vmscan.c 40.7 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
/*
 *  linux/mm/vmscan.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *
 *  Swap reorganised 29.12.95, Stephen Tweedie.
 *  kswapd added: 7.1.96  sct
 *  Removed kswapd_ctl limits, and swap out as many pages as needed
 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
 *  Multiqueue VM started 5.8.00, Rik van Riel.
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/kernel_stat.h>
#include <linux/swap.h>
#include <linux/pagemap.h>
#include <linux/init.h>
#include <linux/highmem.h>
#include <linux/file.h>
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/buffer_head.h>	/* for try_to_release_page(),
					buffer_heads_over_limit */
#include <linux/mm_inline.h>
#include <linux/pagevec.h>
#include <linux/backing-dev.h>
#include <linux/rmap.h>
#include <linux/topology.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/notifier.h>
#include <linux/rwsem.h>
36
#include <linux/delay.h>
L
Linus Torvalds 已提交
37 38 39 40 41 42

#include <asm/tlbflush.h>
#include <asm/div64.h>

#include <linux/swapops.h>

43 44
#include "internal.h"

L
Linus Torvalds 已提交
45 46 47 48 49 50 51
struct scan_control {
	/* Incremented by the number of inactive pages that were scanned */
	unsigned long nr_scanned;

	unsigned long nr_mapped;	/* From page_state */

	/* This context's GFP mask */
A
Al Viro 已提交
52
	gfp_t gfp_mask;
L
Linus Torvalds 已提交
53 54 55

	int may_writepage;

56 57 58
	/* Can pages be swapped as part of reclaim? */
	int may_swap;

L
Linus Torvalds 已提交
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
	/* This context's SWAP_CLUSTER_MAX. If freeing memory for
	 * suspend, we effectively ignore SWAP_CLUSTER_MAX.
	 * In this context, it doesn't matter that we scan the
	 * whole list at once. */
	int swap_cluster_max;
};

/*
 * The list of shrinker callbacks used by to apply pressure to
 * ageable caches.
 */
struct shrinker {
	shrinker_t		shrinker;
	struct list_head	list;
	int			seeks;	/* seeks to recreate an obj */
	long			nr;	/* objs pending delete */
};

#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))

#ifdef ARCH_HAS_PREFETCH
#define prefetch_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetch(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

#ifdef ARCH_HAS_PREFETCHW
#define prefetchw_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetchw(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

/*
 * From 0 .. 100.  Higher means more swappy.
 */
int vm_swappiness = 60;
static long total_memory;

static LIST_HEAD(shrinker_list);
static DECLARE_RWSEM(shrinker_rwsem);

/*
 * Add a shrinker callback to be called from the vm
 */
struct shrinker *set_shrinker(int seeks, shrinker_t theshrinker)
{
        struct shrinker *shrinker;

        shrinker = kmalloc(sizeof(*shrinker), GFP_KERNEL);
        if (shrinker) {
	        shrinker->shrinker = theshrinker;
	        shrinker->seeks = seeks;
	        shrinker->nr = 0;
	        down_write(&shrinker_rwsem);
	        list_add_tail(&shrinker->list, &shrinker_list);
	        up_write(&shrinker_rwsem);
	}
	return shrinker;
}
EXPORT_SYMBOL(set_shrinker);

/*
 * Remove one
 */
void remove_shrinker(struct shrinker *shrinker)
{
	down_write(&shrinker_rwsem);
	list_del(&shrinker->list);
	up_write(&shrinker_rwsem);
	kfree(shrinker);
}
EXPORT_SYMBOL(remove_shrinker);

#define SHRINK_BATCH 128
/*
 * Call the shrink functions to age shrinkable caches
 *
 * Here we assume it costs one seek to replace a lru page and that it also
 * takes a seek to recreate a cache object.  With this in mind we age equal
 * percentages of the lru and ageable caches.  This should balance the seeks
 * generated by these structures.
 *
 * If the vm encounted mapped pages on the LRU it increase the pressure on
 * slab to avoid swapping.
 *
 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
 *
 * `lru_pages' represents the number of on-LRU pages in all the zones which
 * are eligible for the caller's allocation attempt.  It is used for balancing
 * slab reclaim versus page reclaim.
165 166
 *
 * Returns the number of slab objects which we shrunk.
L
Linus Torvalds 已提交
167
 */
168 169
unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
			unsigned long lru_pages)
L
Linus Torvalds 已提交
170 171
{
	struct shrinker *shrinker;
172
	unsigned long ret = 0;
L
Linus Torvalds 已提交
173 174 175 176 177

	if (scanned == 0)
		scanned = SWAP_CLUSTER_MAX;

	if (!down_read_trylock(&shrinker_rwsem))
178
		return 1;	/* Assume we'll be able to shrink next time */
L
Linus Torvalds 已提交
179 180 181 182

	list_for_each_entry(shrinker, &shrinker_list, list) {
		unsigned long long delta;
		unsigned long total_scan;
183
		unsigned long max_pass = (*shrinker->shrinker)(0, gfp_mask);
L
Linus Torvalds 已提交
184 185

		delta = (4 * scanned) / shrinker->seeks;
186
		delta *= max_pass;
L
Linus Torvalds 已提交
187 188
		do_div(delta, lru_pages + 1);
		shrinker->nr += delta;
189 190 191 192 193 194 195 196 197 198 199 200 201
		if (shrinker->nr < 0) {
			printk(KERN_ERR "%s: nr=%ld\n",
					__FUNCTION__, shrinker->nr);
			shrinker->nr = max_pass;
		}

		/*
		 * Avoid risking looping forever due to too large nr value:
		 * never try to free more than twice the estimate number of
		 * freeable entries.
		 */
		if (shrinker->nr > max_pass * 2)
			shrinker->nr = max_pass * 2;
L
Linus Torvalds 已提交
202 203 204 205 206 207 208

		total_scan = shrinker->nr;
		shrinker->nr = 0;

		while (total_scan >= SHRINK_BATCH) {
			long this_scan = SHRINK_BATCH;
			int shrink_ret;
209
			int nr_before;
L
Linus Torvalds 已提交
210

211
			nr_before = (*shrinker->shrinker)(0, gfp_mask);
L
Linus Torvalds 已提交
212 213 214
			shrink_ret = (*shrinker->shrinker)(this_scan, gfp_mask);
			if (shrink_ret == -1)
				break;
215 216
			if (shrink_ret < nr_before)
				ret += nr_before - shrink_ret;
L
Linus Torvalds 已提交
217 218 219 220 221 222 223 224 225
			mod_page_state(slabs_scanned, this_scan);
			total_scan -= this_scan;

			cond_resched();
		}

		shrinker->nr += total_scan;
	}
	up_read(&shrinker_rwsem);
226
	return ret;
L
Linus Torvalds 已提交
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
}

/* Called without lock on whether page is mapped, so answer is unstable */
static inline int page_mapping_inuse(struct page *page)
{
	struct address_space *mapping;

	/* Page is in somebody's page tables. */
	if (page_mapped(page))
		return 1;

	/* Be more reluctant to reclaim swapcache than pagecache */
	if (PageSwapCache(page))
		return 1;

	mapping = page_mapping(page);
	if (!mapping)
		return 0;

	/* File is mmap'd by somebody? */
	return mapping_mapped(mapping);
}

static inline int is_page_cache_freeable(struct page *page)
{
	return page_count(page) - !!PagePrivate(page) == 2;
}

static int may_write_to_queue(struct backing_dev_info *bdi)
{
257
	if (current->flags & PF_SWAPWRITE)
L
Linus Torvalds 已提交
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
		return 1;
	if (!bdi_write_congested(bdi))
		return 1;
	if (bdi == current->backing_dev_info)
		return 1;
	return 0;
}

/*
 * We detected a synchronous write error writing a page out.  Probably
 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 * fsync(), msync() or close().
 *
 * The tricky part is that after writepage we cannot touch the mapping: nothing
 * prevents it from being freed up.  But we have a ref on the page and once
 * that page is locked, the mapping is pinned.
 *
 * We're allowed to run sleeping lock_page() here because we know the caller has
 * __GFP_FS.
 */
static void handle_write_error(struct address_space *mapping,
				struct page *page, int error)
{
	lock_page(page);
	if (page_mapping(page) == mapping) {
		if (error == -ENOSPC)
			set_bit(AS_ENOSPC, &mapping->flags);
		else
			set_bit(AS_EIO, &mapping->flags);
	}
	unlock_page(page);
}

/*
A
Andrew Morton 已提交
292 293
 * pageout is called by shrink_page_list() for each dirty page.
 * Calls ->writepage().
L
Linus Torvalds 已提交
294
 */
C
Christoph Lameter 已提交
295
pageout_t pageout(struct page *page, struct address_space *mapping)
L
Linus Torvalds 已提交
296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
{
	/*
	 * If the page is dirty, only perform writeback if that write
	 * will be non-blocking.  To prevent this allocation from being
	 * stalled by pagecache activity.  But note that there may be
	 * stalls if we need to run get_block().  We could test
	 * PagePrivate for that.
	 *
	 * If this process is currently in generic_file_write() against
	 * this page's queue, we can perform writeback even if that
	 * will block.
	 *
	 * If the page is swapcache, write it back even if that would
	 * block, for some throttling. This happens by accident, because
	 * swap_backing_dev_info is bust: it doesn't reflect the
	 * congestion state of the swapdevs.  Easy to fix, if needed.
	 * See swapfile.c:page_queue_congested().
	 */
	if (!is_page_cache_freeable(page))
		return PAGE_KEEP;
	if (!mapping) {
		/*
		 * Some data journaling orphaned pages can have
		 * page->mapping == NULL while being dirty with clean buffers.
		 */
321
		if (PagePrivate(page)) {
L
Linus Torvalds 已提交
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
			if (try_to_free_buffers(page)) {
				ClearPageDirty(page);
				printk("%s: orphaned page\n", __FUNCTION__);
				return PAGE_CLEAN;
			}
		}
		return PAGE_KEEP;
	}
	if (mapping->a_ops->writepage == NULL)
		return PAGE_ACTIVATE;
	if (!may_write_to_queue(mapping->backing_dev_info))
		return PAGE_KEEP;

	if (clear_page_dirty_for_io(page)) {
		int res;
		struct writeback_control wbc = {
			.sync_mode = WB_SYNC_NONE,
			.nr_to_write = SWAP_CLUSTER_MAX,
			.nonblocking = 1,
			.for_reclaim = 1,
		};

		SetPageReclaim(page);
		res = mapping->a_ops->writepage(page, &wbc);
		if (res < 0)
			handle_write_error(mapping, page, res);
348
		if (res == AOP_WRITEPAGE_ACTIVATE) {
L
Linus Torvalds 已提交
349 350 351 352 353 354 355 356 357 358 359 360 361 362
			ClearPageReclaim(page);
			return PAGE_ACTIVATE;
		}
		if (!PageWriteback(page)) {
			/* synchronous write or broken a_ops? */
			ClearPageReclaim(page);
		}

		return PAGE_SUCCESS;
	}

	return PAGE_CLEAN;
}

C
Christoph Lameter 已提交
363
int remove_mapping(struct address_space *mapping, struct page *page)
364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
{
	if (!mapping)
		return 0;		/* truncate got there first */

	write_lock_irq(&mapping->tree_lock);

	/*
	 * The non-racy check for busy page.  It is critical to check
	 * PageDirty _after_ making sure that the page is freeable and
	 * not in use by anybody. 	(pagecache + us == 2)
	 */
	if (unlikely(page_count(page) != 2))
		goto cannot_free;
	smp_rmb();
	if (unlikely(PageDirty(page)))
		goto cannot_free;

	if (PageSwapCache(page)) {
		swp_entry_t swap = { .val = page_private(page) };
		__delete_from_swap_cache(page);
		write_unlock_irq(&mapping->tree_lock);
		swap_free(swap);
		__put_page(page);	/* The pagecache ref */
		return 1;
	}

	__remove_from_page_cache(page);
	write_unlock_irq(&mapping->tree_lock);
	__put_page(page);
	return 1;

cannot_free:
	write_unlock_irq(&mapping->tree_lock);
	return 0;
}

L
Linus Torvalds 已提交
400
/*
A
Andrew Morton 已提交
401
 * shrink_page_list() returns the number of reclaimed pages
L
Linus Torvalds 已提交
402
 */
A
Andrew Morton 已提交
403 404
static unsigned long shrink_page_list(struct list_head *page_list,
					struct scan_control *sc)
L
Linus Torvalds 已提交
405 406 407 408
{
	LIST_HEAD(ret_pages);
	struct pagevec freed_pvec;
	int pgactivate = 0;
409
	unsigned long nr_reclaimed = 0;
L
Linus Torvalds 已提交
410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430

	cond_resched();

	pagevec_init(&freed_pvec, 1);
	while (!list_empty(page_list)) {
		struct address_space *mapping;
		struct page *page;
		int may_enter_fs;
		int referenced;

		cond_resched();

		page = lru_to_page(page_list);
		list_del(&page->lru);

		if (TestSetPageLocked(page))
			goto keep;

		BUG_ON(PageActive(page));

		sc->nr_scanned++;
431 432 433 434

		if (!sc->may_swap && page_mapped(page))
			goto keep_locked;

L
Linus Torvalds 已提交
435 436 437 438 439 440 441
		/* Double the slab pressure for mapped and swapcache pages */
		if (page_mapped(page) || PageSwapCache(page))
			sc->nr_scanned++;

		if (PageWriteback(page))
			goto keep_locked;

442
		referenced = page_referenced(page, 1);
L
Linus Torvalds 已提交
443 444 445 446 447 448 449 450 451
		/* In active use or really unfreeable?  Activate it. */
		if (referenced && page_mapping_inuse(page))
			goto activate_locked;

#ifdef CONFIG_SWAP
		/*
		 * Anonymous process memory has backing store?
		 * Try to allocate it some swap space here.
		 */
452
		if (PageAnon(page) && !PageSwapCache(page))
453
			if (!add_to_swap(page, GFP_ATOMIC))
L
Linus Torvalds 已提交
454 455 456 457 458 459 460 461 462 463 464 465
				goto activate_locked;
#endif /* CONFIG_SWAP */

		mapping = page_mapping(page);
		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));

		/*
		 * The page is mapped into the page tables of one or more
		 * processes. Try to unmap it here.
		 */
		if (page_mapped(page) && mapping) {
466
			switch (try_to_unmap(page, 0)) {
L
Linus Torvalds 已提交
467 468 469 470 471 472 473 474 475 476 477 478 479 480
			case SWAP_FAIL:
				goto activate_locked;
			case SWAP_AGAIN:
				goto keep_locked;
			case SWAP_SUCCESS:
				; /* try to free the page below */
			}
		}

		if (PageDirty(page)) {
			if (referenced)
				goto keep_locked;
			if (!may_enter_fs)
				goto keep_locked;
481
			if (!sc->may_writepage)
L
Linus Torvalds 已提交
482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
				goto keep_locked;

			/* Page is dirty, try to write it out here */
			switch(pageout(page, mapping)) {
			case PAGE_KEEP:
				goto keep_locked;
			case PAGE_ACTIVATE:
				goto activate_locked;
			case PAGE_SUCCESS:
				if (PageWriteback(page) || PageDirty(page))
					goto keep;
				/*
				 * A synchronous write - probably a ramdisk.  Go
				 * ahead and try to reclaim the page.
				 */
				if (TestSetPageLocked(page))
					goto keep;
				if (PageDirty(page) || PageWriteback(page))
					goto keep_locked;
				mapping = page_mapping(page);
			case PAGE_CLEAN:
				; /* try to free the page below */
			}
		}

		/*
		 * If the page has buffers, try to free the buffer mappings
		 * associated with this page. If we succeed we try to free
		 * the page as well.
		 *
		 * We do this even if the page is PageDirty().
		 * try_to_release_page() does not perform I/O, but it is
		 * possible for a page to have PageDirty set, but it is actually
		 * clean (all its buffers are clean).  This happens if the
		 * buffers were written out directly, with submit_bh(). ext3
		 * will do this, as well as the blockdev mapping. 
		 * try_to_release_page() will discover that cleanness and will
		 * drop the buffers and mark the page clean - it can be freed.
		 *
		 * Rarely, pages can have buffers and no ->mapping.  These are
		 * the pages which were not successfully invalidated in
		 * truncate_complete_page().  We try to drop those buffers here
		 * and if that worked, and the page is no longer mapped into
		 * process address space (page_count == 1) it can be freed.
		 * Otherwise, leave the page on the LRU so it is swappable.
		 */
		if (PagePrivate(page)) {
			if (!try_to_release_page(page, sc->gfp_mask))
				goto activate_locked;
			if (!mapping && page_count(page) == 1)
				goto free_it;
		}

535 536
		if (!remove_mapping(mapping, page))
			goto keep_locked;
L
Linus Torvalds 已提交
537 538 539

free_it:
		unlock_page(page);
540
		nr_reclaimed++;
L
Linus Torvalds 已提交
541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557
		if (!pagevec_add(&freed_pvec, page))
			__pagevec_release_nonlru(&freed_pvec);
		continue;

activate_locked:
		SetPageActive(page);
		pgactivate++;
keep_locked:
		unlock_page(page);
keep:
		list_add(&page->lru, &ret_pages);
		BUG_ON(PageLRU(page));
	}
	list_splice(&ret_pages, page_list);
	if (pagevec_count(&freed_pvec))
		__pagevec_release_nonlru(&freed_pvec);
	mod_page_state(pgactivate, pgactivate);
558
	return nr_reclaimed;
L
Linus Torvalds 已提交
559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577
}

/*
 * zone->lru_lock is heavily contended.  Some of the functions that
 * shrink the lists perform better by taking out a batch of pages
 * and working on them outside the LRU lock.
 *
 * For pagecache intensive workloads, this function is the hottest
 * spot in the kernel (apart from copy_*_user functions).
 *
 * Appropriate locks must be held before calling this function.
 *
 * @nr_to_scan:	The number of pages to look through on the list.
 * @src:	The LRU list to pull pages off.
 * @dst:	The temp list to put pages on to.
 * @scanned:	The number of pages that were scanned.
 *
 * returns how many pages were moved onto *@dst.
 */
578 579 580
static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
		struct list_head *src, struct list_head *dst,
		unsigned long *scanned)
L
Linus Torvalds 已提交
581
{
582
	unsigned long nr_taken = 0;
L
Linus Torvalds 已提交
583
	struct page *page;
584
	unsigned long scan;
L
Linus Torvalds 已提交
585

586
	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
587
		struct list_head *target;
L
Linus Torvalds 已提交
588 589 590
		page = lru_to_page(src);
		prefetchw_prev_lru_page(page, src, flags);

N
Nick Piggin 已提交
591 592
		BUG_ON(!PageLRU(page));

593
		list_del(&page->lru);
594 595
		target = src;
		if (likely(get_page_unless_zero(page))) {
596
			/*
597 598 599
			 * Be careful not to clear PageLRU until after we're
			 * sure the page is not being freed elsewhere -- the
			 * page release code relies on it.
600
			 */
601 602 603 604
			ClearPageLRU(page);
			target = dst;
			nr_taken++;
		} /* else it is being freed elsewhere */
605

606
		list_add(&page->lru, target);
L
Linus Torvalds 已提交
607 608 609 610 611 612 613
	}

	*scanned = scan;
	return nr_taken;
}

/*
A
Andrew Morton 已提交
614 615
 * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
 * of reclaimed pages
L
Linus Torvalds 已提交
616
 */
A
Andrew Morton 已提交
617 618
static unsigned long shrink_inactive_list(unsigned long max_scan,
				struct zone *zone, struct scan_control *sc)
L
Linus Torvalds 已提交
619 620 621
{
	LIST_HEAD(page_list);
	struct pagevec pvec;
622
	unsigned long nr_scanned = 0;
623
	unsigned long nr_reclaimed = 0;
L
Linus Torvalds 已提交
624 625 626 627 628

	pagevec_init(&pvec, 1);

	lru_add_drain();
	spin_lock_irq(&zone->lru_lock);
629
	do {
L
Linus Torvalds 已提交
630
		struct page *page;
631 632 633
		unsigned long nr_taken;
		unsigned long nr_scan;
		unsigned long nr_freed;
L
Linus Torvalds 已提交
634 635 636 637 638 639 640 641

		nr_taken = isolate_lru_pages(sc->swap_cluster_max,
					     &zone->inactive_list,
					     &page_list, &nr_scan);
		zone->nr_inactive -= nr_taken;
		zone->pages_scanned += nr_scan;
		spin_unlock_irq(&zone->lru_lock);

642
		nr_scanned += nr_scan;
A
Andrew Morton 已提交
643
		nr_freed = shrink_page_list(&page_list, sc);
644
		nr_reclaimed += nr_freed;
N
Nick Piggin 已提交
645 646 647 648 649 650 651 652
		local_irq_disable();
		if (current_is_kswapd()) {
			__mod_page_state_zone(zone, pgscan_kswapd, nr_scan);
			__mod_page_state(kswapd_steal, nr_freed);
		} else
			__mod_page_state_zone(zone, pgscan_direct, nr_scan);
		__mod_page_state_zone(zone, pgsteal, nr_freed);

653 654 655
		if (nr_taken == 0)
			goto done;

N
Nick Piggin 已提交
656
		spin_lock(&zone->lru_lock);
L
Linus Torvalds 已提交
657 658 659 660 661
		/*
		 * Put back any unfreeable pages.
		 */
		while (!list_empty(&page_list)) {
			page = lru_to_page(&page_list);
N
Nick Piggin 已提交
662 663
			BUG_ON(PageLRU(page));
			SetPageLRU(page);
L
Linus Torvalds 已提交
664 665 666 667 668 669 670 671 672 673 674
			list_del(&page->lru);
			if (PageActive(page))
				add_page_to_active_list(zone, page);
			else
				add_page_to_inactive_list(zone, page);
			if (!pagevec_add(&pvec, page)) {
				spin_unlock_irq(&zone->lru_lock);
				__pagevec_release(&pvec);
				spin_lock_irq(&zone->lru_lock);
			}
		}
675
  	} while (nr_scanned < max_scan);
676
	spin_unlock(&zone->lru_lock);
L
Linus Torvalds 已提交
677
done:
678
	local_irq_enable();
L
Linus Torvalds 已提交
679
	pagevec_release(&pvec);
680
	return nr_reclaimed;
L
Linus Torvalds 已提交
681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699
}

/*
 * This moves pages from the active list to the inactive list.
 *
 * We move them the other way if the page is referenced by one or more
 * processes, from rmap.
 *
 * If the pages are mostly unmapped, the processing is fast and it is
 * appropriate to hold zone->lru_lock across the whole operation.  But if
 * the pages are mapped, the processing is slow (page_referenced()) so we
 * should drop zone->lru_lock around each page.  It's impossible to balance
 * this, so instead we remove the pages from the LRU while processing them.
 * It is safe to rely on PG_active against the non-LRU pages in here because
 * nobody will play with that bit on a non-LRU page.
 *
 * The downside is that we have to touch page->_count against each page.
 * But we had to alter page->flags anyway.
 */
A
Andrew Morton 已提交
700 701
static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
				struct scan_control *sc)
L
Linus Torvalds 已提交
702
{
703
	unsigned long pgmoved;
L
Linus Torvalds 已提交
704
	int pgdeactivate = 0;
705
	unsigned long pgscanned;
L
Linus Torvalds 已提交
706 707 708 709 710 711
	LIST_HEAD(l_hold);	/* The pages which were snipped off */
	LIST_HEAD(l_inactive);	/* Pages to go onto the inactive_list */
	LIST_HEAD(l_active);	/* Pages to go onto the active_list */
	struct page *page;
	struct pagevec pvec;
	int reclaim_mapped = 0;
712

713
	if (sc->may_swap) {
714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752
		long mapped_ratio;
		long distress;
		long swap_tendency;

		/*
		 * `distress' is a measure of how much trouble we're having
		 * reclaiming pages.  0 -> no problems.  100 -> great trouble.
		 */
		distress = 100 >> zone->prev_priority;

		/*
		 * The point of this algorithm is to decide when to start
		 * reclaiming mapped memory instead of just pagecache.  Work out
		 * how much memory
		 * is mapped.
		 */
		mapped_ratio = (sc->nr_mapped * 100) / total_memory;

		/*
		 * Now decide how much we really want to unmap some pages.  The
		 * mapped ratio is downgraded - just because there's a lot of
		 * mapped memory doesn't necessarily mean that page reclaim
		 * isn't succeeding.
		 *
		 * The distress ratio is important - we don't want to start
		 * going oom.
		 *
		 * A 100% value of vm_swappiness overrides this algorithm
		 * altogether.
		 */
		swap_tendency = mapped_ratio / 2 + distress + vm_swappiness;

		/*
		 * Now use this metric to decide whether to start moving mapped
		 * memory onto the inactive list.
		 */
		if (swap_tendency >= 100)
			reclaim_mapped = 1;
	}
L
Linus Torvalds 已提交
753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768

	lru_add_drain();
	spin_lock_irq(&zone->lru_lock);
	pgmoved = isolate_lru_pages(nr_pages, &zone->active_list,
				    &l_hold, &pgscanned);
	zone->pages_scanned += pgscanned;
	zone->nr_active -= pgmoved;
	spin_unlock_irq(&zone->lru_lock);

	while (!list_empty(&l_hold)) {
		cond_resched();
		page = lru_to_page(&l_hold);
		list_del(&page->lru);
		if (page_mapped(page)) {
			if (!reclaim_mapped ||
			    (total_swap_pages == 0 && PageAnon(page)) ||
769
			    page_referenced(page, 0)) {
L
Linus Torvalds 已提交
770 771 772 773 774 775 776 777 778 779 780 781 782
				list_add(&page->lru, &l_active);
				continue;
			}
		}
		list_add(&page->lru, &l_inactive);
	}

	pagevec_init(&pvec, 1);
	pgmoved = 0;
	spin_lock_irq(&zone->lru_lock);
	while (!list_empty(&l_inactive)) {
		page = lru_to_page(&l_inactive);
		prefetchw_prev_lru_page(page, &l_inactive, flags);
N
Nick Piggin 已提交
783 784
		BUG_ON(PageLRU(page));
		SetPageLRU(page);
N
Nick Piggin 已提交
785 786 787
		BUG_ON(!PageActive(page));
		ClearPageActive(page);

L
Linus Torvalds 已提交
788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812
		list_move(&page->lru, &zone->inactive_list);
		pgmoved++;
		if (!pagevec_add(&pvec, page)) {
			zone->nr_inactive += pgmoved;
			spin_unlock_irq(&zone->lru_lock);
			pgdeactivate += pgmoved;
			pgmoved = 0;
			if (buffer_heads_over_limit)
				pagevec_strip(&pvec);
			__pagevec_release(&pvec);
			spin_lock_irq(&zone->lru_lock);
		}
	}
	zone->nr_inactive += pgmoved;
	pgdeactivate += pgmoved;
	if (buffer_heads_over_limit) {
		spin_unlock_irq(&zone->lru_lock);
		pagevec_strip(&pvec);
		spin_lock_irq(&zone->lru_lock);
	}

	pgmoved = 0;
	while (!list_empty(&l_active)) {
		page = lru_to_page(&l_active);
		prefetchw_prev_lru_page(page, &l_active, flags);
N
Nick Piggin 已提交
813 814
		BUG_ON(PageLRU(page));
		SetPageLRU(page);
L
Linus Torvalds 已提交
815 816 817 818 819 820 821 822 823 824 825 826
		BUG_ON(!PageActive(page));
		list_move(&page->lru, &zone->active_list);
		pgmoved++;
		if (!pagevec_add(&pvec, page)) {
			zone->nr_active += pgmoved;
			pgmoved = 0;
			spin_unlock_irq(&zone->lru_lock);
			__pagevec_release(&pvec);
			spin_lock_irq(&zone->lru_lock);
		}
	}
	zone->nr_active += pgmoved;
N
Nick Piggin 已提交
827 828 829 830 831
	spin_unlock(&zone->lru_lock);

	__mod_page_state_zone(zone, pgrefill, pgscanned);
	__mod_page_state(pgdeactivate, pgdeactivate);
	local_irq_enable();
L
Linus Torvalds 已提交
832

N
Nick Piggin 已提交
833
	pagevec_release(&pvec);
L
Linus Torvalds 已提交
834 835 836 837 838
}

/*
 * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
 */
839 840
static unsigned long shrink_zone(int priority, struct zone *zone,
				struct scan_control *sc)
L
Linus Torvalds 已提交
841 842 843
{
	unsigned long nr_active;
	unsigned long nr_inactive;
844
	unsigned long nr_to_scan;
845
	unsigned long nr_reclaimed = 0;
L
Linus Torvalds 已提交
846

847 848
	atomic_inc(&zone->reclaim_in_progress);

L
Linus Torvalds 已提交
849 850 851 852
	/*
	 * Add one to `nr_to_scan' just to make sure that the kernel will
	 * slowly sift through the active list.
	 */
853
	zone->nr_scan_active += (zone->nr_active >> priority) + 1;
L
Linus Torvalds 已提交
854 855 856 857 858 859
	nr_active = zone->nr_scan_active;
	if (nr_active >= sc->swap_cluster_max)
		zone->nr_scan_active = 0;
	else
		nr_active = 0;

860
	zone->nr_scan_inactive += (zone->nr_inactive >> priority) + 1;
L
Linus Torvalds 已提交
861 862 863 864 865 866 867 868
	nr_inactive = zone->nr_scan_inactive;
	if (nr_inactive >= sc->swap_cluster_max)
		zone->nr_scan_inactive = 0;
	else
		nr_inactive = 0;

	while (nr_active || nr_inactive) {
		if (nr_active) {
869
			nr_to_scan = min(nr_active,
L
Linus Torvalds 已提交
870
					(unsigned long)sc->swap_cluster_max);
871
			nr_active -= nr_to_scan;
A
Andrew Morton 已提交
872
			shrink_active_list(nr_to_scan, zone, sc);
L
Linus Torvalds 已提交
873 874 875
		}

		if (nr_inactive) {
876
			nr_to_scan = min(nr_inactive,
L
Linus Torvalds 已提交
877
					(unsigned long)sc->swap_cluster_max);
878
			nr_inactive -= nr_to_scan;
A
Andrew Morton 已提交
879 880
			nr_reclaimed += shrink_inactive_list(nr_to_scan, zone,
								sc);
L
Linus Torvalds 已提交
881 882 883 884
		}
	}

	throttle_vm_writeout();
885 886

	atomic_dec(&zone->reclaim_in_progress);
887
	return nr_reclaimed;
L
Linus Torvalds 已提交
888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905
}

/*
 * This is the direct reclaim path, for page-allocating processes.  We only
 * try to reclaim pages from zones which will satisfy the caller's allocation
 * request.
 *
 * We reclaim from a zone even if that zone is over pages_high.  Because:
 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
 *    allocation or
 * b) The zones may be over pages_high but they must go *over* pages_high to
 *    satisfy the `incremental min' zone defense algorithm.
 *
 * Returns the number of reclaimed pages.
 *
 * If a zone is deemed to be full of pinned pages then just give it a light
 * scan then give up on it.
 */
A
Andrew Morton 已提交
906
static unsigned long shrink_zones(int priority, struct zone **zones,
907
					struct scan_control *sc)
L
Linus Torvalds 已提交
908
{
909
	unsigned long nr_reclaimed = 0;
L
Linus Torvalds 已提交
910 911 912 913 914
	int i;

	for (i = 0; zones[i] != NULL; i++) {
		struct zone *zone = zones[i];

915
		if (!populated_zone(zone))
L
Linus Torvalds 已提交
916 917
			continue;

918
		if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
L
Linus Torvalds 已提交
919 920
			continue;

921 922 923
		zone->temp_priority = priority;
		if (zone->prev_priority > priority)
			zone->prev_priority = priority;
L
Linus Torvalds 已提交
924

925
		if (zone->all_unreclaimable && priority != DEF_PRIORITY)
L
Linus Torvalds 已提交
926 927
			continue;	/* Let kswapd poll it */

928
		nr_reclaimed += shrink_zone(priority, zone, sc);
L
Linus Torvalds 已提交
929
	}
930
	return nr_reclaimed;
L
Linus Torvalds 已提交
931 932 933 934 935 936 937 938 939 940 941 942 943 944 945
}
 
/*
 * This is the main entry point to direct page reclaim.
 *
 * If a full scan of the inactive list fails to free enough memory then we
 * are "out of memory" and something needs to be killed.
 *
 * If the caller is !__GFP_FS then the probability of a failure is reasonably
 * high - the zone may be full of dirty or under-writeback pages, which this
 * caller can't do much about.  We kick pdflush and take explicit naps in the
 * hope that some of these pages can be written.  But if the allocating task
 * holds filesystem locks which prevent writeout this might not work, and the
 * allocation attempt will fail.
 */
946
unsigned long try_to_free_pages(struct zone **zones, gfp_t gfp_mask)
L
Linus Torvalds 已提交
947 948 949
{
	int priority;
	int ret = 0;
950
	unsigned long total_scanned = 0;
951
	unsigned long nr_reclaimed = 0;
L
Linus Torvalds 已提交
952 953 954
	struct reclaim_state *reclaim_state = current->reclaim_state;
	unsigned long lru_pages = 0;
	int i;
955 956 957 958 959 960
	struct scan_control sc = {
		.gfp_mask = gfp_mask,
		.may_writepage = !laptop_mode,
		.swap_cluster_max = SWAP_CLUSTER_MAX,
		.may_swap = 1,
	};
L
Linus Torvalds 已提交
961 962 963 964 965 966

	inc_page_state(allocstall);

	for (i = 0; zones[i] != NULL; i++) {
		struct zone *zone = zones[i];

967
		if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
L
Linus Torvalds 已提交
968 969 970 971 972 973 974 975 976
			continue;

		zone->temp_priority = DEF_PRIORITY;
		lru_pages += zone->nr_active + zone->nr_inactive;
	}

	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
		sc.nr_mapped = read_page_state(nr_mapped);
		sc.nr_scanned = 0;
977 978
		if (!priority)
			disable_swap_token();
A
Andrew Morton 已提交
979
		nr_reclaimed += shrink_zones(priority, zones, &sc);
L
Linus Torvalds 已提交
980 981
		shrink_slab(sc.nr_scanned, gfp_mask, lru_pages);
		if (reclaim_state) {
982
			nr_reclaimed += reclaim_state->reclaimed_slab;
L
Linus Torvalds 已提交
983 984 985
			reclaim_state->reclaimed_slab = 0;
		}
		total_scanned += sc.nr_scanned;
986
		if (nr_reclaimed >= sc.swap_cluster_max) {
L
Linus Torvalds 已提交
987 988 989 990 991 992 993 994 995 996 997
			ret = 1;
			goto out;
		}

		/*
		 * Try to write back as many pages as we just scanned.  This
		 * tends to cause slow streaming writers to write data to the
		 * disk smoothly, at the dirtying rate, which is nice.   But
		 * that's undesirable in laptop mode, where we *want* lumpy
		 * writeout.  So in laptop mode, write out the whole world.
		 */
998 999
		if (total_scanned > sc.swap_cluster_max +
					sc.swap_cluster_max / 2) {
1000
			wakeup_pdflush(laptop_mode ? 0 : total_scanned);
L
Linus Torvalds 已提交
1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
			sc.may_writepage = 1;
		}

		/* Take a nap, wait for some writeback to complete */
		if (sc.nr_scanned && priority < DEF_PRIORITY - 2)
			blk_congestion_wait(WRITE, HZ/10);
	}
out:
	for (i = 0; zones[i] != 0; i++) {
		struct zone *zone = zones[i];

1012
		if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
L
Linus Torvalds 已提交
1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
			continue;

		zone->prev_priority = zone->temp_priority;
	}
	return ret;
}

/*
 * For kswapd, balance_pgdat() will work across all this node's zones until
 * they are all at pages_high.
 *
 * If `nr_pages' is non-zero then it is the number of pages which are to be
 * reclaimed, regardless of the zone occupancies.  This is a software suspend
 * special.
 *
 * Returns the number of pages which were actually freed.
 *
 * There is special handling here for zones which are full of pinned pages.
 * This can happen if the pages are all mlocked, or if they are all used by
 * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
 * What we do is to detect the case where all pages in the zone have been
 * scanned twice and there has been zero successful reclaim.  Mark the zone as
 * dead and from now on, only perform a short scan.  Basically we're polling
 * the zone for when the problem goes away.
 *
 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
 * zones which have free_pages > pages_high, but once a zone is found to have
 * free_pages <= pages_high, we scan that zone and the lower zones regardless
 * of the number of free pages in the lower zones.  This interoperates with
 * the page allocator fallback scheme to ensure that aging of pages is balanced
 * across the zones.
 */
1045 1046
static unsigned long balance_pgdat(pg_data_t *pgdat, unsigned long nr_pages,
				int order)
L
Linus Torvalds 已提交
1047
{
1048
	unsigned long to_free = nr_pages;
L
Linus Torvalds 已提交
1049 1050 1051
	int all_zones_ok;
	int priority;
	int i;
1052
	unsigned long total_scanned;
1053
	unsigned long nr_reclaimed;
L
Linus Torvalds 已提交
1054
	struct reclaim_state *reclaim_state = current->reclaim_state;
1055 1056 1057 1058 1059
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
		.may_swap = 1,
		.swap_cluster_max = nr_pages ? nr_pages : SWAP_CLUSTER_MAX,
	};
L
Linus Torvalds 已提交
1060 1061 1062

loop_again:
	total_scanned = 0;
1063
	nr_reclaimed = 0;
1064
	sc.may_writepage = !laptop_mode,
L
Linus Torvalds 已提交
1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078
	sc.nr_mapped = read_page_state(nr_mapped);

	inc_page_state(pageoutrun);

	for (i = 0; i < pgdat->nr_zones; i++) {
		struct zone *zone = pgdat->node_zones + i;

		zone->temp_priority = DEF_PRIORITY;
	}

	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
		int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
		unsigned long lru_pages = 0;

1079 1080 1081 1082
		/* The swap token gets in the way of swapout... */
		if (!priority)
			disable_swap_token();

L
Linus Torvalds 已提交
1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
		all_zones_ok = 1;

		if (nr_pages == 0) {
			/*
			 * Scan in the highmem->dma direction for the highest
			 * zone which needs scanning
			 */
			for (i = pgdat->nr_zones - 1; i >= 0; i--) {
				struct zone *zone = pgdat->node_zones + i;

1093
				if (!populated_zone(zone))
L
Linus Torvalds 已提交
1094 1095 1096 1097 1098 1099 1100
					continue;

				if (zone->all_unreclaimable &&
						priority != DEF_PRIORITY)
					continue;

				if (!zone_watermark_ok(zone, order,
R
Rohit Seth 已提交
1101
						zone->pages_high, 0, 0)) {
L
Linus Torvalds 已提交
1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127
					end_zone = i;
					goto scan;
				}
			}
			goto out;
		} else {
			end_zone = pgdat->nr_zones - 1;
		}
scan:
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;

			lru_pages += zone->nr_active + zone->nr_inactive;
		}

		/*
		 * Now scan the zone in the dma->highmem direction, stopping
		 * at the last zone which needs scanning.
		 *
		 * We do this because the page allocator works in the opposite
		 * direction.  This prevents the page allocator from allocating
		 * pages behind kswapd's direction of progress, which would
		 * cause too much scanning of the lower zones.
		 */
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;
1128
			int nr_slab;
L
Linus Torvalds 已提交
1129

1130
			if (!populated_zone(zone))
L
Linus Torvalds 已提交
1131 1132 1133 1134 1135 1136 1137
				continue;

			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
				continue;

			if (nr_pages == 0) {	/* Not software suspend */
				if (!zone_watermark_ok(zone, order,
R
Rohit Seth 已提交
1138
						zone->pages_high, end_zone, 0))
L
Linus Torvalds 已提交
1139 1140 1141 1142 1143 1144
					all_zones_ok = 0;
			}
			zone->temp_priority = priority;
			if (zone->prev_priority > priority)
				zone->prev_priority = priority;
			sc.nr_scanned = 0;
1145
			nr_reclaimed += shrink_zone(priority, zone, &sc);
L
Linus Torvalds 已提交
1146
			reclaim_state->reclaimed_slab = 0;
1147 1148
			nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
						lru_pages);
1149
			nr_reclaimed += reclaim_state->reclaimed_slab;
L
Linus Torvalds 已提交
1150 1151 1152
			total_scanned += sc.nr_scanned;
			if (zone->all_unreclaimable)
				continue;
1153 1154
			if (nr_slab == 0 && zone->pages_scanned >=
				    (zone->nr_active + zone->nr_inactive) * 4)
L
Linus Torvalds 已提交
1155 1156 1157 1158 1159 1160 1161
				zone->all_unreclaimable = 1;
			/*
			 * If we've done a decent amount of scanning and
			 * the reclaim ratio is low, start doing writepage
			 * even in laptop mode
			 */
			if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
1162
			    total_scanned > nr_reclaimed + nr_reclaimed / 2)
L
Linus Torvalds 已提交
1163 1164
				sc.may_writepage = 1;
		}
1165
		if (nr_pages && to_free > nr_reclaimed)
L
Linus Torvalds 已提交
1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
			continue;	/* swsusp: need to do more work */
		if (all_zones_ok)
			break;		/* kswapd: all done */
		/*
		 * OK, kswapd is getting into trouble.  Take a nap, then take
		 * another pass across the zones.
		 */
		if (total_scanned && priority < DEF_PRIORITY - 2)
			blk_congestion_wait(WRITE, HZ/10);

		/*
		 * We do this so kswapd doesn't build up large priorities for
		 * example when it is freeing in parallel with allocators. It
		 * matches the direct reclaim path behaviour in terms of impact
		 * on zone->*_priority.
		 */
1182
		if ((nr_reclaimed >= SWAP_CLUSTER_MAX) && !nr_pages)
L
Linus Torvalds 已提交
1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
			break;
	}
out:
	for (i = 0; i < pgdat->nr_zones; i++) {
		struct zone *zone = pgdat->node_zones + i;

		zone->prev_priority = zone->temp_priority;
	}
	if (!all_zones_ok) {
		cond_resched();
		goto loop_again;
	}

1196
	return nr_reclaimed;
L
Linus Torvalds 已提交
1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240
}

/*
 * The background pageout daemon, started as a kernel thread
 * from the init process. 
 *
 * This basically trickles out pages so that we have _some_
 * free memory available even if there is no other activity
 * that frees anything up. This is needed for things like routing
 * etc, where we otherwise might have all activity going on in
 * asynchronous contexts that cannot page things out.
 *
 * If there are applications that are active memory-allocators
 * (most normal use), this basically shouldn't matter.
 */
static int kswapd(void *p)
{
	unsigned long order;
	pg_data_t *pgdat = (pg_data_t*)p;
	struct task_struct *tsk = current;
	DEFINE_WAIT(wait);
	struct reclaim_state reclaim_state = {
		.reclaimed_slab = 0,
	};
	cpumask_t cpumask;

	daemonize("kswapd%d", pgdat->node_id);
	cpumask = node_to_cpumask(pgdat->node_id);
	if (!cpus_empty(cpumask))
		set_cpus_allowed(tsk, cpumask);
	current->reclaim_state = &reclaim_state;

	/*
	 * Tell the memory management that we're a "memory allocator",
	 * and that if we need more memory we should get access to it
	 * regardless (see "__alloc_pages()"). "kswapd" should
	 * never get caught in the normal page freeing logic.
	 *
	 * (Kswapd normally doesn't need memory anyway, but sometimes
	 * you need a small amount of memory in order to be able to
	 * page out something else, and this flag essentially protects
	 * us from recursively trying to free more memory as we're
	 * trying to free the first piece of memory in the first place).
	 */
1241
	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
L
Linus Torvalds 已提交
1242 1243 1244 1245

	order = 0;
	for ( ; ; ) {
		unsigned long new_order;
1246 1247

		try_to_freeze();
L
Linus Torvalds 已提交
1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275

		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
		new_order = pgdat->kswapd_max_order;
		pgdat->kswapd_max_order = 0;
		if (order < new_order) {
			/*
			 * Don't sleep if someone wants a larger 'order'
			 * allocation
			 */
			order = new_order;
		} else {
			schedule();
			order = pgdat->kswapd_max_order;
		}
		finish_wait(&pgdat->kswapd_wait, &wait);

		balance_pgdat(pgdat, 0, order);
	}
	return 0;
}

/*
 * A zone is low on free memory, so wake its kswapd task to service it.
 */
void wakeup_kswapd(struct zone *zone, int order)
{
	pg_data_t *pgdat;

1276
	if (!populated_zone(zone))
L
Linus Torvalds 已提交
1277 1278 1279
		return;

	pgdat = zone->zone_pgdat;
R
Rohit Seth 已提交
1280
	if (zone_watermark_ok(zone, order, zone->pages_low, 0, 0))
L
Linus Torvalds 已提交
1281 1282 1283
		return;
	if (pgdat->kswapd_max_order < order)
		pgdat->kswapd_max_order = order;
1284
	if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
L
Linus Torvalds 已提交
1285
		return;
1286
	if (!waitqueue_active(&pgdat->kswapd_wait))
L
Linus Torvalds 已提交
1287
		return;
1288
	wake_up_interruptible(&pgdat->kswapd_wait);
L
Linus Torvalds 已提交
1289 1290 1291 1292 1293 1294 1295
}

#ifdef CONFIG_PM
/*
 * Try to free `nr_pages' of memory, system-wide.  Returns the number of freed
 * pages.
 */
1296
unsigned long shrink_all_memory(unsigned long nr_pages)
L
Linus Torvalds 已提交
1297 1298
{
	pg_data_t *pgdat;
1299 1300
	unsigned long nr_to_free = nr_pages;
	unsigned long ret = 0;
1301
	unsigned retry = 2;
L
Linus Torvalds 已提交
1302 1303 1304 1305 1306
	struct reclaim_state reclaim_state = {
		.reclaimed_slab = 0,
	};

	current->reclaim_state = &reclaim_state;
1307
repeat:
1308
	for_each_online_pgdat(pgdat) {
1309 1310
		unsigned long freed;

L
Linus Torvalds 已提交
1311 1312 1313
		freed = balance_pgdat(pgdat, nr_to_free, 0);
		ret += freed;
		nr_to_free -= freed;
1314
		if ((long)nr_to_free <= 0)
L
Linus Torvalds 已提交
1315 1316
			break;
	}
1317 1318 1319 1320
	if (retry-- && ret < nr_pages) {
		blk_congestion_wait(WRITE, HZ/5);
		goto repeat;
	}
L
Linus Torvalds 已提交
1321 1322 1323 1324 1325 1326 1327 1328 1329 1330
	current->reclaim_state = NULL;
	return ret;
}
#endif

#ifdef CONFIG_HOTPLUG_CPU
/* It's optimal to keep kswapds on the same CPUs as their memory, but
   not required for correctness.  So if the last cpu in a node goes
   away, we get changed to run anywhere: as the first one comes back,
   restore their cpu bindings. */
1331
static int cpu_callback(struct notifier_block *nfb,
1332
				  unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
1333 1334 1335 1336 1337
{
	pg_data_t *pgdat;
	cpumask_t mask;

	if (action == CPU_ONLINE) {
1338
		for_each_online_pgdat(pgdat) {
L
Linus Torvalds 已提交
1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351
			mask = node_to_cpumask(pgdat->node_id);
			if (any_online_cpu(mask) != NR_CPUS)
				/* One of our CPUs online: restore mask */
				set_cpus_allowed(pgdat->kswapd, mask);
		}
	}
	return NOTIFY_OK;
}
#endif /* CONFIG_HOTPLUG_CPU */

static int __init kswapd_init(void)
{
	pg_data_t *pgdat;
1352

L
Linus Torvalds 已提交
1353
	swap_setup();
1354
	for_each_online_pgdat(pgdat) {
1355 1356 1357 1358
		pid_t pid;

		pid = kernel_thread(kswapd, pgdat, CLONE_KERNEL);
		BUG_ON(pid < 0);
1359
		read_lock(&tasklist_lock);
1360
		pgdat->kswapd = find_task_by_pid(pid);
1361
		read_unlock(&tasklist_lock);
1362
	}
L
Linus Torvalds 已提交
1363 1364 1365 1366 1367 1368
	total_memory = nr_free_pagecache_pages();
	hotcpu_notifier(cpu_callback, 0);
	return 0;
}

module_init(kswapd_init)
1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382

#ifdef CONFIG_NUMA
/*
 * Zone reclaim mode
 *
 * If non-zero call zone_reclaim when the number of free pages falls below
 * the watermarks.
 *
 * In the future we may add flags to the mode. However, the page allocator
 * should only have to check that zone_reclaim_mode != 0 before calling
 * zone_reclaim().
 */
int zone_reclaim_mode __read_mostly;

1383 1384 1385 1386
#define RECLAIM_OFF 0
#define RECLAIM_ZONE (1<<0)	/* Run shrink_cache on the zone */
#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
#define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */
1387
#define RECLAIM_SLAB (1<<3)	/* Do a global slab shrink if the zone is out of memory */
1388

1389 1390 1391
/*
 * Mininum time between zone reclaim scans
 */
1392
int zone_reclaim_interval __read_mostly = 30*HZ;
1393 1394 1395 1396 1397 1398 1399 1400

/*
 * Priority for ZONE_RECLAIM. This determines the fraction of pages
 * of a node considered for each zone_reclaim. 4 scans 1/16th of
 * a zone.
 */
#define ZONE_RECLAIM_PRIORITY 4

1401 1402 1403
/*
 * Try to free up some pages from this zone through reclaim.
 */
1404
static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
1405
{
1406
	/* Minimum pages needed in order to stay on node */
1407
	const unsigned long nr_pages = 1 << order;
1408 1409
	struct task_struct *p = current;
	struct reclaim_state reclaim_state;
1410
	int priority;
1411
	unsigned long nr_reclaimed = 0;
1412 1413 1414 1415
	struct scan_control sc = {
		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
		.may_swap = !!(zone_reclaim_mode & RECLAIM_SWAP),
		.nr_mapped = read_page_state(nr_mapped),
1416 1417
		.swap_cluster_max = max_t(unsigned long, nr_pages,
					SWAP_CLUSTER_MAX),
1418 1419
		.gfp_mask = gfp_mask,
	};
1420 1421 1422

	disable_swap_token();
	cond_resched();
1423 1424 1425 1426 1427 1428
	/*
	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
	 * and we also need to be able to write out pages for RECLAIM_WRITE
	 * and RECLAIM_SWAP.
	 */
	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
1429 1430
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
1431

1432 1433 1434 1435
	/*
	 * Free memory by calling shrink zone with increasing priorities
	 * until we have enough memory freed.
	 */
1436
	priority = ZONE_RECLAIM_PRIORITY;
1437
	do {
1438
		nr_reclaimed += shrink_zone(priority, zone, &sc);
1439
		priority--;
1440
	} while (priority >= 0 && nr_reclaimed < nr_pages);
1441

1442
	if (nr_reclaimed < nr_pages && (zone_reclaim_mode & RECLAIM_SLAB)) {
1443
		/*
1444 1445 1446 1447 1448 1449
		 * shrink_slab() does not currently allow us to determine how
		 * many pages were freed in this zone. So we just shake the slab
		 * a bit and then go off node for this particular allocation
		 * despite possibly having freed enough memory to allocate in
		 * this zone.  If we freed local memory then the next
		 * allocations will be local again.
1450 1451 1452 1453 1454 1455 1456
		 *
		 * shrink_slab will free memory on all zones and may take
		 * a long time.
		 */
		shrink_slab(sc.nr_scanned, gfp_mask, order);
	}

1457
	p->reclaim_state = NULL;
1458
	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
1459

1460 1461 1462 1463 1464 1465
	if (nr_reclaimed == 0) {
		/*
		 * We were unable to reclaim enough pages to stay on node.  We
		 * now allow off node accesses for a certain time period before
		 * trying again to reclaim pages from the local zone.
		 */
1466
		zone->last_unsuccessful_zone_reclaim = jiffies;
1467
	}
1468

1469
	return nr_reclaimed >= nr_pages;
1470
}
1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509

int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
{
	cpumask_t mask;
	int node_id;

	/*
	 * Do not reclaim if there was a recent unsuccessful attempt at zone
	 * reclaim.  In that case we let allocations go off node for the
	 * zone_reclaim_interval.  Otherwise we would scan for each off-node
	 * page allocation.
	 */
	if (time_before(jiffies,
		zone->last_unsuccessful_zone_reclaim + zone_reclaim_interval))
			return 0;

	/*
	 * Avoid concurrent zone reclaims, do not reclaim in a zone that does
	 * not have reclaimable pages and if we should not delay the allocation
	 * then do not scan.
	 */
	if (!(gfp_mask & __GFP_WAIT) ||
		zone->all_unreclaimable ||
		atomic_read(&zone->reclaim_in_progress) > 0 ||
		(current->flags & PF_MEMALLOC))
			return 0;

	/*
	 * Only run zone reclaim on the local zone or on zones that do not
	 * have associated processors. This will favor the local processor
	 * over remote processors and spread off node memory allocations
	 * as wide as possible.
	 */
	node_id = zone->zone_pgdat->node_id;
	mask = node_to_cpumask(node_id);
	if (!cpus_empty(mask) && node_id != numa_node_id())
		return 0;
	return __zone_reclaim(zone, gfp_mask, order);
}
1510
#endif