slab.h 8.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
#ifndef MM_SLAB_H
#define MM_SLAB_H
/*
 * Internal slab definitions
 */

/*
 * State of the slab allocator.
 *
 * This is used to describe the states of the allocator during bootup.
 * Allocators use this to gradually bootstrap themselves. Most allocators
 * have the problem that the structures used for managing slab caches are
 * allocated from slab caches themselves.
 */
enum slab_state {
	DOWN,			/* No slab functionality yet */
	PARTIAL,		/* SLUB: kmem_cache_node available */
	PARTIAL_ARRAYCACHE,	/* SLAB: kmalloc size for arraycache available */
19
	PARTIAL_NODE,		/* SLAB: kmalloc size for node struct available */
20 21 22 23 24 25
	UP,			/* Slab caches usable but not all extras yet */
	FULL			/* Everything is working */
};

extern enum slab_state slab_state;

26 27
/* The slab cache mutex protects the management structures during changes */
extern struct mutex slab_mutex;
28 29

/* The list of all slab caches on the system */
30 31
extern struct list_head slab_caches;

32 33 34
/* The slab cache that manages slab cache information */
extern struct kmem_cache *kmem_cache;

35 36 37
unsigned long calculate_alignment(unsigned long flags,
		unsigned long align, unsigned long size);

38 39 40
#ifndef CONFIG_SLOB
/* Kmalloc array related functions */
void create_kmalloc_caches(unsigned long);
41 42 43

/* Find the kmalloc slab corresponding for a certain size */
struct kmem_cache *kmalloc_slab(size_t, gfp_t);
44 45 46
#endif


47
/* Functions provided by the slab allocators */
48
extern int __kmem_cache_create(struct kmem_cache *, unsigned long flags);
49

50 51 52 53 54
extern struct kmem_cache *create_kmalloc_cache(const char *name, size_t size,
			unsigned long flags);
extern void create_boot_cache(struct kmem_cache *, const char *name,
			size_t size, unsigned long flags);

55
struct mem_cgroup;
56
#ifdef CONFIG_SLUB
57
struct kmem_cache *
58 59
__kmem_cache_alias(const char *name, size_t size, size_t align,
		   unsigned long flags, void (*ctor)(void *));
60
#else
61
static inline struct kmem_cache *
62 63
__kmem_cache_alias(const char *name, size_t size, size_t align,
		   unsigned long flags, void (*ctor)(void *))
64 65 66 67
{ return NULL; }
#endif


68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
/* Legal flag mask for kmem_cache_create(), for various configurations */
#define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | SLAB_PANIC | \
			 SLAB_DESTROY_BY_RCU | SLAB_DEBUG_OBJECTS )

#if defined(CONFIG_DEBUG_SLAB)
#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
#elif defined(CONFIG_SLUB_DEBUG)
#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
			  SLAB_TRACE | SLAB_DEBUG_FREE)
#else
#define SLAB_DEBUG_FLAGS (0)
#endif

#if defined(CONFIG_SLAB)
#define SLAB_CACHE_FLAGS (SLAB_MEM_SPREAD | SLAB_NOLEAKTRACE | \
			  SLAB_RECLAIM_ACCOUNT | SLAB_TEMPORARY | SLAB_NOTRACK)
#elif defined(CONFIG_SLUB)
#define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE | SLAB_RECLAIM_ACCOUNT | \
			  SLAB_TEMPORARY | SLAB_NOTRACK)
#else
#define SLAB_CACHE_FLAGS (0)
#endif

#define CACHE_CREATE_MASK (SLAB_CORE_FLAGS | SLAB_DEBUG_FLAGS | SLAB_CACHE_FLAGS)

93
int __kmem_cache_shutdown(struct kmem_cache *);
94
int __kmem_cache_shrink(struct kmem_cache *);
95
void slab_kmem_cache_release(struct kmem_cache *);
96

97 98 99
struct seq_file;
struct file;

100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
struct slabinfo {
	unsigned long active_objs;
	unsigned long num_objs;
	unsigned long active_slabs;
	unsigned long num_slabs;
	unsigned long shared_avail;
	unsigned int limit;
	unsigned int batchcount;
	unsigned int shared;
	unsigned int objects_per_slab;
	unsigned int cache_order;
};

void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo);
void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s);
115 116
ssize_t slabinfo_write(struct file *file, const char __user *buffer,
		       size_t count, loff_t *ppos);
G
Glauber Costa 已提交
117 118 119 120 121 122

#ifdef CONFIG_MEMCG_KMEM
static inline bool is_root_cache(struct kmem_cache *s)
{
	return !s->memcg_params || s->memcg_params->is_root_cache;
}
123

124 125 126 127 128 129
static inline bool slab_equal_or_root(struct kmem_cache *s,
					struct kmem_cache *p)
{
	return (p == s) ||
		(s->memcg_params && (p == s->memcg_params->root_cache));
}
130 131 132 133 134 135 136 137 138 139 140 141 142

/*
 * We use suffixes to the name in memcg because we can't have caches
 * created in the system with the same name. But when we print them
 * locally, better refer to them with the base name
 */
static inline const char *cache_name(struct kmem_cache *s)
{
	if (!is_root_cache(s))
		return s->memcg_params->root_cache->name;
	return s->name;
}

143 144 145 146 147 148 149 150 151
/*
 * Note, we protect with RCU only the memcg_caches array, not per-memcg caches.
 * That said the caller must assure the memcg's cache won't go away. Since once
 * created a memcg's cache is destroyed only along with the root cache, it is
 * true if we are going to allocate from the cache or hold a reference to the
 * root cache by other means. Otherwise, we should hold either the slab_mutex
 * or the memcg's slab_caches_mutex while calling this function and accessing
 * the returned value.
 */
152 153
static inline struct kmem_cache *
cache_from_memcg_idx(struct kmem_cache *s, int idx)
154
{
155
	struct kmem_cache *cachep;
156
	struct memcg_cache_params *params;
157

158 159
	if (!s->memcg_params)
		return NULL;
160 161 162 163 164

	rcu_read_lock();
	params = rcu_dereference(s->memcg_params);
	cachep = params->memcg_caches[idx];
	rcu_read_unlock();
165 166 167 168 169 170 171 172

	/*
	 * Make sure we will access the up-to-date value. The code updating
	 * memcg_caches issues a write barrier to match this (see
	 * memcg_register_cache()).
	 */
	smp_read_barrier_depends();
	return cachep;
173
}
G
Glauber Costa 已提交
174 175 176 177 178 179 180

static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s)
{
	if (is_root_cache(s))
		return s;
	return s->memcg_params->root_cache;
}
181 182 183 184 185 186 187 188

static __always_inline int memcg_charge_slab(struct kmem_cache *s,
					     gfp_t gfp, int order)
{
	if (!memcg_kmem_enabled())
		return 0;
	if (is_root_cache(s))
		return 0;
189
	return __memcg_charge_slab(s, gfp, order);
190 191 192 193 194 195 196 197
}

static __always_inline void memcg_uncharge_slab(struct kmem_cache *s, int order)
{
	if (!memcg_kmem_enabled())
		return;
	if (is_root_cache(s))
		return;
198
	__memcg_uncharge_slab(s, order);
199
}
G
Glauber Costa 已提交
200 201 202 203 204 205
#else
static inline bool is_root_cache(struct kmem_cache *s)
{
	return true;
}

206 207 208 209 210
static inline bool slab_equal_or_root(struct kmem_cache *s,
				      struct kmem_cache *p)
{
	return true;
}
211 212 213 214 215 216

static inline const char *cache_name(struct kmem_cache *s)
{
	return s->name;
}

217 218
static inline struct kmem_cache *
cache_from_memcg_idx(struct kmem_cache *s, int idx)
219 220 221
{
	return NULL;
}
G
Glauber Costa 已提交
222 223 224 225 226

static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s)
{
	return s;
}
227 228 229 230 231 232 233 234 235

static inline int memcg_charge_slab(struct kmem_cache *s, gfp_t gfp, int order)
{
	return 0;
}

static inline void memcg_uncharge_slab(struct kmem_cache *s, int order)
{
}
G
Glauber Costa 已提交
236
#endif
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262

static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
{
	struct kmem_cache *cachep;
	struct page *page;

	/*
	 * When kmemcg is not being used, both assignments should return the
	 * same value. but we don't want to pay the assignment price in that
	 * case. If it is not compiled in, the compiler should be smart enough
	 * to not do even the assignment. In that case, slab_equal_or_root
	 * will also be a constant.
	 */
	if (!memcg_kmem_enabled() && !unlikely(s->flags & SLAB_DEBUG_FREE))
		return s;

	page = virt_to_head_page(x);
	cachep = page->slab_cache;
	if (slab_equal_or_root(cachep, s))
		return cachep;

	pr_err("%s: Wrong slab cache. %s but object is from %s\n",
		__FUNCTION__, cachep->name, s->name);
	WARN_ON_ONCE(1);
	return s;
}
263

264
#ifndef CONFIG_SLOB
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
/*
 * The slab lists for all objects.
 */
struct kmem_cache_node {
	spinlock_t list_lock;

#ifdef CONFIG_SLAB
	struct list_head slabs_partial;	/* partial list first, better asm code */
	struct list_head slabs_full;
	struct list_head slabs_free;
	unsigned long free_objects;
	unsigned int free_limit;
	unsigned int colour_next;	/* Per-node cache coloring */
	struct array_cache *shared;	/* shared per node */
	struct array_cache **alien;	/* on other nodes */
	unsigned long next_reap;	/* updated without locking */
	int free_touched;		/* updated without locking */
#endif

#ifdef CONFIG_SLUB
	unsigned long nr_partial;
	struct list_head partial;
#ifdef CONFIG_SLUB_DEBUG
	atomic_long_t nr_slabs;
	atomic_long_t total_objects;
	struct list_head full;
#endif
#endif

};
295

296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
{
	return s->node[node];
}

/*
 * Iterator over all nodes. The body will be executed for each node that has
 * a kmem_cache_node structure allocated (which is true for all online nodes)
 */
#define for_each_kmem_cache_node(__s, __node, __n) \
	for (__node = 0; __n = get_node(__s, __node), __node < nr_node_ids; __node++) \
		 if (__n)

#endif

311 312
void *slab_next(struct seq_file *m, void *p, loff_t *pos);
void slab_stop(struct seq_file *m, void *p);
313 314

#endif /* MM_SLAB_H */