocol = skb->protocol;

		if (protocol == cpu_to_be16(ETH_P_IP)) {
			u8 ip_proto = ip_hdr(skb)->protocol;

			ftgmac100_txdes_set_ipcs(txdes);
			if (ip_proto == IPPROTO_TCP)
				ftgmac100_txdes_set_tcpcs(txdes);
			else if (ip_proto == IPPROTO_UDP)
				ftgmac100_txdes_set_udpcs(txdes);
		}
	}

685 686 687 688
	/* Order the previous packet and descriptor udpates
	 * before setting the OWN bit.
	 */
	dma_wmb();
689 690
	ftgmac100_txdes_set_dma_own(txdes);

691 692 693
	/* Update next TX pointer */
	priv->tx_pointer = ftgmac100_next_tx_pointer(pointer);

694 695 696 697 698
	/* If there isn't enough room for all the fragments of a new packet
	 * in the TX ring, stop the queue. The sequence below is race free
	 * vs. a concurrent restart in ftgmac100_poll()
	 */
	if (unlikely(ftgmac100_tx_buf_avail(priv) < TX_THRESHOLD)) {
699
		netif_stop_queue(netdev);
700 701 702 703 704
		/* Order the queue stop with the test below */
		smp_mb();
		if (ftgmac100_tx_buf_avail(priv) >= TX_THRESHOLD)
			netif_wake_queue(netdev);
	}
705 706 707

	ftgmac100_txdma_normal_prio_start_polling(priv);

708 709 710 711 712 713 714
	return NETDEV_TX_OK;

 drop:
	/* Drop the packet */
	dev_kfree_skb_any(skb);
	netdev->stats.tx_dropped++;

715 716 717 718 719 720 721
	return NETDEV_TX_OK;
}

static void ftgmac100_free_buffers(struct ftgmac100 *priv)
{
	int i;

722
	/* Free all RX buffers */
723 724
	for (i = 0; i < RX_QUEUE_ENTRIES; i++) {
		struct ftgmac100_rxdes *rxdes = &priv->descs->rxdes[i];
725
		struct sk_buff *skb = priv->rx_skbs[i];
726
		dma_addr_t map = le32_to_cpu(rxdes->rxdes3);
727

728
		if (!skb)
729 730
			continue;

731 732 733
		priv->rx_skbs[i] = NULL;
		dma_unmap_single(priv->dev, map, RX_BUF_SIZE, DMA_FROM_DEVICE);
		dev_kfree_skb_any(skb);
734 735
	}

736
	/* Free all TX buffers */
737 738
	for (i = 0; i < TX_QUEUE_ENTRIES; i++) {
		struct ftgmac100_txdes *txdes = &priv->descs->txdes[i];
739
		struct sk_buff *skb = priv->tx_skbs[i];
740

741 742
		if (skb)
			ftgmac100_free_tx_packet(priv, i, skb, txdes);
743 744 745
	}
}

746
static void ftgmac100_free_rings(struct ftgmac100 *priv)
747
{
748 749 750 751
	/* Free descriptors */
	if (priv->descs)
		dma_free_coherent(priv->dev, sizeof(struct ftgmac100_descs),
				  priv->descs, priv->descs_dma_addr);
752 753 754 755 756

	/* Free scratch packet buffer */
	if (priv->rx_scratch)
		dma_free_coherent(priv->dev, RX_BUF_SIZE,
				  priv->rx_scratch, priv->rx_scratch_dma);
757
}
758

759 760 761
static int ftgmac100_alloc_rings(struct ftgmac100 *priv)
{
	/* Allocate descriptors */
762 763 764
	priv->descs = dma_zalloc_coherent(priv->dev,
					  sizeof(struct ftgmac100_descs),
					  &priv->descs_dma_addr, GFP_KERNEL);
765 766 767
	if (!priv->descs)
		return -ENOMEM;

768 769 770 771 772 773 774 775
	/* Allocate scratch packet buffer */
	priv->rx_scratch = dma_alloc_coherent(priv->dev,
					      RX_BUF_SIZE,
					      &priv->rx_scratch_dma,
					      GFP_KERNEL);
	if (!priv->rx_scratch)
		return -ENOMEM;

776 777 778 779 780
	return 0;
}

static void ftgmac100_init_rings(struct ftgmac100 *priv)
{
781
	struct ftgmac100_rxdes *rxdes;
782 783 784
	int i;

	/* Initialize RX ring */
785
	for (i = 0; i < RX_QUEUE_ENTRIES; i++) {
786
		rxdes = &priv->descs->rxdes[i];
787
		rxdes->rxdes0 = 0;
788
		rxdes->rxdes3 = cpu_to_le32(priv->rx_scratch_dma);
789
	}
790 791
	/* Mark the end of the ring */
	rxdes->rxdes0 |= cpu_to_le32(priv->rxdes0_edorr_mask);
792 793 794 795 796 797 798 799 800 801

	/* Initialize TX ring */
	for (i = 0; i < TX_QUEUE_ENTRIES; i++)
		priv->descs->txdes[i].txdes0 = 0;
	ftgmac100_txdes_set_end_of_ring(priv, &priv->descs->txdes[i -1]);
}

static int ftgmac100_alloc_rx_buffers(struct ftgmac100 *priv)
{
	int i;
802 803 804 805

	for (i = 0; i < RX_QUEUE_ENTRIES; i++) {
		struct ftgmac100_rxdes *rxdes = &priv->descs->rxdes[i];

806
		if (ftgmac100_alloc_rx_buf(priv, i, rxdes, GFP_KERNEL))
807
			return -ENOMEM;
808 809 810 811 812 813 814
	}
	return 0;
}

static void ftgmac100_adjust_link(struct net_device *netdev)
{
	struct ftgmac100 *priv = netdev_priv(netdev);
815
	struct phy_device *phydev = netdev->phydev;
816
	int new_speed;
817

818 819 820 821 822 823 824 825
	/* We store "no link" as speed 0 */
	if (!phydev->link)
		new_speed = 0;
	else
		new_speed = phydev->speed;

	if (phydev->speed == priv->cur_speed &&
	    phydev->duplex == priv->cur_duplex)
826 827
		return;

828 829 830 831 832 833 834 835 836 837 838 839
	/* Print status if we have a link or we had one and just lost it,
	 * don't print otherwise.
	 */
	if (new_speed || priv->cur_speed)
		phy_print_status(phydev);

	priv->cur_speed = new_speed;
	priv->cur_duplex = phydev->duplex;

	/* Link is down, do nothing else */
	if (!new_speed)
		return;
840

841
	/* Disable all interrupts */
842 843
	iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);

844 845
	/* Reset the adapter asynchronously */
	schedule_work(&priv->reset_task);
846 847 848 849 850
}

static int ftgmac100_mii_probe(struct ftgmac100 *priv)
{
	struct net_device *netdev = priv->netdev;
851
	struct phy_device *phydev;
852

853
	phydev = phy_find_first(priv->mii_bus);
854 855 856 857 858
	if (!phydev) {
		netdev_info(netdev, "%s: no PHY found\n", netdev->name);
		return -ENODEV;
	}

A
Andrew Lunn 已提交
859
	phydev = phy_connect(netdev, phydev_name(phydev),
860
			     &ftgmac100_adjust_link, PHY_INTERFACE_MODE_GMII);
861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943

	if (IS_ERR(phydev)) {
		netdev_err(netdev, "%s: Could not attach to PHY\n", netdev->name);
		return PTR_ERR(phydev);
	}

	return 0;
}

static int ftgmac100_mdiobus_read(struct mii_bus *bus, int phy_addr, int regnum)
{
	struct net_device *netdev = bus->priv;
	struct ftgmac100 *priv = netdev_priv(netdev);
	unsigned int phycr;
	int i;

	phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);

	/* preserve MDC cycle threshold */
	phycr &= FTGMAC100_PHYCR_MDC_CYCTHR_MASK;

	phycr |= FTGMAC100_PHYCR_PHYAD(phy_addr) |
		 FTGMAC100_PHYCR_REGAD(regnum) |
		 FTGMAC100_PHYCR_MIIRD;

	iowrite32(phycr, priv->base + FTGMAC100_OFFSET_PHYCR);

	for (i = 0; i < 10; i++) {
		phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);

		if ((phycr & FTGMAC100_PHYCR_MIIRD) == 0) {
			int data;

			data = ioread32(priv->base + FTGMAC100_OFFSET_PHYDATA);
			return FTGMAC100_PHYDATA_MIIRDATA(data);
		}

		udelay(100);
	}

	netdev_err(netdev, "mdio read timed out\n");
	return -EIO;
}

static int ftgmac100_mdiobus_write(struct mii_bus *bus, int phy_addr,
				   int regnum, u16 value)
{
	struct net_device *netdev = bus->priv;
	struct ftgmac100 *priv = netdev_priv(netdev);
	unsigned int phycr;
	int data;
	int i;

	phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);

	/* preserve MDC cycle threshold */
	phycr &= FTGMAC100_PHYCR_MDC_CYCTHR_MASK;

	phycr |= FTGMAC100_PHYCR_PHYAD(phy_addr) |
		 FTGMAC100_PHYCR_REGAD(regnum) |
		 FTGMAC100_PHYCR_MIIWR;

	data = FTGMAC100_PHYDATA_MIIWDATA(value);

	iowrite32(data, priv->base + FTGMAC100_OFFSET_PHYDATA);
	iowrite32(phycr, priv->base + FTGMAC100_OFFSET_PHYCR);

	for (i = 0; i < 10; i++) {
		phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);

		if ((phycr & FTGMAC100_PHYCR_MIIWR) == 0)
			return 0;

		udelay(100);
	}

	netdev_err(netdev, "mdio write timed out\n");
	return -EIO;
}

static void ftgmac100_get_drvinfo(struct net_device *netdev,
				  struct ethtool_drvinfo *info)
{
944 945 946
	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
	strlcpy(info->bus_info, dev_name(&netdev->dev), sizeof(info->bus_info));
947 948 949 950 951
}

static const struct ethtool_ops ftgmac100_ethtool_ops = {
	.get_drvinfo		= ftgmac100_get_drvinfo,
	.get_link		= ethtool_op_get_link,
952 953
	.get_link_ksettings	= phy_ethtool_get_link_ksettings,
	.set_link_ksettings	= phy_ethtool_set_link_ksettings,
954 955 956 957 958 959
};

static irqreturn_t ftgmac100_interrupt(int irq, void *dev_id)
{
	struct net_device *netdev = dev_id;
	struct ftgmac100 *priv = netdev_priv(netdev);
960
	unsigned int status, new_mask = FTGMAC100_INT_BAD;
961

962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002
	/* Fetch and clear interrupt bits, process abnormal ones */
	status = ioread32(priv->base + FTGMAC100_OFFSET_ISR);
	iowrite32(status, priv->base + FTGMAC100_OFFSET_ISR);
	if (unlikely(status & FTGMAC100_INT_BAD)) {

		/* RX buffer unavailable */
		if (status & FTGMAC100_INT_NO_RXBUF)
			netdev->stats.rx_over_errors++;

		/* received packet lost due to RX FIFO full */
		if (status & FTGMAC100_INT_RPKT_LOST)
			netdev->stats.rx_fifo_errors++;

		/* sent packet lost due to excessive TX collision */
		if (status & FTGMAC100_INT_XPKT_LOST)
			netdev->stats.tx_fifo_errors++;

		/* AHB error -> Reset the chip */
		if (status & FTGMAC100_INT_AHB_ERR) {
			if (net_ratelimit())
				netdev_warn(netdev,
					   "AHB bus error ! Resetting chip.\n");
			iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
			schedule_work(&priv->reset_task);
			return IRQ_HANDLED;
		}

		/* We may need to restart the MAC after such errors, delay
		 * this until after we have freed some Rx buffers though
		 */
		priv->need_mac_restart = true;

		/* Disable those errors until we restart */
		new_mask &= ~status;
	}

	/* Only enable "bad" interrupts while NAPI is on */
	iowrite32(new_mask, priv->base + FTGMAC100_OFFSET_IER);

	/* Schedule NAPI bh */
	napi_schedule_irqoff(&priv->napi);
1003 1004 1005 1006

	return IRQ_HANDLED;
}

1007 1008 1009 1010 1011 1012 1013 1014
static bool ftgmac100_check_rx(struct ftgmac100 *priv)
{
	struct ftgmac100_rxdes *rxdes = &priv->descs->rxdes[priv->rx_pointer];

	/* Do we have a packet ? */
	return !!(rxdes->rxdes0 & cpu_to_le32(FTGMAC100_RXDES0_RXPKT_RDY));
}

1015 1016 1017
static int ftgmac100_poll(struct napi_struct *napi, int budget)
{
	struct ftgmac100 *priv = container_of(napi, struct ftgmac100, napi);
1018 1019
	int work_done = 0;
	bool more;
1020

1021 1022 1023
	/* Handle TX completions */
	if (ftgmac100_tx_buf_cleanable(priv))
		ftgmac100_tx_complete(priv);
1024

1025
	/* Handle RX packets */
1026
	do {
1027 1028
		more = ftgmac100_rx_packet(priv, &work_done);
	} while (more && work_done < budget);
1029 1030


1031 1032 1033 1034 1035
	/* The interrupt is telling us to kick the MAC back to life
	 * after an RX overflow
	 */
	if (unlikely(priv->need_mac_restart)) {
		ftgmac100_start_hw(priv);
1036

1037 1038 1039
		/* Re-enable "bad" interrupts */
		iowrite32(FTGMAC100_INT_BAD,
			  priv->base + FTGMAC100_OFFSET_IER);
1040 1041
	}

1042 1043 1044 1045 1046
	/* As long as we are waiting for transmit packets to be
	 * completed we keep NAPI going
	 */
	if (ftgmac100_tx_buf_cleanable(priv))
		work_done = budget;
1047

1048
	if (work_done < budget) {
1049 1050 1051 1052 1053 1054 1055
		/* We are about to re-enable all interrupts. However
		 * the HW has been latching RX/TX packet interrupts while
		 * they were masked. So we clear them first, then we need
		 * to re-check if there's something to process
		 */
		iowrite32(FTGMAC100_INT_RXTX,
			  priv->base + FTGMAC100_OFFSET_ISR);
1056 1057
		if (ftgmac100_check_rx(priv) ||
		    ftgmac100_tx_buf_cleanable(priv))
1058 1059 1060
			return budget;

		/* deschedule NAPI */
1061 1062 1063
		napi_complete(napi);

		/* enable all interrupts */
1064
		iowrite32(FTGMAC100_INT_ALL,
1065
			  priv->base + FTGMAC100_OFFSET_IER);
1066 1067
	}

1068
	return work_done;
1069 1070
}

1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
static int ftgmac100_init_all(struct ftgmac100 *priv, bool ignore_alloc_err)
{
	int err = 0;

	/* Re-init descriptors (adjust queue sizes) */
	ftgmac100_init_rings(priv);

	/* Realloc rx descriptors */
	err = ftgmac100_alloc_rx_buffers(priv);
	if (err && !ignore_alloc_err)
		return err;

	/* Reinit and restart HW */
	ftgmac100_init_hw(priv);
	ftgmac100_start_hw(priv);

	/* Re-enable the device */
	napi_enable(&priv->napi);
	netif_start_queue(priv->netdev);

	/* Enable all interrupts */
1092
	iowrite32(FTGMAC100_INT_ALL, priv->base + FTGMAC100_OFFSET_IER);
1093 1094 1095 1096

	return err;
}

1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124
static void ftgmac100_reset_task(struct work_struct *work)
{
	struct ftgmac100 *priv = container_of(work, struct ftgmac100,
					      reset_task);
	struct net_device *netdev = priv->netdev;
	int err;

	netdev_dbg(netdev, "Resetting NIC...\n");

	/* Lock the world */
	rtnl_lock();
	if (netdev->phydev)
		mutex_lock(&netdev->phydev->lock);
	if (priv->mii_bus)
		mutex_lock(&priv->mii_bus->mdio_lock);


	/* Check if the interface is still up */
	if (!netif_running(netdev))
		goto bail;

	/* Stop the network stack */
	netif_trans_update(netdev);
	napi_disable(&priv->napi);
	netif_tx_disable(netdev);

	/* Stop and reset the MAC */
	ftgmac100_stop_hw(priv);
1125
	err = ftgmac100_reset_and_config_mac(priv);
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145
	if (err) {
		/* Not much we can do ... it might come back... */
		netdev_err(netdev, "attempting to continue...\n");
	}

	/* Free all rx and tx buffers */
	ftgmac100_free_buffers(priv);

	/* Setup everything again and restart chip */
	ftgmac100_init_all(priv, true);

	netdev_dbg(netdev, "Reset done !\n");
 bail:
	if (priv->mii_bus)
		mutex_unlock(&priv->mii_bus->mdio_lock);
	if (netdev->phydev)
		mutex_unlock(&netdev->phydev->lock);
	rtnl_unlock();
}

1146 1147 1148 1149 1150
static int ftgmac100_open(struct net_device *netdev)
{
	struct ftgmac100 *priv = netdev_priv(netdev);
	int err;

1151 1152
	/* Allocate ring buffers  */
	err = ftgmac100_alloc_rings(priv);
1153
	if (err) {
1154 1155
		netdev_err(netdev, "Failed to allocate descriptors\n");
		return err;
1156 1157
	}

1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
	/* When using NC-SI we force the speed to 100Mbit/s full duplex,
	 *
	 * Otherwise we leave it set to 0 (no link), the link
	 * message from the PHY layer will handle setting it up to
	 * something else if needed.
	 */
	if (priv->use_ncsi) {
		priv->cur_duplex = DUPLEX_FULL;
		priv->cur_speed = SPEED_100;
	} else {
		priv->cur_duplex = 0;
		priv->cur_speed = 0;
	}

1172 1173
	/* Reset the hardware */
	err = ftgmac100_reset_and_config_mac(priv);
1174 1175 1176
	if (err)
		goto err_hw;

1177 1178 1179
	/* Initialize NAPI */
	netif_napi_add(netdev, &priv->napi, ftgmac100_poll, 64);

1180 1181 1182 1183 1184 1185 1186
	/* Grab our interrupt */
	err = request_irq(netdev->irq, ftgmac100_interrupt, 0, netdev->name, netdev);
	if (err) {
		netdev_err(netdev, "failed to request irq %d\n", netdev->irq);
		goto err_irq;
	}

1187 1188 1189 1190 1191 1192
	/* Start things up */
	err = ftgmac100_init_all(priv, false);
	if (err) {
		netdev_err(netdev, "Failed to allocate packet buffers\n");
		goto err_alloc;
	}
G
Gavin Shan 已提交
1193

1194 1195
	if (netdev->phydev) {
		/* If we have a PHY, start polling */
G
Gavin Shan 已提交
1196
		phy_start(netdev->phydev);
1197 1198
	} else if (priv->use_ncsi) {
		/* If using NC-SI, set our carrier on and start the stack */
G
Gavin Shan 已提交
1199
		netif_carrier_on(netdev);
1200

1201
		/* Start the NCSI device */
G
Gavin Shan 已提交
1202 1203 1204 1205 1206
		err = ncsi_start_dev(priv->ndev);
		if (err)
			goto err_ncsi;
	}

1207 1208
	return 0;

1209
 err_ncsi:
G
Gavin Shan 已提交
1210 1211
	napi_disable(&priv->napi);
	netif_stop_queue(netdev);
1212 1213
 err_alloc:
	ftgmac100_free_buffers(priv);
1214
	free_irq(netdev->irq, netdev);
1215
 err_irq:
1216
	netif_napi_del(&priv->napi);
1217
 err_hw:
1218
	iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
1219
	ftgmac100_free_rings(priv);
1220 1221 1222 1223 1224 1225 1226
	return err;
}

static int ftgmac100_stop(struct net_device *netdev)
{
	struct ftgmac100 *priv = netdev_priv(netdev);

1227 1228 1229 1230 1231 1232 1233 1234
	/* Note about the reset task: We are called with the rtnl lock
	 * held, so we are synchronized against the core of the reset
	 * task. We must not try to synchronously cancel it otherwise
	 * we can deadlock. But since it will test for netif_running()
	 * which has already been cleared by the net core, we don't
	 * anything special to do.
	 */

1235 1236 1237 1238 1239
	/* disable all interrupts */
	iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);

	netif_stop_queue(netdev);
	napi_disable(&priv->napi);
1240
	netif_napi_del(&priv->napi);
G
Gavin Shan 已提交
1241 1242
	if (netdev->phydev)
		phy_stop(netdev->phydev);
1243 1244
	else if (priv->use_ncsi)
		ncsi_stop_dev(priv->ndev);
1245 1246

	ftgmac100_stop_hw(priv);
1247
	free_irq(netdev->irq, netdev);
1248
	ftgmac100_free_buffers(priv);
1249
	ftgmac100_free_rings(priv);
1250 1251 1252 1253 1254 1255 1256

	return 0;
}

/* optional */
static int ftgmac100_do_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
G
Gavin Shan 已提交
1257 1258 1259
	if (!netdev->phydev)
		return -ENXIO;

1260
	return phy_mii_ioctl(netdev->phydev, ifr, cmd);
1261 1262
}

1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
static void ftgmac100_tx_timeout(struct net_device *netdev)
{
	struct ftgmac100 *priv = netdev_priv(netdev);

	/* Disable all interrupts */
	iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);

	/* Do the reset outside of interrupt context */
	schedule_work(&priv->reset_task);
}

1274 1275 1276 1277
static const struct net_device_ops ftgmac100_netdev_ops = {
	.ndo_open		= ftgmac100_open,
	.ndo_stop		= ftgmac100_stop,
	.ndo_start_xmit		= ftgmac100_hard_start_xmit,
1278
	.ndo_set_mac_address	= ftgmac100_set_mac_addr,
1279 1280
	.ndo_validate_addr	= eth_validate_addr,
	.ndo_do_ioctl		= ftgmac100_do_ioctl,
1281
	.ndo_tx_timeout		= ftgmac100_tx_timeout,
1282 1283
};

1284 1285 1286 1287 1288
static int ftgmac100_setup_mdio(struct net_device *netdev)
{
	struct ftgmac100 *priv = netdev_priv(netdev);
	struct platform_device *pdev = to_platform_device(priv->dev);
	int i, err = 0;
1289
	u32 reg;
1290 1291 1292 1293 1294 1295

	/* initialize mdio bus */
	priv->mii_bus = mdiobus_alloc();
	if (!priv->mii_bus)
		return -EIO;

1296 1297 1298 1299 1300 1301 1302 1303
	if (of_machine_is_compatible("aspeed,ast2400") ||
	    of_machine_is_compatible("aspeed,ast2500")) {
		/* This driver supports the old MDIO interface */
		reg = ioread32(priv->base + FTGMAC100_OFFSET_REVR);
		reg &= ~FTGMAC100_REVR_NEW_MDIO_INTERFACE;
		iowrite32(reg, priv->base + FTGMAC100_OFFSET_REVR);
	};

1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346
	priv->mii_bus->name = "ftgmac100_mdio";
	snprintf(priv->mii_bus->id, MII_BUS_ID_SIZE, "%s-%d",
		 pdev->name, pdev->id);
	priv->mii_bus->priv = priv->netdev;
	priv->mii_bus->read = ftgmac100_mdiobus_read;
	priv->mii_bus->write = ftgmac100_mdiobus_write;

	for (i = 0; i < PHY_MAX_ADDR; i++)
		priv->mii_bus->irq[i] = PHY_POLL;

	err = mdiobus_register(priv->mii_bus);
	if (err) {
		dev_err(priv->dev, "Cannot register MDIO bus!\n");
		goto err_register_mdiobus;
	}

	err = ftgmac100_mii_probe(priv);
	if (err) {
		dev_err(priv->dev, "MII Probe failed!\n");
		goto err_mii_probe;
	}

	return 0;

err_mii_probe:
	mdiobus_unregister(priv->mii_bus);
err_register_mdiobus:
	mdiobus_free(priv->mii_bus);
	return err;
}

static void ftgmac100_destroy_mdio(struct net_device *netdev)
{
	struct ftgmac100 *priv = netdev_priv(netdev);

	if (!netdev->phydev)
		return;

	phy_disconnect(netdev->phydev);
	mdiobus_unregister(priv->mii_bus);
	mdiobus_free(priv->mii_bus);
}

G
Gavin Shan 已提交
1347 1348 1349 1350 1351 1352 1353 1354 1355
static void ftgmac100_ncsi_handler(struct ncsi_dev *nd)
{
	if (unlikely(nd->state != ncsi_dev_state_functional))
		return;

	netdev_info(nd->dev, "NCSI interface %s\n",
		    nd->link_up ? "up" : "down");
}

1356 1357 1358 1359 1360 1361
static int ftgmac100_probe(struct platform_device *pdev)
{
	struct resource *res;
	int irq;
	struct net_device *netdev;
	struct ftgmac100 *priv;
G
Gavin Shan 已提交
1362
	int err = 0;
1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383

	if (!pdev)
		return -ENODEV;

	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	if (!res)
		return -ENXIO;

	irq = platform_get_irq(pdev, 0);
	if (irq < 0)
		return irq;

	/* setup net_device */
	netdev = alloc_etherdev(sizeof(*priv));
	if (!netdev) {
		err = -ENOMEM;
		goto err_alloc_etherdev;
	}

	SET_NETDEV_DEV(netdev, &pdev->dev);

1384
	netdev->ethtool_ops = &ftgmac100_ethtool_ops;
1385
	netdev->netdev_ops = &ftgmac100_netdev_ops;
1386
	netdev->watchdog_timeo = 5 * HZ;
1387 1388 1389 1390 1391 1392 1393

	platform_set_drvdata(pdev, netdev);

	/* setup private data */
	priv = netdev_priv(netdev);
	priv->netdev = netdev;
	priv->dev = &pdev->dev;
1394
	INIT_WORK(&priv->reset_task, ftgmac100_reset_task);
1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411

	/* map io memory */
	priv->res = request_mem_region(res->start, resource_size(res),
				       dev_name(&pdev->dev));
	if (!priv->res) {
		dev_err(&pdev->dev, "Could not reserve memory region\n");
		err = -ENOMEM;
		goto err_req_mem;
	}

	priv->base = ioremap(res->start, resource_size(res));
	if (!priv->base) {
		dev_err(&pdev->dev, "Failed to ioremap ethernet registers\n");
		err = -EIO;
		goto err_ioremap;
	}

1412
	netdev->irq = irq;
1413

1414 1415 1416
	/* MAC address from chip or random one */
	ftgmac100_setup_mac(priv);

1417 1418 1419 1420 1421 1422 1423 1424 1425
	if (of_machine_is_compatible("aspeed,ast2400") ||
	    of_machine_is_compatible("aspeed,ast2500")) {
		priv->rxdes0_edorr_mask = BIT(30);
		priv->txdes0_edotr_mask = BIT(30);
	} else {
		priv->rxdes0_edorr_mask = BIT(15);
		priv->txdes0_edotr_mask = BIT(15);
	}

G
Gavin Shan 已提交
1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448
	if (pdev->dev.of_node &&
	    of_get_property(pdev->dev.of_node, "use-ncsi", NULL)) {
		if (!IS_ENABLED(CONFIG_NET_NCSI)) {
			dev_err(&pdev->dev, "NCSI stack not enabled\n");
			goto err_ncsi_dev;
		}

		dev_info(&pdev->dev, "Using NCSI interface\n");
		priv->use_ncsi = true;
		priv->ndev = ncsi_register_dev(netdev, ftgmac100_ncsi_handler);
		if (!priv->ndev)
			goto err_ncsi_dev;
	} else {
		priv->use_ncsi = false;
		err = ftgmac100_setup_mdio(netdev);
		if (err)
			goto err_setup_mdio;
	}

	/* We have to disable on-chip IP checksum functionality
	 * when NCSI is enabled on the interface. It doesn't work
	 * in that case.
	 */
1449
	netdev->features = NETIF_F_RXCSUM | NETIF_F_IP_CSUM | NETIF_F_GRO;
G
Gavin Shan 已提交
1450 1451 1452 1453
	if (priv->use_ncsi &&
	    of_get_property(pdev->dev.of_node, "no-hw-checksum", NULL))
		netdev->features &= ~NETIF_F_IP_CSUM;

1454 1455 1456 1457 1458 1459 1460 1461

	/* register network device */
	err = register_netdev(netdev);
	if (err) {
		dev_err(&pdev->dev, "Failed to register netdev\n");
		goto err_register_netdev;
	}

1462
	netdev_info(netdev, "irq %d, mapped at %p\n", netdev->irq, priv->base);
1463 1464 1465

	return 0;

G
Gavin Shan 已提交
1466
err_ncsi_dev:
1467
err_register_netdev:
1468 1469
	ftgmac100_destroy_mdio(netdev);
err_setup_mdio:
1470 1471 1472 1473 1474 1475 1476 1477 1478 1479
	iounmap(priv->base);
err_ioremap:
	release_resource(priv->res);
err_req_mem:
	netif_napi_del(&priv->napi);
	free_netdev(netdev);
err_alloc_etherdev:
	return err;
}

1480
static int ftgmac100_remove(struct platform_device *pdev)
1481 1482 1483 1484 1485 1486 1487 1488
{
	struct net_device *netdev;
	struct ftgmac100 *priv;

	netdev = platform_get_drvdata(pdev);
	priv = netdev_priv(netdev);

	unregister_netdev(netdev);
1489 1490 1491 1492 1493 1494

	/* There's a small chance the reset task will have been re-queued,
	 * during stop, make sure it's gone before we free the structure.
	 */
	cancel_work_sync(&priv->reset_task);

1495
	ftgmac100_destroy_mdio(netdev);
1496 1497 1498 1499 1500 1501 1502 1503 1504

	iounmap(priv->base);
	release_resource(priv->res);

	netif_napi_del(&priv->napi);
	free_netdev(netdev);
	return 0;
}

1505 1506 1507 1508 1509 1510
static const struct of_device_id ftgmac100_of_match[] = {
	{ .compatible = "faraday,ftgmac100" },
	{ }
};
MODULE_DEVICE_TABLE(of, ftgmac100_of_match);

1511
static struct platform_driver ftgmac100_driver = {
1512
	.probe	= ftgmac100_probe,
1513
	.remove	= ftgmac100_remove,
1514 1515 1516
	.driver	= {
		.name		= DRV_NAME,
		.of_match_table	= ftgmac100_of_match,
1517 1518
	},
};
1519
module_platform_driver(ftgmac100_driver);
1520 1521 1522 1523

MODULE_AUTHOR("Po-Yu Chuang <ratbert@faraday-tech.com>");
MODULE_DESCRIPTION("FTGMAC100 driver");
MODULE_LICENSE("GPL");