mmu.c 125.2 KB
Newer Older
A
Avi Kivity 已提交
1 2 3 4 5 6 7 8 9
/*
 * Kernel-based Virtual Machine driver for Linux
 *
 * This module enables machines with Intel VT-x extensions to run virtual
 * machines without emulation or binary translation.
 *
 * MMU support
 *
 * Copyright (C) 2006 Qumranet, Inc.
N
Nicolas Kaiser 已提交
10
 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
A
Avi Kivity 已提交
11 12 13 14 15 16 17 18 19
 *
 * Authors:
 *   Yaniv Kamay  <yaniv@qumranet.com>
 *   Avi Kivity   <avi@qumranet.com>
 *
 * This work is licensed under the terms of the GNU GPL, version 2.  See
 * the COPYING file in the top-level directory.
 *
 */
A
Avi Kivity 已提交
20

21
#include "irq.h"
22
#include "mmu.h"
23
#include "x86.h"
A
Avi Kivity 已提交
24
#include "kvm_cache_regs.h"
25
#include "cpuid.h"
A
Avi Kivity 已提交
26

27
#include <linux/kvm_host.h>
A
Avi Kivity 已提交
28 29 30 31 32
#include <linux/types.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/highmem.h>
#include <linux/module.h>
33
#include <linux/swap.h>
M
Marcelo Tosatti 已提交
34
#include <linux/hugetlb.h>
35
#include <linux/compiler.h>
36
#include <linux/srcu.h>
37
#include <linux/slab.h>
38
#include <linux/uaccess.h>
A
Avi Kivity 已提交
39

A
Avi Kivity 已提交
40 41
#include <asm/page.h>
#include <asm/cmpxchg.h>
42
#include <asm/io.h>
43
#include <asm/vmx.h>
44
#include <asm/kvm_page_track.h>
A
Avi Kivity 已提交
45

46 47 48 49 50 51 52
/*
 * When setting this variable to true it enables Two-Dimensional-Paging
 * where the hardware walks 2 page tables:
 * 1. the guest-virtual to guest-physical
 * 2. while doing 1. it walks guest-physical to host-physical
 * If the hardware supports that we don't need to do shadow paging.
 */
53
bool tdp_enabled = false;
54

55 56 57 58
enum {
	AUDIT_PRE_PAGE_FAULT,
	AUDIT_POST_PAGE_FAULT,
	AUDIT_PRE_PTE_WRITE,
59 60 61
	AUDIT_POST_PTE_WRITE,
	AUDIT_PRE_SYNC,
	AUDIT_POST_SYNC
62
};
63

64
#undef MMU_DEBUG
65 66

#ifdef MMU_DEBUG
67 68
static bool dbg = 0;
module_param(dbg, bool, 0644);
69 70 71

#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
#define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
72
#define MMU_WARN_ON(x) WARN_ON(x)
73 74 75
#else
#define pgprintk(x...) do { } while (0)
#define rmap_printk(x...) do { } while (0)
76
#define MMU_WARN_ON(x) do { } while (0)
77
#endif
A
Avi Kivity 已提交
78

79 80
#define PTE_PREFETCH_NUM		8

81
#define PT_FIRST_AVAIL_BITS_SHIFT 10
A
Avi Kivity 已提交
82 83 84 85 86
#define PT64_SECOND_AVAIL_BITS_SHIFT 52

#define PT64_LEVEL_BITS 9

#define PT64_LEVEL_SHIFT(level) \
M
Mike Day 已提交
87
		(PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
A
Avi Kivity 已提交
88 89 90 91 92 93 94 95

#define PT64_INDEX(address, level)\
	(((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))


#define PT32_LEVEL_BITS 10

#define PT32_LEVEL_SHIFT(level) \
M
Mike Day 已提交
96
		(PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
A
Avi Kivity 已提交
97

98 99 100
#define PT32_LVL_OFFSET_MASK(level) \
	(PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
						* PT32_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
101 102 103 104 105

#define PT32_INDEX(address, level)\
	(((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))


106
#define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
A
Avi Kivity 已提交
107 108
#define PT64_DIR_BASE_ADDR_MASK \
	(PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
109 110 111 112 113 114
#define PT64_LVL_ADDR_MASK(level) \
	(PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
						* PT64_LEVEL_BITS))) - 1))
#define PT64_LVL_OFFSET_MASK(level) \
	(PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
						* PT64_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
115 116 117 118

#define PT32_BASE_ADDR_MASK PAGE_MASK
#define PT32_DIR_BASE_ADDR_MASK \
	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
119 120 121
#define PT32_LVL_ADDR_MASK(level) \
	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
					    * PT32_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
122

123 124
#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
			| shadow_x_mask | shadow_nx_mask)
A
Avi Kivity 已提交
125

126 127 128 129 130
#define ACC_EXEC_MASK    1
#define ACC_WRITE_MASK   PT_WRITABLE_MASK
#define ACC_USER_MASK    PT_USER_MASK
#define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)

131 132
#include <trace/events/kvm.h>

133 134 135
#define CREATE_TRACE_POINTS
#include "mmutrace.h"

136 137
#define SPTE_HOST_WRITEABLE	(1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
#define SPTE_MMU_WRITEABLE	(1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
138

139 140
#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)

141 142 143
/* make pte_list_desc fit well in cache line */
#define PTE_LIST_EXT 3

144 145 146
struct pte_list_desc {
	u64 *sptes[PTE_LIST_EXT];
	struct pte_list_desc *more;
147 148
};

149 150 151 152
struct kvm_shadow_walk_iterator {
	u64 addr;
	hpa_t shadow_addr;
	u64 *sptep;
153
	int level;
154 155 156 157 158 159 160 161
	unsigned index;
};

#define for_each_shadow_entry(_vcpu, _addr, _walker)    \
	for (shadow_walk_init(&(_walker), _vcpu, _addr);	\
	     shadow_walk_okay(&(_walker));			\
	     shadow_walk_next(&(_walker)))

162 163 164 165 166 167
#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)	\
	for (shadow_walk_init(&(_walker), _vcpu, _addr);		\
	     shadow_walk_okay(&(_walker)) &&				\
		({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });	\
	     __shadow_walk_next(&(_walker), spte))

168
static struct kmem_cache *pte_list_desc_cache;
169
static struct kmem_cache *mmu_page_header_cache;
170
static struct percpu_counter kvm_total_used_mmu_pages;
171

S
Sheng Yang 已提交
172 173 174 175 176
static u64 __read_mostly shadow_nx_mask;
static u64 __read_mostly shadow_x_mask;	/* mutual exclusive with nx_mask */
static u64 __read_mostly shadow_user_mask;
static u64 __read_mostly shadow_accessed_mask;
static u64 __read_mostly shadow_dirty_mask;
177 178 179
static u64 __read_mostly shadow_mmio_mask;

static void mmu_spte_set(u64 *sptep, u64 spte);
180
static void mmu_free_roots(struct kvm_vcpu *vcpu);
181 182 183 184 185 186 187

void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
{
	shadow_mmio_mask = mmio_mask;
}
EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);

188
/*
189 190 191 192 193 194 195
 * the low bit of the generation number is always presumed to be zero.
 * This disables mmio caching during memslot updates.  The concept is
 * similar to a seqcount but instead of retrying the access we just punt
 * and ignore the cache.
 *
 * spte bits 3-11 are used as bits 1-9 of the generation number,
 * the bits 52-61 are used as bits 10-19 of the generation number.
196
 */
197
#define MMIO_SPTE_GEN_LOW_SHIFT		2
198 199
#define MMIO_SPTE_GEN_HIGH_SHIFT	52

200 201 202
#define MMIO_GEN_SHIFT			20
#define MMIO_GEN_LOW_SHIFT		10
#define MMIO_GEN_LOW_MASK		((1 << MMIO_GEN_LOW_SHIFT) - 2)
203
#define MMIO_GEN_MASK			((1 << MMIO_GEN_SHIFT) - 1)
204 205 206 207 208

static u64 generation_mmio_spte_mask(unsigned int gen)
{
	u64 mask;

T
Tiejun Chen 已提交
209
	WARN_ON(gen & ~MMIO_GEN_MASK);
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226

	mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
	mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
	return mask;
}

static unsigned int get_mmio_spte_generation(u64 spte)
{
	unsigned int gen;

	spte &= ~shadow_mmio_mask;

	gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
	gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
	return gen;
}

227
static unsigned int kvm_current_mmio_generation(struct kvm_vcpu *vcpu)
228
{
229
	return kvm_vcpu_memslots(vcpu)->generation & MMIO_GEN_MASK;
230 231
}

232
static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
233
			   unsigned access)
234
{
235
	unsigned int gen = kvm_current_mmio_generation(vcpu);
236
	u64 mask = generation_mmio_spte_mask(gen);
237

238
	access &= ACC_WRITE_MASK | ACC_USER_MASK;
239 240
	mask |= shadow_mmio_mask | access | gfn << PAGE_SHIFT;

241
	trace_mark_mmio_spte(sptep, gfn, access, gen);
242
	mmu_spte_set(sptep, mask);
243 244 245 246 247 248 249 250 251
}

static bool is_mmio_spte(u64 spte)
{
	return (spte & shadow_mmio_mask) == shadow_mmio_mask;
}

static gfn_t get_mmio_spte_gfn(u64 spte)
{
T
Tiejun Chen 已提交
252
	u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
253
	return (spte & ~mask) >> PAGE_SHIFT;
254 255 256 257
}

static unsigned get_mmio_spte_access(u64 spte)
{
T
Tiejun Chen 已提交
258
	u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
259
	return (spte & ~mask) & ~PAGE_MASK;
260 261
}

262
static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
D
Dan Williams 已提交
263
			  kvm_pfn_t pfn, unsigned access)
264 265
{
	if (unlikely(is_noslot_pfn(pfn))) {
266
		mark_mmio_spte(vcpu, sptep, gfn, access);
267 268 269 270 271
		return true;
	}

	return false;
}
272

273
static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
274
{
275 276
	unsigned int kvm_gen, spte_gen;

277
	kvm_gen = kvm_current_mmio_generation(vcpu);
278 279 280 281
	spte_gen = get_mmio_spte_generation(spte);

	trace_check_mmio_spte(spte, kvm_gen, spte_gen);
	return likely(kvm_gen == spte_gen);
282 283
}

S
Sheng Yang 已提交
284
void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
285
		u64 dirty_mask, u64 nx_mask, u64 x_mask)
S
Sheng Yang 已提交
286 287 288 289 290 291 292 293 294
{
	shadow_user_mask = user_mask;
	shadow_accessed_mask = accessed_mask;
	shadow_dirty_mask = dirty_mask;
	shadow_nx_mask = nx_mask;
	shadow_x_mask = x_mask;
}
EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);

A
Avi Kivity 已提交
295 296 297 298 299
static int is_cpuid_PSE36(void)
{
	return 1;
}

300 301
static int is_nx(struct kvm_vcpu *vcpu)
{
302
	return vcpu->arch.efer & EFER_NX;
303 304
}

305 306
static int is_shadow_present_pte(u64 pte)
{
307
	return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
308 309
}

M
Marcelo Tosatti 已提交
310 311 312 313 314
static int is_large_pte(u64 pte)
{
	return pte & PT_PAGE_SIZE_MASK;
}

315 316 317 318
static int is_last_spte(u64 pte, int level)
{
	if (level == PT_PAGE_TABLE_LEVEL)
		return 1;
319
	if (is_large_pte(pte))
320 321 322 323
		return 1;
	return 0;
}

D
Dan Williams 已提交
324
static kvm_pfn_t spte_to_pfn(u64 pte)
325
{
326
	return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
327 328
}

329 330 331 332 333 334 335
static gfn_t pse36_gfn_delta(u32 gpte)
{
	int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;

	return (gpte & PT32_DIR_PSE36_MASK) << shift;
}

336
#ifdef CONFIG_X86_64
A
Avi Kivity 已提交
337
static void __set_spte(u64 *sptep, u64 spte)
338
{
339
	*sptep = spte;
340 341
}

342
static void __update_clear_spte_fast(u64 *sptep, u64 spte)
343
{
344 345 346 347 348 349 350
	*sptep = spte;
}

static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
{
	return xchg(sptep, spte);
}
351 352 353 354 355

static u64 __get_spte_lockless(u64 *sptep)
{
	return ACCESS_ONCE(*sptep);
}
356
#else
357 358 359 360 361 362 363
union split_spte {
	struct {
		u32 spte_low;
		u32 spte_high;
	};
	u64 spte;
};
364

365 366 367 368 369 370 371 372 373 374 375 376
static void count_spte_clear(u64 *sptep, u64 spte)
{
	struct kvm_mmu_page *sp =  page_header(__pa(sptep));

	if (is_shadow_present_pte(spte))
		return;

	/* Ensure the spte is completely set before we increase the count */
	smp_wmb();
	sp->clear_spte_count++;
}

377 378 379
static void __set_spte(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte;
380

381 382 383 384 385 386 387 388 389 390 391 392 393
	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	ssptep->spte_high = sspte.spte_high;

	/*
	 * If we map the spte from nonpresent to present, We should store
	 * the high bits firstly, then set present bit, so cpu can not
	 * fetch this spte while we are setting the spte.
	 */
	smp_wmb();

	ssptep->spte_low = sspte.spte_low;
394 395
}

396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
static void __update_clear_spte_fast(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte;

	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	ssptep->spte_low = sspte.spte_low;

	/*
	 * If we map the spte from present to nonpresent, we should clear
	 * present bit firstly to avoid vcpu fetch the old high bits.
	 */
	smp_wmb();

	ssptep->spte_high = sspte.spte_high;
412
	count_spte_clear(sptep, spte);
413 414 415 416 417 418 419 420 421 422 423
}

static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte, orig;

	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	/* xchg acts as a barrier before the setting of the high bits */
	orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
424 425
	orig.spte_high = ssptep->spte_high;
	ssptep->spte_high = sspte.spte_high;
426
	count_spte_clear(sptep, spte);
427 428 429

	return orig.spte;
}
430 431 432 433

/*
 * The idea using the light way get the spte on x86_32 guest is from
 * gup_get_pte(arch/x86/mm/gup.c).
434 435 436 437 438 439 440 441 442 443 444 445 446 447
 *
 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
 * coalesces them and we are running out of the MMU lock.  Therefore
 * we need to protect against in-progress updates of the spte.
 *
 * Reading the spte while an update is in progress may get the old value
 * for the high part of the spte.  The race is fine for a present->non-present
 * change (because the high part of the spte is ignored for non-present spte),
 * but for a present->present change we must reread the spte.
 *
 * All such changes are done in two steps (present->non-present and
 * non-present->present), hence it is enough to count the number of
 * present->non-present updates: if it changed while reading the spte,
 * we might have hit the race.  This is done using clear_spte_count.
448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
 */
static u64 __get_spte_lockless(u64 *sptep)
{
	struct kvm_mmu_page *sp =  page_header(__pa(sptep));
	union split_spte spte, *orig = (union split_spte *)sptep;
	int count;

retry:
	count = sp->clear_spte_count;
	smp_rmb();

	spte.spte_low = orig->spte_low;
	smp_rmb();

	spte.spte_high = orig->spte_high;
	smp_rmb();

	if (unlikely(spte.spte_low != orig->spte_low ||
	      count != sp->clear_spte_count))
		goto retry;

	return spte.spte;
}
471 472
#endif

473 474
static bool spte_is_locklessly_modifiable(u64 spte)
{
475 476
	return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
		(SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
477 478
}

479 480
static bool spte_has_volatile_bits(u64 spte)
{
481 482 483 484 485 486 487 488 489
	/*
	 * Always atomicly update spte if it can be updated
	 * out of mmu-lock, it can ensure dirty bit is not lost,
	 * also, it can help us to get a stable is_writable_pte()
	 * to ensure tlb flush is not missed.
	 */
	if (spte_is_locklessly_modifiable(spte))
		return true;

490 491 492 493 494 495
	if (!shadow_accessed_mask)
		return false;

	if (!is_shadow_present_pte(spte))
		return false;

496 497
	if ((spte & shadow_accessed_mask) &&
	      (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
498 499 500 501 502
		return false;

	return true;
}

503 504 505 506 507
static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
{
	return (old_spte & bit_mask) && !(new_spte & bit_mask);
}

508 509 510 511 512
static bool spte_is_bit_changed(u64 old_spte, u64 new_spte, u64 bit_mask)
{
	return (old_spte & bit_mask) != (new_spte & bit_mask);
}

513 514 515 516 517 518 519 520 521 522 523 524 525 526
/* Rules for using mmu_spte_set:
 * Set the sptep from nonpresent to present.
 * Note: the sptep being assigned *must* be either not present
 * or in a state where the hardware will not attempt to update
 * the spte.
 */
static void mmu_spte_set(u64 *sptep, u64 new_spte)
{
	WARN_ON(is_shadow_present_pte(*sptep));
	__set_spte(sptep, new_spte);
}

/* Rules for using mmu_spte_update:
 * Update the state bits, it means the mapped pfn is not changged.
527 528 529 530 531 532
 *
 * Whenever we overwrite a writable spte with a read-only one we
 * should flush remote TLBs. Otherwise rmap_write_protect
 * will find a read-only spte, even though the writable spte
 * might be cached on a CPU's TLB, the return value indicates this
 * case.
533
 */
534
static bool mmu_spte_update(u64 *sptep, u64 new_spte)
535
{
536
	u64 old_spte = *sptep;
537
	bool ret = false;
538

539
	WARN_ON(!is_shadow_present_pte(new_spte));
540

541 542 543 544
	if (!is_shadow_present_pte(old_spte)) {
		mmu_spte_set(sptep, new_spte);
		return ret;
	}
545

546
	if (!spte_has_volatile_bits(old_spte))
547
		__update_clear_spte_fast(sptep, new_spte);
548
	else
549
		old_spte = __update_clear_spte_slow(sptep, new_spte);
550

551 552 553 554 555
	/*
	 * For the spte updated out of mmu-lock is safe, since
	 * we always atomicly update it, see the comments in
	 * spte_has_volatile_bits().
	 */
556 557
	if (spte_is_locklessly_modifiable(old_spte) &&
	      !is_writable_pte(new_spte))
558 559
		ret = true;

560
	if (!shadow_accessed_mask)
561
		return ret;
562

563 564 565 566 567 568 569 570
	/*
	 * Flush TLB when accessed/dirty bits are changed in the page tables,
	 * to guarantee consistency between TLB and page tables.
	 */
	if (spte_is_bit_changed(old_spte, new_spte,
                                shadow_accessed_mask | shadow_dirty_mask))
		ret = true;

571 572 573 574
	if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
		kvm_set_pfn_accessed(spte_to_pfn(old_spte));
	if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
		kvm_set_pfn_dirty(spte_to_pfn(old_spte));
575 576

	return ret;
577 578
}

579 580 581 582 583 584 585
/*
 * Rules for using mmu_spte_clear_track_bits:
 * It sets the sptep from present to nonpresent, and track the
 * state bits, it is used to clear the last level sptep.
 */
static int mmu_spte_clear_track_bits(u64 *sptep)
{
D
Dan Williams 已提交
586
	kvm_pfn_t pfn;
587 588 589
	u64 old_spte = *sptep;

	if (!spte_has_volatile_bits(old_spte))
590
		__update_clear_spte_fast(sptep, 0ull);
591
	else
592
		old_spte = __update_clear_spte_slow(sptep, 0ull);
593

594
	if (!is_shadow_present_pte(old_spte))
595 596 597
		return 0;

	pfn = spte_to_pfn(old_spte);
598 599 600 601 602 603

	/*
	 * KVM does not hold the refcount of the page used by
	 * kvm mmu, before reclaiming the page, we should
	 * unmap it from mmu first.
	 */
604
	WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
605

606 607 608 609 610 611 612 613 614 615 616 617 618 619
	if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
		kvm_set_pfn_accessed(pfn);
	if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
		kvm_set_pfn_dirty(pfn);
	return 1;
}

/*
 * Rules for using mmu_spte_clear_no_track:
 * Directly clear spte without caring the state bits of sptep,
 * it is used to set the upper level spte.
 */
static void mmu_spte_clear_no_track(u64 *sptep)
{
620
	__update_clear_spte_fast(sptep, 0ull);
621 622
}

623 624 625 626 627 628 629
static u64 mmu_spte_get_lockless(u64 *sptep)
{
	return __get_spte_lockless(sptep);
}

static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
{
630 631 632 633 634 635 636 637 638 639 640
	/*
	 * Prevent page table teardown by making any free-er wait during
	 * kvm_flush_remote_tlbs() IPI to all active vcpus.
	 */
	local_irq_disable();
	vcpu->mode = READING_SHADOW_PAGE_TABLES;
	/*
	 * Make sure a following spte read is not reordered ahead of the write
	 * to vcpu->mode.
	 */
	smp_mb();
641 642 643 644
}

static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
{
645 646 647 648 649 650 651 652
	/*
	 * Make sure the write to vcpu->mode is not reordered in front of
	 * reads to sptes.  If it does, kvm_commit_zap_page() can see us
	 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
	 */
	smp_mb();
	vcpu->mode = OUTSIDE_GUEST_MODE;
	local_irq_enable();
653 654
}

655
static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
656
				  struct kmem_cache *base_cache, int min)
657 658 659 660
{
	void *obj;

	if (cache->nobjs >= min)
661
		return 0;
662
	while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
663
		obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
664
		if (!obj)
665
			return -ENOMEM;
666 667
		cache->objects[cache->nobjs++] = obj;
	}
668
	return 0;
669 670
}

671 672 673 674 675
static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
{
	return cache->nobjs;
}

676 677
static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
				  struct kmem_cache *cache)
678 679
{
	while (mc->nobjs)
680
		kmem_cache_free(cache, mc->objects[--mc->nobjs]);
681 682
}

A
Avi Kivity 已提交
683
static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
684
				       int min)
A
Avi Kivity 已提交
685
{
686
	void *page;
A
Avi Kivity 已提交
687 688 689 690

	if (cache->nobjs >= min)
		return 0;
	while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
691
		page = (void *)__get_free_page(GFP_KERNEL);
A
Avi Kivity 已提交
692 693
		if (!page)
			return -ENOMEM;
694
		cache->objects[cache->nobjs++] = page;
A
Avi Kivity 已提交
695 696 697 698 699 700 701
	}
	return 0;
}

static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
{
	while (mc->nobjs)
702
		free_page((unsigned long)mc->objects[--mc->nobjs]);
A
Avi Kivity 已提交
703 704
}

705
static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
706
{
707 708
	int r;

709
	r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
710
				   pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
711 712
	if (r)
		goto out;
713
	r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
714 715
	if (r)
		goto out;
716
	r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
717
				   mmu_page_header_cache, 4);
718 719
out:
	return r;
720 721 722 723
}

static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
{
724 725
	mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
				pte_list_desc_cache);
726
	mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
727 728
	mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
				mmu_page_header_cache);
729 730
}

731
static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
732 733 734 735 736 737 738 739
{
	void *p;

	BUG_ON(!mc->nobjs);
	p = mc->objects[--mc->nobjs];
	return p;
}

740
static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
741
{
742
	return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
743 744
}

745
static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
746
{
747
	kmem_cache_free(pte_list_desc_cache, pte_list_desc);
748 749
}

750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765
static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
{
	if (!sp->role.direct)
		return sp->gfns[index];

	return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
}

static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
{
	if (sp->role.direct)
		BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
	else
		sp->gfns[index] = gfn;
}

M
Marcelo Tosatti 已提交
766
/*
767 768
 * Return the pointer to the large page information for a given gfn,
 * handling slots that are not large page aligned.
M
Marcelo Tosatti 已提交
769
 */
770 771 772
static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
					      struct kvm_memory_slot *slot,
					      int level)
M
Marcelo Tosatti 已提交
773 774 775
{
	unsigned long idx;

776
	idx = gfn_to_index(gfn, slot->base_gfn, level);
777
	return &slot->arch.lpage_info[level - 2][idx];
M
Marcelo Tosatti 已提交
778 779
}

780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802
static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
					    gfn_t gfn, int count)
{
	struct kvm_lpage_info *linfo;
	int i;

	for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
		linfo = lpage_info_slot(gfn, slot, i);
		linfo->disallow_lpage += count;
		WARN_ON(linfo->disallow_lpage < 0);
	}
}

void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
{
	update_gfn_disallow_lpage_count(slot, gfn, 1);
}

void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
{
	update_gfn_disallow_lpage_count(slot, gfn, -1);
}

803
static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
M
Marcelo Tosatti 已提交
804
{
805
	struct kvm_memslots *slots;
806
	struct kvm_memory_slot *slot;
807
	gfn_t gfn;
M
Marcelo Tosatti 已提交
808

809
	gfn = sp->gfn;
810 811
	slots = kvm_memslots_for_spte_role(kvm, sp->role);
	slot = __gfn_to_memslot(slots, gfn);
812
	kvm_mmu_gfn_disallow_lpage(slot, gfn);
813
	kvm->arch.indirect_shadow_pages++;
M
Marcelo Tosatti 已提交
814 815
}

816
static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
M
Marcelo Tosatti 已提交
817
{
818
	struct kvm_memslots *slots;
819
	struct kvm_memory_slot *slot;
820
	gfn_t gfn;
M
Marcelo Tosatti 已提交
821

822
	gfn = sp->gfn;
823 824
	slots = kvm_memslots_for_spte_role(kvm, sp->role);
	slot = __gfn_to_memslot(slots, gfn);
825
	kvm_mmu_gfn_allow_lpage(slot, gfn);
826
	kvm->arch.indirect_shadow_pages--;
M
Marcelo Tosatti 已提交
827 828
}

829 830
static bool __mmu_gfn_lpage_is_disallowed(gfn_t gfn, int level,
					  struct kvm_memory_slot *slot)
M
Marcelo Tosatti 已提交
831
{
832
	struct kvm_lpage_info *linfo;
M
Marcelo Tosatti 已提交
833 834

	if (slot) {
835
		linfo = lpage_info_slot(gfn, slot, level);
836
		return !!linfo->disallow_lpage;
M
Marcelo Tosatti 已提交
837 838
	}

839
	return true;
M
Marcelo Tosatti 已提交
840 841
}

842 843
static bool mmu_gfn_lpage_is_disallowed(struct kvm_vcpu *vcpu, gfn_t gfn,
					int level)
844 845 846 847
{
	struct kvm_memory_slot *slot;

	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
848
	return __mmu_gfn_lpage_is_disallowed(gfn, level, slot);
849 850
}

851
static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
M
Marcelo Tosatti 已提交
852
{
J
Joerg Roedel 已提交
853
	unsigned long page_size;
854
	int i, ret = 0;
M
Marcelo Tosatti 已提交
855

J
Joerg Roedel 已提交
856
	page_size = kvm_host_page_size(kvm, gfn);
M
Marcelo Tosatti 已提交
857

858
	for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
859 860 861 862 863 864
		if (page_size >= KVM_HPAGE_SIZE(i))
			ret = i;
		else
			break;
	}

865
	return ret;
M
Marcelo Tosatti 已提交
866 867
}

868 869 870 871 872 873 874 875 876 877 878
static inline bool memslot_valid_for_gpte(struct kvm_memory_slot *slot,
					  bool no_dirty_log)
{
	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
		return false;
	if (no_dirty_log && slot->dirty_bitmap)
		return false;

	return true;
}

879 880 881
static struct kvm_memory_slot *
gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
			    bool no_dirty_log)
M
Marcelo Tosatti 已提交
882 883
{
	struct kvm_memory_slot *slot;
884

885
	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
886
	if (!memslot_valid_for_gpte(slot, no_dirty_log))
887 888 889 890 891
		slot = NULL;

	return slot;
}

892 893
static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn,
			 bool *force_pt_level)
894 895
{
	int host_level, level, max_level;
896 897
	struct kvm_memory_slot *slot;

898 899
	if (unlikely(*force_pt_level))
		return PT_PAGE_TABLE_LEVEL;
M
Marcelo Tosatti 已提交
900

901 902
	slot = kvm_vcpu_gfn_to_memslot(vcpu, large_gfn);
	*force_pt_level = !memslot_valid_for_gpte(slot, true);
903 904 905
	if (unlikely(*force_pt_level))
		return PT_PAGE_TABLE_LEVEL;

906 907 908 909 910
	host_level = host_mapping_level(vcpu->kvm, large_gfn);

	if (host_level == PT_PAGE_TABLE_LEVEL)
		return host_level;

X
Xiao Guangrong 已提交
911
	max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
912 913

	for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
914
		if (__mmu_gfn_lpage_is_disallowed(large_gfn, level, slot))
915 916 917
			break;

	return level - 1;
M
Marcelo Tosatti 已提交
918 919
}

920
/*
921
 * About rmap_head encoding:
922
 *
923 924
 * If the bit zero of rmap_head->val is clear, then it points to the only spte
 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
925
 * pte_list_desc containing more mappings.
926 927 928 929
 */

/*
 * Returns the number of pointers in the rmap chain, not counting the new one.
930
 */
931
static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
932
			struct kvm_rmap_head *rmap_head)
933
{
934
	struct pte_list_desc *desc;
935
	int i, count = 0;
936

937
	if (!rmap_head->val) {
938
		rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
939 940
		rmap_head->val = (unsigned long)spte;
	} else if (!(rmap_head->val & 1)) {
941 942
		rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
		desc = mmu_alloc_pte_list_desc(vcpu);
943
		desc->sptes[0] = (u64 *)rmap_head->val;
A
Avi Kivity 已提交
944
		desc->sptes[1] = spte;
945
		rmap_head->val = (unsigned long)desc | 1;
946
		++count;
947
	} else {
948
		rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
949
		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
950
		while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
951
			desc = desc->more;
952
			count += PTE_LIST_EXT;
953
		}
954 955
		if (desc->sptes[PTE_LIST_EXT-1]) {
			desc->more = mmu_alloc_pte_list_desc(vcpu);
956 957
			desc = desc->more;
		}
A
Avi Kivity 已提交
958
		for (i = 0; desc->sptes[i]; ++i)
959
			++count;
A
Avi Kivity 已提交
960
		desc->sptes[i] = spte;
961
	}
962
	return count;
963 964
}

965
static void
966 967 968
pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
			   struct pte_list_desc *desc, int i,
			   struct pte_list_desc *prev_desc)
969 970 971
{
	int j;

972
	for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
973
		;
A
Avi Kivity 已提交
974 975
	desc->sptes[i] = desc->sptes[j];
	desc->sptes[j] = NULL;
976 977 978
	if (j != 0)
		return;
	if (!prev_desc && !desc->more)
979
		rmap_head->val = (unsigned long)desc->sptes[0];
980 981 982 983
	else
		if (prev_desc)
			prev_desc->more = desc->more;
		else
984
			rmap_head->val = (unsigned long)desc->more | 1;
985
	mmu_free_pte_list_desc(desc);
986 987
}

988
static void pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
989
{
990 991
	struct pte_list_desc *desc;
	struct pte_list_desc *prev_desc;
992 993
	int i;

994
	if (!rmap_head->val) {
995
		printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
996
		BUG();
997
	} else if (!(rmap_head->val & 1)) {
998
		rmap_printk("pte_list_remove:  %p 1->0\n", spte);
999
		if ((u64 *)rmap_head->val != spte) {
1000
			printk(KERN_ERR "pte_list_remove:  %p 1->BUG\n", spte);
1001 1002
			BUG();
		}
1003
		rmap_head->val = 0;
1004
	} else {
1005
		rmap_printk("pte_list_remove:  %p many->many\n", spte);
1006
		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1007 1008
		prev_desc = NULL;
		while (desc) {
1009
			for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
A
Avi Kivity 已提交
1010
				if (desc->sptes[i] == spte) {
1011 1012
					pte_list_desc_remove_entry(rmap_head,
							desc, i, prev_desc);
1013 1014
					return;
				}
1015
			}
1016 1017 1018
			prev_desc = desc;
			desc = desc->more;
		}
1019
		pr_err("pte_list_remove: %p many->many\n", spte);
1020 1021 1022 1023
		BUG();
	}
}

1024 1025
static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
					   struct kvm_memory_slot *slot)
1026
{
1027
	unsigned long idx;
1028

1029
	idx = gfn_to_index(gfn, slot->base_gfn, level);
1030
	return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
1031 1032
}

1033 1034
static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
					 struct kvm_mmu_page *sp)
1035
{
1036
	struct kvm_memslots *slots;
1037 1038
	struct kvm_memory_slot *slot;

1039 1040
	slots = kvm_memslots_for_spte_role(kvm, sp->role);
	slot = __gfn_to_memslot(slots, gfn);
1041
	return __gfn_to_rmap(gfn, sp->role.level, slot);
1042 1043
}

1044 1045 1046 1047 1048 1049 1050 1051
static bool rmap_can_add(struct kvm_vcpu *vcpu)
{
	struct kvm_mmu_memory_cache *cache;

	cache = &vcpu->arch.mmu_pte_list_desc_cache;
	return mmu_memory_cache_free_objects(cache);
}

1052 1053 1054
static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
{
	struct kvm_mmu_page *sp;
1055
	struct kvm_rmap_head *rmap_head;
1056 1057 1058

	sp = page_header(__pa(spte));
	kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1059 1060
	rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
	return pte_list_add(vcpu, spte, rmap_head);
1061 1062 1063 1064 1065 1066
}

static void rmap_remove(struct kvm *kvm, u64 *spte)
{
	struct kvm_mmu_page *sp;
	gfn_t gfn;
1067
	struct kvm_rmap_head *rmap_head;
1068 1069 1070

	sp = page_header(__pa(spte));
	gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1071 1072
	rmap_head = gfn_to_rmap(kvm, gfn, sp);
	pte_list_remove(spte, rmap_head);
1073 1074
}

1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
/*
 * Used by the following functions to iterate through the sptes linked by a
 * rmap.  All fields are private and not assumed to be used outside.
 */
struct rmap_iterator {
	/* private fields */
	struct pte_list_desc *desc;	/* holds the sptep if not NULL */
	int pos;			/* index of the sptep */
};

/*
 * Iteration must be started by this function.  This should also be used after
 * removing/dropping sptes from the rmap link because in such cases the
 * information in the itererator may not be valid.
 *
 * Returns sptep if found, NULL otherwise.
 */
1092 1093
static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
			   struct rmap_iterator *iter)
1094
{
1095 1096
	u64 *sptep;

1097
	if (!rmap_head->val)
1098 1099
		return NULL;

1100
	if (!(rmap_head->val & 1)) {
1101
		iter->desc = NULL;
1102 1103
		sptep = (u64 *)rmap_head->val;
		goto out;
1104 1105
	}

1106
	iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1107
	iter->pos = 0;
1108 1109 1110 1111
	sptep = iter->desc->sptes[iter->pos];
out:
	BUG_ON(!is_shadow_present_pte(*sptep));
	return sptep;
1112 1113 1114 1115 1116 1117 1118 1119 1120
}

/*
 * Must be used with a valid iterator: e.g. after rmap_get_first().
 *
 * Returns sptep if found, NULL otherwise.
 */
static u64 *rmap_get_next(struct rmap_iterator *iter)
{
1121 1122
	u64 *sptep;

1123 1124 1125 1126 1127
	if (iter->desc) {
		if (iter->pos < PTE_LIST_EXT - 1) {
			++iter->pos;
			sptep = iter->desc->sptes[iter->pos];
			if (sptep)
1128
				goto out;
1129 1130 1131 1132 1133 1134 1135
		}

		iter->desc = iter->desc->more;

		if (iter->desc) {
			iter->pos = 0;
			/* desc->sptes[0] cannot be NULL */
1136 1137
			sptep = iter->desc->sptes[iter->pos];
			goto out;
1138 1139 1140 1141
		}
	}

	return NULL;
1142 1143 1144
out:
	BUG_ON(!is_shadow_present_pte(*sptep));
	return sptep;
1145 1146
}

1147 1148
#define for_each_rmap_spte(_rmap_head_, _iter_, _spte_)			\
	for (_spte_ = rmap_get_first(_rmap_head_, _iter_);		\
1149
	     _spte_; _spte_ = rmap_get_next(_iter_))
1150

1151
static void drop_spte(struct kvm *kvm, u64 *sptep)
1152
{
1153
	if (mmu_spte_clear_track_bits(sptep))
1154
		rmap_remove(kvm, sptep);
A
Avi Kivity 已提交
1155 1156
}

1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177

static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
{
	if (is_large_pte(*sptep)) {
		WARN_ON(page_header(__pa(sptep))->role.level ==
			PT_PAGE_TABLE_LEVEL);
		drop_spte(kvm, sptep);
		--kvm->stat.lpages;
		return true;
	}

	return false;
}

static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
{
	if (__drop_large_spte(vcpu->kvm, sptep))
		kvm_flush_remote_tlbs(vcpu->kvm);
}

/*
1178
 * Write-protect on the specified @sptep, @pt_protect indicates whether
1179
 * spte write-protection is caused by protecting shadow page table.
1180
 *
T
Tiejun Chen 已提交
1181
 * Note: write protection is difference between dirty logging and spte
1182 1183 1184 1185 1186
 * protection:
 * - for dirty logging, the spte can be set to writable at anytime if
 *   its dirty bitmap is properly set.
 * - for spte protection, the spte can be writable only after unsync-ing
 *   shadow page.
1187
 *
1188
 * Return true if tlb need be flushed.
1189
 */
1190
static bool spte_write_protect(struct kvm *kvm, u64 *sptep, bool pt_protect)
1191 1192 1193
{
	u64 spte = *sptep;

1194 1195
	if (!is_writable_pte(spte) &&
	      !(pt_protect && spte_is_locklessly_modifiable(spte)))
1196 1197 1198 1199
		return false;

	rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);

1200 1201
	if (pt_protect)
		spte &= ~SPTE_MMU_WRITEABLE;
1202
	spte = spte & ~PT_WRITABLE_MASK;
1203

1204
	return mmu_spte_update(sptep, spte);
1205 1206
}

1207 1208
static bool __rmap_write_protect(struct kvm *kvm,
				 struct kvm_rmap_head *rmap_head,
1209
				 bool pt_protect)
1210
{
1211 1212
	u64 *sptep;
	struct rmap_iterator iter;
1213
	bool flush = false;
1214

1215
	for_each_rmap_spte(rmap_head, &iter, sptep)
1216
		flush |= spte_write_protect(kvm, sptep, pt_protect);
1217

1218
	return flush;
1219 1220
}

1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
static bool spte_clear_dirty(struct kvm *kvm, u64 *sptep)
{
	u64 spte = *sptep;

	rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);

	spte &= ~shadow_dirty_mask;

	return mmu_spte_update(sptep, spte);
}

1232
static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1233 1234 1235 1236 1237
{
	u64 *sptep;
	struct rmap_iterator iter;
	bool flush = false;

1238
	for_each_rmap_spte(rmap_head, &iter, sptep)
1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
		flush |= spte_clear_dirty(kvm, sptep);

	return flush;
}

static bool spte_set_dirty(struct kvm *kvm, u64 *sptep)
{
	u64 spte = *sptep;

	rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);

	spte |= shadow_dirty_mask;

	return mmu_spte_update(sptep, spte);
}

1255
static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1256 1257 1258 1259 1260
{
	u64 *sptep;
	struct rmap_iterator iter;
	bool flush = false;

1261
	for_each_rmap_spte(rmap_head, &iter, sptep)
1262 1263 1264 1265 1266
		flush |= spte_set_dirty(kvm, sptep);

	return flush;
}

1267
/**
1268
 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1269 1270 1271 1272 1273 1274 1275 1276
 * @kvm: kvm instance
 * @slot: slot to protect
 * @gfn_offset: start of the BITS_PER_LONG pages we care about
 * @mask: indicates which pages we should protect
 *
 * Used when we do not need to care about huge page mappings: e.g. during dirty
 * logging we do not have any such mappings.
 */
1277
static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1278 1279
				     struct kvm_memory_slot *slot,
				     gfn_t gfn_offset, unsigned long mask)
1280
{
1281
	struct kvm_rmap_head *rmap_head;
1282

1283
	while (mask) {
1284 1285 1286
		rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
					  PT_PAGE_TABLE_LEVEL, slot);
		__rmap_write_protect(kvm, rmap_head, false);
M
Marcelo Tosatti 已提交
1287

1288 1289 1290
		/* clear the first set bit */
		mask &= mask - 1;
	}
1291 1292
}

1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305
/**
 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages
 * @kvm: kvm instance
 * @slot: slot to clear D-bit
 * @gfn_offset: start of the BITS_PER_LONG pages we care about
 * @mask: indicates which pages we should clear D-bit
 *
 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
 */
void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
				     struct kvm_memory_slot *slot,
				     gfn_t gfn_offset, unsigned long mask)
{
1306
	struct kvm_rmap_head *rmap_head;
1307 1308

	while (mask) {
1309 1310 1311
		rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
					  PT_PAGE_TABLE_LEVEL, slot);
		__rmap_clear_dirty(kvm, rmap_head);
1312 1313 1314 1315 1316 1317 1318

		/* clear the first set bit */
		mask &= mask - 1;
	}
}
EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);

1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332
/**
 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
 * PT level pages.
 *
 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
 * enable dirty logging for them.
 *
 * Used when we do not need to care about huge page mappings: e.g. during dirty
 * logging we do not have any such mappings.
 */
void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
				struct kvm_memory_slot *slot,
				gfn_t gfn_offset, unsigned long mask)
{
1333 1334 1335 1336 1337
	if (kvm_x86_ops->enable_log_dirty_pt_masked)
		kvm_x86_ops->enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
				mask);
	else
		kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1338 1339
}

1340 1341
bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
				    struct kvm_memory_slot *slot, u64 gfn)
1342
{
1343
	struct kvm_rmap_head *rmap_head;
1344
	int i;
1345
	bool write_protected = false;
1346

1347
	for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1348
		rmap_head = __gfn_to_rmap(gfn, i, slot);
1349
		write_protected |= __rmap_write_protect(kvm, rmap_head, true);
1350 1351 1352
	}

	return write_protected;
1353 1354
}

1355 1356 1357 1358 1359 1360 1361 1362
static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
{
	struct kvm_memory_slot *slot;

	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
	return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
}

1363
static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1364
{
1365 1366
	u64 *sptep;
	struct rmap_iterator iter;
1367
	bool flush = false;
1368

1369
	while ((sptep = rmap_get_first(rmap_head, &iter))) {
1370
		rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1371 1372

		drop_spte(kvm, sptep);
1373
		flush = true;
1374
	}
1375

1376 1377 1378
	return flush;
}

1379
static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1380 1381 1382
			   struct kvm_memory_slot *slot, gfn_t gfn, int level,
			   unsigned long data)
{
1383
	return kvm_zap_rmapp(kvm, rmap_head);
1384 1385
}

1386
static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1387 1388
			     struct kvm_memory_slot *slot, gfn_t gfn, int level,
			     unsigned long data)
1389
{
1390 1391
	u64 *sptep;
	struct rmap_iterator iter;
1392
	int need_flush = 0;
1393
	u64 new_spte;
1394
	pte_t *ptep = (pte_t *)data;
D
Dan Williams 已提交
1395
	kvm_pfn_t new_pfn;
1396 1397 1398

	WARN_ON(pte_huge(*ptep));
	new_pfn = pte_pfn(*ptep);
1399

1400
restart:
1401
	for_each_rmap_spte(rmap_head, &iter, sptep) {
1402 1403
		rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
			     sptep, *sptep, gfn, level);
1404

1405
		need_flush = 1;
1406

1407
		if (pte_write(*ptep)) {
1408
			drop_spte(kvm, sptep);
1409
			goto restart;
1410
		} else {
1411
			new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1412 1413 1414 1415
			new_spte |= (u64)new_pfn << PAGE_SHIFT;

			new_spte &= ~PT_WRITABLE_MASK;
			new_spte &= ~SPTE_HOST_WRITEABLE;
1416
			new_spte &= ~shadow_accessed_mask;
1417 1418 1419

			mmu_spte_clear_track_bits(sptep);
			mmu_spte_set(sptep, new_spte);
1420 1421
		}
	}
1422

1423 1424 1425 1426 1427 1428
	if (need_flush)
		kvm_flush_remote_tlbs(kvm);

	return 0;
}

1429 1430 1431 1432 1433 1434 1435 1436 1437 1438
struct slot_rmap_walk_iterator {
	/* input fields. */
	struct kvm_memory_slot *slot;
	gfn_t start_gfn;
	gfn_t end_gfn;
	int start_level;
	int end_level;

	/* output fields. */
	gfn_t gfn;
1439
	struct kvm_rmap_head *rmap;
1440 1441 1442
	int level;

	/* private field. */
1443
	struct kvm_rmap_head *end_rmap;
1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496
};

static void
rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
{
	iterator->level = level;
	iterator->gfn = iterator->start_gfn;
	iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
	iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
					   iterator->slot);
}

static void
slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
		    struct kvm_memory_slot *slot, int start_level,
		    int end_level, gfn_t start_gfn, gfn_t end_gfn)
{
	iterator->slot = slot;
	iterator->start_level = start_level;
	iterator->end_level = end_level;
	iterator->start_gfn = start_gfn;
	iterator->end_gfn = end_gfn;

	rmap_walk_init_level(iterator, iterator->start_level);
}

static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
{
	return !!iterator->rmap;
}

static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
{
	if (++iterator->rmap <= iterator->end_rmap) {
		iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
		return;
	}

	if (++iterator->level > iterator->end_level) {
		iterator->rmap = NULL;
		return;
	}

	rmap_walk_init_level(iterator, iterator->level);
}

#define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,	\
	   _start_gfn, _end_gfn, _iter_)				\
	for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,		\
				 _end_level_, _start_gfn, _end_gfn);	\
	     slot_rmap_walk_okay(_iter_);				\
	     slot_rmap_walk_next(_iter_))

1497 1498 1499 1500 1501
static int kvm_handle_hva_range(struct kvm *kvm,
				unsigned long start,
				unsigned long end,
				unsigned long data,
				int (*handler)(struct kvm *kvm,
1502
					       struct kvm_rmap_head *rmap_head,
1503
					       struct kvm_memory_slot *slot,
1504 1505
					       gfn_t gfn,
					       int level,
1506
					       unsigned long data))
1507
{
1508
	struct kvm_memslots *slots;
1509
	struct kvm_memory_slot *memslot;
1510 1511
	struct slot_rmap_walk_iterator iterator;
	int ret = 0;
1512
	int i;
1513

1514 1515 1516 1517 1518
	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
		slots = __kvm_memslots(kvm, i);
		kvm_for_each_memslot(memslot, slots) {
			unsigned long hva_start, hva_end;
			gfn_t gfn_start, gfn_end;
1519

1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538
			hva_start = max(start, memslot->userspace_addr);
			hva_end = min(end, memslot->userspace_addr +
				      (memslot->npages << PAGE_SHIFT));
			if (hva_start >= hva_end)
				continue;
			/*
			 * {gfn(page) | page intersects with [hva_start, hva_end)} =
			 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
			 */
			gfn_start = hva_to_gfn_memslot(hva_start, memslot);
			gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);

			for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL,
						 PT_MAX_HUGEPAGE_LEVEL,
						 gfn_start, gfn_end - 1,
						 &iterator)
				ret |= handler(kvm, iterator.rmap, memslot,
					       iterator.gfn, iterator.level, data);
		}
1539 1540
	}

1541
	return ret;
1542 1543
}

1544 1545
static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
			  unsigned long data,
1546 1547
			  int (*handler)(struct kvm *kvm,
					 struct kvm_rmap_head *rmap_head,
1548
					 struct kvm_memory_slot *slot,
1549
					 gfn_t gfn, int level,
1550 1551 1552
					 unsigned long data))
{
	return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1553 1554 1555 1556
}

int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
{
1557 1558 1559
	return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
}

1560 1561 1562 1563 1564
int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
{
	return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
}

1565 1566
void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
{
F
Frederik Deweerdt 已提交
1567
	kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1568 1569
}

1570
static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1571 1572
			 struct kvm_memory_slot *slot, gfn_t gfn, int level,
			 unsigned long data)
1573
{
1574
	u64 *sptep;
1575
	struct rmap_iterator uninitialized_var(iter);
1576 1577
	int young = 0;

A
Andres Lagar-Cavilla 已提交
1578
	BUG_ON(!shadow_accessed_mask);
1579

1580
	for_each_rmap_spte(rmap_head, &iter, sptep) {
1581
		if (*sptep & shadow_accessed_mask) {
1582
			young = 1;
1583 1584
			clear_bit((ffs(shadow_accessed_mask) - 1),
				 (unsigned long *)sptep);
1585
		}
1586
	}
1587

1588
	trace_kvm_age_page(gfn, level, slot, young);
1589 1590 1591
	return young;
}

1592
static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1593 1594
			      struct kvm_memory_slot *slot, gfn_t gfn,
			      int level, unsigned long data)
A
Andrea Arcangeli 已提交
1595
{
1596 1597
	u64 *sptep;
	struct rmap_iterator iter;
A
Andrea Arcangeli 已提交
1598 1599 1600 1601 1602 1603 1604 1605 1606 1607
	int young = 0;

	/*
	 * If there's no access bit in the secondary pte set by the
	 * hardware it's up to gup-fast/gup to set the access bit in
	 * the primary pte or in the page structure.
	 */
	if (!shadow_accessed_mask)
		goto out;

1608
	for_each_rmap_spte(rmap_head, &iter, sptep) {
1609
		if (*sptep & shadow_accessed_mask) {
A
Andrea Arcangeli 已提交
1610 1611 1612
			young = 1;
			break;
		}
1613
	}
A
Andrea Arcangeli 已提交
1614 1615 1616 1617
out:
	return young;
}

1618 1619
#define RMAP_RECYCLE_THRESHOLD 1000

1620
static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1621
{
1622
	struct kvm_rmap_head *rmap_head;
1623 1624 1625
	struct kvm_mmu_page *sp;

	sp = page_header(__pa(spte));
1626

1627
	rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1628

1629
	kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
1630 1631 1632
	kvm_flush_remote_tlbs(vcpu->kvm);
}

A
Andres Lagar-Cavilla 已提交
1633
int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1634
{
A
Andres Lagar-Cavilla 已提交
1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655
	/*
	 * In case of absence of EPT Access and Dirty Bits supports,
	 * emulate the accessed bit for EPT, by checking if this page has
	 * an EPT mapping, and clearing it if it does. On the next access,
	 * a new EPT mapping will be established.
	 * This has some overhead, but not as much as the cost of swapping
	 * out actively used pages or breaking up actively used hugepages.
	 */
	if (!shadow_accessed_mask) {
		/*
		 * We are holding the kvm->mmu_lock, and we are blowing up
		 * shadow PTEs. MMU notifier consumers need to be kept at bay.
		 * This is correct as long as we don't decouple the mmu_lock
		 * protected regions (like invalidate_range_start|end does).
		 */
		kvm->mmu_notifier_seq++;
		return kvm_handle_hva_range(kvm, start, end, 0,
					    kvm_unmap_rmapp);
	}

	return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
1656 1657
}

A
Andrea Arcangeli 已提交
1658 1659 1660 1661 1662
int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
{
	return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
}

1663
#ifdef MMU_DEBUG
1664
static int is_empty_shadow_page(u64 *spt)
A
Avi Kivity 已提交
1665
{
1666 1667 1668
	u64 *pos;
	u64 *end;

1669
	for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1670
		if (is_shadow_present_pte(*pos)) {
1671
			printk(KERN_ERR "%s: %p %llx\n", __func__,
1672
			       pos, *pos);
A
Avi Kivity 已提交
1673
			return 0;
1674
		}
A
Avi Kivity 已提交
1675 1676
	return 1;
}
1677
#endif
A
Avi Kivity 已提交
1678

1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690
/*
 * This value is the sum of all of the kvm instances's
 * kvm->arch.n_used_mmu_pages values.  We need a global,
 * aggregate version in order to make the slab shrinker
 * faster
 */
static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
{
	kvm->arch.n_used_mmu_pages += nr;
	percpu_counter_add(&kvm_total_used_mmu_pages, nr);
}

1691
static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1692
{
1693
	MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1694
	hlist_del(&sp->hash_link);
1695 1696
	list_del(&sp->link);
	free_page((unsigned long)sp->spt);
1697 1698
	if (!sp->role.direct)
		free_page((unsigned long)sp->gfns);
1699
	kmem_cache_free(mmu_page_header_cache, sp);
1700 1701
}

1702 1703
static unsigned kvm_page_table_hashfn(gfn_t gfn)
{
1704
	return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
1705 1706
}

1707
static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1708
				    struct kvm_mmu_page *sp, u64 *parent_pte)
1709 1710 1711 1712
{
	if (!parent_pte)
		return;

1713
	pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1714 1715
}

1716
static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1717 1718
				       u64 *parent_pte)
{
1719
	pte_list_remove(parent_pte, &sp->parent_ptes);
1720 1721
}

1722 1723 1724 1725
static void drop_parent_pte(struct kvm_mmu_page *sp,
			    u64 *parent_pte)
{
	mmu_page_remove_parent_pte(sp, parent_pte);
1726
	mmu_spte_clear_no_track(parent_pte);
1727 1728
}

1729
static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
M
Marcelo Tosatti 已提交
1730
{
1731
	struct kvm_mmu_page *sp;
1732

1733 1734
	sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
	sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1735
	if (!direct)
1736
		sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1737
	set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1738 1739 1740 1741 1742 1743

	/*
	 * The active_mmu_pages list is the FIFO list, do not move the
	 * page until it is zapped. kvm_zap_obsolete_pages depends on
	 * this feature. See the comments in kvm_zap_obsolete_pages().
	 */
1744 1745 1746
	list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
	kvm_mod_used_mmu_pages(vcpu->kvm, +1);
	return sp;
M
Marcelo Tosatti 已提交
1747 1748
}

1749
static void mark_unsync(u64 *spte);
1750
static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1751
{
1752 1753 1754 1755 1756 1757
	u64 *sptep;
	struct rmap_iterator iter;

	for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
		mark_unsync(sptep);
	}
1758 1759
}

1760
static void mark_unsync(u64 *spte)
1761
{
1762
	struct kvm_mmu_page *sp;
1763
	unsigned int index;
1764

1765
	sp = page_header(__pa(spte));
1766 1767
	index = spte - sp->spt;
	if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1768
		return;
1769
	if (sp->unsync_children++)
1770
		return;
1771
	kvm_mmu_mark_parents_unsync(sp);
1772 1773
}

1774
static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1775
			       struct kvm_mmu_page *sp)
1776 1777 1778 1779
{
	return 1;
}

M
Marcelo Tosatti 已提交
1780 1781 1782 1783
static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
{
}

1784 1785
static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
				 struct kvm_mmu_page *sp, u64 *spte,
1786
				 const void *pte)
1787 1788 1789 1790
{
	WARN_ON(1);
}

1791 1792 1793 1794 1795 1796 1797 1798 1799 1800
#define KVM_PAGE_ARRAY_NR 16

struct kvm_mmu_pages {
	struct mmu_page_and_offset {
		struct kvm_mmu_page *sp;
		unsigned int idx;
	} page[KVM_PAGE_ARRAY_NR];
	unsigned int nr;
};

1801 1802
static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
			 int idx)
1803
{
1804
	int i;
1805

1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816
	if (sp->unsync)
		for (i=0; i < pvec->nr; i++)
			if (pvec->page[i].sp == sp)
				return 0;

	pvec->page[pvec->nr].sp = sp;
	pvec->page[pvec->nr].idx = idx;
	pvec->nr++;
	return (pvec->nr == KVM_PAGE_ARRAY_NR);
}

1817 1818 1819 1820 1821 1822 1823
static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
{
	--sp->unsync_children;
	WARN_ON((int)sp->unsync_children < 0);
	__clear_bit(idx, sp->unsync_child_bitmap);
}

1824 1825 1826 1827
static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
			   struct kvm_mmu_pages *pvec)
{
	int i, ret, nr_unsync_leaf = 0;
1828

1829
	for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1830
		struct kvm_mmu_page *child;
1831 1832
		u64 ent = sp->spt[i];

1833 1834 1835 1836
		if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
			clear_unsync_child_bit(sp, i);
			continue;
		}
1837 1838 1839 1840 1841 1842 1843 1844

		child = page_header(ent & PT64_BASE_ADDR_MASK);

		if (child->unsync_children) {
			if (mmu_pages_add(pvec, child, i))
				return -ENOSPC;

			ret = __mmu_unsync_walk(child, pvec);
1845 1846 1847 1848
			if (!ret) {
				clear_unsync_child_bit(sp, i);
				continue;
			} else if (ret > 0) {
1849
				nr_unsync_leaf += ret;
1850
			} else
1851 1852 1853 1854 1855 1856
				return ret;
		} else if (child->unsync) {
			nr_unsync_leaf++;
			if (mmu_pages_add(pvec, child, i))
				return -ENOSPC;
		} else
1857
			clear_unsync_child_bit(sp, i);
1858 1859
	}

1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870
	return nr_unsync_leaf;
}

static int mmu_unsync_walk(struct kvm_mmu_page *sp,
			   struct kvm_mmu_pages *pvec)
{
	if (!sp->unsync_children)
		return 0;

	mmu_pages_add(pvec, sp, 0);
	return __mmu_unsync_walk(sp, pvec);
1871 1872 1873 1874 1875
}

static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
{
	WARN_ON(!sp->unsync);
1876
	trace_kvm_mmu_sync_page(sp);
1877 1878 1879 1880
	sp->unsync = 0;
	--kvm->stat.mmu_unsync;
}

1881 1882 1883 1884
static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
				    struct list_head *invalid_list);
static void kvm_mmu_commit_zap_page(struct kvm *kvm,
				    struct list_head *invalid_list);
1885

1886 1887 1888 1889 1890 1891 1892 1893 1894 1895
/*
 * NOTE: we should pay more attention on the zapped-obsolete page
 * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
 * since it has been deleted from active_mmu_pages but still can be found
 * at hast list.
 *
 * for_each_gfn_indirect_valid_sp has skipped that kind of page and
 * kvm_mmu_get_page(), the only user of for_each_gfn_sp(), has skipped
 * all the obsolete pages.
 */
1896 1897 1898 1899 1900 1901 1902 1903
#define for_each_gfn_sp(_kvm, _sp, _gfn)				\
	hlist_for_each_entry(_sp,					\
	  &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
		if ((_sp)->gfn != (_gfn)) {} else

#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)			\
	for_each_gfn_sp(_kvm, _sp, _gfn)				\
		if ((_sp)->role.direct || (_sp)->role.invalid) {} else
1904

1905
/* @sp->gfn should be write-protected at the call site */
1906
static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1907
			   struct list_head *invalid_list, bool clear_unsync)
1908
{
1909
	if (sp->role.cr4_pae != !!is_pae(vcpu)) {
1910
		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1911 1912 1913
		return 1;
	}

1914
	if (clear_unsync)
1915 1916
		kvm_unlink_unsync_page(vcpu->kvm, sp);

1917
	if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
1918
		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1919 1920 1921
		return 1;
	}

1922
	kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1923 1924 1925
	return 0;
}

1926 1927 1928
static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
				   struct kvm_mmu_page *sp)
{
1929
	LIST_HEAD(invalid_list);
1930 1931
	int ret;

1932
	ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
1933
	if (ret)
1934 1935
		kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);

1936 1937 1938
	return ret;
}

1939 1940 1941 1942 1943 1944 1945
#ifdef CONFIG_KVM_MMU_AUDIT
#include "mmu_audit.c"
#else
static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
static void mmu_audit_disable(void) { }
#endif

1946 1947
static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
			 struct list_head *invalid_list)
1948
{
1949
	return __kvm_sync_page(vcpu, sp, invalid_list, true);
1950 1951
}

1952 1953 1954 1955
/* @gfn should be write-protected at the call site */
static void kvm_sync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn)
{
	struct kvm_mmu_page *s;
1956
	LIST_HEAD(invalid_list);
1957 1958
	bool flush = false;

1959
	for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
1960
		if (!s->unsync)
1961 1962 1963
			continue;

		WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1964
		kvm_unlink_unsync_page(vcpu->kvm, s);
1965
		if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
1966
			(vcpu->arch.mmu.sync_page(vcpu, s))) {
1967
			kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
1968 1969 1970 1971 1972
			continue;
		}
		flush = true;
	}

1973
	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1974
	if (flush)
1975
		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1976 1977
}

1978 1979 1980
struct mmu_page_path {
	struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
	unsigned int idx[PT64_ROOT_LEVEL-1];
1981 1982
};

1983 1984 1985 1986 1987 1988
#define for_each_sp(pvec, sp, parents, i)			\
		for (i = mmu_pages_next(&pvec, &parents, -1),	\
			sp = pvec.page[i].sp;			\
			i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});	\
			i = mmu_pages_next(&pvec, &parents, i))

1989 1990 1991
static int mmu_pages_next(struct kvm_mmu_pages *pvec,
			  struct mmu_page_path *parents,
			  int i)
1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
{
	int n;

	for (n = i+1; n < pvec->nr; n++) {
		struct kvm_mmu_page *sp = pvec->page[n].sp;

		if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
			parents->idx[0] = pvec->page[n].idx;
			return n;
		}

		parents->parent[sp->role.level-2] = sp;
		parents->idx[sp->role.level-1] = pvec->page[n].idx;
	}

	return n;
}

2010
static void mmu_pages_clear_parents(struct mmu_page_path *parents)
2011
{
2012 2013 2014 2015 2016
	struct kvm_mmu_page *sp;
	unsigned int level = 0;

	do {
		unsigned int idx = parents->idx[level];
2017

2018 2019 2020 2021
		sp = parents->parent[level];
		if (!sp)
			return;

2022
		clear_unsync_child_bit(sp, idx);
2023 2024
		level++;
	} while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
2025 2026
}

2027 2028 2029
static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
			       struct mmu_page_path *parents,
			       struct kvm_mmu_pages *pvec)
2030
{
2031 2032 2033
	parents->parent[parent->role.level-1] = NULL;
	pvec->nr = 0;
}
2034

2035 2036 2037 2038 2039 2040 2041
static void mmu_sync_children(struct kvm_vcpu *vcpu,
			      struct kvm_mmu_page *parent)
{
	int i;
	struct kvm_mmu_page *sp;
	struct mmu_page_path parents;
	struct kvm_mmu_pages pages;
2042
	LIST_HEAD(invalid_list);
2043 2044 2045

	kvm_mmu_pages_init(parent, &parents, &pages);
	while (mmu_unsync_walk(parent, &pages)) {
2046
		bool protected = false;
2047 2048

		for_each_sp(pages, sp, parents, i)
2049
			protected |= rmap_write_protect(vcpu, sp->gfn);
2050 2051 2052 2053

		if (protected)
			kvm_flush_remote_tlbs(vcpu->kvm);

2054
		for_each_sp(pages, sp, parents, i) {
2055
			kvm_sync_page(vcpu, sp, &invalid_list);
2056 2057
			mmu_pages_clear_parents(&parents);
		}
2058
		kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2059
		cond_resched_lock(&vcpu->kvm->mmu_lock);
2060 2061
		kvm_mmu_pages_init(parent, &parents, &pages);
	}
2062 2063
}

2064 2065
static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
{
2066
	atomic_set(&sp->write_flooding_count,  0);
2067 2068 2069 2070 2071 2072 2073 2074 2075
}

static void clear_sp_write_flooding_count(u64 *spte)
{
	struct kvm_mmu_page *sp =  page_header(__pa(spte));

	__clear_sp_write_flooding_count(sp);
}

2076 2077 2078 2079 2080
static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
{
	return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
}

2081 2082 2083 2084
static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
					     gfn_t gfn,
					     gva_t gaddr,
					     unsigned level,
2085
					     int direct,
2086
					     unsigned access)
2087 2088 2089
{
	union kvm_mmu_page_role role;
	unsigned quadrant;
2090 2091
	struct kvm_mmu_page *sp;
	bool need_sync = false;
2092

2093
	role = vcpu->arch.mmu.base_role;
2094
	role.level = level;
2095
	role.direct = direct;
2096
	if (role.direct)
2097
		role.cr4_pae = 0;
2098
	role.access = access;
2099 2100
	if (!vcpu->arch.mmu.direct_map
	    && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
2101 2102 2103 2104
		quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
		quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
		role.quadrant = quadrant;
	}
2105
	for_each_gfn_sp(vcpu->kvm, sp, gfn) {
2106 2107 2108
		if (is_obsolete_sp(vcpu->kvm, sp))
			continue;

2109 2110
		if (!need_sync && sp->unsync)
			need_sync = true;
2111

2112 2113
		if (sp->role.word != role.word)
			continue;
2114

2115 2116
		if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
			break;
2117

2118
		if (sp->unsync_children)
2119
			kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2120

2121
		__clear_sp_write_flooding_count(sp);
2122 2123 2124
		trace_kvm_mmu_get_page(sp, false);
		return sp;
	}
2125

A
Avi Kivity 已提交
2126
	++vcpu->kvm->stat.mmu_cache_miss;
2127 2128 2129

	sp = kvm_mmu_alloc_page(vcpu, direct);

2130 2131
	sp->gfn = gfn;
	sp->role = role;
2132 2133
	hlist_add_head(&sp->hash_link,
		&vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
2134
	if (!direct) {
2135
		if (rmap_write_protect(vcpu, gfn))
2136
			kvm_flush_remote_tlbs(vcpu->kvm);
2137 2138 2139
		if (level > PT_PAGE_TABLE_LEVEL && need_sync)
			kvm_sync_pages(vcpu, gfn);

2140
		account_shadowed(vcpu->kvm, sp);
2141
	}
2142
	sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
2143
	clear_page(sp->spt);
A
Avi Kivity 已提交
2144
	trace_kvm_mmu_get_page(sp, true);
2145
	return sp;
2146 2147
}

2148 2149 2150 2151 2152 2153
static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
			     struct kvm_vcpu *vcpu, u64 addr)
{
	iterator->addr = addr;
	iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
	iterator->level = vcpu->arch.mmu.shadow_root_level;
2154 2155 2156 2157 2158 2159

	if (iterator->level == PT64_ROOT_LEVEL &&
	    vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
	    !vcpu->arch.mmu.direct_map)
		--iterator->level;

2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173
	if (iterator->level == PT32E_ROOT_LEVEL) {
		iterator->shadow_addr
			= vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
		iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
		--iterator->level;
		if (!iterator->shadow_addr)
			iterator->level = 0;
	}
}

static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
{
	if (iterator->level < PT_PAGE_TABLE_LEVEL)
		return false;
2174

2175 2176 2177 2178 2179
	iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
	iterator->sptep	= ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
	return true;
}

2180 2181
static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
			       u64 spte)
2182
{
2183
	if (is_last_spte(spte, iterator->level)) {
2184 2185 2186 2187
		iterator->level = 0;
		return;
	}

2188
	iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2189 2190 2191
	--iterator->level;
}

2192 2193 2194 2195 2196
static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
{
	return __shadow_walk_next(iterator, *iterator->sptep);
}

2197 2198
static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
			     struct kvm_mmu_page *sp)
2199 2200 2201
{
	u64 spte;

2202 2203 2204
	BUILD_BUG_ON(VMX_EPT_READABLE_MASK != PT_PRESENT_MASK ||
			VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);

X
Xiao Guangrong 已提交
2205
	spte = __pa(sp->spt) | PT_PRESENT_MASK | PT_WRITABLE_MASK |
2206
	       shadow_user_mask | shadow_x_mask | shadow_accessed_mask;
X
Xiao Guangrong 已提交
2207

2208
	mmu_spte_set(sptep, spte);
2209 2210 2211 2212 2213

	mmu_page_add_parent_pte(vcpu, sp, sptep);

	if (sp->unsync_children || sp->unsync)
		mark_unsync(sptep);
2214 2215
}

2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232
static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
				   unsigned direct_access)
{
	if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
		struct kvm_mmu_page *child;

		/*
		 * For the direct sp, if the guest pte's dirty bit
		 * changed form clean to dirty, it will corrupt the
		 * sp's access: allow writable in the read-only sp,
		 * so we should update the spte at this point to get
		 * a new sp with the correct access.
		 */
		child = page_header(*sptep & PT64_BASE_ADDR_MASK);
		if (child->role.access == direct_access)
			return;

2233
		drop_parent_pte(child, sptep);
2234 2235 2236 2237
		kvm_flush_remote_tlbs(vcpu->kvm);
	}
}

X
Xiao Guangrong 已提交
2238
static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2239 2240 2241 2242 2243 2244 2245
			     u64 *spte)
{
	u64 pte;
	struct kvm_mmu_page *child;

	pte = *spte;
	if (is_shadow_present_pte(pte)) {
X
Xiao Guangrong 已提交
2246
		if (is_last_spte(pte, sp->role.level)) {
2247
			drop_spte(kvm, spte);
X
Xiao Guangrong 已提交
2248 2249 2250
			if (is_large_pte(pte))
				--kvm->stat.lpages;
		} else {
2251
			child = page_header(pte & PT64_BASE_ADDR_MASK);
2252
			drop_parent_pte(child, spte);
2253
		}
X
Xiao Guangrong 已提交
2254 2255 2256 2257
		return true;
	}

	if (is_mmio_spte(pte))
2258
		mmu_spte_clear_no_track(spte);
2259

X
Xiao Guangrong 已提交
2260
	return false;
2261 2262
}

2263
static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2264
					 struct kvm_mmu_page *sp)
2265
{
2266 2267
	unsigned i;

2268 2269
	for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
		mmu_page_zap_pte(kvm, sp, sp->spt + i);
2270 2271
}

2272
static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2273
{
2274 2275
	u64 *sptep;
	struct rmap_iterator iter;
2276

2277
	while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2278
		drop_parent_pte(sp, sptep);
2279 2280
}

2281
static int mmu_zap_unsync_children(struct kvm *kvm,
2282 2283
				   struct kvm_mmu_page *parent,
				   struct list_head *invalid_list)
2284
{
2285 2286 2287
	int i, zapped = 0;
	struct mmu_page_path parents;
	struct kvm_mmu_pages pages;
2288

2289
	if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2290
		return 0;
2291 2292 2293 2294 2295 2296

	kvm_mmu_pages_init(parent, &parents, &pages);
	while (mmu_unsync_walk(parent, &pages)) {
		struct kvm_mmu_page *sp;

		for_each_sp(pages, sp, parents, i) {
2297
			kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2298
			mmu_pages_clear_parents(&parents);
2299
			zapped++;
2300 2301 2302 2303 2304
		}
		kvm_mmu_pages_init(parent, &parents, &pages);
	}

	return zapped;
2305 2306
}

2307 2308
static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
				    struct list_head *invalid_list)
2309
{
2310
	int ret;
A
Avi Kivity 已提交
2311

2312
	trace_kvm_mmu_prepare_zap_page(sp);
2313
	++kvm->stat.mmu_shadow_zapped;
2314
	ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
2315
	kvm_mmu_page_unlink_children(kvm, sp);
2316
	kvm_mmu_unlink_parents(kvm, sp);
2317

2318
	if (!sp->role.invalid && !sp->role.direct)
2319
		unaccount_shadowed(kvm, sp);
2320

2321 2322
	if (sp->unsync)
		kvm_unlink_unsync_page(kvm, sp);
2323
	if (!sp->root_count) {
2324 2325
		/* Count self */
		ret++;
2326
		list_move(&sp->link, invalid_list);
2327
		kvm_mod_used_mmu_pages(kvm, -1);
2328
	} else {
A
Avi Kivity 已提交
2329
		list_move(&sp->link, &kvm->arch.active_mmu_pages);
2330 2331 2332 2333 2334 2335 2336

		/*
		 * The obsolete pages can not be used on any vcpus.
		 * See the comments in kvm_mmu_invalidate_zap_all_pages().
		 */
		if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
			kvm_reload_remote_mmus(kvm);
2337
	}
2338 2339

	sp->role.invalid = 1;
2340
	return ret;
2341 2342
}

2343 2344 2345
static void kvm_mmu_commit_zap_page(struct kvm *kvm,
				    struct list_head *invalid_list)
{
2346
	struct kvm_mmu_page *sp, *nsp;
2347 2348 2349 2350

	if (list_empty(invalid_list))
		return;

2351 2352 2353 2354 2355
	/*
	 * wmb: make sure everyone sees our modifications to the page tables
	 * rmb: make sure we see changes to vcpu->mode
	 */
	smp_mb();
X
Xiao Guangrong 已提交
2356

2357 2358 2359 2360 2361
	/*
	 * Wait for all vcpus to exit guest mode and/or lockless shadow
	 * page table walks.
	 */
	kvm_flush_remote_tlbs(kvm);
2362

2363
	list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2364
		WARN_ON(!sp->role.invalid || sp->root_count);
2365
		kvm_mmu_free_page(sp);
2366
	}
2367 2368
}

2369 2370 2371 2372 2373 2374 2375 2376
static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
					struct list_head *invalid_list)
{
	struct kvm_mmu_page *sp;

	if (list_empty(&kvm->arch.active_mmu_pages))
		return false;

G
Geliang Tang 已提交
2377 2378
	sp = list_last_entry(&kvm->arch.active_mmu_pages,
			     struct kvm_mmu_page, link);
2379 2380 2381 2382 2383
	kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);

	return true;
}

2384 2385
/*
 * Changing the number of mmu pages allocated to the vm
2386
 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2387
 */
2388
void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
2389
{
2390
	LIST_HEAD(invalid_list);
2391

2392 2393
	spin_lock(&kvm->mmu_lock);

2394
	if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2395 2396 2397 2398
		/* Need to free some mmu pages to achieve the goal. */
		while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
			if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
				break;
2399

2400
		kvm_mmu_commit_zap_page(kvm, &invalid_list);
2401
		goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2402 2403
	}

2404
	kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2405 2406

	spin_unlock(&kvm->mmu_lock);
2407 2408
}

2409
int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2410
{
2411
	struct kvm_mmu_page *sp;
2412
	LIST_HEAD(invalid_list);
2413 2414
	int r;

2415
	pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2416
	r = 0;
2417
	spin_lock(&kvm->mmu_lock);
2418
	for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2419
		pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2420 2421
			 sp->role.word);
		r = 1;
2422
		kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2423
	}
2424
	kvm_mmu_commit_zap_page(kvm, &invalid_list);
2425 2426
	spin_unlock(&kvm->mmu_lock);

2427
	return r;
2428
}
2429
EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2430

2431 2432 2433 2434 2435 2436 2437 2438 2439 2440
static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
{
	trace_kvm_mmu_unsync_page(sp);
	++vcpu->kvm->stat.mmu_unsync;
	sp->unsync = 1;

	kvm_mmu_mark_parents_unsync(sp);
}

static void kvm_unsync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn)
2441 2442
{
	struct kvm_mmu_page *s;
2443

2444
	for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2445
		if (s->unsync)
2446
			continue;
2447 2448
		WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
		__kvm_unsync_page(vcpu, s);
2449 2450 2451
	}
}

2452 2453
static bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
				   bool can_unsync)
2454
{
2455 2456 2457
	struct kvm_mmu_page *s;
	bool need_unsync = false;

2458 2459 2460
	if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
		return true;

2461
	for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2462
		if (!can_unsync)
2463
			return true;
2464

2465
		if (s->role.level != PT_PAGE_TABLE_LEVEL)
2466
			return true;
2467

G
Gleb Natapov 已提交
2468
		if (!s->unsync)
2469
			need_unsync = true;
2470
	}
2471 2472
	if (need_unsync)
		kvm_unsync_pages(vcpu, gfn);
2473 2474

	return false;
2475 2476
}

D
Dan Williams 已提交
2477
static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
2478 2479 2480 2481 2482 2483 2484
{
	if (pfn_valid(pfn))
		return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn));

	return true;
}

A
Avi Kivity 已提交
2485
static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2486
		    unsigned pte_access, int level,
D
Dan Williams 已提交
2487
		    gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2488
		    bool can_unsync, bool host_writable)
2489
{
2490
	u64 spte;
M
Marcelo Tosatti 已提交
2491
	int ret = 0;
S
Sheng Yang 已提交
2492

2493
	if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
2494 2495
		return 0;

2496
	spte = PT_PRESENT_MASK;
2497
	if (!speculative)
2498
		spte |= shadow_accessed_mask;
2499

S
Sheng Yang 已提交
2500 2501 2502 2503
	if (pte_access & ACC_EXEC_MASK)
		spte |= shadow_x_mask;
	else
		spte |= shadow_nx_mask;
2504

2505
	if (pte_access & ACC_USER_MASK)
S
Sheng Yang 已提交
2506
		spte |= shadow_user_mask;
2507

2508
	if (level > PT_PAGE_TABLE_LEVEL)
M
Marcelo Tosatti 已提交
2509
		spte |= PT_PAGE_SIZE_MASK;
2510
	if (tdp_enabled)
2511
		spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2512
			kvm_is_mmio_pfn(pfn));
2513

2514
	if (host_writable)
2515
		spte |= SPTE_HOST_WRITEABLE;
2516 2517
	else
		pte_access &= ~ACC_WRITE_MASK;
2518

2519
	spte |= (u64)pfn << PAGE_SHIFT;
2520

2521
	if (pte_access & ACC_WRITE_MASK) {
2522

X
Xiao Guangrong 已提交
2523
		/*
2524 2525 2526 2527
		 * Other vcpu creates new sp in the window between
		 * mapping_level() and acquiring mmu-lock. We can
		 * allow guest to retry the access, the mapping can
		 * be fixed if guest refault.
X
Xiao Guangrong 已提交
2528
		 */
2529
		if (level > PT_PAGE_TABLE_LEVEL &&
2530
		    mmu_gfn_lpage_is_disallowed(vcpu, gfn, level))
A
Avi Kivity 已提交
2531
			goto done;
2532

2533
		spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
2534

2535 2536 2537 2538 2539 2540
		/*
		 * Optimization: for pte sync, if spte was writable the hash
		 * lookup is unnecessary (and expensive). Write protection
		 * is responsibility of mmu_get_page / kvm_sync_page.
		 * Same reasoning can be applied to dirty page accounting.
		 */
2541
		if (!can_unsync && is_writable_pte(*sptep))
2542 2543
			goto set_pte;

2544
		if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2545
			pgprintk("%s: found shadow page for %llx, marking ro\n",
2546
				 __func__, gfn);
M
Marcelo Tosatti 已提交
2547
			ret = 1;
2548
			pte_access &= ~ACC_WRITE_MASK;
2549
			spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
2550 2551 2552
		}
	}

2553
	if (pte_access & ACC_WRITE_MASK) {
2554
		kvm_vcpu_mark_page_dirty(vcpu, gfn);
2555 2556
		spte |= shadow_dirty_mask;
	}
2557

2558
set_pte:
2559
	if (mmu_spte_update(sptep, spte))
2560
		kvm_flush_remote_tlbs(vcpu->kvm);
A
Avi Kivity 已提交
2561
done:
M
Marcelo Tosatti 已提交
2562 2563 2564
	return ret;
}

2565
static bool mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep, unsigned pte_access,
D
Dan Williams 已提交
2566
			 int write_fault, int level, gfn_t gfn, kvm_pfn_t pfn,
2567
			 bool speculative, bool host_writable)
M
Marcelo Tosatti 已提交
2568 2569
{
	int was_rmapped = 0;
2570
	int rmap_count;
2571
	bool emulate = false;
M
Marcelo Tosatti 已提交
2572

2573 2574
	pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
		 *sptep, write_fault, gfn);
M
Marcelo Tosatti 已提交
2575

2576
	if (is_shadow_present_pte(*sptep)) {
M
Marcelo Tosatti 已提交
2577 2578 2579 2580
		/*
		 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
		 * the parent of the now unreachable PTE.
		 */
2581 2582
		if (level > PT_PAGE_TABLE_LEVEL &&
		    !is_large_pte(*sptep)) {
M
Marcelo Tosatti 已提交
2583
			struct kvm_mmu_page *child;
A
Avi Kivity 已提交
2584
			u64 pte = *sptep;
M
Marcelo Tosatti 已提交
2585 2586

			child = page_header(pte & PT64_BASE_ADDR_MASK);
2587
			drop_parent_pte(child, sptep);
2588
			kvm_flush_remote_tlbs(vcpu->kvm);
A
Avi Kivity 已提交
2589
		} else if (pfn != spte_to_pfn(*sptep)) {
2590
			pgprintk("hfn old %llx new %llx\n",
A
Avi Kivity 已提交
2591
				 spte_to_pfn(*sptep), pfn);
2592
			drop_spte(vcpu->kvm, sptep);
2593
			kvm_flush_remote_tlbs(vcpu->kvm);
2594 2595
		} else
			was_rmapped = 1;
M
Marcelo Tosatti 已提交
2596
	}
2597

2598 2599
	if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
	      true, host_writable)) {
M
Marcelo Tosatti 已提交
2600
		if (write_fault)
2601
			emulate = true;
2602
		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2603
	}
M
Marcelo Tosatti 已提交
2604

2605 2606
	if (unlikely(is_mmio_spte(*sptep)))
		emulate = true;
2607

A
Avi Kivity 已提交
2608
	pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2609
	pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
A
Avi Kivity 已提交
2610
		 is_large_pte(*sptep)? "2MB" : "4kB",
2611 2612
		 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
		 *sptep, sptep);
A
Avi Kivity 已提交
2613
	if (!was_rmapped && is_large_pte(*sptep))
M
Marcelo Tosatti 已提交
2614 2615
		++vcpu->kvm->stat.lpages;

2616 2617 2618 2619 2620 2621
	if (is_shadow_present_pte(*sptep)) {
		if (!was_rmapped) {
			rmap_count = rmap_add(vcpu, sptep, gfn);
			if (rmap_count > RMAP_RECYCLE_THRESHOLD)
				rmap_recycle(vcpu, sptep, gfn);
		}
2622
	}
2623

X
Xiao Guangrong 已提交
2624
	kvm_release_pfn_clean(pfn);
2625 2626

	return emulate;
2627 2628
}

D
Dan Williams 已提交
2629
static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2630 2631 2632 2633
				     bool no_dirty_log)
{
	struct kvm_memory_slot *slot;

2634
	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2635
	if (!slot)
2636
		return KVM_PFN_ERR_FAULT;
2637

2638
	return gfn_to_pfn_memslot_atomic(slot, gfn);
2639 2640 2641 2642 2643 2644 2645
}

static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
				    struct kvm_mmu_page *sp,
				    u64 *start, u64 *end)
{
	struct page *pages[PTE_PREFETCH_NUM];
2646
	struct kvm_memory_slot *slot;
2647 2648 2649 2650 2651
	unsigned access = sp->role.access;
	int i, ret;
	gfn_t gfn;

	gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2652 2653
	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
	if (!slot)
2654 2655
		return -1;

2656
	ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
2657 2658 2659 2660
	if (ret <= 0)
		return -1;

	for (i = 0; i < ret; i++, gfn++, start++)
2661 2662
		mmu_set_spte(vcpu, start, access, 0, sp->role.level, gfn,
			     page_to_pfn(pages[i]), true, true);
2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678

	return 0;
}

static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
				  struct kvm_mmu_page *sp, u64 *sptep)
{
	u64 *spte, *start = NULL;
	int i;

	WARN_ON(!sp->role.direct);

	i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
	spte = sp->spt + i;

	for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2679
		if (is_shadow_present_pte(*spte) || spte == sptep) {
2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709
			if (!start)
				continue;
			if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
				break;
			start = NULL;
		} else if (!start)
			start = spte;
	}
}

static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
{
	struct kvm_mmu_page *sp;

	/*
	 * Since it's no accessed bit on EPT, it's no way to
	 * distinguish between actually accessed translations
	 * and prefetched, so disable pte prefetch if EPT is
	 * enabled.
	 */
	if (!shadow_accessed_mask)
		return;

	sp = page_header(__pa(sptep));
	if (sp->role.level > PT_PAGE_TABLE_LEVEL)
		return;

	__direct_pte_prefetch(vcpu, sp, sptep);
}

2710
static int __direct_map(struct kvm_vcpu *vcpu, int write, int map_writable,
D
Dan Williams 已提交
2711
			int level, gfn_t gfn, kvm_pfn_t pfn, bool prefault)
2712
{
2713
	struct kvm_shadow_walk_iterator iterator;
2714
	struct kvm_mmu_page *sp;
2715
	int emulate = 0;
2716
	gfn_t pseudo_gfn;
A
Avi Kivity 已提交
2717

2718 2719 2720
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
		return 0;

2721
	for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2722
		if (iterator.level == level) {
2723 2724 2725
			emulate = mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
					       write, level, gfn, pfn, prefault,
					       map_writable);
2726
			direct_pte_prefetch(vcpu, iterator.sptep);
2727 2728
			++vcpu->stat.pf_fixed;
			break;
A
Avi Kivity 已提交
2729 2730
		}

2731
		drop_large_spte(vcpu, iterator.sptep);
2732
		if (!is_shadow_present_pte(*iterator.sptep)) {
2733 2734 2735 2736
			u64 base_addr = iterator.addr;

			base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
			pseudo_gfn = base_addr >> PAGE_SHIFT;
2737
			sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2738
					      iterator.level - 1, 1, ACC_ALL);
2739

2740
			link_shadow_page(vcpu, iterator.sptep, sp);
2741 2742
		}
	}
2743
	return emulate;
A
Avi Kivity 已提交
2744 2745
}

H
Huang Ying 已提交
2746
static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2747
{
H
Huang Ying 已提交
2748 2749 2750 2751 2752 2753 2754
	siginfo_t info;

	info.si_signo	= SIGBUS;
	info.si_errno	= 0;
	info.si_code	= BUS_MCEERR_AR;
	info.si_addr	= (void __user *)address;
	info.si_addr_lsb = PAGE_SHIFT;
2755

H
Huang Ying 已提交
2756
	send_sig_info(SIGBUS, &info, tsk);
2757 2758
}

D
Dan Williams 已提交
2759
static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
2760
{
X
Xiao Guangrong 已提交
2761 2762 2763 2764 2765 2766 2767 2768 2769
	/*
	 * Do not cache the mmio info caused by writing the readonly gfn
	 * into the spte otherwise read access on readonly gfn also can
	 * caused mmio page fault and treat it as mmio access.
	 * Return 1 to tell kvm to emulate it.
	 */
	if (pfn == KVM_PFN_ERR_RO_FAULT)
		return 1;

2770
	if (pfn == KVM_PFN_ERR_HWPOISON) {
2771
		kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
2772
		return 0;
2773
	}
2774

2775
	return -EFAULT;
2776 2777
}

2778
static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
D
Dan Williams 已提交
2779 2780
					gfn_t *gfnp, kvm_pfn_t *pfnp,
					int *levelp)
2781
{
D
Dan Williams 已提交
2782
	kvm_pfn_t pfn = *pfnp;
2783 2784 2785 2786 2787 2788 2789 2790 2791
	gfn_t gfn = *gfnp;
	int level = *levelp;

	/*
	 * Check if it's a transparent hugepage. If this would be an
	 * hugetlbfs page, level wouldn't be set to
	 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
	 * here.
	 */
2792
	if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
2793 2794
	    level == PT_PAGE_TABLE_LEVEL &&
	    PageTransCompound(pfn_to_page(pfn)) &&
2795
	    !mmu_gfn_lpage_is_disallowed(vcpu, gfn, PT_DIRECTORY_LEVEL)) {
2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813
		unsigned long mask;
		/*
		 * mmu_notifier_retry was successful and we hold the
		 * mmu_lock here, so the pmd can't become splitting
		 * from under us, and in turn
		 * __split_huge_page_refcount() can't run from under
		 * us and we can safely transfer the refcount from
		 * PG_tail to PG_head as we switch the pfn to tail to
		 * head.
		 */
		*levelp = level = PT_DIRECTORY_LEVEL;
		mask = KVM_PAGES_PER_HPAGE(level) - 1;
		VM_BUG_ON((gfn & mask) != (pfn & mask));
		if (pfn & mask) {
			gfn &= ~mask;
			*gfnp = gfn;
			kvm_release_pfn_clean(pfn);
			pfn &= ~mask;
2814
			kvm_get_pfn(pfn);
2815 2816 2817 2818 2819
			*pfnp = pfn;
		}
	}
}

2820
static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
D
Dan Williams 已提交
2821
				kvm_pfn_t pfn, unsigned access, int *ret_val)
2822 2823 2824 2825
{
	bool ret = true;

	/* The pfn is invalid, report the error! */
2826
	if (unlikely(is_error_pfn(pfn))) {
2827 2828 2829 2830
		*ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
		goto exit;
	}

2831
	if (unlikely(is_noslot_pfn(pfn)))
2832 2833 2834 2835 2836 2837 2838
		vcpu_cache_mmio_info(vcpu, gva, gfn, access);

	ret = false;
exit:
	return ret;
}

2839
static bool page_fault_can_be_fast(u32 error_code)
2840
{
2841 2842 2843 2844 2845 2846 2847
	/*
	 * Do not fix the mmio spte with invalid generation number which
	 * need to be updated by slow page fault path.
	 */
	if (unlikely(error_code & PFERR_RSVD_MASK))
		return false;

2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860
	/*
	 * #PF can be fast only if the shadow page table is present and it
	 * is caused by write-protect, that means we just need change the
	 * W bit of the spte which can be done out of mmu-lock.
	 */
	if (!(error_code & PFERR_PRESENT_MASK) ||
	      !(error_code & PFERR_WRITE_MASK))
		return false;

	return true;
}

static bool
2861 2862
fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
			u64 *sptep, u64 spte)
2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873
{
	gfn_t gfn;

	WARN_ON(!sp->role.direct);

	/*
	 * The gfn of direct spte is stable since it is calculated
	 * by sp->gfn.
	 */
	gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);

2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885
	/*
	 * Theoretically we could also set dirty bit (and flush TLB) here in
	 * order to eliminate unnecessary PML logging. See comments in
	 * set_spte. But fast_page_fault is very unlikely to happen with PML
	 * enabled, so we do not do this. This might result in the same GPA
	 * to be logged in PML buffer again when the write really happens, and
	 * eventually to be called by mark_page_dirty twice. But it's also no
	 * harm. This also avoids the TLB flush needed after setting dirty bit
	 * so non-PML cases won't be impacted.
	 *
	 * Compare with set_spte where instead shadow_dirty_mask is set.
	 */
2886
	if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
2887
		kvm_vcpu_mark_page_dirty(vcpu, gfn);
2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900

	return true;
}

/*
 * Return value:
 * - true: let the vcpu to access on the same address again.
 * - false: let the real page fault path to fix it.
 */
static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
			    u32 error_code)
{
	struct kvm_shadow_walk_iterator iterator;
2901
	struct kvm_mmu_page *sp;
2902 2903 2904
	bool ret = false;
	u64 spte = 0ull;

2905 2906 2907
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
		return false;

2908
	if (!page_fault_can_be_fast(error_code))
2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919
		return false;

	walk_shadow_page_lockless_begin(vcpu);
	for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
		if (!is_shadow_present_pte(spte) || iterator.level < level)
			break;

	/*
	 * If the mapping has been changed, let the vcpu fault on the
	 * same address again.
	 */
2920
	if (!is_shadow_present_pte(spte)) {
2921 2922 2923 2924
		ret = true;
		goto exit;
	}

2925 2926
	sp = page_header(__pa(iterator.sptep));
	if (!is_last_spte(spte, sp->role.level))
2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946
		goto exit;

	/*
	 * Check if it is a spurious fault caused by TLB lazily flushed.
	 *
	 * Need not check the access of upper level table entries since
	 * they are always ACC_ALL.
	 */
	 if (is_writable_pte(spte)) {
		ret = true;
		goto exit;
	}

	/*
	 * Currently, to simplify the code, only the spte write-protected
	 * by dirty-log can be fast fixed.
	 */
	if (!spte_is_locklessly_modifiable(spte))
		goto exit;

2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959
	/*
	 * Do not fix write-permission on the large spte since we only dirty
	 * the first page into the dirty-bitmap in fast_pf_fix_direct_spte()
	 * that means other pages are missed if its slot is dirty-logged.
	 *
	 * Instead, we let the slow page fault path create a normal spte to
	 * fix the access.
	 *
	 * See the comments in kvm_arch_commit_memory_region().
	 */
	if (sp->role.level > PT_PAGE_TABLE_LEVEL)
		goto exit;

2960 2961 2962 2963 2964
	/*
	 * Currently, fast page fault only works for direct mapping since
	 * the gfn is not stable for indirect shadow page.
	 * See Documentation/virtual/kvm/locking.txt to get more detail.
	 */
2965
	ret = fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte);
2966
exit:
X
Xiao Guangrong 已提交
2967 2968
	trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
			      spte, ret);
2969 2970 2971 2972 2973
	walk_shadow_page_lockless_end(vcpu);

	return ret;
}

2974
static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
D
Dan Williams 已提交
2975
			 gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable);
2976
static void make_mmu_pages_available(struct kvm_vcpu *vcpu);
2977

2978 2979
static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
			 gfn_t gfn, bool prefault)
2980 2981
{
	int r;
2982
	int level;
2983
	bool force_pt_level = false;
D
Dan Williams 已提交
2984
	kvm_pfn_t pfn;
2985
	unsigned long mmu_seq;
2986
	bool map_writable, write = error_code & PFERR_WRITE_MASK;
2987

2988
	level = mapping_level(vcpu, gfn, &force_pt_level);
2989 2990 2991 2992 2993 2994 2995 2996
	if (likely(!force_pt_level)) {
		/*
		 * This path builds a PAE pagetable - so we can map
		 * 2mb pages at maximum. Therefore check if the level
		 * is larger than that.
		 */
		if (level > PT_DIRECTORY_LEVEL)
			level = PT_DIRECTORY_LEVEL;
2997

2998
		gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2999
	}
M
Marcelo Tosatti 已提交
3000

3001 3002 3003
	if (fast_page_fault(vcpu, v, level, error_code))
		return 0;

3004
	mmu_seq = vcpu->kvm->mmu_notifier_seq;
3005
	smp_rmb();
3006

3007
	if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
3008
		return 0;
3009

3010 3011
	if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
		return r;
3012

3013
	spin_lock(&vcpu->kvm->mmu_lock);
3014
	if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3015
		goto out_unlock;
3016
	make_mmu_pages_available(vcpu);
3017 3018
	if (likely(!force_pt_level))
		transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3019
	r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
3020 3021
	spin_unlock(&vcpu->kvm->mmu_lock);

3022
	return r;
3023 3024 3025 3026 3027

out_unlock:
	spin_unlock(&vcpu->kvm->mmu_lock);
	kvm_release_pfn_clean(pfn);
	return 0;
3028 3029 3030
}


3031 3032 3033
static void mmu_free_roots(struct kvm_vcpu *vcpu)
{
	int i;
3034
	struct kvm_mmu_page *sp;
3035
	LIST_HEAD(invalid_list);
3036

3037
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
A
Avi Kivity 已提交
3038
		return;
3039

3040 3041 3042
	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
	    (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
	     vcpu->arch.mmu.direct_map)) {
3043
		hpa_t root = vcpu->arch.mmu.root_hpa;
3044

3045
		spin_lock(&vcpu->kvm->mmu_lock);
3046 3047
		sp = page_header(root);
		--sp->root_count;
3048 3049 3050 3051
		if (!sp->root_count && sp->role.invalid) {
			kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
			kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
		}
3052
		spin_unlock(&vcpu->kvm->mmu_lock);
3053
		vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3054 3055
		return;
	}
3056 3057

	spin_lock(&vcpu->kvm->mmu_lock);
3058
	for (i = 0; i < 4; ++i) {
3059
		hpa_t root = vcpu->arch.mmu.pae_root[i];
3060

A
Avi Kivity 已提交
3061 3062
		if (root) {
			root &= PT64_BASE_ADDR_MASK;
3063 3064
			sp = page_header(root);
			--sp->root_count;
3065
			if (!sp->root_count && sp->role.invalid)
3066 3067
				kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
							 &invalid_list);
A
Avi Kivity 已提交
3068
		}
3069
		vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
3070
	}
3071
	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3072
	spin_unlock(&vcpu->kvm->mmu_lock);
3073
	vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3074 3075
}

3076 3077 3078 3079 3080
static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
{
	int ret = 0;

	if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
3081
		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3082 3083 3084 3085 3086 3087
		ret = 1;
	}

	return ret;
}

3088 3089 3090
static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
{
	struct kvm_mmu_page *sp;
3091
	unsigned i;
3092 3093 3094

	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
		spin_lock(&vcpu->kvm->mmu_lock);
3095
		make_mmu_pages_available(vcpu);
3096
		sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL, 1, ACC_ALL);
3097 3098 3099 3100 3101 3102 3103
		++sp->root_count;
		spin_unlock(&vcpu->kvm->mmu_lock);
		vcpu->arch.mmu.root_hpa = __pa(sp->spt);
	} else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
		for (i = 0; i < 4; ++i) {
			hpa_t root = vcpu->arch.mmu.pae_root[i];

3104
			MMU_WARN_ON(VALID_PAGE(root));
3105
			spin_lock(&vcpu->kvm->mmu_lock);
3106
			make_mmu_pages_available(vcpu);
3107
			sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
3108
					i << 30, PT32_ROOT_LEVEL, 1, ACC_ALL);
3109 3110 3111 3112 3113
			root = __pa(sp->spt);
			++sp->root_count;
			spin_unlock(&vcpu->kvm->mmu_lock);
			vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
		}
3114
		vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3115 3116 3117 3118 3119 3120 3121
	} else
		BUG();

	return 0;
}

static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3122
{
3123
	struct kvm_mmu_page *sp;
3124 3125 3126
	u64 pdptr, pm_mask;
	gfn_t root_gfn;
	int i;
3127

3128
	root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
3129

3130 3131 3132 3133 3134 3135 3136 3137
	if (mmu_check_root(vcpu, root_gfn))
		return 1;

	/*
	 * Do we shadow a long mode page table? If so we need to
	 * write-protect the guests page table root.
	 */
	if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3138
		hpa_t root = vcpu->arch.mmu.root_hpa;
3139

3140
		MMU_WARN_ON(VALID_PAGE(root));
3141

3142
		spin_lock(&vcpu->kvm->mmu_lock);
3143
		make_mmu_pages_available(vcpu);
3144
		sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
3145
				      0, ACC_ALL);
3146 3147
		root = __pa(sp->spt);
		++sp->root_count;
3148
		spin_unlock(&vcpu->kvm->mmu_lock);
3149
		vcpu->arch.mmu.root_hpa = root;
3150
		return 0;
3151
	}
3152

3153 3154
	/*
	 * We shadow a 32 bit page table. This may be a legacy 2-level
3155 3156
	 * or a PAE 3-level page table. In either case we need to be aware that
	 * the shadow page table may be a PAE or a long mode page table.
3157
	 */
3158 3159 3160 3161
	pm_mask = PT_PRESENT_MASK;
	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
		pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;

3162
	for (i = 0; i < 4; ++i) {
3163
		hpa_t root = vcpu->arch.mmu.pae_root[i];
3164

3165
		MMU_WARN_ON(VALID_PAGE(root));
3166
		if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
3167
			pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
3168
			if (!is_present_gpte(pdptr)) {
3169
				vcpu->arch.mmu.pae_root[i] = 0;
A
Avi Kivity 已提交
3170 3171
				continue;
			}
A
Avi Kivity 已提交
3172
			root_gfn = pdptr >> PAGE_SHIFT;
3173 3174
			if (mmu_check_root(vcpu, root_gfn))
				return 1;
3175
		}
3176
		spin_lock(&vcpu->kvm->mmu_lock);
3177
		make_mmu_pages_available(vcpu);
3178 3179
		sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30, PT32_ROOT_LEVEL,
				      0, ACC_ALL);
3180 3181
		root = __pa(sp->spt);
		++sp->root_count;
3182 3183
		spin_unlock(&vcpu->kvm->mmu_lock);

3184
		vcpu->arch.mmu.pae_root[i] = root | pm_mask;
3185
	}
3186
	vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212

	/*
	 * If we shadow a 32 bit page table with a long mode page
	 * table we enter this path.
	 */
	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
		if (vcpu->arch.mmu.lm_root == NULL) {
			/*
			 * The additional page necessary for this is only
			 * allocated on demand.
			 */

			u64 *lm_root;

			lm_root = (void*)get_zeroed_page(GFP_KERNEL);
			if (lm_root == NULL)
				return 1;

			lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;

			vcpu->arch.mmu.lm_root = lm_root;
		}

		vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
	}

3213
	return 0;
3214 3215
}

3216 3217 3218 3219 3220 3221 3222 3223
static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
{
	if (vcpu->arch.mmu.direct_map)
		return mmu_alloc_direct_roots(vcpu);
	else
		return mmu_alloc_shadow_roots(vcpu);
}

3224 3225 3226 3227 3228
static void mmu_sync_roots(struct kvm_vcpu *vcpu)
{
	int i;
	struct kvm_mmu_page *sp;

3229 3230 3231
	if (vcpu->arch.mmu.direct_map)
		return;

3232 3233
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
		return;
3234

3235
	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3236
	kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3237
	if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3238 3239 3240
		hpa_t root = vcpu->arch.mmu.root_hpa;
		sp = page_header(root);
		mmu_sync_children(vcpu, sp);
3241
		kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3242 3243 3244 3245 3246
		return;
	}
	for (i = 0; i < 4; ++i) {
		hpa_t root = vcpu->arch.mmu.pae_root[i];

3247
		if (root && VALID_PAGE(root)) {
3248 3249 3250 3251 3252
			root &= PT64_BASE_ADDR_MASK;
			sp = page_header(root);
			mmu_sync_children(vcpu, sp);
		}
	}
3253
	kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3254 3255 3256 3257 3258 3259
}

void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
{
	spin_lock(&vcpu->kvm->mmu_lock);
	mmu_sync_roots(vcpu);
3260
	spin_unlock(&vcpu->kvm->mmu_lock);
3261
}
N
Nadav Har'El 已提交
3262
EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3263

3264
static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
3265
				  u32 access, struct x86_exception *exception)
A
Avi Kivity 已提交
3266
{
3267 3268
	if (exception)
		exception->error_code = 0;
A
Avi Kivity 已提交
3269 3270 3271
	return vaddr;
}

3272
static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
3273 3274
					 u32 access,
					 struct x86_exception *exception)
3275
{
3276 3277
	if (exception)
		exception->error_code = 0;
3278
	return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3279 3280
}

3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299
static bool
__is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
{
	int bit7 = (pte >> 7) & 1, low6 = pte & 0x3f;

	return (pte & rsvd_check->rsvd_bits_mask[bit7][level-1]) |
		((rsvd_check->bad_mt_xwr & (1ull << low6)) != 0);
}

static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
{
	return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level);
}

static bool is_shadow_zero_bits_set(struct kvm_mmu *mmu, u64 spte, int level)
{
	return __is_rsvd_bits_set(&mmu->shadow_zero_check, spte, level);
}

3300
static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3301 3302 3303 3304 3305 3306 3307
{
	if (direct)
		return vcpu_match_mmio_gpa(vcpu, addr);

	return vcpu_match_mmio_gva(vcpu, addr);
}

3308 3309 3310
/* return true if reserved bit is detected on spte. */
static bool
walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3311 3312
{
	struct kvm_shadow_walk_iterator iterator;
3313 3314 3315
	u64 sptes[PT64_ROOT_LEVEL], spte = 0ull;
	int root, leaf;
	bool reserved = false;
3316

3317
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3318
		goto exit;
3319

3320
	walk_shadow_page_lockless_begin(vcpu);
3321

3322 3323
	for (shadow_walk_init(&iterator, vcpu, addr),
		 leaf = root = iterator.level;
3324 3325 3326 3327 3328
	     shadow_walk_okay(&iterator);
	     __shadow_walk_next(&iterator, spte)) {
		spte = mmu_spte_get_lockless(iterator.sptep);

		sptes[leaf - 1] = spte;
3329
		leaf--;
3330

3331 3332
		if (!is_shadow_present_pte(spte))
			break;
3333 3334

		reserved |= is_shadow_zero_bits_set(&vcpu->arch.mmu, spte,
3335
						    iterator.level);
3336 3337
	}

3338 3339
	walk_shadow_page_lockless_end(vcpu);

3340 3341 3342
	if (reserved) {
		pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
		       __func__, addr);
3343
		while (root > leaf) {
3344 3345 3346 3347 3348 3349 3350 3351
			pr_err("------ spte 0x%llx level %d.\n",
			       sptes[root - 1], root);
			root--;
		}
	}
exit:
	*sptep = spte;
	return reserved;
3352 3353
}

3354
int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3355 3356
{
	u64 spte;
3357
	bool reserved;
3358

3359
	if (mmio_info_in_cache(vcpu, addr, direct))
3360
		return RET_MMIO_PF_EMULATE;
3361

3362
	reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
3363
	if (WARN_ON(reserved))
3364
		return RET_MMIO_PF_BUG;
3365 3366 3367 3368 3369

	if (is_mmio_spte(spte)) {
		gfn_t gfn = get_mmio_spte_gfn(spte);
		unsigned access = get_mmio_spte_access(spte);

3370
		if (!check_mmio_spte(vcpu, spte))
3371 3372
			return RET_MMIO_PF_INVALID;

3373 3374
		if (direct)
			addr = 0;
X
Xiao Guangrong 已提交
3375 3376

		trace_handle_mmio_page_fault(addr, gfn, access);
3377
		vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3378
		return RET_MMIO_PF_EMULATE;
3379 3380 3381 3382 3383 3384
	}

	/*
	 * If the page table is zapped by other cpus, let CPU fault again on
	 * the address.
	 */
3385
	return RET_MMIO_PF_RETRY;
3386
}
3387
EXPORT_SYMBOL_GPL(handle_mmio_page_fault);
3388

3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408
static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
					 u32 error_code, gfn_t gfn)
{
	if (unlikely(error_code & PFERR_RSVD_MASK))
		return false;

	if (!(error_code & PFERR_PRESENT_MASK) ||
	      !(error_code & PFERR_WRITE_MASK))
		return false;

	/*
	 * guest is writing the page which is write tracked which can
	 * not be fixed by page fault handler.
	 */
	if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
		return true;

	return false;
}

3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425
static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
{
	struct kvm_shadow_walk_iterator iterator;
	u64 spte;

	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
		return;

	walk_shadow_page_lockless_begin(vcpu);
	for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
		clear_sp_write_flooding_count(iterator.sptep);
		if (!is_shadow_present_pte(spte))
			break;
	}
	walk_shadow_page_lockless_end(vcpu);
}

A
Avi Kivity 已提交
3426
static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
3427
				u32 error_code, bool prefault)
A
Avi Kivity 已提交
3428
{
3429
	gfn_t gfn = gva >> PAGE_SHIFT;
3430
	int r;
A
Avi Kivity 已提交
3431

3432
	pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
3433

3434 3435 3436
	if (page_fault_handle_page_track(vcpu, error_code, gfn))
		return 1;

3437 3438 3439
	r = mmu_topup_memory_caches(vcpu);
	if (r)
		return r;
3440

3441
	MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
A
Avi Kivity 已提交
3442 3443


3444
	return nonpaging_map(vcpu, gva & PAGE_MASK,
3445
			     error_code, gfn, prefault);
A
Avi Kivity 已提交
3446 3447
}

3448
static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3449 3450
{
	struct kvm_arch_async_pf arch;
X
Xiao Guangrong 已提交
3451

3452
	arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3453
	arch.gfn = gfn;
3454
	arch.direct_map = vcpu->arch.mmu.direct_map;
X
Xiao Guangrong 已提交
3455
	arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
3456

3457
	return kvm_setup_async_pf(vcpu, gva, kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
3458 3459 3460 3461
}

static bool can_do_async_pf(struct kvm_vcpu *vcpu)
{
3462
	if (unlikely(!lapic_in_kernel(vcpu) ||
3463 3464 3465 3466 3467 3468
		     kvm_event_needs_reinjection(vcpu)))
		return false;

	return kvm_x86_ops->interrupt_allowed(vcpu);
}

3469
static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
D
Dan Williams 已提交
3470
			 gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable)
3471
{
3472
	struct kvm_memory_slot *slot;
3473 3474
	bool async;

3475
	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3476 3477
	async = false;
	*pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
3478 3479 3480
	if (!async)
		return false; /* *pfn has correct page already */

3481
	if (!prefault && can_do_async_pf(vcpu)) {
3482
		trace_kvm_try_async_get_page(gva, gfn);
3483 3484 3485 3486 3487 3488 3489 3490
		if (kvm_find_async_pf_gfn(vcpu, gfn)) {
			trace_kvm_async_pf_doublefault(gva, gfn);
			kvm_make_request(KVM_REQ_APF_HALT, vcpu);
			return true;
		} else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
			return true;
	}

3491
	*pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
3492 3493 3494
	return false;
}

3495 3496 3497 3498 3499 3500 3501 3502 3503 3504
static bool
check_hugepage_cache_consistency(struct kvm_vcpu *vcpu, gfn_t gfn, int level)
{
	int page_num = KVM_PAGES_PER_HPAGE(level);

	gfn &= ~(page_num - 1);

	return kvm_mtrr_check_gfn_range_consistency(vcpu, gfn, page_num);
}

G
Gleb Natapov 已提交
3505
static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
3506
			  bool prefault)
3507
{
D
Dan Williams 已提交
3508
	kvm_pfn_t pfn;
3509
	int r;
3510
	int level;
3511
	bool force_pt_level;
M
Marcelo Tosatti 已提交
3512
	gfn_t gfn = gpa >> PAGE_SHIFT;
3513
	unsigned long mmu_seq;
3514 3515
	int write = error_code & PFERR_WRITE_MASK;
	bool map_writable;
3516

3517
	MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3518

3519 3520 3521
	if (page_fault_handle_page_track(vcpu, error_code, gfn))
		return 1;

3522 3523 3524 3525
	r = mmu_topup_memory_caches(vcpu);
	if (r)
		return r;

3526 3527 3528
	force_pt_level = !check_hugepage_cache_consistency(vcpu, gfn,
							   PT_DIRECTORY_LEVEL);
	level = mapping_level(vcpu, gfn, &force_pt_level);
3529
	if (likely(!force_pt_level)) {
3530 3531 3532
		if (level > PT_DIRECTORY_LEVEL &&
		    !check_hugepage_cache_consistency(vcpu, gfn, level))
			level = PT_DIRECTORY_LEVEL;
3533
		gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3534
	}
3535

3536 3537 3538
	if (fast_page_fault(vcpu, gpa, level, error_code))
		return 0;

3539
	mmu_seq = vcpu->kvm->mmu_notifier_seq;
3540
	smp_rmb();
3541

3542
	if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3543 3544
		return 0;

3545 3546 3547
	if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
		return r;

3548
	spin_lock(&vcpu->kvm->mmu_lock);
3549
	if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3550
		goto out_unlock;
3551
	make_mmu_pages_available(vcpu);
3552 3553
	if (likely(!force_pt_level))
		transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3554
	r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
3555 3556 3557
	spin_unlock(&vcpu->kvm->mmu_lock);

	return r;
3558 3559 3560 3561 3562

out_unlock:
	spin_unlock(&vcpu->kvm->mmu_lock);
	kvm_release_pfn_clean(pfn);
	return 0;
3563 3564
}

3565 3566
static void nonpaging_init_context(struct kvm_vcpu *vcpu,
				   struct kvm_mmu *context)
A
Avi Kivity 已提交
3567 3568 3569
{
	context->page_fault = nonpaging_page_fault;
	context->gva_to_gpa = nonpaging_gva_to_gpa;
3570
	context->sync_page = nonpaging_sync_page;
M
Marcelo Tosatti 已提交
3571
	context->invlpg = nonpaging_invlpg;
3572
	context->update_pte = nonpaging_update_pte;
3573
	context->root_level = 0;
A
Avi Kivity 已提交
3574
	context->shadow_root_level = PT32E_ROOT_LEVEL;
A
Avi Kivity 已提交
3575
	context->root_hpa = INVALID_PAGE;
3576
	context->direct_map = true;
3577
	context->nx = false;
A
Avi Kivity 已提交
3578 3579
}

3580
void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
3581
{
3582
	mmu_free_roots(vcpu);
A
Avi Kivity 已提交
3583 3584
}

3585 3586
static unsigned long get_cr3(struct kvm_vcpu *vcpu)
{
3587
	return kvm_read_cr3(vcpu);
3588 3589
}

3590 3591
static void inject_page_fault(struct kvm_vcpu *vcpu,
			      struct x86_exception *fault)
A
Avi Kivity 已提交
3592
{
3593
	vcpu->arch.mmu.inject_page_fault(vcpu, fault);
A
Avi Kivity 已提交
3594 3595
}

3596
static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
3597
			   unsigned access, int *nr_present)
3598 3599 3600 3601 3602 3603 3604 3605
{
	if (unlikely(is_mmio_spte(*sptep))) {
		if (gfn != get_mmio_spte_gfn(*sptep)) {
			mmu_spte_clear_no_track(sptep);
			return true;
		}

		(*nr_present)++;
3606
		mark_mmio_spte(vcpu, sptep, gfn, access);
3607 3608 3609 3610 3611 3612
		return true;
	}

	return false;
}

A
Avi Kivity 已提交
3613 3614 3615 3616 3617 3618 3619 3620 3621
static inline bool is_last_gpte(struct kvm_mmu *mmu, unsigned level, unsigned gpte)
{
	unsigned index;

	index = level - 1;
	index |= (gpte & PT_PAGE_SIZE_MASK) >> (PT_PAGE_SIZE_SHIFT - 2);
	return mmu->last_pte_bitmap & (1 << index);
}

3622 3623 3624 3625 3626
#define PTTYPE_EPT 18 /* arbitrary */
#define PTTYPE PTTYPE_EPT
#include "paging_tmpl.h"
#undef PTTYPE

A
Avi Kivity 已提交
3627 3628 3629 3630 3631 3632 3633 3634
#define PTTYPE 64
#include "paging_tmpl.h"
#undef PTTYPE

#define PTTYPE 32
#include "paging_tmpl.h"
#undef PTTYPE

3635 3636 3637 3638
static void
__reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
			struct rsvd_bits_validate *rsvd_check,
			int maxphyaddr, int level, bool nx, bool gbpages,
3639
			bool pse, bool amd)
3640 3641
{
	u64 exb_bit_rsvd = 0;
3642
	u64 gbpages_bit_rsvd = 0;
3643
	u64 nonleaf_bit8_rsvd = 0;
3644

3645
	rsvd_check->bad_mt_xwr = 0;
3646

3647
	if (!nx)
3648
		exb_bit_rsvd = rsvd_bits(63, 63);
3649
	if (!gbpages)
3650
		gbpages_bit_rsvd = rsvd_bits(7, 7);
3651 3652 3653 3654 3655

	/*
	 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
	 * leaf entries) on AMD CPUs only.
	 */
3656
	if (amd)
3657 3658
		nonleaf_bit8_rsvd = rsvd_bits(8, 8);

3659
	switch (level) {
3660 3661
	case PT32_ROOT_LEVEL:
		/* no rsvd bits for 2 level 4K page table entries */
3662 3663 3664 3665
		rsvd_check->rsvd_bits_mask[0][1] = 0;
		rsvd_check->rsvd_bits_mask[0][0] = 0;
		rsvd_check->rsvd_bits_mask[1][0] =
			rsvd_check->rsvd_bits_mask[0][0];
3666

3667
		if (!pse) {
3668
			rsvd_check->rsvd_bits_mask[1][1] = 0;
3669 3670 3671
			break;
		}

3672 3673
		if (is_cpuid_PSE36())
			/* 36bits PSE 4MB page */
3674
			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3675 3676
		else
			/* 32 bits PSE 4MB page */
3677
			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
3678 3679
		break;
	case PT32E_ROOT_LEVEL:
3680
		rsvd_check->rsvd_bits_mask[0][2] =
3681
			rsvd_bits(maxphyaddr, 63) |
3682
			rsvd_bits(5, 8) | rsvd_bits(1, 2);	/* PDPTE */
3683
		rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3684
			rsvd_bits(maxphyaddr, 62);	/* PDE */
3685
		rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3686
			rsvd_bits(maxphyaddr, 62); 	/* PTE */
3687
		rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3688 3689
			rsvd_bits(maxphyaddr, 62) |
			rsvd_bits(13, 20);		/* large page */
3690 3691
		rsvd_check->rsvd_bits_mask[1][0] =
			rsvd_check->rsvd_bits_mask[0][0];
3692 3693
		break;
	case PT64_ROOT_LEVEL:
3694 3695
		rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
			nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
3696
			rsvd_bits(maxphyaddr, 51);
3697 3698
		rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
			nonleaf_bit8_rsvd | gbpages_bit_rsvd |
3699
			rsvd_bits(maxphyaddr, 51);
3700 3701 3702 3703 3704 3705 3706
		rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
			rsvd_bits(maxphyaddr, 51);
		rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
			rsvd_bits(maxphyaddr, 51);
		rsvd_check->rsvd_bits_mask[1][3] =
			rsvd_check->rsvd_bits_mask[0][3];
		rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3707
			gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
3708
			rsvd_bits(13, 29);
3709
		rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3710 3711
			rsvd_bits(maxphyaddr, 51) |
			rsvd_bits(13, 20);		/* large page */
3712 3713
		rsvd_check->rsvd_bits_mask[1][0] =
			rsvd_check->rsvd_bits_mask[0][0];
3714 3715 3716 3717
		break;
	}
}

3718 3719 3720 3721 3722 3723
static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
				  struct kvm_mmu *context)
{
	__reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
				cpuid_maxphyaddr(vcpu), context->root_level,
				context->nx, guest_cpuid_has_gbpages(vcpu),
3724
				is_pse(vcpu), guest_cpuid_is_amd(vcpu));
3725 3726
}

3727 3728 3729
static void
__reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
			    int maxphyaddr, bool execonly)
3730
{
3731
	u64 bad_mt_xwr;
3732

3733
	rsvd_check->rsvd_bits_mask[0][3] =
3734
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
3735
	rsvd_check->rsvd_bits_mask[0][2] =
3736
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
3737
	rsvd_check->rsvd_bits_mask[0][1] =
3738
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
3739
	rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
3740 3741

	/* large page */
3742 3743
	rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
	rsvd_check->rsvd_bits_mask[1][2] =
3744
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
3745
	rsvd_check->rsvd_bits_mask[1][1] =
3746
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
3747
	rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
3748

3749 3750 3751 3752 3753 3754 3755 3756
	bad_mt_xwr = 0xFFull << (2 * 8);	/* bits 3..5 must not be 2 */
	bad_mt_xwr |= 0xFFull << (3 * 8);	/* bits 3..5 must not be 3 */
	bad_mt_xwr |= 0xFFull << (7 * 8);	/* bits 3..5 must not be 7 */
	bad_mt_xwr |= REPEAT_BYTE(1ull << 2);	/* bits 0..2 must not be 010 */
	bad_mt_xwr |= REPEAT_BYTE(1ull << 6);	/* bits 0..2 must not be 110 */
	if (!execonly) {
		/* bits 0..2 must not be 100 unless VMX capabilities allow it */
		bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
3757
	}
3758
	rsvd_check->bad_mt_xwr = bad_mt_xwr;
3759 3760
}

3761 3762 3763 3764 3765 3766 3767
static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
		struct kvm_mmu *context, bool execonly)
{
	__reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
				    cpuid_maxphyaddr(vcpu), execonly);
}

3768 3769 3770 3771 3772 3773 3774 3775
/*
 * the page table on host is the shadow page table for the page
 * table in guest or amd nested guest, its mmu features completely
 * follow the features in guest.
 */
void
reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
{
3776 3777 3778 3779
	/*
	 * Passing "true" to the last argument is okay; it adds a check
	 * on bit 8 of the SPTEs which KVM doesn't use anyway.
	 */
3780 3781 3782
	__reset_rsvds_bits_mask(vcpu, &context->shadow_zero_check,
				boot_cpu_data.x86_phys_bits,
				context->shadow_root_level, context->nx,
3783 3784
				guest_cpuid_has_gbpages(vcpu), is_pse(vcpu),
				true);
3785 3786 3787
}
EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);

3788 3789 3790 3791 3792 3793
static inline bool boot_cpu_is_amd(void)
{
	WARN_ON_ONCE(!tdp_enabled);
	return shadow_x_mask == 0;
}

3794 3795 3796 3797 3798 3799 3800 3801
/*
 * the direct page table on host, use as much mmu features as
 * possible, however, kvm currently does not do execution-protection.
 */
static void
reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
				struct kvm_mmu *context)
{
3802
	if (boot_cpu_is_amd())
3803 3804 3805
		__reset_rsvds_bits_mask(vcpu, &context->shadow_zero_check,
					boot_cpu_data.x86_phys_bits,
					context->shadow_root_level, false,
3806
					cpu_has_gbpages, true, true);
3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825
	else
		__reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
					    boot_cpu_data.x86_phys_bits,
					    false);

}

/*
 * as the comments in reset_shadow_zero_bits_mask() except it
 * is the shadow page table for intel nested guest.
 */
static void
reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
				struct kvm_mmu *context, bool execonly)
{
	__reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
				    boot_cpu_data.x86_phys_bits, execonly);
}

3826 3827
static void update_permission_bitmask(struct kvm_vcpu *vcpu,
				      struct kvm_mmu *mmu, bool ept)
3828 3829 3830
{
	unsigned bit, byte, pfec;
	u8 map;
F
Feng Wu 已提交
3831
	bool fault, x, w, u, wf, uf, ff, smapf, cr4_smap, cr4_smep, smap = 0;
3832

F
Feng Wu 已提交
3833
	cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
F
Feng Wu 已提交
3834
	cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
3835 3836 3837 3838 3839 3840
	for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
		pfec = byte << 1;
		map = 0;
		wf = pfec & PFERR_WRITE_MASK;
		uf = pfec & PFERR_USER_MASK;
		ff = pfec & PFERR_FETCH_MASK;
F
Feng Wu 已提交
3841 3842 3843 3844 3845 3846
		/*
		 * PFERR_RSVD_MASK bit is set in PFEC if the access is not
		 * subject to SMAP restrictions, and cleared otherwise. The
		 * bit is only meaningful if the SMAP bit is set in CR4.
		 */
		smapf = !(pfec & PFERR_RSVD_MASK);
3847 3848 3849 3850 3851
		for (bit = 0; bit < 8; ++bit) {
			x = bit & ACC_EXEC_MASK;
			w = bit & ACC_WRITE_MASK;
			u = bit & ACC_USER_MASK;

3852 3853 3854 3855 3856 3857
			if (!ept) {
				/* Not really needed: !nx will cause pte.nx to fault */
				x |= !mmu->nx;
				/* Allow supervisor writes if !cr0.wp */
				w |= !is_write_protection(vcpu) && !uf;
				/* Disallow supervisor fetches of user code if cr4.smep */
F
Feng Wu 已提交
3858
				x &= !(cr4_smep && u && !uf);
F
Feng Wu 已提交
3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878

				/*
				 * SMAP:kernel-mode data accesses from user-mode
				 * mappings should fault. A fault is considered
				 * as a SMAP violation if all of the following
				 * conditions are ture:
				 *   - X86_CR4_SMAP is set in CR4
				 *   - An user page is accessed
				 *   - Page fault in kernel mode
				 *   - if CPL = 3 or X86_EFLAGS_AC is clear
				 *
				 *   Here, we cover the first three conditions.
				 *   The fourth is computed dynamically in
				 *   permission_fault() and is in smapf.
				 *
				 *   Also, SMAP does not affect instruction
				 *   fetches, add the !ff check here to make it
				 *   clearer.
				 */
				smap = cr4_smap && u && !uf && !ff;
3879 3880 3881
			} else
				/* Not really needed: no U/S accesses on ept  */
				u = 1;
3882

F
Feng Wu 已提交
3883 3884
			fault = (ff && !x) || (uf && !u) || (wf && !w) ||
				(smapf && smap);
3885 3886 3887 3888 3889 3890
			map |= fault << bit;
		}
		mmu->permissions[byte] = map;
	}
}

A
Avi Kivity 已提交
3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908
static void update_last_pte_bitmap(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
{
	u8 map;
	unsigned level, root_level = mmu->root_level;
	const unsigned ps_set_index = 1 << 2;  /* bit 2 of index: ps */

	if (root_level == PT32E_ROOT_LEVEL)
		--root_level;
	/* PT_PAGE_TABLE_LEVEL always terminates */
	map = 1 | (1 << ps_set_index);
	for (level = PT_DIRECTORY_LEVEL; level <= root_level; ++level) {
		if (level <= PT_PDPE_LEVEL
		    && (mmu->root_level >= PT32E_ROOT_LEVEL || is_pse(vcpu)))
			map |= 1 << (ps_set_index | (level - 1));
	}
	mmu->last_pte_bitmap = map;
}

3909 3910 3911
static void paging64_init_context_common(struct kvm_vcpu *vcpu,
					 struct kvm_mmu *context,
					 int level)
A
Avi Kivity 已提交
3912
{
3913
	context->nx = is_nx(vcpu);
3914
	context->root_level = level;
3915

3916
	reset_rsvds_bits_mask(vcpu, context);
3917
	update_permission_bitmask(vcpu, context, false);
A
Avi Kivity 已提交
3918
	update_last_pte_bitmap(vcpu, context);
A
Avi Kivity 已提交
3919

3920
	MMU_WARN_ON(!is_pae(vcpu));
A
Avi Kivity 已提交
3921 3922
	context->page_fault = paging64_page_fault;
	context->gva_to_gpa = paging64_gva_to_gpa;
3923
	context->sync_page = paging64_sync_page;
M
Marcelo Tosatti 已提交
3924
	context->invlpg = paging64_invlpg;
3925
	context->update_pte = paging64_update_pte;
3926
	context->shadow_root_level = level;
A
Avi Kivity 已提交
3927
	context->root_hpa = INVALID_PAGE;
3928
	context->direct_map = false;
A
Avi Kivity 已提交
3929 3930
}

3931 3932
static void paging64_init_context(struct kvm_vcpu *vcpu,
				  struct kvm_mmu *context)
3933
{
3934
	paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
3935 3936
}

3937 3938
static void paging32_init_context(struct kvm_vcpu *vcpu,
				  struct kvm_mmu *context)
A
Avi Kivity 已提交
3939
{
3940
	context->nx = false;
3941
	context->root_level = PT32_ROOT_LEVEL;
3942

3943
	reset_rsvds_bits_mask(vcpu, context);
3944
	update_permission_bitmask(vcpu, context, false);
A
Avi Kivity 已提交
3945
	update_last_pte_bitmap(vcpu, context);
A
Avi Kivity 已提交
3946 3947 3948

	context->page_fault = paging32_page_fault;
	context->gva_to_gpa = paging32_gva_to_gpa;
3949
	context->sync_page = paging32_sync_page;
M
Marcelo Tosatti 已提交
3950
	context->invlpg = paging32_invlpg;
3951
	context->update_pte = paging32_update_pte;
A
Avi Kivity 已提交
3952
	context->shadow_root_level = PT32E_ROOT_LEVEL;
A
Avi Kivity 已提交
3953
	context->root_hpa = INVALID_PAGE;
3954
	context->direct_map = false;
A
Avi Kivity 已提交
3955 3956
}

3957 3958
static void paging32E_init_context(struct kvm_vcpu *vcpu,
				   struct kvm_mmu *context)
A
Avi Kivity 已提交
3959
{
3960
	paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
A
Avi Kivity 已提交
3961 3962
}

3963
static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
3964
{
3965
	struct kvm_mmu *context = &vcpu->arch.mmu;
3966

3967
	context->base_role.word = 0;
3968
	context->base_role.smm = is_smm(vcpu);
3969
	context->page_fault = tdp_page_fault;
3970
	context->sync_page = nonpaging_sync_page;
M
Marcelo Tosatti 已提交
3971
	context->invlpg = nonpaging_invlpg;
3972
	context->update_pte = nonpaging_update_pte;
3973
	context->shadow_root_level = kvm_x86_ops->get_tdp_level();
3974
	context->root_hpa = INVALID_PAGE;
3975
	context->direct_map = true;
3976
	context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
3977
	context->get_cr3 = get_cr3;
3978
	context->get_pdptr = kvm_pdptr_read;
3979
	context->inject_page_fault = kvm_inject_page_fault;
3980 3981

	if (!is_paging(vcpu)) {
3982
		context->nx = false;
3983 3984 3985
		context->gva_to_gpa = nonpaging_gva_to_gpa;
		context->root_level = 0;
	} else if (is_long_mode(vcpu)) {
3986
		context->nx = is_nx(vcpu);
3987
		context->root_level = PT64_ROOT_LEVEL;
3988 3989
		reset_rsvds_bits_mask(vcpu, context);
		context->gva_to_gpa = paging64_gva_to_gpa;
3990
	} else if (is_pae(vcpu)) {
3991
		context->nx = is_nx(vcpu);
3992
		context->root_level = PT32E_ROOT_LEVEL;
3993 3994
		reset_rsvds_bits_mask(vcpu, context);
		context->gva_to_gpa = paging64_gva_to_gpa;
3995
	} else {
3996
		context->nx = false;
3997
		context->root_level = PT32_ROOT_LEVEL;
3998 3999
		reset_rsvds_bits_mask(vcpu, context);
		context->gva_to_gpa = paging32_gva_to_gpa;
4000 4001
	}

4002
	update_permission_bitmask(vcpu, context, false);
A
Avi Kivity 已提交
4003
	update_last_pte_bitmap(vcpu, context);
4004
	reset_tdp_shadow_zero_bits_mask(vcpu, context);
4005 4006
}

4007
void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
4008
{
4009
	bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
4010
	bool smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
4011 4012
	struct kvm_mmu *context = &vcpu->arch.mmu;

4013
	MMU_WARN_ON(VALID_PAGE(context->root_hpa));
A
Avi Kivity 已提交
4014 4015

	if (!is_paging(vcpu))
4016
		nonpaging_init_context(vcpu, context);
A
Avi Kivity 已提交
4017
	else if (is_long_mode(vcpu))
4018
		paging64_init_context(vcpu, context);
A
Avi Kivity 已提交
4019
	else if (is_pae(vcpu))
4020
		paging32E_init_context(vcpu, context);
A
Avi Kivity 已提交
4021
	else
4022
		paging32_init_context(vcpu, context);
4023

4024 4025 4026 4027
	context->base_role.nxe = is_nx(vcpu);
	context->base_role.cr4_pae = !!is_pae(vcpu);
	context->base_role.cr0_wp  = is_write_protection(vcpu);
	context->base_role.smep_andnot_wp
4028
		= smep && !is_write_protection(vcpu);
4029 4030
	context->base_role.smap_andnot_wp
		= smap && !is_write_protection(vcpu);
4031
	context->base_role.smm = is_smm(vcpu);
4032
	reset_shadow_zero_bits_mask(vcpu, context);
4033 4034 4035
}
EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);

4036
void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly)
N
Nadav Har'El 已提交
4037
{
4038 4039
	struct kvm_mmu *context = &vcpu->arch.mmu;

4040
	MMU_WARN_ON(VALID_PAGE(context->root_hpa));
N
Nadav Har'El 已提交
4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055

	context->shadow_root_level = kvm_x86_ops->get_tdp_level();

	context->nx = true;
	context->page_fault = ept_page_fault;
	context->gva_to_gpa = ept_gva_to_gpa;
	context->sync_page = ept_sync_page;
	context->invlpg = ept_invlpg;
	context->update_pte = ept_update_pte;
	context->root_level = context->shadow_root_level;
	context->root_hpa = INVALID_PAGE;
	context->direct_map = false;

	update_permission_bitmask(vcpu, context, true);
	reset_rsvds_bits_mask_ept(vcpu, context, execonly);
4056
	reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
N
Nadav Har'El 已提交
4057 4058 4059
}
EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);

4060
static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
4061
{
4062 4063 4064 4065 4066 4067 4068
	struct kvm_mmu *context = &vcpu->arch.mmu;

	kvm_init_shadow_mmu(vcpu);
	context->set_cr3           = kvm_x86_ops->set_cr3;
	context->get_cr3           = get_cr3;
	context->get_pdptr         = kvm_pdptr_read;
	context->inject_page_fault = kvm_inject_page_fault;
A
Avi Kivity 已提交
4069 4070
}

4071
static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
4072 4073 4074 4075
{
	struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;

	g_context->get_cr3           = get_cr3;
4076
	g_context->get_pdptr         = kvm_pdptr_read;
4077 4078 4079
	g_context->inject_page_fault = kvm_inject_page_fault;

	/*
4080 4081 4082 4083 4084 4085
	 * Note that arch.mmu.gva_to_gpa translates l2_gpa to l1_gpa using
	 * L1's nested page tables (e.g. EPT12). The nested translation
	 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
	 * L2's page tables as the first level of translation and L1's
	 * nested page tables as the second level of translation. Basically
	 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
4086 4087
	 */
	if (!is_paging(vcpu)) {
4088
		g_context->nx = false;
4089 4090 4091
		g_context->root_level = 0;
		g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
	} else if (is_long_mode(vcpu)) {
4092
		g_context->nx = is_nx(vcpu);
4093
		g_context->root_level = PT64_ROOT_LEVEL;
4094
		reset_rsvds_bits_mask(vcpu, g_context);
4095 4096
		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
	} else if (is_pae(vcpu)) {
4097
		g_context->nx = is_nx(vcpu);
4098
		g_context->root_level = PT32E_ROOT_LEVEL;
4099
		reset_rsvds_bits_mask(vcpu, g_context);
4100 4101
		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
	} else {
4102
		g_context->nx = false;
4103
		g_context->root_level = PT32_ROOT_LEVEL;
4104
		reset_rsvds_bits_mask(vcpu, g_context);
4105 4106 4107
		g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
	}

4108
	update_permission_bitmask(vcpu, g_context, false);
A
Avi Kivity 已提交
4109
	update_last_pte_bitmap(vcpu, g_context);
4110 4111
}

4112
static void init_kvm_mmu(struct kvm_vcpu *vcpu)
4113
{
4114
	if (mmu_is_nested(vcpu))
4115
		init_kvm_nested_mmu(vcpu);
4116
	else if (tdp_enabled)
4117
		init_kvm_tdp_mmu(vcpu);
4118
	else
4119
		init_kvm_softmmu(vcpu);
4120 4121
}

4122
void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
4123
{
4124
	kvm_mmu_unload(vcpu);
4125
	init_kvm_mmu(vcpu);
A
Avi Kivity 已提交
4126
}
4127
EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
A
Avi Kivity 已提交
4128 4129

int kvm_mmu_load(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
4130
{
4131 4132
	int r;

4133
	r = mmu_topup_memory_caches(vcpu);
A
Avi Kivity 已提交
4134 4135
	if (r)
		goto out;
4136
	r = mmu_alloc_roots(vcpu);
4137
	kvm_mmu_sync_roots(vcpu);
4138 4139
	if (r)
		goto out;
4140
	/* set_cr3() should ensure TLB has been flushed */
4141
	vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
4142 4143
out:
	return r;
A
Avi Kivity 已提交
4144
}
A
Avi Kivity 已提交
4145 4146 4147 4148 4149
EXPORT_SYMBOL_GPL(kvm_mmu_load);

void kvm_mmu_unload(struct kvm_vcpu *vcpu)
{
	mmu_free_roots(vcpu);
4150
	WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
A
Avi Kivity 已提交
4151
}
4152
EXPORT_SYMBOL_GPL(kvm_mmu_unload);
A
Avi Kivity 已提交
4153

4154
static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
4155 4156
				  struct kvm_mmu_page *sp, u64 *spte,
				  const void *new)
4157
{
4158
	if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
4159 4160
		++vcpu->kvm->stat.mmu_pde_zapped;
		return;
4161
        }
4162

A
Avi Kivity 已提交
4163
	++vcpu->kvm->stat.mmu_pte_updated;
4164
	vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
4165 4166
}

4167 4168 4169 4170 4171 4172 4173 4174
static bool need_remote_flush(u64 old, u64 new)
{
	if (!is_shadow_present_pte(old))
		return false;
	if (!is_shadow_present_pte(new))
		return true;
	if ((old ^ new) & PT64_BASE_ADDR_MASK)
		return true;
4175 4176
	old ^= shadow_nx_mask;
	new ^= shadow_nx_mask;
4177 4178 4179
	return (old & ~new & PT64_PERM_MASK) != 0;
}

4180 4181
static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
				    bool remote_flush, bool local_flush)
4182
{
4183 4184 4185 4186
	if (zap_page)
		return;

	if (remote_flush)
4187
		kvm_flush_remote_tlbs(vcpu->kvm);
4188
	else if (local_flush)
4189
		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
4190 4191
}

4192 4193
static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
				    const u8 *new, int *bytes)
4194
{
4195 4196
	u64 gentry;
	int r;
4197 4198 4199

	/*
	 * Assume that the pte write on a page table of the same type
4200 4201
	 * as the current vcpu paging mode since we update the sptes only
	 * when they have the same mode.
4202
	 */
4203
	if (is_pae(vcpu) && *bytes == 4) {
4204
		/* Handle a 32-bit guest writing two halves of a 64-bit gpte */
4205 4206
		*gpa &= ~(gpa_t)7;
		*bytes = 8;
4207
		r = kvm_vcpu_read_guest(vcpu, *gpa, &gentry, 8);
4208 4209
		if (r)
			gentry = 0;
4210 4211 4212
		new = (const u8 *)&gentry;
	}

4213
	switch (*bytes) {
4214 4215 4216 4217 4218 4219 4220 4221 4222
	case 4:
		gentry = *(const u32 *)new;
		break;
	case 8:
		gentry = *(const u64 *)new;
		break;
	default:
		gentry = 0;
		break;
4223 4224
	}

4225 4226 4227 4228 4229 4230 4231
	return gentry;
}

/*
 * If we're seeing too many writes to a page, it may no longer be a page table,
 * or we may be forking, in which case it is better to unmap the page.
 */
4232
static bool detect_write_flooding(struct kvm_mmu_page *sp)
4233
{
4234 4235 4236 4237
	/*
	 * Skip write-flooding detected for the sp whose level is 1, because
	 * it can become unsync, then the guest page is not write-protected.
	 */
4238
	if (sp->role.level == PT_PAGE_TABLE_LEVEL)
4239
		return false;
4240

4241 4242
	atomic_inc(&sp->write_flooding_count);
	return atomic_read(&sp->write_flooding_count) >= 3;
4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258
}

/*
 * Misaligned accesses are too much trouble to fix up; also, they usually
 * indicate a page is not used as a page table.
 */
static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
				    int bytes)
{
	unsigned offset, pte_size, misaligned;

	pgprintk("misaligned: gpa %llx bytes %d role %x\n",
		 gpa, bytes, sp->role.word);

	offset = offset_in_page(gpa);
	pte_size = sp->role.cr4_pae ? 8 : 4;
4259 4260 4261 4262 4263 4264 4265 4266

	/*
	 * Sometimes, the OS only writes the last one bytes to update status
	 * bits, for example, in linux, andb instruction is used in clear_bit().
	 */
	if (!(offset & (pte_size - 1)) && bytes == 1)
		return false;

4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311
	misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
	misaligned |= bytes < 4;

	return misaligned;
}

static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
{
	unsigned page_offset, quadrant;
	u64 *spte;
	int level;

	page_offset = offset_in_page(gpa);
	level = sp->role.level;
	*nspte = 1;
	if (!sp->role.cr4_pae) {
		page_offset <<= 1;	/* 32->64 */
		/*
		 * A 32-bit pde maps 4MB while the shadow pdes map
		 * only 2MB.  So we need to double the offset again
		 * and zap two pdes instead of one.
		 */
		if (level == PT32_ROOT_LEVEL) {
			page_offset &= ~7; /* kill rounding error */
			page_offset <<= 1;
			*nspte = 2;
		}
		quadrant = page_offset >> PAGE_SHIFT;
		page_offset &= ~PAGE_MASK;
		if (quadrant != sp->role.quadrant)
			return NULL;
	}

	spte = &sp->spt[page_offset / sizeof(*spte)];
	return spte;
}

void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
		       const u8 *new, int bytes)
{
	gfn_t gfn = gpa >> PAGE_SHIFT;
	struct kvm_mmu_page *sp;
	LIST_HEAD(invalid_list);
	u64 entry, gentry, *spte;
	int npte;
4312
	bool remote_flush, local_flush, zap_page;
4313 4314 4315 4316 4317 4318 4319
	union kvm_mmu_page_role mask = { };

	mask.cr0_wp = 1;
	mask.cr4_pae = 1;
	mask.nxe = 1;
	mask.smep_andnot_wp = 1;
	mask.smap_andnot_wp = 1;
4320
	mask.smm = 1;
4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343

	/*
	 * If we don't have indirect shadow pages, it means no page is
	 * write-protected, so we can exit simply.
	 */
	if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
		return;

	zap_page = remote_flush = local_flush = false;

	pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);

	gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);

	/*
	 * No need to care whether allocation memory is successful
	 * or not since pte prefetch is skiped if it does not have
	 * enough objects in the cache.
	 */
	mmu_topup_memory_caches(vcpu);

	spin_lock(&vcpu->kvm->mmu_lock);
	++vcpu->kvm->stat.mmu_pte_write;
4344
	kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
4345

4346
	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
4347
		if (detect_write_misaligned(sp, gpa, bytes) ||
4348
		      detect_write_flooding(sp)) {
4349
			zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
4350
						     &invalid_list);
A
Avi Kivity 已提交
4351
			++vcpu->kvm->stat.mmu_flooded;
4352 4353
			continue;
		}
4354 4355 4356 4357 4358

		spte = get_written_sptes(sp, gpa, &npte);
		if (!spte)
			continue;

4359
		local_flush = true;
4360
		while (npte--) {
4361
			entry = *spte;
4362
			mmu_page_zap_pte(vcpu->kvm, sp, spte);
4363 4364
			if (gentry &&
			      !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
4365
			      & mask.word) && rmap_can_add(vcpu))
4366
				mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
G
Gleb Natapov 已提交
4367
			if (need_remote_flush(entry, *spte))
4368
				remote_flush = true;
4369
			++spte;
4370 4371
		}
	}
4372
	mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
4373
	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4374
	kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
4375
	spin_unlock(&vcpu->kvm->mmu_lock);
4376 4377
}

4378 4379
int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
{
4380 4381
	gpa_t gpa;
	int r;
4382

4383
	if (vcpu->arch.mmu.direct_map)
4384 4385
		return 0;

4386
	gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
4387 4388

	r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4389

4390
	return r;
4391
}
4392
EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
4393

4394
static void make_mmu_pages_available(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
4395
{
4396
	LIST_HEAD(invalid_list);
4397

4398 4399 4400
	if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
		return;

4401 4402 4403
	while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
		if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
			break;
A
Avi Kivity 已提交
4404

A
Avi Kivity 已提交
4405
		++vcpu->kvm->stat.mmu_recycled;
A
Avi Kivity 已提交
4406
	}
4407
	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
A
Avi Kivity 已提交
4408 4409
}

4410 4411
int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
		       void *insn, int insn_len)
4412
{
4413
	int r, emulation_type = EMULTYPE_RETRY;
4414
	enum emulation_result er;
4415
	bool direct = vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu);
4416

4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428
	if (unlikely(error_code & PFERR_RSVD_MASK)) {
		r = handle_mmio_page_fault(vcpu, cr2, direct);
		if (r == RET_MMIO_PF_EMULATE) {
			emulation_type = 0;
			goto emulate;
		}
		if (r == RET_MMIO_PF_RETRY)
			return 1;
		if (r < 0)
			return r;
	}

G
Gleb Natapov 已提交
4429
	r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
4430
	if (r < 0)
4431 4432 4433
		return r;
	if (!r)
		return 1;
4434

4435
	if (mmio_info_in_cache(vcpu, cr2, direct))
4436
		emulation_type = 0;
4437
emulate:
4438
	er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
4439 4440 4441 4442

	switch (er) {
	case EMULATE_DONE:
		return 1;
P
Paolo Bonzini 已提交
4443
	case EMULATE_USER_EXIT:
4444
		++vcpu->stat.mmio_exits;
4445
		/* fall through */
4446
	case EMULATE_FAIL:
4447
		return 0;
4448 4449 4450 4451 4452 4453
	default:
		BUG();
	}
}
EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);

M
Marcelo Tosatti 已提交
4454 4455 4456
void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
{
	vcpu->arch.mmu.invlpg(vcpu, gva);
4457
	kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
M
Marcelo Tosatti 已提交
4458 4459 4460 4461
	++vcpu->stat.invlpg;
}
EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);

4462 4463 4464 4465 4466 4467
void kvm_enable_tdp(void)
{
	tdp_enabled = true;
}
EXPORT_SYMBOL_GPL(kvm_enable_tdp);

4468 4469 4470 4471 4472 4473
void kvm_disable_tdp(void)
{
	tdp_enabled = false;
}
EXPORT_SYMBOL_GPL(kvm_disable_tdp);

A
Avi Kivity 已提交
4474 4475
static void free_mmu_pages(struct kvm_vcpu *vcpu)
{
4476
	free_page((unsigned long)vcpu->arch.mmu.pae_root);
4477 4478
	if (vcpu->arch.mmu.lm_root != NULL)
		free_page((unsigned long)vcpu->arch.mmu.lm_root);
A
Avi Kivity 已提交
4479 4480 4481 4482
}

static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
{
4483
	struct page *page;
A
Avi Kivity 已提交
4484 4485
	int i;

4486 4487 4488 4489 4490 4491 4492
	/*
	 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
	 * Therefore we need to allocate shadow page tables in the first
	 * 4GB of memory, which happens to fit the DMA32 zone.
	 */
	page = alloc_page(GFP_KERNEL | __GFP_DMA32);
	if (!page)
4493 4494
		return -ENOMEM;

4495
	vcpu->arch.mmu.pae_root = page_address(page);
4496
	for (i = 0; i < 4; ++i)
4497
		vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
4498

A
Avi Kivity 已提交
4499 4500 4501
	return 0;
}

4502
int kvm_mmu_create(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
4503
{
4504 4505 4506 4507
	vcpu->arch.walk_mmu = &vcpu->arch.mmu;
	vcpu->arch.mmu.root_hpa = INVALID_PAGE;
	vcpu->arch.mmu.translate_gpa = translate_gpa;
	vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
A
Avi Kivity 已提交
4508

4509 4510
	return alloc_mmu_pages(vcpu);
}
A
Avi Kivity 已提交
4511

4512
void kvm_mmu_setup(struct kvm_vcpu *vcpu)
4513
{
4514
	MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
4515

4516
	init_kvm_mmu(vcpu);
A
Avi Kivity 已提交
4517 4518
}

4519
/* The return value indicates if tlb flush on all vcpus is needed. */
4520
typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);
4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587

/* The caller should hold mmu-lock before calling this function. */
static bool
slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
			slot_level_handler fn, int start_level, int end_level,
			gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
{
	struct slot_rmap_walk_iterator iterator;
	bool flush = false;

	for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
			end_gfn, &iterator) {
		if (iterator.rmap)
			flush |= fn(kvm, iterator.rmap);

		if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
			if (flush && lock_flush_tlb) {
				kvm_flush_remote_tlbs(kvm);
				flush = false;
			}
			cond_resched_lock(&kvm->mmu_lock);
		}
	}

	if (flush && lock_flush_tlb) {
		kvm_flush_remote_tlbs(kvm);
		flush = false;
	}

	return flush;
}

static bool
slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
		  slot_level_handler fn, int start_level, int end_level,
		  bool lock_flush_tlb)
{
	return slot_handle_level_range(kvm, memslot, fn, start_level,
			end_level, memslot->base_gfn,
			memslot->base_gfn + memslot->npages - 1,
			lock_flush_tlb);
}

static bool
slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
		      slot_level_handler fn, bool lock_flush_tlb)
{
	return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
				 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
}

static bool
slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
			slot_level_handler fn, bool lock_flush_tlb)
{
	return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL + 1,
				 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
}

static bool
slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
		 slot_level_handler fn, bool lock_flush_tlb)
{
	return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
				 PT_PAGE_TABLE_LEVEL, lock_flush_tlb);
}

X
Xiao Guangrong 已提交
4588 4589 4590 4591
void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
{
	struct kvm_memslots *slots;
	struct kvm_memory_slot *memslot;
4592
	int i;
X
Xiao Guangrong 已提交
4593 4594

	spin_lock(&kvm->mmu_lock);
4595 4596 4597 4598 4599 4600 4601 4602 4603
	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
		slots = __kvm_memslots(kvm, i);
		kvm_for_each_memslot(memslot, slots) {
			gfn_t start, end;

			start = max(gfn_start, memslot->base_gfn);
			end = min(gfn_end, memslot->base_gfn + memslot->npages);
			if (start >= end)
				continue;
X
Xiao Guangrong 已提交
4604

4605 4606 4607 4608
			slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
						PT_PAGE_TABLE_LEVEL, PT_MAX_HUGEPAGE_LEVEL,
						start, end - 1, true);
		}
X
Xiao Guangrong 已提交
4609 4610 4611 4612 4613
	}

	spin_unlock(&kvm->mmu_lock);
}

4614 4615
static bool slot_rmap_write_protect(struct kvm *kvm,
				    struct kvm_rmap_head *rmap_head)
4616
{
4617
	return __rmap_write_protect(kvm, rmap_head, false);
4618 4619
}

4620 4621
void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
				      struct kvm_memory_slot *memslot)
A
Avi Kivity 已提交
4622
{
4623
	bool flush;
A
Avi Kivity 已提交
4624

4625
	spin_lock(&kvm->mmu_lock);
4626 4627
	flush = slot_handle_all_level(kvm, memslot, slot_rmap_write_protect,
				      false);
4628
	spin_unlock(&kvm->mmu_lock);
4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647

	/*
	 * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
	 * which do tlb flush out of mmu-lock should be serialized by
	 * kvm->slots_lock otherwise tlb flush would be missed.
	 */
	lockdep_assert_held(&kvm->slots_lock);

	/*
	 * We can flush all the TLBs out of the mmu lock without TLB
	 * corruption since we just change the spte from writable to
	 * readonly so that we only need to care the case of changing
	 * spte from present to present (changing the spte from present
	 * to nonpresent will flush all the TLBs immediately), in other
	 * words, the only case we care is mmu_spte_update() where we
	 * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
	 * instead of PT_WRITABLE_MASK, that means it does not depend
	 * on PT_WRITABLE_MASK anymore.
	 */
4648 4649
	if (flush)
		kvm_flush_remote_tlbs(kvm);
A
Avi Kivity 已提交
4650
}
4651

4652
static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
4653
					 struct kvm_rmap_head *rmap_head)
4654 4655 4656 4657
{
	u64 *sptep;
	struct rmap_iterator iter;
	int need_tlb_flush = 0;
D
Dan Williams 已提交
4658
	kvm_pfn_t pfn;
4659 4660
	struct kvm_mmu_page *sp;

4661
restart:
4662
	for_each_rmap_spte(rmap_head, &iter, sptep) {
4663 4664 4665 4666
		sp = page_header(__pa(sptep));
		pfn = spte_to_pfn(*sptep);

		/*
4667 4668 4669 4670 4671
		 * We cannot do huge page mapping for indirect shadow pages,
		 * which are found on the last rmap (level = 1) when not using
		 * tdp; such shadow pages are synced with the page table in
		 * the guest, and the guest page table is using 4K page size
		 * mapping if the indirect sp has level = 1.
4672 4673 4674 4675 4676 4677
		 */
		if (sp->role.direct &&
			!kvm_is_reserved_pfn(pfn) &&
			PageTransCompound(pfn_to_page(pfn))) {
			drop_spte(kvm, sptep);
			need_tlb_flush = 1;
4678 4679
			goto restart;
		}
4680 4681 4682 4683 4684 4685
	}

	return need_tlb_flush;
}

void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
4686
				   const struct kvm_memory_slot *memslot)
4687
{
4688
	/* FIXME: const-ify all uses of struct kvm_memory_slot.  */
4689
	spin_lock(&kvm->mmu_lock);
4690 4691
	slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
			 kvm_mmu_zap_collapsible_spte, true);
4692 4693 4694
	spin_unlock(&kvm->mmu_lock);
}

4695 4696 4697
void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
				   struct kvm_memory_slot *memslot)
{
4698
	bool flush;
4699 4700

	spin_lock(&kvm->mmu_lock);
4701
	flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719
	spin_unlock(&kvm->mmu_lock);

	lockdep_assert_held(&kvm->slots_lock);

	/*
	 * It's also safe to flush TLBs out of mmu lock here as currently this
	 * function is only used for dirty logging, in which case flushing TLB
	 * out of mmu lock also guarantees no dirty pages will be lost in
	 * dirty_bitmap.
	 */
	if (flush)
		kvm_flush_remote_tlbs(kvm);
}
EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);

void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
					struct kvm_memory_slot *memslot)
{
4720
	bool flush;
4721 4722

	spin_lock(&kvm->mmu_lock);
4723 4724
	flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
					false);
4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737
	spin_unlock(&kvm->mmu_lock);

	/* see kvm_mmu_slot_remove_write_access */
	lockdep_assert_held(&kvm->slots_lock);

	if (flush)
		kvm_flush_remote_tlbs(kvm);
}
EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);

void kvm_mmu_slot_set_dirty(struct kvm *kvm,
			    struct kvm_memory_slot *memslot)
{
4738
	bool flush;
4739 4740

	spin_lock(&kvm->mmu_lock);
4741
	flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
4742 4743 4744 4745 4746 4747 4748 4749 4750 4751
	spin_unlock(&kvm->mmu_lock);

	lockdep_assert_held(&kvm->slots_lock);

	/* see kvm_mmu_slot_leaf_clear_dirty */
	if (flush)
		kvm_flush_remote_tlbs(kvm);
}
EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);

X
Xiao Guangrong 已提交
4752
#define BATCH_ZAP_PAGES	10
4753 4754 4755
static void kvm_zap_obsolete_pages(struct kvm *kvm)
{
	struct kvm_mmu_page *sp, *node;
X
Xiao Guangrong 已提交
4756
	int batch = 0;
4757 4758 4759 4760

restart:
	list_for_each_entry_safe_reverse(sp, node,
	      &kvm->arch.active_mmu_pages, link) {
X
Xiao Guangrong 已提交
4761 4762
		int ret;

4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777
		/*
		 * No obsolete page exists before new created page since
		 * active_mmu_pages is the FIFO list.
		 */
		if (!is_obsolete_sp(kvm, sp))
			break;

		/*
		 * Since we are reversely walking the list and the invalid
		 * list will be moved to the head, skip the invalid page
		 * can help us to avoid the infinity list walking.
		 */
		if (sp->role.invalid)
			continue;

4778 4779 4780 4781
		/*
		 * Need not flush tlb since we only zap the sp with invalid
		 * generation number.
		 */
X
Xiao Guangrong 已提交
4782
		if (batch >= BATCH_ZAP_PAGES &&
4783
		      cond_resched_lock(&kvm->mmu_lock)) {
X
Xiao Guangrong 已提交
4784
			batch = 0;
4785 4786 4787
			goto restart;
		}

4788 4789
		ret = kvm_mmu_prepare_zap_page(kvm, sp,
				&kvm->arch.zapped_obsolete_pages);
X
Xiao Guangrong 已提交
4790 4791 4792
		batch += ret;

		if (ret)
4793 4794 4795
			goto restart;
	}

4796 4797 4798 4799
	/*
	 * Should flush tlb before free page tables since lockless-walking
	 * may use the pages.
	 */
4800
	kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814
}

/*
 * Fast invalidate all shadow pages and use lock-break technique
 * to zap obsolete pages.
 *
 * It's required when memslot is being deleted or VM is being
 * destroyed, in these cases, we should ensure that KVM MMU does
 * not use any resource of the being-deleted slot or all slots
 * after calling the function.
 */
void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
{
	spin_lock(&kvm->mmu_lock);
4815
	trace_kvm_mmu_invalidate_zap_all_pages(kvm);
4816 4817
	kvm->arch.mmu_valid_gen++;

4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828
	/*
	 * Notify all vcpus to reload its shadow page table
	 * and flush TLB. Then all vcpus will switch to new
	 * shadow page table with the new mmu_valid_gen.
	 *
	 * Note: we should do this under the protection of
	 * mmu-lock, otherwise, vcpu would purge shadow page
	 * but miss tlb flush.
	 */
	kvm_reload_remote_mmus(kvm);

4829 4830 4831 4832
	kvm_zap_obsolete_pages(kvm);
	spin_unlock(&kvm->mmu_lock);
}

4833 4834 4835 4836 4837
static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
{
	return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
}

4838
void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, struct kvm_memslots *slots)
4839 4840 4841 4842 4843
{
	/*
	 * The very rare case: if the generation-number is round,
	 * zap all shadow pages.
	 */
4844
	if (unlikely((slots->generation & MMIO_GEN_MASK) == 0)) {
4845
		printk_ratelimited(KERN_DEBUG "kvm: zapping shadow pages for mmio generation wraparound\n");
4846
		kvm_mmu_invalidate_zap_all_pages(kvm);
4847
	}
4848 4849
}

4850 4851
static unsigned long
mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
4852 4853
{
	struct kvm *kvm;
4854
	int nr_to_scan = sc->nr_to_scan;
4855
	unsigned long freed = 0;
4856

4857
	spin_lock(&kvm_lock);
4858 4859

	list_for_each_entry(kvm, &vm_list, vm_list) {
4860
		int idx;
4861
		LIST_HEAD(invalid_list);
4862

4863 4864 4865 4866 4867 4868 4869 4870
		/*
		 * Never scan more than sc->nr_to_scan VM instances.
		 * Will not hit this condition practically since we do not try
		 * to shrink more than one VM and it is very unlikely to see
		 * !n_used_mmu_pages so many times.
		 */
		if (!nr_to_scan--)
			break;
4871 4872 4873 4874 4875 4876
		/*
		 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
		 * here. We may skip a VM instance errorneosly, but we do not
		 * want to shrink a VM that only started to populate its MMU
		 * anyway.
		 */
4877 4878
		if (!kvm->arch.n_used_mmu_pages &&
		      !kvm_has_zapped_obsolete_pages(kvm))
4879 4880
			continue;

4881
		idx = srcu_read_lock(&kvm->srcu);
4882 4883
		spin_lock(&kvm->mmu_lock);

4884 4885 4886 4887 4888 4889
		if (kvm_has_zapped_obsolete_pages(kvm)) {
			kvm_mmu_commit_zap_page(kvm,
			      &kvm->arch.zapped_obsolete_pages);
			goto unlock;
		}

4890 4891
		if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
			freed++;
4892
		kvm_mmu_commit_zap_page(kvm, &invalid_list);
4893

4894
unlock:
4895
		spin_unlock(&kvm->mmu_lock);
4896
		srcu_read_unlock(&kvm->srcu, idx);
4897

4898 4899 4900 4901 4902
		/*
		 * unfair on small ones
		 * per-vm shrinkers cry out
		 * sadness comes quickly
		 */
4903 4904
		list_move_tail(&kvm->vm_list, &vm_list);
		break;
4905 4906
	}

4907
	spin_unlock(&kvm_lock);
4908 4909 4910 4911 4912 4913
	return freed;
}

static unsigned long
mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
{
4914
	return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
4915 4916 4917
}

static struct shrinker mmu_shrinker = {
4918 4919
	.count_objects = mmu_shrink_count,
	.scan_objects = mmu_shrink_scan,
4920 4921 4922
	.seeks = DEFAULT_SEEKS * 10,
};

I
Ingo Molnar 已提交
4923
static void mmu_destroy_caches(void)
4924
{
4925 4926
	if (pte_list_desc_cache)
		kmem_cache_destroy(pte_list_desc_cache);
4927 4928
	if (mmu_page_header_cache)
		kmem_cache_destroy(mmu_page_header_cache);
4929 4930 4931 4932
}

int kvm_mmu_module_init(void)
{
4933 4934
	pte_list_desc_cache = kmem_cache_create("pte_list_desc",
					    sizeof(struct pte_list_desc),
4935
					    0, 0, NULL);
4936
	if (!pte_list_desc_cache)
4937 4938
		goto nomem;

4939 4940
	mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
						  sizeof(struct kvm_mmu_page),
4941
						  0, 0, NULL);
4942 4943 4944
	if (!mmu_page_header_cache)
		goto nomem;

4945
	if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
4946 4947
		goto nomem;

4948 4949
	register_shrinker(&mmu_shrinker);

4950 4951 4952
	return 0;

nomem:
4953
	mmu_destroy_caches();
4954 4955 4956
	return -ENOMEM;
}

4957 4958 4959 4960 4961 4962 4963
/*
 * Caculate mmu pages needed for kvm.
 */
unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
{
	unsigned int nr_mmu_pages;
	unsigned int  nr_pages = 0;
4964
	struct kvm_memslots *slots;
4965
	struct kvm_memory_slot *memslot;
4966
	int i;
4967

4968 4969
	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
		slots = __kvm_memslots(kvm, i);
4970

4971 4972 4973
		kvm_for_each_memslot(memslot, slots)
			nr_pages += memslot->npages;
	}
4974 4975 4976

	nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
	nr_mmu_pages = max(nr_mmu_pages,
4977
			   (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
4978 4979 4980 4981

	return nr_mmu_pages;
}

4982 4983
void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
{
4984
	kvm_mmu_unload(vcpu);
4985 4986
	free_mmu_pages(vcpu);
	mmu_free_memory_caches(vcpu);
4987 4988 4989 4990 4991 4992 4993
}

void kvm_mmu_module_exit(void)
{
	mmu_destroy_caches();
	percpu_counter_destroy(&kvm_total_used_mmu_pages);
	unregister_shrinker(&mmu_shrinker);
4994 4995
	mmu_audit_disable();
}