slab.h 13.8 KB
Newer Older
1 2 3 4 5 6
#ifndef MM_SLAB_H
#define MM_SLAB_H
/*
 * Internal slab definitions
 */

7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
#ifdef CONFIG_SLOB
/*
 * Common fields provided in kmem_cache by all slab allocators
 * This struct is either used directly by the allocator (SLOB)
 * or the allocator must include definitions for all fields
 * provided in kmem_cache_common in their definition of kmem_cache.
 *
 * Once we can do anonymous structs (C11 standard) we could put a
 * anonymous struct definition in these allocators so that the
 * separate allocations in the kmem_cache structure of SLAB and
 * SLUB is no longer needed.
 */
struct kmem_cache {
	unsigned int object_size;/* The original size of the object */
	unsigned int size;	/* The aligned/padded/added on size  */
	unsigned int align;	/* Alignment as calculated */
	unsigned long flags;	/* Active flags on the slab */
	const char *name;	/* Slab name for sysfs */
	int refcount;		/* Use counter */
	void (*ctor)(void *);	/* Called on object slot creation */
	struct list_head list;	/* List of all slab caches on the system */
};

#endif /* CONFIG_SLOB */

#ifdef CONFIG_SLAB
#include <linux/slab_def.h>
#endif

#ifdef CONFIG_SLUB
#include <linux/slub_def.h>
#endif

#include <linux/memcontrol.h>
41 42 43 44
#include <linux/fault-inject.h>
#include <linux/kmemcheck.h>
#include <linux/kasan.h>
#include <linux/kmemleak.h>
45
#include <linux/random.h>
46

47 48 49 50 51 52 53 54 55 56 57
/*
 * State of the slab allocator.
 *
 * This is used to describe the states of the allocator during bootup.
 * Allocators use this to gradually bootstrap themselves. Most allocators
 * have the problem that the structures used for managing slab caches are
 * allocated from slab caches themselves.
 */
enum slab_state {
	DOWN,			/* No slab functionality yet */
	PARTIAL,		/* SLUB: kmem_cache_node available */
58
	PARTIAL_NODE,		/* SLAB: kmalloc size for node struct available */
59 60 61 62 63 64
	UP,			/* Slab caches usable but not all extras yet */
	FULL			/* Everything is working */
};

extern enum slab_state slab_state;

65 66
/* The slab cache mutex protects the management structures during changes */
extern struct mutex slab_mutex;
67 68

/* The list of all slab caches on the system */
69 70
extern struct list_head slab_caches;

71 72 73
/* The slab cache that manages slab cache information */
extern struct kmem_cache *kmem_cache;

74 75 76
unsigned long calculate_alignment(unsigned long flags,
		unsigned long align, unsigned long size);

77 78
#ifndef CONFIG_SLOB
/* Kmalloc array related functions */
79
void setup_kmalloc_cache_index_table(void);
80
void create_kmalloc_caches(unsigned long);
81 82 83

/* Find the kmalloc slab corresponding for a certain size */
struct kmem_cache *kmalloc_slab(size_t, gfp_t);
84 85 86
#endif


87
/* Functions provided by the slab allocators */
88
extern int __kmem_cache_create(struct kmem_cache *, unsigned long flags);
89

90 91 92 93 94
extern struct kmem_cache *create_kmalloc_cache(const char *name, size_t size,
			unsigned long flags);
extern void create_boot_cache(struct kmem_cache *, const char *name,
			size_t size, unsigned long flags);

95 96 97
int slab_unmergeable(struct kmem_cache *s);
struct kmem_cache *find_mergeable(size_t size, size_t align,
		unsigned long flags, const char *name, void (*ctor)(void *));
J
Joonsoo Kim 已提交
98
#ifndef CONFIG_SLOB
99
struct kmem_cache *
100 101
__kmem_cache_alias(const char *name, size_t size, size_t align,
		   unsigned long flags, void (*ctor)(void *));
102 103 104 105

unsigned long kmem_cache_flags(unsigned long object_size,
	unsigned long flags, const char *name,
	void (*ctor)(void *));
106
#else
107
static inline struct kmem_cache *
108 109
__kmem_cache_alias(const char *name, size_t size, size_t align,
		   unsigned long flags, void (*ctor)(void *))
110
{ return NULL; }
111 112 113 114 115 116 117

static inline unsigned long kmem_cache_flags(unsigned long object_size,
	unsigned long flags, const char *name,
	void (*ctor)(void *))
{
	return flags;
}
118 119 120
#endif


121 122 123 124 125 126 127 128
/* Legal flag mask for kmem_cache_create(), for various configurations */
#define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | SLAB_PANIC | \
			 SLAB_DESTROY_BY_RCU | SLAB_DEBUG_OBJECTS )

#if defined(CONFIG_DEBUG_SLAB)
#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
#elif defined(CONFIG_SLUB_DEBUG)
#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
129
			  SLAB_TRACE | SLAB_CONSISTENCY_CHECKS)
130 131 132 133 134 135
#else
#define SLAB_DEBUG_FLAGS (0)
#endif

#if defined(CONFIG_SLAB)
#define SLAB_CACHE_FLAGS (SLAB_MEM_SPREAD | SLAB_NOLEAKTRACE | \
V
Vladimir Davydov 已提交
136 137
			  SLAB_RECLAIM_ACCOUNT | SLAB_TEMPORARY | \
			  SLAB_NOTRACK | SLAB_ACCOUNT)
138 139
#elif defined(CONFIG_SLUB)
#define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE | SLAB_RECLAIM_ACCOUNT | \
V
Vladimir Davydov 已提交
140
			  SLAB_TEMPORARY | SLAB_NOTRACK | SLAB_ACCOUNT)
141 142 143 144
#else
#define SLAB_CACHE_FLAGS (0)
#endif

145
/* Common flags available with current configuration */
146 147
#define CACHE_CREATE_MASK (SLAB_CORE_FLAGS | SLAB_DEBUG_FLAGS | SLAB_CACHE_FLAGS)

148 149 150 151 152 153 154 155 156 157 158 159 160 161
/* Common flags permitted for kmem_cache_create */
#define SLAB_FLAGS_PERMITTED (SLAB_CORE_FLAGS | \
			      SLAB_RED_ZONE | \
			      SLAB_POISON | \
			      SLAB_STORE_USER | \
			      SLAB_TRACE | \
			      SLAB_CONSISTENCY_CHECKS | \
			      SLAB_MEM_SPREAD | \
			      SLAB_NOLEAKTRACE | \
			      SLAB_RECLAIM_ACCOUNT | \
			      SLAB_TEMPORARY | \
			      SLAB_NOTRACK | \
			      SLAB_ACCOUNT)

162
int __kmem_cache_shutdown(struct kmem_cache *);
163
void __kmem_cache_release(struct kmem_cache *);
164
int __kmem_cache_shrink(struct kmem_cache *);
165
void slab_kmem_cache_release(struct kmem_cache *);
166

167 168 169
struct seq_file;
struct file;

170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
struct slabinfo {
	unsigned long active_objs;
	unsigned long num_objs;
	unsigned long active_slabs;
	unsigned long num_slabs;
	unsigned long shared_avail;
	unsigned int limit;
	unsigned int batchcount;
	unsigned int shared;
	unsigned int objects_per_slab;
	unsigned int cache_order;
};

void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo);
void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s);
185 186
ssize_t slabinfo_write(struct file *file, const char __user *buffer,
		       size_t count, loff_t *ppos);
G
Glauber Costa 已提交
187

188 189 190
/*
 * Generic implementation of bulk operations
 * These are useful for situations in which the allocator cannot
J
Jesper Dangaard Brouer 已提交
191
 * perform optimizations. In that case segments of the object listed
192 193 194
 * may be allocated or freed using these operations.
 */
void __kmem_cache_free_bulk(struct kmem_cache *, size_t, void **);
195
int __kmem_cache_alloc_bulk(struct kmem_cache *, gfp_t, size_t, void **);
196

197
#if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
198 199 200 201 202 203 204 205
/*
 * Iterate over all memcg caches of the given root cache. The caller must hold
 * slab_mutex.
 */
#define for_each_memcg_cache(iter, root) \
	list_for_each_entry(iter, &(root)->memcg_params.list, \
			    memcg_params.list)

G
Glauber Costa 已提交
206 207
static inline bool is_root_cache(struct kmem_cache *s)
{
208
	return s->memcg_params.is_root_cache;
G
Glauber Costa 已提交
209
}
210

211
static inline bool slab_equal_or_root(struct kmem_cache *s,
212
				      struct kmem_cache *p)
213
{
214
	return p == s || p == s->memcg_params.root_cache;
215
}
216 217 218 219 220 221 222 223 224

/*
 * We use suffixes to the name in memcg because we can't have caches
 * created in the system with the same name. But when we print them
 * locally, better refer to them with the base name
 */
static inline const char *cache_name(struct kmem_cache *s)
{
	if (!is_root_cache(s))
225
		s = s->memcg_params.root_cache;
226 227 228
	return s->name;
}

229 230
/*
 * Note, we protect with RCU only the memcg_caches array, not per-memcg caches.
231 232
 * That said the caller must assure the memcg's cache won't go away by either
 * taking a css reference to the owner cgroup, or holding the slab_mutex.
233
 */
234 235
static inline struct kmem_cache *
cache_from_memcg_idx(struct kmem_cache *s, int idx)
236
{
237
	struct kmem_cache *cachep;
238
	struct memcg_cache_array *arr;
239 240

	rcu_read_lock();
241
	arr = rcu_dereference(s->memcg_params.memcg_caches);
242 243 244 245

	/*
	 * Make sure we will access the up-to-date value. The code updating
	 * memcg_caches issues a write barrier to match this (see
246
	 * memcg_create_kmem_cache()).
247
	 */
248
	cachep = lockless_dereference(arr->entries[idx]);
249 250
	rcu_read_unlock();

251
	return cachep;
252
}
G
Glauber Costa 已提交
253 254 255 256 257

static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s)
{
	if (is_root_cache(s))
		return s;
258
	return s->memcg_params.root_cache;
G
Glauber Costa 已提交
259
}
260

261 262 263
static __always_inline int memcg_charge_slab(struct page *page,
					     gfp_t gfp, int order,
					     struct kmem_cache *s)
264
{
265 266
	int ret;

267 268 269 270
	if (!memcg_kmem_enabled())
		return 0;
	if (is_root_cache(s))
		return 0;
271

272
	ret = memcg_kmem_charge_memcg(page, gfp, order, s->memcg_params.memcg);
273 274 275 276 277 278 279 280 281 282 283 284 285
	if (ret)
		return ret;

	memcg_kmem_update_page_stat(page,
			(s->flags & SLAB_RECLAIM_ACCOUNT) ?
			MEMCG_SLAB_RECLAIMABLE : MEMCG_SLAB_UNRECLAIMABLE,
			1 << order);
	return 0;
}

static __always_inline void memcg_uncharge_slab(struct page *page, int order,
						struct kmem_cache *s)
{
286 287 288
	if (!memcg_kmem_enabled())
		return;

289 290 291 292 293
	memcg_kmem_update_page_stat(page,
			(s->flags & SLAB_RECLAIM_ACCOUNT) ?
			MEMCG_SLAB_RECLAIMABLE : MEMCG_SLAB_UNRECLAIMABLE,
			-(1 << order));
	memcg_kmem_uncharge(page, order);
294
}
295 296 297

extern void slab_init_memcg_params(struct kmem_cache *);

298
#else /* CONFIG_MEMCG && !CONFIG_SLOB */
299

300 301 302
#define for_each_memcg_cache(iter, root) \
	for ((void)(iter), (void)(root); 0; )

G
Glauber Costa 已提交
303 304 305 306 307
static inline bool is_root_cache(struct kmem_cache *s)
{
	return true;
}

308 309 310 311 312
static inline bool slab_equal_or_root(struct kmem_cache *s,
				      struct kmem_cache *p)
{
	return true;
}
313 314 315 316 317 318

static inline const char *cache_name(struct kmem_cache *s)
{
	return s->name;
}

319 320
static inline struct kmem_cache *
cache_from_memcg_idx(struct kmem_cache *s, int idx)
321 322 323
{
	return NULL;
}
G
Glauber Costa 已提交
324 325 326 327 328

static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s)
{
	return s;
}
329

330 331
static inline int memcg_charge_slab(struct page *page, gfp_t gfp, int order,
				    struct kmem_cache *s)
332 333 334 335
{
	return 0;
}

336 337 338 339 340
static inline void memcg_uncharge_slab(struct page *page, int order,
				       struct kmem_cache *s)
{
}

341 342 343
static inline void slab_init_memcg_params(struct kmem_cache *s)
{
}
344
#endif /* CONFIG_MEMCG && !CONFIG_SLOB */
345 346 347 348 349 350 351 352 353 354 355 356 357

static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
{
	struct kmem_cache *cachep;
	struct page *page;

	/*
	 * When kmemcg is not being used, both assignments should return the
	 * same value. but we don't want to pay the assignment price in that
	 * case. If it is not compiled in, the compiler should be smart enough
	 * to not do even the assignment. In that case, slab_equal_or_root
	 * will also be a constant.
	 */
358 359
	if (!memcg_kmem_enabled() &&
	    !unlikely(s->flags & SLAB_CONSISTENCY_CHECKS))
360 361 362 363 364 365 366 367
		return s;

	page = virt_to_head_page(x);
	cachep = page->slab_cache;
	if (slab_equal_or_root(cachep, s))
		return cachep;

	pr_err("%s: Wrong slab cache. %s but object is from %s\n",
368
	       __func__, s->name, cachep->name);
369 370 371
	WARN_ON_ONCE(1);
	return s;
}
372

373 374 375 376 377 378 379 380 381 382 383 384 385 386
static inline size_t slab_ksize(const struct kmem_cache *s)
{
#ifndef CONFIG_SLUB
	return s->object_size;

#else /* CONFIG_SLUB */
# ifdef CONFIG_SLUB_DEBUG
	/*
	 * Debugging requires use of the padding between object
	 * and whatever may come after it.
	 */
	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
		return s->object_size;
# endif
387 388
	if (s->flags & SLAB_KASAN)
		return s->object_size;
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
	/*
	 * If we have the need to store the freelist pointer
	 * back there or track user information then we can
	 * only use the space before that information.
	 */
	if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
		return s->inuse;
	/*
	 * Else we can use all the padding etc for the allocation
	 */
	return s->size;
#endif
}

static inline struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s,
						     gfp_t flags)
{
	flags &= gfp_allowed_mask;
	lockdep_trace_alloc(flags);
	might_sleep_if(gfpflags_allow_blocking(flags));

410
	if (should_failslab(s, flags))
411 412
		return NULL;

413 414 415 416 417
	if (memcg_kmem_enabled() &&
	    ((flags & __GFP_ACCOUNT) || (s->flags & SLAB_ACCOUNT)))
		return memcg_kmem_get_cache(s);

	return s;
418 419 420 421 422 423 424 425 426 427 428 429 430 431
}

static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
					size_t size, void **p)
{
	size_t i;

	flags &= gfp_allowed_mask;
	for (i = 0; i < size; i++) {
		void *object = p[i];

		kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
		kmemleak_alloc_recursive(object, s->object_size, 1,
					 s->flags, flags);
432
		kasan_slab_alloc(s, object, flags);
433
	}
434 435 436

	if (memcg_kmem_enabled())
		memcg_kmem_put_cache(s);
437 438
}

439
#ifndef CONFIG_SLOB
440 441 442 443 444 445 446 447 448 449
/*
 * The slab lists for all objects.
 */
struct kmem_cache_node {
	spinlock_t list_lock;

#ifdef CONFIG_SLAB
	struct list_head slabs_partial;	/* partial list first, better asm code */
	struct list_head slabs_full;
	struct list_head slabs_free;
450
	unsigned long num_slabs;
451 452 453 454
	unsigned long free_objects;
	unsigned int free_limit;
	unsigned int colour_next;	/* Per-node cache coloring */
	struct array_cache *shared;	/* shared per node */
J
Joonsoo Kim 已提交
455
	struct alien_cache **alien;	/* on other nodes */
456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
	unsigned long next_reap;	/* updated without locking */
	int free_touched;		/* updated without locking */
#endif

#ifdef CONFIG_SLUB
	unsigned long nr_partial;
	struct list_head partial;
#ifdef CONFIG_SLUB_DEBUG
	atomic_long_t nr_slabs;
	atomic_long_t total_objects;
	struct list_head full;
#endif
#endif

};
471

472 473 474 475 476 477 478 479 480 481
static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
{
	return s->node[node];
}

/*
 * Iterator over all nodes. The body will be executed for each node that has
 * a kmem_cache_node structure allocated (which is true for all online nodes)
 */
#define for_each_kmem_cache_node(__s, __node, __n) \
482 483
	for (__node = 0; __node < nr_node_ids; __node++) \
		 if ((__n = get_node(__s, __node)))
484 485 486

#endif

487
void *slab_start(struct seq_file *m, loff_t *pos);
488 489
void *slab_next(struct seq_file *m, void *p, loff_t *pos);
void slab_stop(struct seq_file *m, void *p);
490
int memcg_slab_show(struct seq_file *m, void *p);
491

492 493
void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr);

494 495 496 497 498 499 500 501 502 503 504 505 506
#ifdef CONFIG_SLAB_FREELIST_RANDOM
int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
			gfp_t gfp);
void cache_random_seq_destroy(struct kmem_cache *cachep);
#else
static inline int cache_random_seq_create(struct kmem_cache *cachep,
					unsigned int count, gfp_t gfp)
{
	return 0;
}
static inline void cache_random_seq_destroy(struct kmem_cache *cachep) { }
#endif /* CONFIG_SLAB_FREELIST_RANDOM */

507
#endif /* MM_SLAB_H */