mmu.c 113.4 KB
Newer Older
A
Avi Kivity 已提交
1 2 3 4 5 6 7 8 9
/*
 * Kernel-based Virtual Machine driver for Linux
 *
 * This module enables machines with Intel VT-x extensions to run virtual
 * machines without emulation or binary translation.
 *
 * MMU support
 *
 * Copyright (C) 2006 Qumranet, Inc.
N
Nicolas Kaiser 已提交
10
 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
A
Avi Kivity 已提交
11 12 13 14 15 16 17 18 19
 *
 * Authors:
 *   Yaniv Kamay  <yaniv@qumranet.com>
 *   Avi Kivity   <avi@qumranet.com>
 *
 * This work is licensed under the terms of the GNU GPL, version 2.  See
 * the COPYING file in the top-level directory.
 *
 */
A
Avi Kivity 已提交
20

21
#include "irq.h"
22
#include "mmu.h"
23
#include "x86.h"
A
Avi Kivity 已提交
24
#include "kvm_cache_regs.h"
25
#include "cpuid.h"
A
Avi Kivity 已提交
26

27
#include <linux/kvm_host.h>
A
Avi Kivity 已提交
28 29 30 31 32
#include <linux/types.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/highmem.h>
#include <linux/module.h>
33
#include <linux/swap.h>
M
Marcelo Tosatti 已提交
34
#include <linux/hugetlb.h>
35
#include <linux/compiler.h>
36
#include <linux/srcu.h>
37
#include <linux/slab.h>
38
#include <linux/uaccess.h>
A
Avi Kivity 已提交
39

A
Avi Kivity 已提交
40 41
#include <asm/page.h>
#include <asm/cmpxchg.h>
42
#include <asm/io.h>
43
#include <asm/vmx.h>
A
Avi Kivity 已提交
44

45 46 47 48 49 50 51
/*
 * When setting this variable to true it enables Two-Dimensional-Paging
 * where the hardware walks 2 page tables:
 * 1. the guest-virtual to guest-physical
 * 2. while doing 1. it walks guest-physical to host-physical
 * If the hardware supports that we don't need to do shadow paging.
 */
52
bool tdp_enabled = false;
53

54 55 56 57
enum {
	AUDIT_PRE_PAGE_FAULT,
	AUDIT_POST_PAGE_FAULT,
	AUDIT_PRE_PTE_WRITE,
58 59 60
	AUDIT_POST_PTE_WRITE,
	AUDIT_PRE_SYNC,
	AUDIT_POST_SYNC
61
};
62

63
#undef MMU_DEBUG
64 65

#ifdef MMU_DEBUG
66 67
static bool dbg = 0;
module_param(dbg, bool, 0644);
68 69 70

#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
#define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
71
#define MMU_WARN_ON(x) WARN_ON(x)
72 73 74
#else
#define pgprintk(x...) do { } while (0)
#define rmap_printk(x...) do { } while (0)
75
#define MMU_WARN_ON(x) do { } while (0)
76
#endif
A
Avi Kivity 已提交
77

78 79
#define PTE_PREFETCH_NUM		8

80
#define PT_FIRST_AVAIL_BITS_SHIFT 10
A
Avi Kivity 已提交
81 82 83 84 85
#define PT64_SECOND_AVAIL_BITS_SHIFT 52

#define PT64_LEVEL_BITS 9

#define PT64_LEVEL_SHIFT(level) \
M
Mike Day 已提交
86
		(PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
A
Avi Kivity 已提交
87 88 89 90 91 92 93 94

#define PT64_INDEX(address, level)\
	(((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))


#define PT32_LEVEL_BITS 10

#define PT32_LEVEL_SHIFT(level) \
M
Mike Day 已提交
95
		(PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
A
Avi Kivity 已提交
96

97 98 99
#define PT32_LVL_OFFSET_MASK(level) \
	(PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
						* PT32_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
100 101 102 103 104

#define PT32_INDEX(address, level)\
	(((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))


105
#define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
A
Avi Kivity 已提交
106 107
#define PT64_DIR_BASE_ADDR_MASK \
	(PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
108 109 110 111 112 113
#define PT64_LVL_ADDR_MASK(level) \
	(PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
						* PT64_LEVEL_BITS))) - 1))
#define PT64_LVL_OFFSET_MASK(level) \
	(PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
						* PT64_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
114 115 116 117

#define PT32_BASE_ADDR_MASK PAGE_MASK
#define PT32_DIR_BASE_ADDR_MASK \
	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
118 119 120
#define PT32_LVL_ADDR_MASK(level) \
	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
					    * PT32_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
121

122 123
#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
			| shadow_x_mask | shadow_nx_mask)
A
Avi Kivity 已提交
124

125 126 127 128 129
#define ACC_EXEC_MASK    1
#define ACC_WRITE_MASK   PT_WRITABLE_MASK
#define ACC_USER_MASK    PT_USER_MASK
#define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)

130 131
#include <trace/events/kvm.h>

132 133 134
#define CREATE_TRACE_POINTS
#include "mmutrace.h"

135 136
#define SPTE_HOST_WRITEABLE	(1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
#define SPTE_MMU_WRITEABLE	(1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
137

138 139
#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)

140 141 142
/* make pte_list_desc fit well in cache line */
#define PTE_LIST_EXT 3

143 144 145
struct pte_list_desc {
	u64 *sptes[PTE_LIST_EXT];
	struct pte_list_desc *more;
146 147
};

148 149 150 151
struct kvm_shadow_walk_iterator {
	u64 addr;
	hpa_t shadow_addr;
	u64 *sptep;
152
	int level;
153 154 155 156 157 158 159 160
	unsigned index;
};

#define for_each_shadow_entry(_vcpu, _addr, _walker)    \
	for (shadow_walk_init(&(_walker), _vcpu, _addr);	\
	     shadow_walk_okay(&(_walker));			\
	     shadow_walk_next(&(_walker)))

161 162 163 164 165 166
#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)	\
	for (shadow_walk_init(&(_walker), _vcpu, _addr);		\
	     shadow_walk_okay(&(_walker)) &&				\
		({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });	\
	     __shadow_walk_next(&(_walker), spte))

167
static struct kmem_cache *pte_list_desc_cache;
168
static struct kmem_cache *mmu_page_header_cache;
169
static struct percpu_counter kvm_total_used_mmu_pages;
170

S
Sheng Yang 已提交
171 172 173 174 175
static u64 __read_mostly shadow_nx_mask;
static u64 __read_mostly shadow_x_mask;	/* mutual exclusive with nx_mask */
static u64 __read_mostly shadow_user_mask;
static u64 __read_mostly shadow_accessed_mask;
static u64 __read_mostly shadow_dirty_mask;
176 177 178
static u64 __read_mostly shadow_mmio_mask;

static void mmu_spte_set(u64 *sptep, u64 spte);
179
static void mmu_free_roots(struct kvm_vcpu *vcpu);
180 181 182 183 184 185 186

void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
{
	shadow_mmio_mask = mmio_mask;
}
EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);

187
/*
188 189 190 191 192 193 194
 * the low bit of the generation number is always presumed to be zero.
 * This disables mmio caching during memslot updates.  The concept is
 * similar to a seqcount but instead of retrying the access we just punt
 * and ignore the cache.
 *
 * spte bits 3-11 are used as bits 1-9 of the generation number,
 * the bits 52-61 are used as bits 10-19 of the generation number.
195
 */
196
#define MMIO_SPTE_GEN_LOW_SHIFT		2
197 198
#define MMIO_SPTE_GEN_HIGH_SHIFT	52

199 200 201
#define MMIO_GEN_SHIFT			20
#define MMIO_GEN_LOW_SHIFT		10
#define MMIO_GEN_LOW_MASK		((1 << MMIO_GEN_LOW_SHIFT) - 2)
202
#define MMIO_GEN_MASK			((1 << MMIO_GEN_SHIFT) - 1)
203 204 205 206 207

static u64 generation_mmio_spte_mask(unsigned int gen)
{
	u64 mask;

T
Tiejun Chen 已提交
208
	WARN_ON(gen & ~MMIO_GEN_MASK);
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225

	mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
	mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
	return mask;
}

static unsigned int get_mmio_spte_generation(u64 spte)
{
	unsigned int gen;

	spte &= ~shadow_mmio_mask;

	gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
	gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
	return gen;
}

226 227
static unsigned int kvm_current_mmio_generation(struct kvm *kvm)
{
228
	return kvm_memslots(kvm)->generation & MMIO_GEN_MASK;
229 230
}

231 232
static void mark_mmio_spte(struct kvm *kvm, u64 *sptep, u64 gfn,
			   unsigned access)
233
{
234 235
	unsigned int gen = kvm_current_mmio_generation(kvm);
	u64 mask = generation_mmio_spte_mask(gen);
236

237
	access &= ACC_WRITE_MASK | ACC_USER_MASK;
238 239
	mask |= shadow_mmio_mask | access | gfn << PAGE_SHIFT;

240
	trace_mark_mmio_spte(sptep, gfn, access, gen);
241
	mmu_spte_set(sptep, mask);
242 243 244 245 246 247 248 249 250
}

static bool is_mmio_spte(u64 spte)
{
	return (spte & shadow_mmio_mask) == shadow_mmio_mask;
}

static gfn_t get_mmio_spte_gfn(u64 spte)
{
T
Tiejun Chen 已提交
251
	u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
252
	return (spte & ~mask) >> PAGE_SHIFT;
253 254 255 256
}

static unsigned get_mmio_spte_access(u64 spte)
{
T
Tiejun Chen 已提交
257
	u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
258
	return (spte & ~mask) & ~PAGE_MASK;
259 260
}

261 262
static bool set_mmio_spte(struct kvm *kvm, u64 *sptep, gfn_t gfn,
			  pfn_t pfn, unsigned access)
263 264
{
	if (unlikely(is_noslot_pfn(pfn))) {
265
		mark_mmio_spte(kvm, sptep, gfn, access);
266 267 268 269 270
		return true;
	}

	return false;
}
271

272 273
static bool check_mmio_spte(struct kvm *kvm, u64 spte)
{
274 275 276 277 278 279 280
	unsigned int kvm_gen, spte_gen;

	kvm_gen = kvm_current_mmio_generation(kvm);
	spte_gen = get_mmio_spte_generation(spte);

	trace_check_mmio_spte(spte, kvm_gen, spte_gen);
	return likely(kvm_gen == spte_gen);
281 282
}

S
Sheng Yang 已提交
283
void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
284
		u64 dirty_mask, u64 nx_mask, u64 x_mask)
S
Sheng Yang 已提交
285 286 287 288 289 290 291 292 293
{
	shadow_user_mask = user_mask;
	shadow_accessed_mask = accessed_mask;
	shadow_dirty_mask = dirty_mask;
	shadow_nx_mask = nx_mask;
	shadow_x_mask = x_mask;
}
EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);

A
Avi Kivity 已提交
294 295 296 297 298
static int is_cpuid_PSE36(void)
{
	return 1;
}

299 300
static int is_nx(struct kvm_vcpu *vcpu)
{
301
	return vcpu->arch.efer & EFER_NX;
302 303
}

304 305
static int is_shadow_present_pte(u64 pte)
{
306
	return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
307 308
}

M
Marcelo Tosatti 已提交
309 310 311 312 313
static int is_large_pte(u64 pte)
{
	return pte & PT_PAGE_SIZE_MASK;
}

314
static int is_rmap_spte(u64 pte)
315
{
316
	return is_shadow_present_pte(pte);
317 318
}

319 320 321 322
static int is_last_spte(u64 pte, int level)
{
	if (level == PT_PAGE_TABLE_LEVEL)
		return 1;
323
	if (is_large_pte(pte))
324 325 326 327
		return 1;
	return 0;
}

328
static pfn_t spte_to_pfn(u64 pte)
329
{
330
	return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
331 332
}

333 334 335 336 337 338 339
static gfn_t pse36_gfn_delta(u32 gpte)
{
	int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;

	return (gpte & PT32_DIR_PSE36_MASK) << shift;
}

340
#ifdef CONFIG_X86_64
A
Avi Kivity 已提交
341
static void __set_spte(u64 *sptep, u64 spte)
342
{
343
	*sptep = spte;
344 345
}

346
static void __update_clear_spte_fast(u64 *sptep, u64 spte)
347
{
348 349 350 351 352 353 354
	*sptep = spte;
}

static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
{
	return xchg(sptep, spte);
}
355 356 357 358 359

static u64 __get_spte_lockless(u64 *sptep)
{
	return ACCESS_ONCE(*sptep);
}
360 361 362 363 364 365

static bool __check_direct_spte_mmio_pf(u64 spte)
{
	/* It is valid if the spte is zapped. */
	return spte == 0ull;
}
366
#else
367 368 369 370 371 372 373
union split_spte {
	struct {
		u32 spte_low;
		u32 spte_high;
	};
	u64 spte;
};
374

375 376 377 378 379 380 381 382 383 384 385 386
static void count_spte_clear(u64 *sptep, u64 spte)
{
	struct kvm_mmu_page *sp =  page_header(__pa(sptep));

	if (is_shadow_present_pte(spte))
		return;

	/* Ensure the spte is completely set before we increase the count */
	smp_wmb();
	sp->clear_spte_count++;
}

387 388 389
static void __set_spte(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte;
390

391 392 393 394 395 396 397 398 399 400 401 402 403
	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	ssptep->spte_high = sspte.spte_high;

	/*
	 * If we map the spte from nonpresent to present, We should store
	 * the high bits firstly, then set present bit, so cpu can not
	 * fetch this spte while we are setting the spte.
	 */
	smp_wmb();

	ssptep->spte_low = sspte.spte_low;
404 405
}

406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
static void __update_clear_spte_fast(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte;

	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	ssptep->spte_low = sspte.spte_low;

	/*
	 * If we map the spte from present to nonpresent, we should clear
	 * present bit firstly to avoid vcpu fetch the old high bits.
	 */
	smp_wmb();

	ssptep->spte_high = sspte.spte_high;
422
	count_spte_clear(sptep, spte);
423 424 425 426 427 428 429 430 431 432 433
}

static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte, orig;

	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	/* xchg acts as a barrier before the setting of the high bits */
	orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
434 435
	orig.spte_high = ssptep->spte_high;
	ssptep->spte_high = sspte.spte_high;
436
	count_spte_clear(sptep, spte);
437 438 439

	return orig.spte;
}
440 441 442 443

/*
 * The idea using the light way get the spte on x86_32 guest is from
 * gup_get_pte(arch/x86/mm/gup.c).
444 445 446 447 448 449 450 451 452 453 454 455 456 457
 *
 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
 * coalesces them and we are running out of the MMU lock.  Therefore
 * we need to protect against in-progress updates of the spte.
 *
 * Reading the spte while an update is in progress may get the old value
 * for the high part of the spte.  The race is fine for a present->non-present
 * change (because the high part of the spte is ignored for non-present spte),
 * but for a present->present change we must reread the spte.
 *
 * All such changes are done in two steps (present->non-present and
 * non-present->present), hence it is enough to count the number of
 * present->non-present updates: if it changed while reading the spte,
 * we might have hit the race.  This is done using clear_spte_count.
458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
 */
static u64 __get_spte_lockless(u64 *sptep)
{
	struct kvm_mmu_page *sp =  page_header(__pa(sptep));
	union split_spte spte, *orig = (union split_spte *)sptep;
	int count;

retry:
	count = sp->clear_spte_count;
	smp_rmb();

	spte.spte_low = orig->spte_low;
	smp_rmb();

	spte.spte_high = orig->spte_high;
	smp_rmb();

	if (unlikely(spte.spte_low != orig->spte_low ||
	      count != sp->clear_spte_count))
		goto retry;

	return spte.spte;
}
481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497

static bool __check_direct_spte_mmio_pf(u64 spte)
{
	union split_spte sspte = (union split_spte)spte;
	u32 high_mmio_mask = shadow_mmio_mask >> 32;

	/* It is valid if the spte is zapped. */
	if (spte == 0ull)
		return true;

	/* It is valid if the spte is being zapped. */
	if (sspte.spte_low == 0ull &&
	    (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
		return true;

	return false;
}
498 499
#endif

500 501
static bool spte_is_locklessly_modifiable(u64 spte)
{
502 503
	return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
		(SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
504 505
}

506 507
static bool spte_has_volatile_bits(u64 spte)
{
508 509 510 511 512 513 514 515 516
	/*
	 * Always atomicly update spte if it can be updated
	 * out of mmu-lock, it can ensure dirty bit is not lost,
	 * also, it can help us to get a stable is_writable_pte()
	 * to ensure tlb flush is not missed.
	 */
	if (spte_is_locklessly_modifiable(spte))
		return true;

517 518 519 520 521 522
	if (!shadow_accessed_mask)
		return false;

	if (!is_shadow_present_pte(spte))
		return false;

523 524
	if ((spte & shadow_accessed_mask) &&
	      (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
525 526 527 528 529
		return false;

	return true;
}

530 531 532 533 534
static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
{
	return (old_spte & bit_mask) && !(new_spte & bit_mask);
}

535 536 537 538 539 540 541 542 543 544 545 546 547 548
/* Rules for using mmu_spte_set:
 * Set the sptep from nonpresent to present.
 * Note: the sptep being assigned *must* be either not present
 * or in a state where the hardware will not attempt to update
 * the spte.
 */
static void mmu_spte_set(u64 *sptep, u64 new_spte)
{
	WARN_ON(is_shadow_present_pte(*sptep));
	__set_spte(sptep, new_spte);
}

/* Rules for using mmu_spte_update:
 * Update the state bits, it means the mapped pfn is not changged.
549 550 551 552 553 554
 *
 * Whenever we overwrite a writable spte with a read-only one we
 * should flush remote TLBs. Otherwise rmap_write_protect
 * will find a read-only spte, even though the writable spte
 * might be cached on a CPU's TLB, the return value indicates this
 * case.
555
 */
556
static bool mmu_spte_update(u64 *sptep, u64 new_spte)
557
{
558
	u64 old_spte = *sptep;
559
	bool ret = false;
560 561

	WARN_ON(!is_rmap_spte(new_spte));
562

563 564 565 566
	if (!is_shadow_present_pte(old_spte)) {
		mmu_spte_set(sptep, new_spte);
		return ret;
	}
567

568
	if (!spte_has_volatile_bits(old_spte))
569
		__update_clear_spte_fast(sptep, new_spte);
570
	else
571
		old_spte = __update_clear_spte_slow(sptep, new_spte);
572

573 574 575 576 577
	/*
	 * For the spte updated out of mmu-lock is safe, since
	 * we always atomicly update it, see the comments in
	 * spte_has_volatile_bits().
	 */
578 579
	if (spte_is_locklessly_modifiable(old_spte) &&
	      !is_writable_pte(new_spte))
580 581
		ret = true;

582
	if (!shadow_accessed_mask)
583
		return ret;
584 585 586 587 588

	if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
		kvm_set_pfn_accessed(spte_to_pfn(old_spte));
	if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
		kvm_set_pfn_dirty(spte_to_pfn(old_spte));
589 590

	return ret;
591 592
}

593 594 595 596 597 598 599 600 601 602 603
/*
 * Rules for using mmu_spte_clear_track_bits:
 * It sets the sptep from present to nonpresent, and track the
 * state bits, it is used to clear the last level sptep.
 */
static int mmu_spte_clear_track_bits(u64 *sptep)
{
	pfn_t pfn;
	u64 old_spte = *sptep;

	if (!spte_has_volatile_bits(old_spte))
604
		__update_clear_spte_fast(sptep, 0ull);
605
	else
606
		old_spte = __update_clear_spte_slow(sptep, 0ull);
607 608 609 610 611

	if (!is_rmap_spte(old_spte))
		return 0;

	pfn = spte_to_pfn(old_spte);
612 613 614 615 616 617

	/*
	 * KVM does not hold the refcount of the page used by
	 * kvm mmu, before reclaiming the page, we should
	 * unmap it from mmu first.
	 */
618
	WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
619

620 621 622 623 624 625 626 627 628 629 630 631 632 633
	if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
		kvm_set_pfn_accessed(pfn);
	if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
		kvm_set_pfn_dirty(pfn);
	return 1;
}

/*
 * Rules for using mmu_spte_clear_no_track:
 * Directly clear spte without caring the state bits of sptep,
 * it is used to set the upper level spte.
 */
static void mmu_spte_clear_no_track(u64 *sptep)
{
634
	__update_clear_spte_fast(sptep, 0ull);
635 636
}

637 638 639 640 641 642 643
static u64 mmu_spte_get_lockless(u64 *sptep)
{
	return __get_spte_lockless(sptep);
}

static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
{
644 645 646 647 648 649 650 651 652 653 654
	/*
	 * Prevent page table teardown by making any free-er wait during
	 * kvm_flush_remote_tlbs() IPI to all active vcpus.
	 */
	local_irq_disable();
	vcpu->mode = READING_SHADOW_PAGE_TABLES;
	/*
	 * Make sure a following spte read is not reordered ahead of the write
	 * to vcpu->mode.
	 */
	smp_mb();
655 656 657 658
}

static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
{
659 660 661 662 663 664 665 666
	/*
	 * Make sure the write to vcpu->mode is not reordered in front of
	 * reads to sptes.  If it does, kvm_commit_zap_page() can see us
	 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
	 */
	smp_mb();
	vcpu->mode = OUTSIDE_GUEST_MODE;
	local_irq_enable();
667 668
}

669
static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
670
				  struct kmem_cache *base_cache, int min)
671 672 673 674
{
	void *obj;

	if (cache->nobjs >= min)
675
		return 0;
676
	while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
677
		obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
678
		if (!obj)
679
			return -ENOMEM;
680 681
		cache->objects[cache->nobjs++] = obj;
	}
682
	return 0;
683 684
}

685 686 687 688 689
static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
{
	return cache->nobjs;
}

690 691
static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
				  struct kmem_cache *cache)
692 693
{
	while (mc->nobjs)
694
		kmem_cache_free(cache, mc->objects[--mc->nobjs]);
695 696
}

A
Avi Kivity 已提交
697
static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
698
				       int min)
A
Avi Kivity 已提交
699
{
700
	void *page;
A
Avi Kivity 已提交
701 702 703 704

	if (cache->nobjs >= min)
		return 0;
	while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
705
		page = (void *)__get_free_page(GFP_KERNEL);
A
Avi Kivity 已提交
706 707
		if (!page)
			return -ENOMEM;
708
		cache->objects[cache->nobjs++] = page;
A
Avi Kivity 已提交
709 710 711 712 713 714 715
	}
	return 0;
}

static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
{
	while (mc->nobjs)
716
		free_page((unsigned long)mc->objects[--mc->nobjs]);
A
Avi Kivity 已提交
717 718
}

719
static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
720
{
721 722
	int r;

723
	r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
724
				   pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
725 726
	if (r)
		goto out;
727
	r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
728 729
	if (r)
		goto out;
730
	r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
731
				   mmu_page_header_cache, 4);
732 733
out:
	return r;
734 735 736 737
}

static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
{
738 739
	mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
				pte_list_desc_cache);
740
	mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
741 742
	mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
				mmu_page_header_cache);
743 744
}

745
static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
746 747 748 749 750 751 752 753
{
	void *p;

	BUG_ON(!mc->nobjs);
	p = mc->objects[--mc->nobjs];
	return p;
}

754
static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
755
{
756
	return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
757 758
}

759
static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
760
{
761
	kmem_cache_free(pte_list_desc_cache, pte_list_desc);
762 763
}

764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779
static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
{
	if (!sp->role.direct)
		return sp->gfns[index];

	return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
}

static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
{
	if (sp->role.direct)
		BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
	else
		sp->gfns[index] = gfn;
}

M
Marcelo Tosatti 已提交
780
/*
781 782
 * Return the pointer to the large page information for a given gfn,
 * handling slots that are not large page aligned.
M
Marcelo Tosatti 已提交
783
 */
784 785 786
static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
					      struct kvm_memory_slot *slot,
					      int level)
M
Marcelo Tosatti 已提交
787 788 789
{
	unsigned long idx;

790
	idx = gfn_to_index(gfn, slot->base_gfn, level);
791
	return &slot->arch.lpage_info[level - 2][idx];
M
Marcelo Tosatti 已提交
792 793 794 795
}

static void account_shadowed(struct kvm *kvm, gfn_t gfn)
{
796
	struct kvm_memory_slot *slot;
797
	struct kvm_lpage_info *linfo;
798
	int i;
M
Marcelo Tosatti 已提交
799

A
Avi Kivity 已提交
800
	slot = gfn_to_memslot(kvm, gfn);
801 802
	for (i = PT_DIRECTORY_LEVEL;
	     i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
803 804
		linfo = lpage_info_slot(gfn, slot, i);
		linfo->write_count += 1;
805
	}
806
	kvm->arch.indirect_shadow_pages++;
M
Marcelo Tosatti 已提交
807 808 809 810
}

static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
{
811
	struct kvm_memory_slot *slot;
812
	struct kvm_lpage_info *linfo;
813
	int i;
M
Marcelo Tosatti 已提交
814

A
Avi Kivity 已提交
815
	slot = gfn_to_memslot(kvm, gfn);
816 817
	for (i = PT_DIRECTORY_LEVEL;
	     i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
818 819 820
		linfo = lpage_info_slot(gfn, slot, i);
		linfo->write_count -= 1;
		WARN_ON(linfo->write_count < 0);
821
	}
822
	kvm->arch.indirect_shadow_pages--;
M
Marcelo Tosatti 已提交
823 824
}

825 826 827
static int has_wrprotected_page(struct kvm *kvm,
				gfn_t gfn,
				int level)
M
Marcelo Tosatti 已提交
828
{
829
	struct kvm_memory_slot *slot;
830
	struct kvm_lpage_info *linfo;
M
Marcelo Tosatti 已提交
831

A
Avi Kivity 已提交
832
	slot = gfn_to_memslot(kvm, gfn);
M
Marcelo Tosatti 已提交
833
	if (slot) {
834 835
		linfo = lpage_info_slot(gfn, slot, level);
		return linfo->write_count;
M
Marcelo Tosatti 已提交
836 837 838 839 840
	}

	return 1;
}

841
static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
M
Marcelo Tosatti 已提交
842
{
J
Joerg Roedel 已提交
843
	unsigned long page_size;
844
	int i, ret = 0;
M
Marcelo Tosatti 已提交
845

J
Joerg Roedel 已提交
846
	page_size = kvm_host_page_size(kvm, gfn);
M
Marcelo Tosatti 已提交
847

848 849 850 851 852 853 854 855
	for (i = PT_PAGE_TABLE_LEVEL;
	     i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
		if (page_size >= KVM_HPAGE_SIZE(i))
			ret = i;
		else
			break;
	}

856
	return ret;
M
Marcelo Tosatti 已提交
857 858
}

859 860 861
static struct kvm_memory_slot *
gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
			    bool no_dirty_log)
M
Marcelo Tosatti 已提交
862 863
{
	struct kvm_memory_slot *slot;
864 865 866 867 868 869 870 871 872 873 874

	slot = gfn_to_memslot(vcpu->kvm, gfn);
	if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
	      (no_dirty_log && slot->dirty_bitmap))
		slot = NULL;

	return slot;
}

static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
{
875
	return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
876 877 878 879 880
}

static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
{
	int host_level, level, max_level;
M
Marcelo Tosatti 已提交
881

882 883 884 885 886
	host_level = host_mapping_level(vcpu->kvm, large_gfn);

	if (host_level == PT_PAGE_TABLE_LEVEL)
		return host_level;

X
Xiao Guangrong 已提交
887
	max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
888 889

	for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
890 891 892 893
		if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
			break;

	return level - 1;
M
Marcelo Tosatti 已提交
894 895
}

896
/*
897
 * Pte mapping structures:
898
 *
899
 * If pte_list bit zero is zero, then pte_list point to the spte.
900
 *
901 902
 * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
 * pte_list_desc containing more mappings.
903
 *
904
 * Returns the number of pte entries before the spte was added or zero if
905 906
 * the spte was not added.
 *
907
 */
908 909
static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
			unsigned long *pte_list)
910
{
911
	struct pte_list_desc *desc;
912
	int i, count = 0;
913

914 915 916 917 918 919 920
	if (!*pte_list) {
		rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
		*pte_list = (unsigned long)spte;
	} else if (!(*pte_list & 1)) {
		rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
		desc = mmu_alloc_pte_list_desc(vcpu);
		desc->sptes[0] = (u64 *)*pte_list;
A
Avi Kivity 已提交
921
		desc->sptes[1] = spte;
922
		*pte_list = (unsigned long)desc | 1;
923
		++count;
924
	} else {
925 926 927
		rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
		desc = (struct pte_list_desc *)(*pte_list & ~1ul);
		while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
928
			desc = desc->more;
929
			count += PTE_LIST_EXT;
930
		}
931 932
		if (desc->sptes[PTE_LIST_EXT-1]) {
			desc->more = mmu_alloc_pte_list_desc(vcpu);
933 934
			desc = desc->more;
		}
A
Avi Kivity 已提交
935
		for (i = 0; desc->sptes[i]; ++i)
936
			++count;
A
Avi Kivity 已提交
937
		desc->sptes[i] = spte;
938
	}
939
	return count;
940 941
}

942 943 944
static void
pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
			   int i, struct pte_list_desc *prev_desc)
945 946 947
{
	int j;

948
	for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
949
		;
A
Avi Kivity 已提交
950 951
	desc->sptes[i] = desc->sptes[j];
	desc->sptes[j] = NULL;
952 953 954
	if (j != 0)
		return;
	if (!prev_desc && !desc->more)
955
		*pte_list = (unsigned long)desc->sptes[0];
956 957 958 959
	else
		if (prev_desc)
			prev_desc->more = desc->more;
		else
960 961
			*pte_list = (unsigned long)desc->more | 1;
	mmu_free_pte_list_desc(desc);
962 963
}

964
static void pte_list_remove(u64 *spte, unsigned long *pte_list)
965
{
966 967
	struct pte_list_desc *desc;
	struct pte_list_desc *prev_desc;
968 969
	int i;

970 971
	if (!*pte_list) {
		printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
972
		BUG();
973 974 975 976
	} else if (!(*pte_list & 1)) {
		rmap_printk("pte_list_remove:  %p 1->0\n", spte);
		if ((u64 *)*pte_list != spte) {
			printk(KERN_ERR "pte_list_remove:  %p 1->BUG\n", spte);
977 978
			BUG();
		}
979
		*pte_list = 0;
980
	} else {
981 982
		rmap_printk("pte_list_remove:  %p many->many\n", spte);
		desc = (struct pte_list_desc *)(*pte_list & ~1ul);
983 984
		prev_desc = NULL;
		while (desc) {
985
			for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
A
Avi Kivity 已提交
986
				if (desc->sptes[i] == spte) {
987
					pte_list_desc_remove_entry(pte_list,
988
							       desc, i,
989 990 991 992 993 994
							       prev_desc);
					return;
				}
			prev_desc = desc;
			desc = desc->more;
		}
995
		pr_err("pte_list_remove: %p many->many\n", spte);
996 997 998 999
		BUG();
	}
}

1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
typedef void (*pte_list_walk_fn) (u64 *spte);
static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
{
	struct pte_list_desc *desc;
	int i;

	if (!*pte_list)
		return;

	if (!(*pte_list & 1))
		return fn((u64 *)*pte_list);

	desc = (struct pte_list_desc *)(*pte_list & ~1ul);
	while (desc) {
		for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
			fn(desc->sptes[i]);
		desc = desc->more;
	}
}

1020
static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
1021
				    struct kvm_memory_slot *slot)
1022
{
1023
	unsigned long idx;
1024

1025
	idx = gfn_to_index(gfn, slot->base_gfn, level);
1026
	return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
1027 1028
}

1029 1030 1031 1032 1033 1034 1035 1036
/*
 * Take gfn and return the reverse mapping to it.
 */
static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
{
	struct kvm_memory_slot *slot;

	slot = gfn_to_memslot(kvm, gfn);
1037
	return __gfn_to_rmap(gfn, level, slot);
1038 1039
}

1040 1041 1042 1043 1044 1045 1046 1047
static bool rmap_can_add(struct kvm_vcpu *vcpu)
{
	struct kvm_mmu_memory_cache *cache;

	cache = &vcpu->arch.mmu_pte_list_desc_cache;
	return mmu_memory_cache_free_objects(cache);
}

1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
{
	struct kvm_mmu_page *sp;
	unsigned long *rmapp;

	sp = page_header(__pa(spte));
	kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
	rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
	return pte_list_add(vcpu, spte, rmapp);
}

static void rmap_remove(struct kvm *kvm, u64 *spte)
{
	struct kvm_mmu_page *sp;
	gfn_t gfn;
	unsigned long *rmapp;

	sp = page_header(__pa(spte));
	gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
	rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
	pte_list_remove(spte, rmapp);
}

1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
/*
 * Used by the following functions to iterate through the sptes linked by a
 * rmap.  All fields are private and not assumed to be used outside.
 */
struct rmap_iterator {
	/* private fields */
	struct pte_list_desc *desc;	/* holds the sptep if not NULL */
	int pos;			/* index of the sptep */
};

/*
 * Iteration must be started by this function.  This should also be used after
 * removing/dropping sptes from the rmap link because in such cases the
 * information in the itererator may not be valid.
 *
 * Returns sptep if found, NULL otherwise.
 */
static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
{
	if (!rmap)
		return NULL;

	if (!(rmap & 1)) {
		iter->desc = NULL;
		return (u64 *)rmap;
	}

	iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
	iter->pos = 0;
	return iter->desc->sptes[iter->pos];
}

/*
 * Must be used with a valid iterator: e.g. after rmap_get_first().
 *
 * Returns sptep if found, NULL otherwise.
 */
static u64 *rmap_get_next(struct rmap_iterator *iter)
{
	if (iter->desc) {
		if (iter->pos < PTE_LIST_EXT - 1) {
			u64 *sptep;

			++iter->pos;
			sptep = iter->desc->sptes[iter->pos];
			if (sptep)
				return sptep;
		}

		iter->desc = iter->desc->more;

		if (iter->desc) {
			iter->pos = 0;
			/* desc->sptes[0] cannot be NULL */
			return iter->desc->sptes[iter->pos];
		}
	}

	return NULL;
}

1132
static void drop_spte(struct kvm *kvm, u64 *sptep)
1133
{
1134
	if (mmu_spte_clear_track_bits(sptep))
1135
		rmap_remove(kvm, sptep);
A
Avi Kivity 已提交
1136 1137
}

1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158

static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
{
	if (is_large_pte(*sptep)) {
		WARN_ON(page_header(__pa(sptep))->role.level ==
			PT_PAGE_TABLE_LEVEL);
		drop_spte(kvm, sptep);
		--kvm->stat.lpages;
		return true;
	}

	return false;
}

static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
{
	if (__drop_large_spte(vcpu->kvm, sptep))
		kvm_flush_remote_tlbs(vcpu->kvm);
}

/*
1159
 * Write-protect on the specified @sptep, @pt_protect indicates whether
1160
 * spte write-protection is caused by protecting shadow page table.
1161
 *
T
Tiejun Chen 已提交
1162
 * Note: write protection is difference between dirty logging and spte
1163 1164 1165 1166 1167
 * protection:
 * - for dirty logging, the spte can be set to writable at anytime if
 *   its dirty bitmap is properly set.
 * - for spte protection, the spte can be writable only after unsync-ing
 *   shadow page.
1168
 *
1169
 * Return true if tlb need be flushed.
1170
 */
1171
static bool spte_write_protect(struct kvm *kvm, u64 *sptep, bool pt_protect)
1172 1173 1174
{
	u64 spte = *sptep;

1175 1176
	if (!is_writable_pte(spte) &&
	      !(pt_protect && spte_is_locklessly_modifiable(spte)))
1177 1178 1179 1180
		return false;

	rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);

1181 1182
	if (pt_protect)
		spte &= ~SPTE_MMU_WRITEABLE;
1183
	spte = spte & ~PT_WRITABLE_MASK;
1184

1185
	return mmu_spte_update(sptep, spte);
1186 1187
}

1188
static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp,
1189
				 bool pt_protect)
1190
{
1191 1192
	u64 *sptep;
	struct rmap_iterator iter;
1193
	bool flush = false;
1194

1195 1196
	for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
		BUG_ON(!(*sptep & PT_PRESENT_MASK));
1197

1198
		flush |= spte_write_protect(kvm, sptep, pt_protect);
1199
		sptep = rmap_get_next(&iter);
1200
	}
1201

1202
	return flush;
1203 1204
}

1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217
/**
 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
 * @kvm: kvm instance
 * @slot: slot to protect
 * @gfn_offset: start of the BITS_PER_LONG pages we care about
 * @mask: indicates which pages we should protect
 *
 * Used when we do not need to care about huge page mappings: e.g. during dirty
 * logging we do not have any such mappings.
 */
void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
				     struct kvm_memory_slot *slot,
				     gfn_t gfn_offset, unsigned long mask)
1218 1219 1220
{
	unsigned long *rmapp;

1221
	while (mask) {
1222 1223
		rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
				      PT_PAGE_TABLE_LEVEL, slot);
1224
		__rmap_write_protect(kvm, rmapp, false);
M
Marcelo Tosatti 已提交
1225

1226 1227 1228
		/* clear the first set bit */
		mask &= mask - 1;
	}
1229 1230
}

1231
static bool rmap_write_protect(struct kvm *kvm, u64 gfn)
1232 1233
{
	struct kvm_memory_slot *slot;
1234 1235
	unsigned long *rmapp;
	int i;
1236
	bool write_protected = false;
1237 1238

	slot = gfn_to_memslot(kvm, gfn);
1239 1240 1241 1242

	for (i = PT_PAGE_TABLE_LEVEL;
	     i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
		rmapp = __gfn_to_rmap(gfn, i, slot);
1243
		write_protected |= __rmap_write_protect(kvm, rmapp, true);
1244 1245 1246
	}

	return write_protected;
1247 1248
}

F
Frederik Deweerdt 已提交
1249
static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
1250 1251
			   struct kvm_memory_slot *slot, gfn_t gfn, int level,
			   unsigned long data)
1252
{
1253 1254
	u64 *sptep;
	struct rmap_iterator iter;
1255 1256
	int need_tlb_flush = 0;

1257 1258
	while ((sptep = rmap_get_first(*rmapp, &iter))) {
		BUG_ON(!(*sptep & PT_PRESENT_MASK));
1259 1260
		rmap_printk("kvm_rmap_unmap_hva: spte %p %llx gfn %llx (%d)\n",
			     sptep, *sptep, gfn, level);
1261 1262

		drop_spte(kvm, sptep);
1263 1264
		need_tlb_flush = 1;
	}
1265

1266 1267 1268
	return need_tlb_flush;
}

F
Frederik Deweerdt 已提交
1269
static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
1270 1271
			     struct kvm_memory_slot *slot, gfn_t gfn, int level,
			     unsigned long data)
1272
{
1273 1274
	u64 *sptep;
	struct rmap_iterator iter;
1275
	int need_flush = 0;
1276
	u64 new_spte;
1277 1278 1279 1280 1281
	pte_t *ptep = (pte_t *)data;
	pfn_t new_pfn;

	WARN_ON(pte_huge(*ptep));
	new_pfn = pte_pfn(*ptep);
1282 1283 1284

	for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
		BUG_ON(!is_shadow_present_pte(*sptep));
1285 1286
		rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
			     sptep, *sptep, gfn, level);
1287

1288
		need_flush = 1;
1289

1290
		if (pte_write(*ptep)) {
1291 1292
			drop_spte(kvm, sptep);
			sptep = rmap_get_first(*rmapp, &iter);
1293
		} else {
1294
			new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1295 1296 1297 1298
			new_spte |= (u64)new_pfn << PAGE_SHIFT;

			new_spte &= ~PT_WRITABLE_MASK;
			new_spte &= ~SPTE_HOST_WRITEABLE;
1299
			new_spte &= ~shadow_accessed_mask;
1300 1301 1302 1303

			mmu_spte_clear_track_bits(sptep);
			mmu_spte_set(sptep, new_spte);
			sptep = rmap_get_next(&iter);
1304 1305
		}
	}
1306

1307 1308 1309 1310 1311 1312
	if (need_flush)
		kvm_flush_remote_tlbs(kvm);

	return 0;
}

1313 1314 1315 1316 1317 1318
static int kvm_handle_hva_range(struct kvm *kvm,
				unsigned long start,
				unsigned long end,
				unsigned long data,
				int (*handler)(struct kvm *kvm,
					       unsigned long *rmapp,
1319
					       struct kvm_memory_slot *slot,
1320 1321
					       gfn_t gfn,
					       int level,
1322
					       unsigned long data))
1323
{
1324
	int j;
1325
	int ret = 0;
1326
	struct kvm_memslots *slots;
1327
	struct kvm_memory_slot *memslot;
1328

1329
	slots = kvm_memslots(kvm);
1330

1331
	kvm_for_each_memslot(memslot, slots) {
1332
		unsigned long hva_start, hva_end;
1333
		gfn_t gfn_start, gfn_end;
1334

1335 1336 1337 1338 1339 1340 1341
		hva_start = max(start, memslot->userspace_addr);
		hva_end = min(end, memslot->userspace_addr +
					(memslot->npages << PAGE_SHIFT));
		if (hva_start >= hva_end)
			continue;
		/*
		 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1342
		 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1343
		 */
1344
		gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1345
		gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1346

1347 1348 1349 1350
		for (j = PT_PAGE_TABLE_LEVEL;
		     j < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++j) {
			unsigned long idx, idx_end;
			unsigned long *rmapp;
1351
			gfn_t gfn = gfn_start;
1352

1353 1354 1355 1356 1357 1358
			/*
			 * {idx(page_j) | page_j intersects with
			 *  [hva_start, hva_end)} = {idx, idx+1, ..., idx_end}.
			 */
			idx = gfn_to_index(gfn_start, memslot->base_gfn, j);
			idx_end = gfn_to_index(gfn_end - 1, memslot->base_gfn, j);
1359

1360
			rmapp = __gfn_to_rmap(gfn_start, j, memslot);
1361

1362 1363 1364 1365
			for (; idx <= idx_end;
			       ++idx, gfn += (1UL << KVM_HPAGE_GFN_SHIFT(j)))
				ret |= handler(kvm, rmapp++, memslot,
					       gfn, j, data);
1366 1367 1368
		}
	}

1369
	return ret;
1370 1371
}

1372 1373 1374
static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
			  unsigned long data,
			  int (*handler)(struct kvm *kvm, unsigned long *rmapp,
1375
					 struct kvm_memory_slot *slot,
1376
					 gfn_t gfn, int level,
1377 1378 1379
					 unsigned long data))
{
	return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1380 1381 1382 1383
}

int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
{
1384 1385 1386
	return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
}

1387 1388 1389 1390 1391
int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
{
	return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
}

1392 1393
void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
{
F
Frederik Deweerdt 已提交
1394
	kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1395 1396
}

F
Frederik Deweerdt 已提交
1397
static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1398 1399
			 struct kvm_memory_slot *slot, gfn_t gfn, int level,
			 unsigned long data)
1400
{
1401
	u64 *sptep;
1402
	struct rmap_iterator uninitialized_var(iter);
1403 1404
	int young = 0;

A
Andres Lagar-Cavilla 已提交
1405
	BUG_ON(!shadow_accessed_mask);
1406

1407 1408
	for (sptep = rmap_get_first(*rmapp, &iter); sptep;
	     sptep = rmap_get_next(&iter)) {
1409
		BUG_ON(!is_shadow_present_pte(*sptep));
1410

1411
		if (*sptep & shadow_accessed_mask) {
1412
			young = 1;
1413 1414
			clear_bit((ffs(shadow_accessed_mask) - 1),
				 (unsigned long *)sptep);
1415 1416
		}
	}
1417
	trace_kvm_age_page(gfn, level, slot, young);
1418 1419 1420
	return young;
}

A
Andrea Arcangeli 已提交
1421
static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1422 1423
			      struct kvm_memory_slot *slot, gfn_t gfn,
			      int level, unsigned long data)
A
Andrea Arcangeli 已提交
1424
{
1425 1426
	u64 *sptep;
	struct rmap_iterator iter;
A
Andrea Arcangeli 已提交
1427 1428 1429 1430 1431 1432 1433 1434 1435 1436
	int young = 0;

	/*
	 * If there's no access bit in the secondary pte set by the
	 * hardware it's up to gup-fast/gup to set the access bit in
	 * the primary pte or in the page structure.
	 */
	if (!shadow_accessed_mask)
		goto out;

1437 1438
	for (sptep = rmap_get_first(*rmapp, &iter); sptep;
	     sptep = rmap_get_next(&iter)) {
1439
		BUG_ON(!is_shadow_present_pte(*sptep));
1440

1441
		if (*sptep & shadow_accessed_mask) {
A
Andrea Arcangeli 已提交
1442 1443 1444 1445 1446 1447 1448 1449
			young = 1;
			break;
		}
	}
out:
	return young;
}

1450 1451
#define RMAP_RECYCLE_THRESHOLD 1000

1452
static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1453 1454
{
	unsigned long *rmapp;
1455 1456 1457
	struct kvm_mmu_page *sp;

	sp = page_header(__pa(spte));
1458

1459
	rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1460

1461
	kvm_unmap_rmapp(vcpu->kvm, rmapp, NULL, gfn, sp->role.level, 0);
1462 1463 1464
	kvm_flush_remote_tlbs(vcpu->kvm);
}

A
Andres Lagar-Cavilla 已提交
1465
int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1466
{
A
Andres Lagar-Cavilla 已提交
1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
	/*
	 * In case of absence of EPT Access and Dirty Bits supports,
	 * emulate the accessed bit for EPT, by checking if this page has
	 * an EPT mapping, and clearing it if it does. On the next access,
	 * a new EPT mapping will be established.
	 * This has some overhead, but not as much as the cost of swapping
	 * out actively used pages or breaking up actively used hugepages.
	 */
	if (!shadow_accessed_mask) {
		/*
		 * We are holding the kvm->mmu_lock, and we are blowing up
		 * shadow PTEs. MMU notifier consumers need to be kept at bay.
		 * This is correct as long as we don't decouple the mmu_lock
		 * protected regions (like invalidate_range_start|end does).
		 */
		kvm->mmu_notifier_seq++;
		return kvm_handle_hva_range(kvm, start, end, 0,
					    kvm_unmap_rmapp);
	}

	return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
1488 1489
}

A
Andrea Arcangeli 已提交
1490 1491 1492 1493 1494
int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
{
	return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
}

1495
#ifdef MMU_DEBUG
1496
static int is_empty_shadow_page(u64 *spt)
A
Avi Kivity 已提交
1497
{
1498 1499 1500
	u64 *pos;
	u64 *end;

1501
	for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1502
		if (is_shadow_present_pte(*pos)) {
1503
			printk(KERN_ERR "%s: %p %llx\n", __func__,
1504
			       pos, *pos);
A
Avi Kivity 已提交
1505
			return 0;
1506
		}
A
Avi Kivity 已提交
1507 1508
	return 1;
}
1509
#endif
A
Avi Kivity 已提交
1510

1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522
/*
 * This value is the sum of all of the kvm instances's
 * kvm->arch.n_used_mmu_pages values.  We need a global,
 * aggregate version in order to make the slab shrinker
 * faster
 */
static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
{
	kvm->arch.n_used_mmu_pages += nr;
	percpu_counter_add(&kvm_total_used_mmu_pages, nr);
}

1523
static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1524
{
1525
	MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1526
	hlist_del(&sp->hash_link);
1527 1528
	list_del(&sp->link);
	free_page((unsigned long)sp->spt);
1529 1530
	if (!sp->role.direct)
		free_page((unsigned long)sp->gfns);
1531
	kmem_cache_free(mmu_page_header_cache, sp);
1532 1533
}

1534 1535
static unsigned kvm_page_table_hashfn(gfn_t gfn)
{
1536
	return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
1537 1538
}

1539
static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1540
				    struct kvm_mmu_page *sp, u64 *parent_pte)
1541 1542 1543 1544
{
	if (!parent_pte)
		return;

1545
	pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1546 1547
}

1548
static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1549 1550
				       u64 *parent_pte)
{
1551
	pte_list_remove(parent_pte, &sp->parent_ptes);
1552 1553
}

1554 1555 1556 1557
static void drop_parent_pte(struct kvm_mmu_page *sp,
			    u64 *parent_pte)
{
	mmu_page_remove_parent_pte(sp, parent_pte);
1558
	mmu_spte_clear_no_track(parent_pte);
1559 1560
}

1561 1562
static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
					       u64 *parent_pte, int direct)
M
Marcelo Tosatti 已提交
1563
{
1564
	struct kvm_mmu_page *sp;
1565

1566 1567
	sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
	sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1568
	if (!direct)
1569
		sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1570
	set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1571 1572 1573 1574 1575 1576

	/*
	 * The active_mmu_pages list is the FIFO list, do not move the
	 * page until it is zapped. kvm_zap_obsolete_pages depends on
	 * this feature. See the comments in kvm_zap_obsolete_pages().
	 */
1577 1578 1579 1580 1581
	list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
	sp->parent_ptes = 0;
	mmu_page_add_parent_pte(vcpu, sp, parent_pte);
	kvm_mod_used_mmu_pages(vcpu->kvm, +1);
	return sp;
M
Marcelo Tosatti 已提交
1582 1583
}

1584
static void mark_unsync(u64 *spte);
1585
static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1586
{
1587
	pte_list_walk(&sp->parent_ptes, mark_unsync);
1588 1589
}

1590
static void mark_unsync(u64 *spte)
1591
{
1592
	struct kvm_mmu_page *sp;
1593
	unsigned int index;
1594

1595
	sp = page_header(__pa(spte));
1596 1597
	index = spte - sp->spt;
	if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1598
		return;
1599
	if (sp->unsync_children++)
1600
		return;
1601
	kvm_mmu_mark_parents_unsync(sp);
1602 1603
}

1604
static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1605
			       struct kvm_mmu_page *sp)
1606 1607 1608 1609
{
	return 1;
}

M
Marcelo Tosatti 已提交
1610 1611 1612 1613
static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
{
}

1614 1615
static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
				 struct kvm_mmu_page *sp, u64 *spte,
1616
				 const void *pte)
1617 1618 1619 1620
{
	WARN_ON(1);
}

1621 1622 1623 1624 1625 1626 1627 1628 1629 1630
#define KVM_PAGE_ARRAY_NR 16

struct kvm_mmu_pages {
	struct mmu_page_and_offset {
		struct kvm_mmu_page *sp;
		unsigned int idx;
	} page[KVM_PAGE_ARRAY_NR];
	unsigned int nr;
};

1631 1632
static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
			 int idx)
1633
{
1634
	int i;
1635

1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650
	if (sp->unsync)
		for (i=0; i < pvec->nr; i++)
			if (pvec->page[i].sp == sp)
				return 0;

	pvec->page[pvec->nr].sp = sp;
	pvec->page[pvec->nr].idx = idx;
	pvec->nr++;
	return (pvec->nr == KVM_PAGE_ARRAY_NR);
}

static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
			   struct kvm_mmu_pages *pvec)
{
	int i, ret, nr_unsync_leaf = 0;
1651

1652
	for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1653
		struct kvm_mmu_page *child;
1654 1655
		u64 ent = sp->spt[i];

1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684
		if (!is_shadow_present_pte(ent) || is_large_pte(ent))
			goto clear_child_bitmap;

		child = page_header(ent & PT64_BASE_ADDR_MASK);

		if (child->unsync_children) {
			if (mmu_pages_add(pvec, child, i))
				return -ENOSPC;

			ret = __mmu_unsync_walk(child, pvec);
			if (!ret)
				goto clear_child_bitmap;
			else if (ret > 0)
				nr_unsync_leaf += ret;
			else
				return ret;
		} else if (child->unsync) {
			nr_unsync_leaf++;
			if (mmu_pages_add(pvec, child, i))
				return -ENOSPC;
		} else
			 goto clear_child_bitmap;

		continue;

clear_child_bitmap:
		__clear_bit(i, sp->unsync_child_bitmap);
		sp->unsync_children--;
		WARN_ON((int)sp->unsync_children < 0);
1685 1686 1687
	}


1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698
	return nr_unsync_leaf;
}

static int mmu_unsync_walk(struct kvm_mmu_page *sp,
			   struct kvm_mmu_pages *pvec)
{
	if (!sp->unsync_children)
		return 0;

	mmu_pages_add(pvec, sp, 0);
	return __mmu_unsync_walk(sp, pvec);
1699 1700 1701 1702 1703
}

static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
{
	WARN_ON(!sp->unsync);
1704
	trace_kvm_mmu_sync_page(sp);
1705 1706 1707 1708
	sp->unsync = 0;
	--kvm->stat.mmu_unsync;
}

1709 1710 1711 1712
static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
				    struct list_head *invalid_list);
static void kvm_mmu_commit_zap_page(struct kvm *kvm,
				    struct list_head *invalid_list);
1713

1714 1715 1716 1717 1718 1719 1720 1721 1722 1723
/*
 * NOTE: we should pay more attention on the zapped-obsolete page
 * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
 * since it has been deleted from active_mmu_pages but still can be found
 * at hast list.
 *
 * for_each_gfn_indirect_valid_sp has skipped that kind of page and
 * kvm_mmu_get_page(), the only user of for_each_gfn_sp(), has skipped
 * all the obsolete pages.
 */
1724 1725 1726 1727 1728 1729 1730 1731
#define for_each_gfn_sp(_kvm, _sp, _gfn)				\
	hlist_for_each_entry(_sp,					\
	  &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
		if ((_sp)->gfn != (_gfn)) {} else

#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)			\
	for_each_gfn_sp(_kvm, _sp, _gfn)				\
		if ((_sp)->role.direct || (_sp)->role.invalid) {} else
1732

1733
/* @sp->gfn should be write-protected at the call site */
1734
static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1735
			   struct list_head *invalid_list, bool clear_unsync)
1736
{
1737
	if (sp->role.cr4_pae != !!is_pae(vcpu)) {
1738
		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1739 1740 1741
		return 1;
	}

1742
	if (clear_unsync)
1743 1744
		kvm_unlink_unsync_page(vcpu->kvm, sp);

1745
	if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
1746
		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1747 1748 1749
		return 1;
	}

1750
	kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1751 1752 1753
	return 0;
}

1754 1755 1756
static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
				   struct kvm_mmu_page *sp)
{
1757
	LIST_HEAD(invalid_list);
1758 1759
	int ret;

1760
	ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
1761
	if (ret)
1762 1763
		kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);

1764 1765 1766
	return ret;
}

1767 1768 1769 1770 1771 1772 1773
#ifdef CONFIG_KVM_MMU_AUDIT
#include "mmu_audit.c"
#else
static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
static void mmu_audit_disable(void) { }
#endif

1774 1775
static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
			 struct list_head *invalid_list)
1776
{
1777
	return __kvm_sync_page(vcpu, sp, invalid_list, true);
1778 1779
}

1780 1781 1782 1783
/* @gfn should be write-protected at the call site */
static void kvm_sync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn)
{
	struct kvm_mmu_page *s;
1784
	LIST_HEAD(invalid_list);
1785 1786
	bool flush = false;

1787
	for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
1788
		if (!s->unsync)
1789 1790 1791
			continue;

		WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1792
		kvm_unlink_unsync_page(vcpu->kvm, s);
1793
		if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
1794
			(vcpu->arch.mmu.sync_page(vcpu, s))) {
1795
			kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
1796 1797 1798 1799 1800
			continue;
		}
		flush = true;
	}

1801
	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1802
	if (flush)
1803
		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1804 1805
}

1806 1807 1808
struct mmu_page_path {
	struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
	unsigned int idx[PT64_ROOT_LEVEL-1];
1809 1810
};

1811 1812 1813 1814 1815 1816
#define for_each_sp(pvec, sp, parents, i)			\
		for (i = mmu_pages_next(&pvec, &parents, -1),	\
			sp = pvec.page[i].sp;			\
			i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});	\
			i = mmu_pages_next(&pvec, &parents, i))

1817 1818 1819
static int mmu_pages_next(struct kvm_mmu_pages *pvec,
			  struct mmu_page_path *parents,
			  int i)
1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837
{
	int n;

	for (n = i+1; n < pvec->nr; n++) {
		struct kvm_mmu_page *sp = pvec->page[n].sp;

		if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
			parents->idx[0] = pvec->page[n].idx;
			return n;
		}

		parents->parent[sp->role.level-2] = sp;
		parents->idx[sp->role.level-1] = pvec->page[n].idx;
	}

	return n;
}

1838
static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1839
{
1840 1841 1842 1843 1844
	struct kvm_mmu_page *sp;
	unsigned int level = 0;

	do {
		unsigned int idx = parents->idx[level];
1845

1846 1847 1848 1849 1850 1851 1852 1853 1854
		sp = parents->parent[level];
		if (!sp)
			return;

		--sp->unsync_children;
		WARN_ON((int)sp->unsync_children < 0);
		__clear_bit(idx, sp->unsync_child_bitmap);
		level++;
	} while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
1855 1856
}

1857 1858 1859
static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
			       struct mmu_page_path *parents,
			       struct kvm_mmu_pages *pvec)
1860
{
1861 1862 1863
	parents->parent[parent->role.level-1] = NULL;
	pvec->nr = 0;
}
1864

1865 1866 1867 1868 1869 1870 1871
static void mmu_sync_children(struct kvm_vcpu *vcpu,
			      struct kvm_mmu_page *parent)
{
	int i;
	struct kvm_mmu_page *sp;
	struct mmu_page_path parents;
	struct kvm_mmu_pages pages;
1872
	LIST_HEAD(invalid_list);
1873 1874 1875

	kvm_mmu_pages_init(parent, &parents, &pages);
	while (mmu_unsync_walk(parent, &pages)) {
1876
		bool protected = false;
1877 1878 1879 1880 1881 1882 1883

		for_each_sp(pages, sp, parents, i)
			protected |= rmap_write_protect(vcpu->kvm, sp->gfn);

		if (protected)
			kvm_flush_remote_tlbs(vcpu->kvm);

1884
		for_each_sp(pages, sp, parents, i) {
1885
			kvm_sync_page(vcpu, sp, &invalid_list);
1886 1887
			mmu_pages_clear_parents(&parents);
		}
1888
		kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1889
		cond_resched_lock(&vcpu->kvm->mmu_lock);
1890 1891
		kvm_mmu_pages_init(parent, &parents, &pages);
	}
1892 1893
}

1894 1895 1896 1897 1898 1899 1900 1901
static void init_shadow_page_table(struct kvm_mmu_page *sp)
{
	int i;

	for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
		sp->spt[i] = 0ull;
}

1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913
static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
{
	sp->write_flooding_count = 0;
}

static void clear_sp_write_flooding_count(u64 *spte)
{
	struct kvm_mmu_page *sp =  page_header(__pa(spte));

	__clear_sp_write_flooding_count(sp);
}

1914 1915 1916 1917 1918
static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
{
	return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
}

1919 1920 1921 1922
static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
					     gfn_t gfn,
					     gva_t gaddr,
					     unsigned level,
1923
					     int direct,
1924
					     unsigned access,
1925
					     u64 *parent_pte)
1926 1927 1928
{
	union kvm_mmu_page_role role;
	unsigned quadrant;
1929 1930
	struct kvm_mmu_page *sp;
	bool need_sync = false;
1931

1932
	role = vcpu->arch.mmu.base_role;
1933
	role.level = level;
1934
	role.direct = direct;
1935
	if (role.direct)
1936
		role.cr4_pae = 0;
1937
	role.access = access;
1938 1939
	if (!vcpu->arch.mmu.direct_map
	    && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
1940 1941 1942 1943
		quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
		quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
		role.quadrant = quadrant;
	}
1944
	for_each_gfn_sp(vcpu->kvm, sp, gfn) {
1945 1946 1947
		if (is_obsolete_sp(vcpu->kvm, sp))
			continue;

1948 1949
		if (!need_sync && sp->unsync)
			need_sync = true;
1950

1951 1952
		if (sp->role.word != role.word)
			continue;
1953

1954 1955
		if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
			break;
1956

1957 1958
		mmu_page_add_parent_pte(vcpu, sp, parent_pte);
		if (sp->unsync_children) {
1959
			kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1960 1961 1962
			kvm_mmu_mark_parents_unsync(sp);
		} else if (sp->unsync)
			kvm_mmu_mark_parents_unsync(sp);
1963

1964
		__clear_sp_write_flooding_count(sp);
1965 1966 1967
		trace_kvm_mmu_get_page(sp, false);
		return sp;
	}
A
Avi Kivity 已提交
1968
	++vcpu->kvm->stat.mmu_cache_miss;
1969
	sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
1970 1971 1972 1973
	if (!sp)
		return sp;
	sp->gfn = gfn;
	sp->role = role;
1974 1975
	hlist_add_head(&sp->hash_link,
		&vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
1976
	if (!direct) {
1977 1978
		if (rmap_write_protect(vcpu->kvm, gfn))
			kvm_flush_remote_tlbs(vcpu->kvm);
1979 1980 1981
		if (level > PT_PAGE_TABLE_LEVEL && need_sync)
			kvm_sync_pages(vcpu, gfn);

1982 1983
		account_shadowed(vcpu->kvm, gfn);
	}
1984
	sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
1985
	init_shadow_page_table(sp);
A
Avi Kivity 已提交
1986
	trace_kvm_mmu_get_page(sp, true);
1987
	return sp;
1988 1989
}

1990 1991 1992 1993 1994 1995
static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
			     struct kvm_vcpu *vcpu, u64 addr)
{
	iterator->addr = addr;
	iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
	iterator->level = vcpu->arch.mmu.shadow_root_level;
1996 1997 1998 1999 2000 2001

	if (iterator->level == PT64_ROOT_LEVEL &&
	    vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
	    !vcpu->arch.mmu.direct_map)
		--iterator->level;

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
	if (iterator->level == PT32E_ROOT_LEVEL) {
		iterator->shadow_addr
			= vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
		iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
		--iterator->level;
		if (!iterator->shadow_addr)
			iterator->level = 0;
	}
}

static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
{
	if (iterator->level < PT_PAGE_TABLE_LEVEL)
		return false;
2016

2017 2018 2019 2020 2021
	iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
	iterator->sptep	= ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
	return true;
}

2022 2023
static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
			       u64 spte)
2024
{
2025
	if (is_last_spte(spte, iterator->level)) {
2026 2027 2028 2029
		iterator->level = 0;
		return;
	}

2030
	iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2031 2032 2033
	--iterator->level;
}

2034 2035 2036 2037 2038
static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
{
	return __shadow_walk_next(iterator, *iterator->sptep);
}

2039
static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp, bool accessed)
2040 2041 2042
{
	u64 spte;

2043 2044 2045
	BUILD_BUG_ON(VMX_EPT_READABLE_MASK != PT_PRESENT_MASK ||
			VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);

X
Xiao Guangrong 已提交
2046
	spte = __pa(sp->spt) | PT_PRESENT_MASK | PT_WRITABLE_MASK |
2047 2048 2049 2050
	       shadow_user_mask | shadow_x_mask;

	if (accessed)
		spte |= shadow_accessed_mask;
X
Xiao Guangrong 已提交
2051

2052
	mmu_spte_set(sptep, spte);
2053 2054
}

2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071
static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
				   unsigned direct_access)
{
	if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
		struct kvm_mmu_page *child;

		/*
		 * For the direct sp, if the guest pte's dirty bit
		 * changed form clean to dirty, it will corrupt the
		 * sp's access: allow writable in the read-only sp,
		 * so we should update the spte at this point to get
		 * a new sp with the correct access.
		 */
		child = page_header(*sptep & PT64_BASE_ADDR_MASK);
		if (child->role.access == direct_access)
			return;

2072
		drop_parent_pte(child, sptep);
2073 2074 2075 2076
		kvm_flush_remote_tlbs(vcpu->kvm);
	}
}

X
Xiao Guangrong 已提交
2077
static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2078 2079 2080 2081 2082 2083 2084
			     u64 *spte)
{
	u64 pte;
	struct kvm_mmu_page *child;

	pte = *spte;
	if (is_shadow_present_pte(pte)) {
X
Xiao Guangrong 已提交
2085
		if (is_last_spte(pte, sp->role.level)) {
2086
			drop_spte(kvm, spte);
X
Xiao Guangrong 已提交
2087 2088 2089
			if (is_large_pte(pte))
				--kvm->stat.lpages;
		} else {
2090
			child = page_header(pte & PT64_BASE_ADDR_MASK);
2091
			drop_parent_pte(child, spte);
2092
		}
X
Xiao Guangrong 已提交
2093 2094 2095 2096
		return true;
	}

	if (is_mmio_spte(pte))
2097
		mmu_spte_clear_no_track(spte);
2098

X
Xiao Guangrong 已提交
2099
	return false;
2100 2101
}

2102
static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2103
					 struct kvm_mmu_page *sp)
2104
{
2105 2106
	unsigned i;

2107 2108
	for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
		mmu_page_zap_pte(kvm, sp, sp->spt + i);
2109 2110
}

2111
static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
2112
{
2113
	mmu_page_remove_parent_pte(sp, parent_pte);
2114 2115
}

2116
static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2117
{
2118 2119
	u64 *sptep;
	struct rmap_iterator iter;
2120

2121 2122
	while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
		drop_parent_pte(sp, sptep);
2123 2124
}

2125
static int mmu_zap_unsync_children(struct kvm *kvm,
2126 2127
				   struct kvm_mmu_page *parent,
				   struct list_head *invalid_list)
2128
{
2129 2130 2131
	int i, zapped = 0;
	struct mmu_page_path parents;
	struct kvm_mmu_pages pages;
2132

2133
	if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2134
		return 0;
2135 2136 2137 2138 2139 2140

	kvm_mmu_pages_init(parent, &parents, &pages);
	while (mmu_unsync_walk(parent, &pages)) {
		struct kvm_mmu_page *sp;

		for_each_sp(pages, sp, parents, i) {
2141
			kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2142
			mmu_pages_clear_parents(&parents);
2143
			zapped++;
2144 2145 2146 2147 2148
		}
		kvm_mmu_pages_init(parent, &parents, &pages);
	}

	return zapped;
2149 2150
}

2151 2152
static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
				    struct list_head *invalid_list)
2153
{
2154
	int ret;
A
Avi Kivity 已提交
2155

2156
	trace_kvm_mmu_prepare_zap_page(sp);
2157
	++kvm->stat.mmu_shadow_zapped;
2158
	ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
2159
	kvm_mmu_page_unlink_children(kvm, sp);
2160
	kvm_mmu_unlink_parents(kvm, sp);
2161

2162
	if (!sp->role.invalid && !sp->role.direct)
A
Avi Kivity 已提交
2163
		unaccount_shadowed(kvm, sp->gfn);
2164

2165 2166
	if (sp->unsync)
		kvm_unlink_unsync_page(kvm, sp);
2167
	if (!sp->root_count) {
2168 2169
		/* Count self */
		ret++;
2170
		list_move(&sp->link, invalid_list);
2171
		kvm_mod_used_mmu_pages(kvm, -1);
2172
	} else {
A
Avi Kivity 已提交
2173
		list_move(&sp->link, &kvm->arch.active_mmu_pages);
2174 2175 2176 2177 2178 2179 2180

		/*
		 * The obsolete pages can not be used on any vcpus.
		 * See the comments in kvm_mmu_invalidate_zap_all_pages().
		 */
		if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
			kvm_reload_remote_mmus(kvm);
2181
	}
2182 2183

	sp->role.invalid = 1;
2184
	return ret;
2185 2186
}

2187 2188 2189
static void kvm_mmu_commit_zap_page(struct kvm *kvm,
				    struct list_head *invalid_list)
{
2190
	struct kvm_mmu_page *sp, *nsp;
2191 2192 2193 2194

	if (list_empty(invalid_list))
		return;

2195 2196 2197 2198 2199
	/*
	 * wmb: make sure everyone sees our modifications to the page tables
	 * rmb: make sure we see changes to vcpu->mode
	 */
	smp_mb();
X
Xiao Guangrong 已提交
2200

2201 2202 2203 2204 2205
	/*
	 * Wait for all vcpus to exit guest mode and/or lockless shadow
	 * page table walks.
	 */
	kvm_flush_remote_tlbs(kvm);
2206

2207
	list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2208
		WARN_ON(!sp->role.invalid || sp->root_count);
2209
		kvm_mmu_free_page(sp);
2210
	}
2211 2212
}

2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227
static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
					struct list_head *invalid_list)
{
	struct kvm_mmu_page *sp;

	if (list_empty(&kvm->arch.active_mmu_pages))
		return false;

	sp = list_entry(kvm->arch.active_mmu_pages.prev,
			struct kvm_mmu_page, link);
	kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);

	return true;
}

2228 2229
/*
 * Changing the number of mmu pages allocated to the vm
2230
 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2231
 */
2232
void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
2233
{
2234
	LIST_HEAD(invalid_list);
2235

2236 2237
	spin_lock(&kvm->mmu_lock);

2238
	if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2239 2240 2241 2242
		/* Need to free some mmu pages to achieve the goal. */
		while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
			if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
				break;
2243

2244
		kvm_mmu_commit_zap_page(kvm, &invalid_list);
2245
		goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2246 2247
	}

2248
	kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2249 2250

	spin_unlock(&kvm->mmu_lock);
2251 2252
}

2253
int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2254
{
2255
	struct kvm_mmu_page *sp;
2256
	LIST_HEAD(invalid_list);
2257 2258
	int r;

2259
	pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2260
	r = 0;
2261
	spin_lock(&kvm->mmu_lock);
2262
	for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2263
		pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2264 2265
			 sp->role.word);
		r = 1;
2266
		kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2267
	}
2268
	kvm_mmu_commit_zap_page(kvm, &invalid_list);
2269 2270
	spin_unlock(&kvm->mmu_lock);

2271
	return r;
2272
}
2273
EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2274

2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367
/*
 * The function is based on mtrr_type_lookup() in
 * arch/x86/kernel/cpu/mtrr/generic.c
 */
static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
			 u64 start, u64 end)
{
	int i;
	u64 base, mask;
	u8 prev_match, curr_match;
	int num_var_ranges = KVM_NR_VAR_MTRR;

	if (!mtrr_state->enabled)
		return 0xFF;

	/* Make end inclusive end, instead of exclusive */
	end--;

	/* Look in fixed ranges. Just return the type as per start */
	if (mtrr_state->have_fixed && (start < 0x100000)) {
		int idx;

		if (start < 0x80000) {
			idx = 0;
			idx += (start >> 16);
			return mtrr_state->fixed_ranges[idx];
		} else if (start < 0xC0000) {
			idx = 1 * 8;
			idx += ((start - 0x80000) >> 14);
			return mtrr_state->fixed_ranges[idx];
		} else if (start < 0x1000000) {
			idx = 3 * 8;
			idx += ((start - 0xC0000) >> 12);
			return mtrr_state->fixed_ranges[idx];
		}
	}

	/*
	 * Look in variable ranges
	 * Look of multiple ranges matching this address and pick type
	 * as per MTRR precedence
	 */
	if (!(mtrr_state->enabled & 2))
		return mtrr_state->def_type;

	prev_match = 0xFF;
	for (i = 0; i < num_var_ranges; ++i) {
		unsigned short start_state, end_state;

		if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
			continue;

		base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
		       (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
		mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
		       (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);

		start_state = ((start & mask) == (base & mask));
		end_state = ((end & mask) == (base & mask));
		if (start_state != end_state)
			return 0xFE;

		if ((start & mask) != (base & mask))
			continue;

		curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
		if (prev_match == 0xFF) {
			prev_match = curr_match;
			continue;
		}

		if (prev_match == MTRR_TYPE_UNCACHABLE ||
		    curr_match == MTRR_TYPE_UNCACHABLE)
			return MTRR_TYPE_UNCACHABLE;

		if ((prev_match == MTRR_TYPE_WRBACK &&
		     curr_match == MTRR_TYPE_WRTHROUGH) ||
		    (prev_match == MTRR_TYPE_WRTHROUGH &&
		     curr_match == MTRR_TYPE_WRBACK)) {
			prev_match = MTRR_TYPE_WRTHROUGH;
			curr_match = MTRR_TYPE_WRTHROUGH;
		}

		if (prev_match != curr_match)
			return MTRR_TYPE_UNCACHABLE;
	}

	if (prev_match != 0xFF)
		return prev_match;

	return mtrr_state->def_type;
}

2368
u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
2369 2370 2371 2372 2373 2374 2375 2376 2377
{
	u8 mtrr;

	mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
			     (gfn << PAGE_SHIFT) + PAGE_SIZE);
	if (mtrr == 0xfe || mtrr == 0xff)
		mtrr = MTRR_TYPE_WRBACK;
	return mtrr;
}
2378
EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
2379

2380 2381 2382 2383 2384 2385 2386 2387 2388 2389
static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
{
	trace_kvm_mmu_unsync_page(sp);
	++vcpu->kvm->stat.mmu_unsync;
	sp->unsync = 1;

	kvm_mmu_mark_parents_unsync(sp);
}

static void kvm_unsync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn)
2390 2391
{
	struct kvm_mmu_page *s;
2392

2393
	for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2394
		if (s->unsync)
2395
			continue;
2396 2397
		WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
		__kvm_unsync_page(vcpu, s);
2398 2399 2400 2401 2402 2403
	}
}

static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
				  bool can_unsync)
{
2404 2405 2406
	struct kvm_mmu_page *s;
	bool need_unsync = false;

2407
	for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2408 2409 2410
		if (!can_unsync)
			return 1;

2411
		if (s->role.level != PT_PAGE_TABLE_LEVEL)
2412
			return 1;
2413

G
Gleb Natapov 已提交
2414
		if (!s->unsync)
2415
			need_unsync = true;
2416
	}
2417 2418
	if (need_unsync)
		kvm_unsync_pages(vcpu, gfn);
2419 2420 2421
	return 0;
}

A
Avi Kivity 已提交
2422
static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2423
		    unsigned pte_access, int level,
2424
		    gfn_t gfn, pfn_t pfn, bool speculative,
2425
		    bool can_unsync, bool host_writable)
2426
{
2427
	u64 spte;
M
Marcelo Tosatti 已提交
2428
	int ret = 0;
S
Sheng Yang 已提交
2429

2430
	if (set_mmio_spte(vcpu->kvm, sptep, gfn, pfn, pte_access))
2431 2432
		return 0;

2433
	spte = PT_PRESENT_MASK;
2434
	if (!speculative)
2435
		spte |= shadow_accessed_mask;
2436

S
Sheng Yang 已提交
2437 2438 2439 2440
	if (pte_access & ACC_EXEC_MASK)
		spte |= shadow_x_mask;
	else
		spte |= shadow_nx_mask;
2441

2442
	if (pte_access & ACC_USER_MASK)
S
Sheng Yang 已提交
2443
		spte |= shadow_user_mask;
2444

2445
	if (level > PT_PAGE_TABLE_LEVEL)
M
Marcelo Tosatti 已提交
2446
		spte |= PT_PAGE_SIZE_MASK;
2447
	if (tdp_enabled)
2448
		spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2449
			kvm_is_reserved_pfn(pfn));
2450

2451
	if (host_writable)
2452
		spte |= SPTE_HOST_WRITEABLE;
2453 2454
	else
		pte_access &= ~ACC_WRITE_MASK;
2455

2456
	spte |= (u64)pfn << PAGE_SHIFT;
2457

2458
	if (pte_access & ACC_WRITE_MASK) {
2459

X
Xiao Guangrong 已提交
2460
		/*
2461 2462 2463 2464
		 * Other vcpu creates new sp in the window between
		 * mapping_level() and acquiring mmu-lock. We can
		 * allow guest to retry the access, the mapping can
		 * be fixed if guest refault.
X
Xiao Guangrong 已提交
2465
		 */
2466
		if (level > PT_PAGE_TABLE_LEVEL &&
X
Xiao Guangrong 已提交
2467
		    has_wrprotected_page(vcpu->kvm, gfn, level))
A
Avi Kivity 已提交
2468
			goto done;
2469

2470
		spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
2471

2472 2473 2474 2475 2476 2477
		/*
		 * Optimization: for pte sync, if spte was writable the hash
		 * lookup is unnecessary (and expensive). Write protection
		 * is responsibility of mmu_get_page / kvm_sync_page.
		 * Same reasoning can be applied to dirty page accounting.
		 */
2478
		if (!can_unsync && is_writable_pte(*sptep))
2479 2480
			goto set_pte;

2481
		if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2482
			pgprintk("%s: found shadow page for %llx, marking ro\n",
2483
				 __func__, gfn);
M
Marcelo Tosatti 已提交
2484
			ret = 1;
2485
			pte_access &= ~ACC_WRITE_MASK;
2486
			spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
2487 2488 2489 2490 2491 2492
		}
	}

	if (pte_access & ACC_WRITE_MASK)
		mark_page_dirty(vcpu->kvm, gfn);

2493
set_pte:
2494
	if (mmu_spte_update(sptep, spte))
2495
		kvm_flush_remote_tlbs(vcpu->kvm);
A
Avi Kivity 已提交
2496
done:
M
Marcelo Tosatti 已提交
2497 2498 2499
	return ret;
}

A
Avi Kivity 已提交
2500
static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2501 2502 2503
			 unsigned pte_access, int write_fault, int *emulate,
			 int level, gfn_t gfn, pfn_t pfn, bool speculative,
			 bool host_writable)
M
Marcelo Tosatti 已提交
2504 2505
{
	int was_rmapped = 0;
2506
	int rmap_count;
M
Marcelo Tosatti 已提交
2507

2508 2509
	pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
		 *sptep, write_fault, gfn);
M
Marcelo Tosatti 已提交
2510

A
Avi Kivity 已提交
2511
	if (is_rmap_spte(*sptep)) {
M
Marcelo Tosatti 已提交
2512 2513 2514 2515
		/*
		 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
		 * the parent of the now unreachable PTE.
		 */
2516 2517
		if (level > PT_PAGE_TABLE_LEVEL &&
		    !is_large_pte(*sptep)) {
M
Marcelo Tosatti 已提交
2518
			struct kvm_mmu_page *child;
A
Avi Kivity 已提交
2519
			u64 pte = *sptep;
M
Marcelo Tosatti 已提交
2520 2521

			child = page_header(pte & PT64_BASE_ADDR_MASK);
2522
			drop_parent_pte(child, sptep);
2523
			kvm_flush_remote_tlbs(vcpu->kvm);
A
Avi Kivity 已提交
2524
		} else if (pfn != spte_to_pfn(*sptep)) {
2525
			pgprintk("hfn old %llx new %llx\n",
A
Avi Kivity 已提交
2526
				 spte_to_pfn(*sptep), pfn);
2527
			drop_spte(vcpu->kvm, sptep);
2528
			kvm_flush_remote_tlbs(vcpu->kvm);
2529 2530
		} else
			was_rmapped = 1;
M
Marcelo Tosatti 已提交
2531
	}
2532

2533 2534
	if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
	      true, host_writable)) {
M
Marcelo Tosatti 已提交
2535
		if (write_fault)
2536
			*emulate = 1;
2537
		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2538
	}
M
Marcelo Tosatti 已提交
2539

2540 2541 2542
	if (unlikely(is_mmio_spte(*sptep) && emulate))
		*emulate = 1;

A
Avi Kivity 已提交
2543
	pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2544
	pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
A
Avi Kivity 已提交
2545
		 is_large_pte(*sptep)? "2MB" : "4kB",
2546 2547
		 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
		 *sptep, sptep);
A
Avi Kivity 已提交
2548
	if (!was_rmapped && is_large_pte(*sptep))
M
Marcelo Tosatti 已提交
2549 2550
		++vcpu->kvm->stat.lpages;

2551 2552 2553 2554 2555 2556
	if (is_shadow_present_pte(*sptep)) {
		if (!was_rmapped) {
			rmap_count = rmap_add(vcpu, sptep, gfn);
			if (rmap_count > RMAP_RECYCLE_THRESHOLD)
				rmap_recycle(vcpu, sptep, gfn);
		}
2557
	}
2558

X
Xiao Guangrong 已提交
2559
	kvm_release_pfn_clean(pfn);
2560 2561
}

2562 2563 2564 2565 2566
static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
				     bool no_dirty_log)
{
	struct kvm_memory_slot *slot;

2567
	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2568
	if (!slot)
2569
		return KVM_PFN_ERR_FAULT;
2570

2571
	return gfn_to_pfn_memslot_atomic(slot, gfn);
2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583
}

static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
				    struct kvm_mmu_page *sp,
				    u64 *start, u64 *end)
{
	struct page *pages[PTE_PREFETCH_NUM];
	unsigned access = sp->role.access;
	int i, ret;
	gfn_t gfn;

	gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2584
	if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
2585 2586 2587 2588 2589 2590 2591
		return -1;

	ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
	if (ret <= 0)
		return -1;

	for (i = 0; i < ret; i++, gfn++, start++)
2592
		mmu_set_spte(vcpu, start, access, 0, NULL,
2593 2594
			     sp->role.level, gfn, page_to_pfn(pages[i]),
			     true, true);
2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610

	return 0;
}

static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
				  struct kvm_mmu_page *sp, u64 *sptep)
{
	u64 *spte, *start = NULL;
	int i;

	WARN_ON(!sp->role.direct);

	i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
	spte = sp->spt + i;

	for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2611
		if (is_shadow_present_pte(*spte) || spte == sptep) {
2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641
			if (!start)
				continue;
			if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
				break;
			start = NULL;
		} else if (!start)
			start = spte;
	}
}

static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
{
	struct kvm_mmu_page *sp;

	/*
	 * Since it's no accessed bit on EPT, it's no way to
	 * distinguish between actually accessed translations
	 * and prefetched, so disable pte prefetch if EPT is
	 * enabled.
	 */
	if (!shadow_accessed_mask)
		return;

	sp = page_header(__pa(sptep));
	if (sp->role.level > PT_PAGE_TABLE_LEVEL)
		return;

	__direct_pte_prefetch(vcpu, sp, sptep);
}

2642
static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2643 2644
			int map_writable, int level, gfn_t gfn, pfn_t pfn,
			bool prefault)
2645
{
2646
	struct kvm_shadow_walk_iterator iterator;
2647
	struct kvm_mmu_page *sp;
2648
	int emulate = 0;
2649
	gfn_t pseudo_gfn;
A
Avi Kivity 已提交
2650

2651 2652 2653
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
		return 0;

2654
	for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2655
		if (iterator.level == level) {
2656
			mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
2657 2658
				     write, &emulate, level, gfn, pfn,
				     prefault, map_writable);
2659
			direct_pte_prefetch(vcpu, iterator.sptep);
2660 2661
			++vcpu->stat.pf_fixed;
			break;
A
Avi Kivity 已提交
2662 2663
		}

2664
		drop_large_spte(vcpu, iterator.sptep);
2665
		if (!is_shadow_present_pte(*iterator.sptep)) {
2666 2667 2668 2669
			u64 base_addr = iterator.addr;

			base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
			pseudo_gfn = base_addr >> PAGE_SHIFT;
2670 2671 2672
			sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
					      iterator.level - 1,
					      1, ACC_ALL, iterator.sptep);
2673

2674
			link_shadow_page(iterator.sptep, sp, true);
2675 2676
		}
	}
2677
	return emulate;
A
Avi Kivity 已提交
2678 2679
}

H
Huang Ying 已提交
2680
static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2681
{
H
Huang Ying 已提交
2682 2683 2684 2685 2686 2687 2688
	siginfo_t info;

	info.si_signo	= SIGBUS;
	info.si_errno	= 0;
	info.si_code	= BUS_MCEERR_AR;
	info.si_addr	= (void __user *)address;
	info.si_addr_lsb = PAGE_SHIFT;
2689

H
Huang Ying 已提交
2690
	send_sig_info(SIGBUS, &info, tsk);
2691 2692
}

2693
static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
2694
{
X
Xiao Guangrong 已提交
2695 2696 2697 2698 2699 2700 2701 2702 2703
	/*
	 * Do not cache the mmio info caused by writing the readonly gfn
	 * into the spte otherwise read access on readonly gfn also can
	 * caused mmio page fault and treat it as mmio access.
	 * Return 1 to tell kvm to emulate it.
	 */
	if (pfn == KVM_PFN_ERR_RO_FAULT)
		return 1;

2704
	if (pfn == KVM_PFN_ERR_HWPOISON) {
2705
		kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
2706
		return 0;
2707
	}
2708

2709
	return -EFAULT;
2710 2711
}

2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724
static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
					gfn_t *gfnp, pfn_t *pfnp, int *levelp)
{
	pfn_t pfn = *pfnp;
	gfn_t gfn = *gfnp;
	int level = *levelp;

	/*
	 * Check if it's a transparent hugepage. If this would be an
	 * hugetlbfs page, level wouldn't be set to
	 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
	 * here.
	 */
2725
	if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746
	    level == PT_PAGE_TABLE_LEVEL &&
	    PageTransCompound(pfn_to_page(pfn)) &&
	    !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
		unsigned long mask;
		/*
		 * mmu_notifier_retry was successful and we hold the
		 * mmu_lock here, so the pmd can't become splitting
		 * from under us, and in turn
		 * __split_huge_page_refcount() can't run from under
		 * us and we can safely transfer the refcount from
		 * PG_tail to PG_head as we switch the pfn to tail to
		 * head.
		 */
		*levelp = level = PT_DIRECTORY_LEVEL;
		mask = KVM_PAGES_PER_HPAGE(level) - 1;
		VM_BUG_ON((gfn & mask) != (pfn & mask));
		if (pfn & mask) {
			gfn &= ~mask;
			*gfnp = gfn;
			kvm_release_pfn_clean(pfn);
			pfn &= ~mask;
2747
			kvm_get_pfn(pfn);
2748 2749 2750 2751 2752
			*pfnp = pfn;
		}
	}
}

2753 2754 2755 2756 2757 2758
static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
				pfn_t pfn, unsigned access, int *ret_val)
{
	bool ret = true;

	/* The pfn is invalid, report the error! */
2759
	if (unlikely(is_error_pfn(pfn))) {
2760 2761 2762 2763
		*ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
		goto exit;
	}

2764
	if (unlikely(is_noslot_pfn(pfn)))
2765 2766 2767 2768 2769 2770 2771
		vcpu_cache_mmio_info(vcpu, gva, gfn, access);

	ret = false;
exit:
	return ret;
}

2772
static bool page_fault_can_be_fast(u32 error_code)
2773
{
2774 2775 2776 2777 2778 2779 2780
	/*
	 * Do not fix the mmio spte with invalid generation number which
	 * need to be updated by slow page fault path.
	 */
	if (unlikely(error_code & PFERR_RSVD_MASK))
		return false;

2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793
	/*
	 * #PF can be fast only if the shadow page table is present and it
	 * is caused by write-protect, that means we just need change the
	 * W bit of the spte which can be done out of mmu-lock.
	 */
	if (!(error_code & PFERR_PRESENT_MASK) ||
	      !(error_code & PFERR_WRITE_MASK))
		return false;

	return true;
}

static bool
2794 2795
fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
			u64 *sptep, u64 spte)
2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821
{
	gfn_t gfn;

	WARN_ON(!sp->role.direct);

	/*
	 * The gfn of direct spte is stable since it is calculated
	 * by sp->gfn.
	 */
	gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);

	if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
		mark_page_dirty(vcpu->kvm, gfn);

	return true;
}

/*
 * Return value:
 * - true: let the vcpu to access on the same address again.
 * - false: let the real page fault path to fix it.
 */
static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
			    u32 error_code)
{
	struct kvm_shadow_walk_iterator iterator;
2822
	struct kvm_mmu_page *sp;
2823 2824 2825
	bool ret = false;
	u64 spte = 0ull;

2826 2827 2828
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
		return false;

2829
	if (!page_fault_can_be_fast(error_code))
2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845
		return false;

	walk_shadow_page_lockless_begin(vcpu);
	for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
		if (!is_shadow_present_pte(spte) || iterator.level < level)
			break;

	/*
	 * If the mapping has been changed, let the vcpu fault on the
	 * same address again.
	 */
	if (!is_rmap_spte(spte)) {
		ret = true;
		goto exit;
	}

2846 2847
	sp = page_header(__pa(iterator.sptep));
	if (!is_last_spte(spte, sp->role.level))
2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867
		goto exit;

	/*
	 * Check if it is a spurious fault caused by TLB lazily flushed.
	 *
	 * Need not check the access of upper level table entries since
	 * they are always ACC_ALL.
	 */
	 if (is_writable_pte(spte)) {
		ret = true;
		goto exit;
	}

	/*
	 * Currently, to simplify the code, only the spte write-protected
	 * by dirty-log can be fast fixed.
	 */
	if (!spte_is_locklessly_modifiable(spte))
		goto exit;

2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880
	/*
	 * Do not fix write-permission on the large spte since we only dirty
	 * the first page into the dirty-bitmap in fast_pf_fix_direct_spte()
	 * that means other pages are missed if its slot is dirty-logged.
	 *
	 * Instead, we let the slow page fault path create a normal spte to
	 * fix the access.
	 *
	 * See the comments in kvm_arch_commit_memory_region().
	 */
	if (sp->role.level > PT_PAGE_TABLE_LEVEL)
		goto exit;

2881 2882 2883 2884 2885
	/*
	 * Currently, fast page fault only works for direct mapping since
	 * the gfn is not stable for indirect shadow page.
	 * See Documentation/virtual/kvm/locking.txt to get more detail.
	 */
2886
	ret = fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte);
2887
exit:
X
Xiao Guangrong 已提交
2888 2889
	trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
			      spte, ret);
2890 2891 2892 2893 2894
	walk_shadow_page_lockless_end(vcpu);

	return ret;
}

2895
static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
2896
			 gva_t gva, pfn_t *pfn, bool write, bool *writable);
2897
static void make_mmu_pages_available(struct kvm_vcpu *vcpu);
2898

2899 2900
static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
			 gfn_t gfn, bool prefault)
2901 2902
{
	int r;
2903
	int level;
2904
	int force_pt_level;
2905
	pfn_t pfn;
2906
	unsigned long mmu_seq;
2907
	bool map_writable, write = error_code & PFERR_WRITE_MASK;
2908

2909 2910 2911 2912 2913 2914 2915 2916 2917 2918
	force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
	if (likely(!force_pt_level)) {
		level = mapping_level(vcpu, gfn);
		/*
		 * This path builds a PAE pagetable - so we can map
		 * 2mb pages at maximum. Therefore check if the level
		 * is larger than that.
		 */
		if (level > PT_DIRECTORY_LEVEL)
			level = PT_DIRECTORY_LEVEL;
2919

2920 2921 2922
		gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
	} else
		level = PT_PAGE_TABLE_LEVEL;
M
Marcelo Tosatti 已提交
2923

2924 2925 2926
	if (fast_page_fault(vcpu, v, level, error_code))
		return 0;

2927
	mmu_seq = vcpu->kvm->mmu_notifier_seq;
2928
	smp_rmb();
2929

2930
	if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
2931
		return 0;
2932

2933 2934
	if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
		return r;
2935

2936
	spin_lock(&vcpu->kvm->mmu_lock);
2937
	if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
2938
		goto out_unlock;
2939
	make_mmu_pages_available(vcpu);
2940 2941
	if (likely(!force_pt_level))
		transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
2942 2943
	r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
			 prefault);
2944 2945 2946
	spin_unlock(&vcpu->kvm->mmu_lock);


2947
	return r;
2948 2949 2950 2951 2952

out_unlock:
	spin_unlock(&vcpu->kvm->mmu_lock);
	kvm_release_pfn_clean(pfn);
	return 0;
2953 2954 2955
}


2956 2957 2958
static void mmu_free_roots(struct kvm_vcpu *vcpu)
{
	int i;
2959
	struct kvm_mmu_page *sp;
2960
	LIST_HEAD(invalid_list);
2961

2962
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
A
Avi Kivity 已提交
2963
		return;
2964

2965 2966 2967
	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
	    (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
	     vcpu->arch.mmu.direct_map)) {
2968
		hpa_t root = vcpu->arch.mmu.root_hpa;
2969

2970
		spin_lock(&vcpu->kvm->mmu_lock);
2971 2972
		sp = page_header(root);
		--sp->root_count;
2973 2974 2975 2976
		if (!sp->root_count && sp->role.invalid) {
			kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
			kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
		}
2977
		spin_unlock(&vcpu->kvm->mmu_lock);
2978
		vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2979 2980
		return;
	}
2981 2982

	spin_lock(&vcpu->kvm->mmu_lock);
2983
	for (i = 0; i < 4; ++i) {
2984
		hpa_t root = vcpu->arch.mmu.pae_root[i];
2985

A
Avi Kivity 已提交
2986 2987
		if (root) {
			root &= PT64_BASE_ADDR_MASK;
2988 2989
			sp = page_header(root);
			--sp->root_count;
2990
			if (!sp->root_count && sp->role.invalid)
2991 2992
				kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
							 &invalid_list);
A
Avi Kivity 已提交
2993
		}
2994
		vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
2995
	}
2996
	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2997
	spin_unlock(&vcpu->kvm->mmu_lock);
2998
	vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2999 3000
}

3001 3002 3003 3004 3005
static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
{
	int ret = 0;

	if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
3006
		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3007 3008 3009 3010 3011 3012
		ret = 1;
	}

	return ret;
}

3013 3014 3015
static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
{
	struct kvm_mmu_page *sp;
3016
	unsigned i;
3017 3018 3019

	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
		spin_lock(&vcpu->kvm->mmu_lock);
3020
		make_mmu_pages_available(vcpu);
3021 3022 3023 3024 3025 3026 3027 3028 3029
		sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
				      1, ACC_ALL, NULL);
		++sp->root_count;
		spin_unlock(&vcpu->kvm->mmu_lock);
		vcpu->arch.mmu.root_hpa = __pa(sp->spt);
	} else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
		for (i = 0; i < 4; ++i) {
			hpa_t root = vcpu->arch.mmu.pae_root[i];

3030
			MMU_WARN_ON(VALID_PAGE(root));
3031
			spin_lock(&vcpu->kvm->mmu_lock);
3032
			make_mmu_pages_available(vcpu);
3033 3034
			sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
					      i << 30,
3035 3036 3037 3038 3039 3040 3041
					      PT32_ROOT_LEVEL, 1, ACC_ALL,
					      NULL);
			root = __pa(sp->spt);
			++sp->root_count;
			spin_unlock(&vcpu->kvm->mmu_lock);
			vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
		}
3042
		vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3043 3044 3045 3046 3047 3048 3049
	} else
		BUG();

	return 0;
}

static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3050
{
3051
	struct kvm_mmu_page *sp;
3052 3053 3054
	u64 pdptr, pm_mask;
	gfn_t root_gfn;
	int i;
3055

3056
	root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
3057

3058 3059 3060 3061 3062 3063 3064 3065
	if (mmu_check_root(vcpu, root_gfn))
		return 1;

	/*
	 * Do we shadow a long mode page table? If so we need to
	 * write-protect the guests page table root.
	 */
	if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3066
		hpa_t root = vcpu->arch.mmu.root_hpa;
3067

3068
		MMU_WARN_ON(VALID_PAGE(root));
3069

3070
		spin_lock(&vcpu->kvm->mmu_lock);
3071
		make_mmu_pages_available(vcpu);
3072 3073
		sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
				      0, ACC_ALL, NULL);
3074 3075
		root = __pa(sp->spt);
		++sp->root_count;
3076
		spin_unlock(&vcpu->kvm->mmu_lock);
3077
		vcpu->arch.mmu.root_hpa = root;
3078
		return 0;
3079
	}
3080

3081 3082
	/*
	 * We shadow a 32 bit page table. This may be a legacy 2-level
3083 3084
	 * or a PAE 3-level page table. In either case we need to be aware that
	 * the shadow page table may be a PAE or a long mode page table.
3085
	 */
3086 3087 3088 3089
	pm_mask = PT_PRESENT_MASK;
	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
		pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;

3090
	for (i = 0; i < 4; ++i) {
3091
		hpa_t root = vcpu->arch.mmu.pae_root[i];
3092

3093
		MMU_WARN_ON(VALID_PAGE(root));
3094
		if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
3095
			pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
3096
			if (!is_present_gpte(pdptr)) {
3097
				vcpu->arch.mmu.pae_root[i] = 0;
A
Avi Kivity 已提交
3098 3099
				continue;
			}
A
Avi Kivity 已提交
3100
			root_gfn = pdptr >> PAGE_SHIFT;
3101 3102
			if (mmu_check_root(vcpu, root_gfn))
				return 1;
3103
		}
3104
		spin_lock(&vcpu->kvm->mmu_lock);
3105
		make_mmu_pages_available(vcpu);
3106
		sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
3107
				      PT32_ROOT_LEVEL, 0,
3108
				      ACC_ALL, NULL);
3109 3110
		root = __pa(sp->spt);
		++sp->root_count;
3111 3112
		spin_unlock(&vcpu->kvm->mmu_lock);

3113
		vcpu->arch.mmu.pae_root[i] = root | pm_mask;
3114
	}
3115
	vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141

	/*
	 * If we shadow a 32 bit page table with a long mode page
	 * table we enter this path.
	 */
	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
		if (vcpu->arch.mmu.lm_root == NULL) {
			/*
			 * The additional page necessary for this is only
			 * allocated on demand.
			 */

			u64 *lm_root;

			lm_root = (void*)get_zeroed_page(GFP_KERNEL);
			if (lm_root == NULL)
				return 1;

			lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;

			vcpu->arch.mmu.lm_root = lm_root;
		}

		vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
	}

3142
	return 0;
3143 3144
}

3145 3146 3147 3148 3149 3150 3151 3152
static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
{
	if (vcpu->arch.mmu.direct_map)
		return mmu_alloc_direct_roots(vcpu);
	else
		return mmu_alloc_shadow_roots(vcpu);
}

3153 3154 3155 3156 3157
static void mmu_sync_roots(struct kvm_vcpu *vcpu)
{
	int i;
	struct kvm_mmu_page *sp;

3158 3159 3160
	if (vcpu->arch.mmu.direct_map)
		return;

3161 3162
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
		return;
3163

3164
	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3165
	kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3166
	if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3167 3168 3169
		hpa_t root = vcpu->arch.mmu.root_hpa;
		sp = page_header(root);
		mmu_sync_children(vcpu, sp);
3170
		kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3171 3172 3173 3174 3175
		return;
	}
	for (i = 0; i < 4; ++i) {
		hpa_t root = vcpu->arch.mmu.pae_root[i];

3176
		if (root && VALID_PAGE(root)) {
3177 3178 3179 3180 3181
			root &= PT64_BASE_ADDR_MASK;
			sp = page_header(root);
			mmu_sync_children(vcpu, sp);
		}
	}
3182
	kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3183 3184 3185 3186 3187 3188
}

void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
{
	spin_lock(&vcpu->kvm->mmu_lock);
	mmu_sync_roots(vcpu);
3189
	spin_unlock(&vcpu->kvm->mmu_lock);
3190
}
N
Nadav Har'El 已提交
3191
EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3192

3193
static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
3194
				  u32 access, struct x86_exception *exception)
A
Avi Kivity 已提交
3195
{
3196 3197
	if (exception)
		exception->error_code = 0;
A
Avi Kivity 已提交
3198 3199 3200
	return vaddr;
}

3201
static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
3202 3203
					 u32 access,
					 struct x86_exception *exception)
3204
{
3205 3206
	if (exception)
		exception->error_code = 0;
3207
	return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3208 3209
}

3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237
static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
{
	if (direct)
		return vcpu_match_mmio_gpa(vcpu, addr);

	return vcpu_match_mmio_gva(vcpu, addr);
}


/*
 * On direct hosts, the last spte is only allows two states
 * for mmio page fault:
 *   - It is the mmio spte
 *   - It is zapped or it is being zapped.
 *
 * This function completely checks the spte when the last spte
 * is not the mmio spte.
 */
static bool check_direct_spte_mmio_pf(u64 spte)
{
	return __check_direct_spte_mmio_pf(spte);
}

static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
{
	struct kvm_shadow_walk_iterator iterator;
	u64 spte = 0ull;

3238 3239 3240
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
		return spte;

3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254
	walk_shadow_page_lockless_begin(vcpu);
	for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
		if (!is_shadow_present_pte(spte))
			break;
	walk_shadow_page_lockless_end(vcpu);

	return spte;
}

int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
{
	u64 spte;

	if (quickly_check_mmio_pf(vcpu, addr, direct))
3255
		return RET_MMIO_PF_EMULATE;
3256 3257 3258 3259 3260 3261 3262

	spte = walk_shadow_page_get_mmio_spte(vcpu, addr);

	if (is_mmio_spte(spte)) {
		gfn_t gfn = get_mmio_spte_gfn(spte);
		unsigned access = get_mmio_spte_access(spte);

3263 3264 3265
		if (!check_mmio_spte(vcpu->kvm, spte))
			return RET_MMIO_PF_INVALID;

3266 3267
		if (direct)
			addr = 0;
X
Xiao Guangrong 已提交
3268 3269

		trace_handle_mmio_page_fault(addr, gfn, access);
3270
		vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3271
		return RET_MMIO_PF_EMULATE;
3272 3273 3274 3275 3276 3277 3278
	}

	/*
	 * It's ok if the gva is remapped by other cpus on shadow guest,
	 * it's a BUG if the gfn is not a mmio page.
	 */
	if (direct && !check_direct_spte_mmio_pf(spte))
3279
		return RET_MMIO_PF_BUG;
3280 3281 3282 3283 3284

	/*
	 * If the page table is zapped by other cpus, let CPU fault again on
	 * the address.
	 */
3285
	return RET_MMIO_PF_RETRY;
3286 3287 3288 3289 3290 3291 3292 3293 3294
}
EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);

static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
				  u32 error_code, bool direct)
{
	int ret;

	ret = handle_mmio_page_fault_common(vcpu, addr, direct);
3295
	WARN_ON(ret == RET_MMIO_PF_BUG);
3296 3297 3298
	return ret;
}

A
Avi Kivity 已提交
3299
static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
3300
				u32 error_code, bool prefault)
A
Avi Kivity 已提交
3301
{
3302
	gfn_t gfn;
3303
	int r;
A
Avi Kivity 已提交
3304

3305
	pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
3306

3307 3308 3309 3310 3311 3312
	if (unlikely(error_code & PFERR_RSVD_MASK)) {
		r = handle_mmio_page_fault(vcpu, gva, error_code, true);

		if (likely(r != RET_MMIO_PF_INVALID))
			return r;
	}
3313

3314 3315 3316
	r = mmu_topup_memory_caches(vcpu);
	if (r)
		return r;
3317

3318
	MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
A
Avi Kivity 已提交
3319

3320
	gfn = gva >> PAGE_SHIFT;
A
Avi Kivity 已提交
3321

3322
	return nonpaging_map(vcpu, gva & PAGE_MASK,
3323
			     error_code, gfn, prefault);
A
Avi Kivity 已提交
3324 3325
}

3326
static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3327 3328
{
	struct kvm_arch_async_pf arch;
X
Xiao Guangrong 已提交
3329

3330
	arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3331
	arch.gfn = gfn;
3332
	arch.direct_map = vcpu->arch.mmu.direct_map;
X
Xiao Guangrong 已提交
3333
	arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
3334

3335
	return kvm_setup_async_pf(vcpu, gva, gfn_to_hva(vcpu->kvm, gfn), &arch);
3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346
}

static bool can_do_async_pf(struct kvm_vcpu *vcpu)
{
	if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
		     kvm_event_needs_reinjection(vcpu)))
		return false;

	return kvm_x86_ops->interrupt_allowed(vcpu);
}

3347
static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3348
			 gva_t gva, pfn_t *pfn, bool write, bool *writable)
3349 3350 3351
{
	bool async;

3352
	*pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
3353 3354 3355 3356

	if (!async)
		return false; /* *pfn has correct page already */

3357
	if (!prefault && can_do_async_pf(vcpu)) {
3358
		trace_kvm_try_async_get_page(gva, gfn);
3359 3360 3361 3362 3363 3364 3365 3366
		if (kvm_find_async_pf_gfn(vcpu, gfn)) {
			trace_kvm_async_pf_doublefault(gva, gfn);
			kvm_make_request(KVM_REQ_APF_HALT, vcpu);
			return true;
		} else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
			return true;
	}

3367
	*pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
3368 3369 3370 3371

	return false;
}

G
Gleb Natapov 已提交
3372
static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
3373
			  bool prefault)
3374
{
3375
	pfn_t pfn;
3376
	int r;
3377
	int level;
3378
	int force_pt_level;
M
Marcelo Tosatti 已提交
3379
	gfn_t gfn = gpa >> PAGE_SHIFT;
3380
	unsigned long mmu_seq;
3381 3382
	int write = error_code & PFERR_WRITE_MASK;
	bool map_writable;
3383

3384
	MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3385

3386 3387 3388 3389 3390 3391
	if (unlikely(error_code & PFERR_RSVD_MASK)) {
		r = handle_mmio_page_fault(vcpu, gpa, error_code, true);

		if (likely(r != RET_MMIO_PF_INVALID))
			return r;
	}
3392

3393 3394 3395 3396
	r = mmu_topup_memory_caches(vcpu);
	if (r)
		return r;

3397 3398 3399 3400 3401 3402
	force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
	if (likely(!force_pt_level)) {
		level = mapping_level(vcpu, gfn);
		gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
	} else
		level = PT_PAGE_TABLE_LEVEL;
3403

3404 3405 3406
	if (fast_page_fault(vcpu, gpa, level, error_code))
		return 0;

3407
	mmu_seq = vcpu->kvm->mmu_notifier_seq;
3408
	smp_rmb();
3409

3410
	if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3411 3412
		return 0;

3413 3414 3415
	if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
		return r;

3416
	spin_lock(&vcpu->kvm->mmu_lock);
3417
	if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3418
		goto out_unlock;
3419
	make_mmu_pages_available(vcpu);
3420 3421
	if (likely(!force_pt_level))
		transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3422
	r = __direct_map(vcpu, gpa, write, map_writable,
3423
			 level, gfn, pfn, prefault);
3424 3425 3426
	spin_unlock(&vcpu->kvm->mmu_lock);

	return r;
3427 3428 3429 3430 3431

out_unlock:
	spin_unlock(&vcpu->kvm->mmu_lock);
	kvm_release_pfn_clean(pfn);
	return 0;
3432 3433
}

3434 3435
static void nonpaging_init_context(struct kvm_vcpu *vcpu,
				   struct kvm_mmu *context)
A
Avi Kivity 已提交
3436 3437 3438
{
	context->page_fault = nonpaging_page_fault;
	context->gva_to_gpa = nonpaging_gva_to_gpa;
3439
	context->sync_page = nonpaging_sync_page;
M
Marcelo Tosatti 已提交
3440
	context->invlpg = nonpaging_invlpg;
3441
	context->update_pte = nonpaging_update_pte;
3442
	context->root_level = 0;
A
Avi Kivity 已提交
3443
	context->shadow_root_level = PT32E_ROOT_LEVEL;
A
Avi Kivity 已提交
3444
	context->root_hpa = INVALID_PAGE;
3445
	context->direct_map = true;
3446
	context->nx = false;
A
Avi Kivity 已提交
3447 3448
}

3449
void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
3450
{
3451
	mmu_free_roots(vcpu);
A
Avi Kivity 已提交
3452 3453
}

3454 3455
static unsigned long get_cr3(struct kvm_vcpu *vcpu)
{
3456
	return kvm_read_cr3(vcpu);
3457 3458
}

3459 3460
static void inject_page_fault(struct kvm_vcpu *vcpu,
			      struct x86_exception *fault)
A
Avi Kivity 已提交
3461
{
3462
	vcpu->arch.mmu.inject_page_fault(vcpu, fault);
A
Avi Kivity 已提交
3463 3464
}

3465 3466
static bool sync_mmio_spte(struct kvm *kvm, u64 *sptep, gfn_t gfn,
			   unsigned access, int *nr_present)
3467 3468 3469 3470 3471 3472 3473 3474
{
	if (unlikely(is_mmio_spte(*sptep))) {
		if (gfn != get_mmio_spte_gfn(*sptep)) {
			mmu_spte_clear_no_track(sptep);
			return true;
		}

		(*nr_present)++;
3475
		mark_mmio_spte(kvm, sptep, gfn, access);
3476 3477 3478 3479 3480 3481
		return true;
	}

	return false;
}

A
Avi Kivity 已提交
3482 3483 3484 3485 3486 3487 3488 3489 3490
static inline bool is_last_gpte(struct kvm_mmu *mmu, unsigned level, unsigned gpte)
{
	unsigned index;

	index = level - 1;
	index |= (gpte & PT_PAGE_SIZE_MASK) >> (PT_PAGE_SIZE_SHIFT - 2);
	return mmu->last_pte_bitmap & (1 << index);
}

3491 3492 3493 3494 3495
#define PTTYPE_EPT 18 /* arbitrary */
#define PTTYPE PTTYPE_EPT
#include "paging_tmpl.h"
#undef PTTYPE

A
Avi Kivity 已提交
3496 3497 3498 3499 3500 3501 3502 3503
#define PTTYPE 64
#include "paging_tmpl.h"
#undef PTTYPE

#define PTTYPE 32
#include "paging_tmpl.h"
#undef PTTYPE

3504
static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3505
				  struct kvm_mmu *context)
3506 3507 3508
{
	int maxphyaddr = cpuid_maxphyaddr(vcpu);
	u64 exb_bit_rsvd = 0;
3509
	u64 gbpages_bit_rsvd = 0;
3510
	u64 nonleaf_bit8_rsvd = 0;
3511

3512 3513
	context->bad_mt_xwr = 0;

3514
	if (!context->nx)
3515
		exb_bit_rsvd = rsvd_bits(63, 63);
3516 3517
	if (!guest_cpuid_has_gbpages(vcpu))
		gbpages_bit_rsvd = rsvd_bits(7, 7);
3518 3519 3520 3521 3522 3523 3524 3525

	/*
	 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
	 * leaf entries) on AMD CPUs only.
	 */
	if (guest_cpuid_is_amd(vcpu))
		nonleaf_bit8_rsvd = rsvd_bits(8, 8);

3526
	switch (context->root_level) {
3527 3528 3529 3530
	case PT32_ROOT_LEVEL:
		/* no rsvd bits for 2 level 4K page table entries */
		context->rsvd_bits_mask[0][1] = 0;
		context->rsvd_bits_mask[0][0] = 0;
3531 3532 3533 3534 3535 3536 3537
		context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];

		if (!is_pse(vcpu)) {
			context->rsvd_bits_mask[1][1] = 0;
			break;
		}

3538 3539 3540 3541 3542 3543 3544 3545
		if (is_cpuid_PSE36())
			/* 36bits PSE 4MB page */
			context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
		else
			/* 32 bits PSE 4MB page */
			context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
		break;
	case PT32E_ROOT_LEVEL:
3546 3547
		context->rsvd_bits_mask[0][2] =
			rsvd_bits(maxphyaddr, 63) |
3548
			rsvd_bits(5, 8) | rsvd_bits(1, 2);	/* PDPTE */
3549
		context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3550
			rsvd_bits(maxphyaddr, 62);	/* PDE */
3551 3552 3553 3554 3555
		context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
			rsvd_bits(maxphyaddr, 62); 	/* PTE */
		context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
			rsvd_bits(maxphyaddr, 62) |
			rsvd_bits(13, 20);		/* large page */
3556
		context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3557 3558 3559
		break;
	case PT64_ROOT_LEVEL:
		context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3560
			nonleaf_bit8_rsvd | rsvd_bits(7, 7) | rsvd_bits(maxphyaddr, 51);
3561
		context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3562
			nonleaf_bit8_rsvd | gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51);
3563
		context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3564
			rsvd_bits(maxphyaddr, 51);
3565 3566 3567
		context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
			rsvd_bits(maxphyaddr, 51);
		context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
3568
		context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3569
			gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
3570
			rsvd_bits(13, 29);
3571
		context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3572 3573
			rsvd_bits(maxphyaddr, 51) |
			rsvd_bits(13, 20);		/* large page */
3574
		context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3575 3576 3577 3578
		break;
	}
}

3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610
static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
		struct kvm_mmu *context, bool execonly)
{
	int maxphyaddr = cpuid_maxphyaddr(vcpu);
	int pte;

	context->rsvd_bits_mask[0][3] =
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
	context->rsvd_bits_mask[0][2] =
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
	context->rsvd_bits_mask[0][1] =
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
	context->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);

	/* large page */
	context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
	context->rsvd_bits_mask[1][2] =
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
	context->rsvd_bits_mask[1][1] =
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
	context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];

	for (pte = 0; pte < 64; pte++) {
		int rwx_bits = pte & 7;
		int mt = pte >> 3;
		if (mt == 0x2 || mt == 0x3 || mt == 0x7 ||
				rwx_bits == 0x2 || rwx_bits == 0x6 ||
				(rwx_bits == 0x4 && !execonly))
			context->bad_mt_xwr |= (1ull << pte);
	}
}

F
Feng Wu 已提交
3611
void update_permission_bitmask(struct kvm_vcpu *vcpu,
3612
		struct kvm_mmu *mmu, bool ept)
3613 3614 3615
{
	unsigned bit, byte, pfec;
	u8 map;
F
Feng Wu 已提交
3616
	bool fault, x, w, u, wf, uf, ff, smapf, cr4_smap, cr4_smep, smap = 0;
3617

F
Feng Wu 已提交
3618
	cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
F
Feng Wu 已提交
3619
	cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
3620 3621 3622 3623 3624 3625
	for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
		pfec = byte << 1;
		map = 0;
		wf = pfec & PFERR_WRITE_MASK;
		uf = pfec & PFERR_USER_MASK;
		ff = pfec & PFERR_FETCH_MASK;
F
Feng Wu 已提交
3626 3627 3628 3629 3630 3631
		/*
		 * PFERR_RSVD_MASK bit is set in PFEC if the access is not
		 * subject to SMAP restrictions, and cleared otherwise. The
		 * bit is only meaningful if the SMAP bit is set in CR4.
		 */
		smapf = !(pfec & PFERR_RSVD_MASK);
3632 3633 3634 3635 3636
		for (bit = 0; bit < 8; ++bit) {
			x = bit & ACC_EXEC_MASK;
			w = bit & ACC_WRITE_MASK;
			u = bit & ACC_USER_MASK;

3637 3638 3639 3640 3641 3642
			if (!ept) {
				/* Not really needed: !nx will cause pte.nx to fault */
				x |= !mmu->nx;
				/* Allow supervisor writes if !cr0.wp */
				w |= !is_write_protection(vcpu) && !uf;
				/* Disallow supervisor fetches of user code if cr4.smep */
F
Feng Wu 已提交
3643
				x &= !(cr4_smep && u && !uf);
F
Feng Wu 已提交
3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663

				/*
				 * SMAP:kernel-mode data accesses from user-mode
				 * mappings should fault. A fault is considered
				 * as a SMAP violation if all of the following
				 * conditions are ture:
				 *   - X86_CR4_SMAP is set in CR4
				 *   - An user page is accessed
				 *   - Page fault in kernel mode
				 *   - if CPL = 3 or X86_EFLAGS_AC is clear
				 *
				 *   Here, we cover the first three conditions.
				 *   The fourth is computed dynamically in
				 *   permission_fault() and is in smapf.
				 *
				 *   Also, SMAP does not affect instruction
				 *   fetches, add the !ff check here to make it
				 *   clearer.
				 */
				smap = cr4_smap && u && !uf && !ff;
3664 3665 3666
			} else
				/* Not really needed: no U/S accesses on ept  */
				u = 1;
3667

F
Feng Wu 已提交
3668 3669
			fault = (ff && !x) || (uf && !u) || (wf && !w) ||
				(smapf && smap);
3670 3671 3672 3673 3674 3675
			map |= fault << bit;
		}
		mmu->permissions[byte] = map;
	}
}

A
Avi Kivity 已提交
3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693
static void update_last_pte_bitmap(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
{
	u8 map;
	unsigned level, root_level = mmu->root_level;
	const unsigned ps_set_index = 1 << 2;  /* bit 2 of index: ps */

	if (root_level == PT32E_ROOT_LEVEL)
		--root_level;
	/* PT_PAGE_TABLE_LEVEL always terminates */
	map = 1 | (1 << ps_set_index);
	for (level = PT_DIRECTORY_LEVEL; level <= root_level; ++level) {
		if (level <= PT_PDPE_LEVEL
		    && (mmu->root_level >= PT32E_ROOT_LEVEL || is_pse(vcpu)))
			map |= 1 << (ps_set_index | (level - 1));
	}
	mmu->last_pte_bitmap = map;
}

3694 3695 3696
static void paging64_init_context_common(struct kvm_vcpu *vcpu,
					 struct kvm_mmu *context,
					 int level)
A
Avi Kivity 已提交
3697
{
3698
	context->nx = is_nx(vcpu);
3699
	context->root_level = level;
3700

3701
	reset_rsvds_bits_mask(vcpu, context);
3702
	update_permission_bitmask(vcpu, context, false);
A
Avi Kivity 已提交
3703
	update_last_pte_bitmap(vcpu, context);
A
Avi Kivity 已提交
3704

3705
	MMU_WARN_ON(!is_pae(vcpu));
A
Avi Kivity 已提交
3706 3707
	context->page_fault = paging64_page_fault;
	context->gva_to_gpa = paging64_gva_to_gpa;
3708
	context->sync_page = paging64_sync_page;
M
Marcelo Tosatti 已提交
3709
	context->invlpg = paging64_invlpg;
3710
	context->update_pte = paging64_update_pte;
3711
	context->shadow_root_level = level;
A
Avi Kivity 已提交
3712
	context->root_hpa = INVALID_PAGE;
3713
	context->direct_map = false;
A
Avi Kivity 已提交
3714 3715
}

3716 3717
static void paging64_init_context(struct kvm_vcpu *vcpu,
				  struct kvm_mmu *context)
3718
{
3719
	paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
3720 3721
}

3722 3723
static void paging32_init_context(struct kvm_vcpu *vcpu,
				  struct kvm_mmu *context)
A
Avi Kivity 已提交
3724
{
3725
	context->nx = false;
3726
	context->root_level = PT32_ROOT_LEVEL;
3727

3728
	reset_rsvds_bits_mask(vcpu, context);
3729
	update_permission_bitmask(vcpu, context, false);
A
Avi Kivity 已提交
3730
	update_last_pte_bitmap(vcpu, context);
A
Avi Kivity 已提交
3731 3732 3733

	context->page_fault = paging32_page_fault;
	context->gva_to_gpa = paging32_gva_to_gpa;
3734
	context->sync_page = paging32_sync_page;
M
Marcelo Tosatti 已提交
3735
	context->invlpg = paging32_invlpg;
3736
	context->update_pte = paging32_update_pte;
A
Avi Kivity 已提交
3737
	context->shadow_root_level = PT32E_ROOT_LEVEL;
A
Avi Kivity 已提交
3738
	context->root_hpa = INVALID_PAGE;
3739
	context->direct_map = false;
A
Avi Kivity 已提交
3740 3741
}

3742 3743
static void paging32E_init_context(struct kvm_vcpu *vcpu,
				   struct kvm_mmu *context)
A
Avi Kivity 已提交
3744
{
3745
	paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
A
Avi Kivity 已提交
3746 3747
}

3748
static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
3749
{
3750
	struct kvm_mmu *context = &vcpu->arch.mmu;
3751

3752
	context->base_role.word = 0;
3753
	context->page_fault = tdp_page_fault;
3754
	context->sync_page = nonpaging_sync_page;
M
Marcelo Tosatti 已提交
3755
	context->invlpg = nonpaging_invlpg;
3756
	context->update_pte = nonpaging_update_pte;
3757
	context->shadow_root_level = kvm_x86_ops->get_tdp_level();
3758
	context->root_hpa = INVALID_PAGE;
3759
	context->direct_map = true;
3760
	context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
3761
	context->get_cr3 = get_cr3;
3762
	context->get_pdptr = kvm_pdptr_read;
3763
	context->inject_page_fault = kvm_inject_page_fault;
3764 3765

	if (!is_paging(vcpu)) {
3766
		context->nx = false;
3767 3768 3769
		context->gva_to_gpa = nonpaging_gva_to_gpa;
		context->root_level = 0;
	} else if (is_long_mode(vcpu)) {
3770
		context->nx = is_nx(vcpu);
3771
		context->root_level = PT64_ROOT_LEVEL;
3772 3773
		reset_rsvds_bits_mask(vcpu, context);
		context->gva_to_gpa = paging64_gva_to_gpa;
3774
	} else if (is_pae(vcpu)) {
3775
		context->nx = is_nx(vcpu);
3776
		context->root_level = PT32E_ROOT_LEVEL;
3777 3778
		reset_rsvds_bits_mask(vcpu, context);
		context->gva_to_gpa = paging64_gva_to_gpa;
3779
	} else {
3780
		context->nx = false;
3781
		context->root_level = PT32_ROOT_LEVEL;
3782 3783
		reset_rsvds_bits_mask(vcpu, context);
		context->gva_to_gpa = paging32_gva_to_gpa;
3784 3785
	}

3786
	update_permission_bitmask(vcpu, context, false);
A
Avi Kivity 已提交
3787
	update_last_pte_bitmap(vcpu, context);
3788 3789
}

3790
void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
3791
{
3792
	bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3793 3794
	struct kvm_mmu *context = &vcpu->arch.mmu;

3795
	MMU_WARN_ON(VALID_PAGE(context->root_hpa));
A
Avi Kivity 已提交
3796 3797

	if (!is_paging(vcpu))
3798
		nonpaging_init_context(vcpu, context);
A
Avi Kivity 已提交
3799
	else if (is_long_mode(vcpu))
3800
		paging64_init_context(vcpu, context);
A
Avi Kivity 已提交
3801
	else if (is_pae(vcpu))
3802
		paging32E_init_context(vcpu, context);
A
Avi Kivity 已提交
3803
	else
3804
		paging32_init_context(vcpu, context);
3805

3806 3807 3808 3809
	context->base_role.nxe = is_nx(vcpu);
	context->base_role.cr4_pae = !!is_pae(vcpu);
	context->base_role.cr0_wp  = is_write_protection(vcpu);
	context->base_role.smep_andnot_wp
3810
		= smep && !is_write_protection(vcpu);
3811 3812 3813
}
EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);

3814
void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly)
N
Nadav Har'El 已提交
3815
{
3816 3817
	struct kvm_mmu *context = &vcpu->arch.mmu;

3818
	MMU_WARN_ON(VALID_PAGE(context->root_hpa));
N
Nadav Har'El 已提交
3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836

	context->shadow_root_level = kvm_x86_ops->get_tdp_level();

	context->nx = true;
	context->page_fault = ept_page_fault;
	context->gva_to_gpa = ept_gva_to_gpa;
	context->sync_page = ept_sync_page;
	context->invlpg = ept_invlpg;
	context->update_pte = ept_update_pte;
	context->root_level = context->shadow_root_level;
	context->root_hpa = INVALID_PAGE;
	context->direct_map = false;

	update_permission_bitmask(vcpu, context, true);
	reset_rsvds_bits_mask_ept(vcpu, context, execonly);
}
EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);

3837
static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
3838
{
3839 3840 3841 3842 3843 3844 3845
	struct kvm_mmu *context = &vcpu->arch.mmu;

	kvm_init_shadow_mmu(vcpu);
	context->set_cr3           = kvm_x86_ops->set_cr3;
	context->get_cr3           = get_cr3;
	context->get_pdptr         = kvm_pdptr_read;
	context->inject_page_fault = kvm_inject_page_fault;
A
Avi Kivity 已提交
3846 3847
}

3848
static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
3849 3850 3851 3852
{
	struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;

	g_context->get_cr3           = get_cr3;
3853
	g_context->get_pdptr         = kvm_pdptr_read;
3854 3855 3856 3857 3858 3859 3860 3861 3862
	g_context->inject_page_fault = kvm_inject_page_fault;

	/*
	 * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
	 * translation of l2_gpa to l1_gpa addresses is done using the
	 * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
	 * functions between mmu and nested_mmu are swapped.
	 */
	if (!is_paging(vcpu)) {
3863
		g_context->nx = false;
3864 3865 3866
		g_context->root_level = 0;
		g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
	} else if (is_long_mode(vcpu)) {
3867
		g_context->nx = is_nx(vcpu);
3868
		g_context->root_level = PT64_ROOT_LEVEL;
3869
		reset_rsvds_bits_mask(vcpu, g_context);
3870 3871
		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
	} else if (is_pae(vcpu)) {
3872
		g_context->nx = is_nx(vcpu);
3873
		g_context->root_level = PT32E_ROOT_LEVEL;
3874
		reset_rsvds_bits_mask(vcpu, g_context);
3875 3876
		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
	} else {
3877
		g_context->nx = false;
3878
		g_context->root_level = PT32_ROOT_LEVEL;
3879
		reset_rsvds_bits_mask(vcpu, g_context);
3880 3881 3882
		g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
	}

3883
	update_permission_bitmask(vcpu, g_context, false);
A
Avi Kivity 已提交
3884
	update_last_pte_bitmap(vcpu, g_context);
3885 3886
}

3887
static void init_kvm_mmu(struct kvm_vcpu *vcpu)
3888
{
3889
	if (mmu_is_nested(vcpu))
3890
		init_kvm_nested_mmu(vcpu);
3891
	else if (tdp_enabled)
3892
		init_kvm_tdp_mmu(vcpu);
3893
	else
3894
		init_kvm_softmmu(vcpu);
3895 3896
}

3897
void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
3898
{
3899
	kvm_mmu_unload(vcpu);
3900
	init_kvm_mmu(vcpu);
A
Avi Kivity 已提交
3901
}
3902
EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
A
Avi Kivity 已提交
3903 3904

int kvm_mmu_load(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
3905
{
3906 3907
	int r;

3908
	r = mmu_topup_memory_caches(vcpu);
A
Avi Kivity 已提交
3909 3910
	if (r)
		goto out;
3911
	r = mmu_alloc_roots(vcpu);
3912
	kvm_mmu_sync_roots(vcpu);
3913 3914
	if (r)
		goto out;
3915
	/* set_cr3() should ensure TLB has been flushed */
3916
	vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
3917 3918
out:
	return r;
A
Avi Kivity 已提交
3919
}
A
Avi Kivity 已提交
3920 3921 3922 3923 3924
EXPORT_SYMBOL_GPL(kvm_mmu_load);

void kvm_mmu_unload(struct kvm_vcpu *vcpu)
{
	mmu_free_roots(vcpu);
3925
	WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
A
Avi Kivity 已提交
3926
}
3927
EXPORT_SYMBOL_GPL(kvm_mmu_unload);
A
Avi Kivity 已提交
3928

3929
static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
3930 3931
				  struct kvm_mmu_page *sp, u64 *spte,
				  const void *new)
3932
{
3933
	if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
3934 3935
		++vcpu->kvm->stat.mmu_pde_zapped;
		return;
3936
        }
3937

A
Avi Kivity 已提交
3938
	++vcpu->kvm->stat.mmu_pte_updated;
3939
	vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
3940 3941
}

3942 3943 3944 3945 3946 3947 3948 3949
static bool need_remote_flush(u64 old, u64 new)
{
	if (!is_shadow_present_pte(old))
		return false;
	if (!is_shadow_present_pte(new))
		return true;
	if ((old ^ new) & PT64_BASE_ADDR_MASK)
		return true;
3950 3951
	old ^= shadow_nx_mask;
	new ^= shadow_nx_mask;
3952 3953 3954
	return (old & ~new & PT64_PERM_MASK) != 0;
}

3955 3956
static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
				    bool remote_flush, bool local_flush)
3957
{
3958 3959 3960 3961
	if (zap_page)
		return;

	if (remote_flush)
3962
		kvm_flush_remote_tlbs(vcpu->kvm);
3963
	else if (local_flush)
3964
		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
3965 3966
}

3967 3968
static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
				    const u8 *new, int *bytes)
3969
{
3970 3971
	u64 gentry;
	int r;
3972 3973 3974

	/*
	 * Assume that the pte write on a page table of the same type
3975 3976
	 * as the current vcpu paging mode since we update the sptes only
	 * when they have the same mode.
3977
	 */
3978
	if (is_pae(vcpu) && *bytes == 4) {
3979
		/* Handle a 32-bit guest writing two halves of a 64-bit gpte */
3980 3981
		*gpa &= ~(gpa_t)7;
		*bytes = 8;
3982
		r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, 8);
3983 3984
		if (r)
			gentry = 0;
3985 3986 3987
		new = (const u8 *)&gentry;
	}

3988
	switch (*bytes) {
3989 3990 3991 3992 3993 3994 3995 3996 3997
	case 4:
		gentry = *(const u32 *)new;
		break;
	case 8:
		gentry = *(const u64 *)new;
		break;
	default:
		gentry = 0;
		break;
3998 3999
	}

4000 4001 4002 4003 4004 4005 4006
	return gentry;
}

/*
 * If we're seeing too many writes to a page, it may no longer be a page table,
 * or we may be forking, in which case it is better to unmap the page.
 */
4007
static bool detect_write_flooding(struct kvm_mmu_page *sp)
4008
{
4009 4010 4011 4012
	/*
	 * Skip write-flooding detected for the sp whose level is 1, because
	 * it can become unsync, then the guest page is not write-protected.
	 */
4013
	if (sp->role.level == PT_PAGE_TABLE_LEVEL)
4014
		return false;
4015

4016
	return ++sp->write_flooding_count >= 3;
4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032
}

/*
 * Misaligned accesses are too much trouble to fix up; also, they usually
 * indicate a page is not used as a page table.
 */
static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
				    int bytes)
{
	unsigned offset, pte_size, misaligned;

	pgprintk("misaligned: gpa %llx bytes %d role %x\n",
		 gpa, bytes, sp->role.word);

	offset = offset_in_page(gpa);
	pte_size = sp->role.cr4_pae ? 8 : 4;
4033 4034 4035 4036 4037 4038 4039 4040

	/*
	 * Sometimes, the OS only writes the last one bytes to update status
	 * bits, for example, in linux, andb instruction is used in clear_bit().
	 */
	if (!(offset & (pte_size - 1)) && bytes == 1)
		return false;

4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086
	misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
	misaligned |= bytes < 4;

	return misaligned;
}

static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
{
	unsigned page_offset, quadrant;
	u64 *spte;
	int level;

	page_offset = offset_in_page(gpa);
	level = sp->role.level;
	*nspte = 1;
	if (!sp->role.cr4_pae) {
		page_offset <<= 1;	/* 32->64 */
		/*
		 * A 32-bit pde maps 4MB while the shadow pdes map
		 * only 2MB.  So we need to double the offset again
		 * and zap two pdes instead of one.
		 */
		if (level == PT32_ROOT_LEVEL) {
			page_offset &= ~7; /* kill rounding error */
			page_offset <<= 1;
			*nspte = 2;
		}
		quadrant = page_offset >> PAGE_SHIFT;
		page_offset &= ~PAGE_MASK;
		if (quadrant != sp->role.quadrant)
			return NULL;
	}

	spte = &sp->spt[page_offset / sizeof(*spte)];
	return spte;
}

void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
		       const u8 *new, int bytes)
{
	gfn_t gfn = gpa >> PAGE_SHIFT;
	union kvm_mmu_page_role mask = { .word = 0 };
	struct kvm_mmu_page *sp;
	LIST_HEAD(invalid_list);
	u64 entry, gentry, *spte;
	int npte;
4087
	bool remote_flush, local_flush, zap_page;
4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110

	/*
	 * If we don't have indirect shadow pages, it means no page is
	 * write-protected, so we can exit simply.
	 */
	if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
		return;

	zap_page = remote_flush = local_flush = false;

	pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);

	gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);

	/*
	 * No need to care whether allocation memory is successful
	 * or not since pte prefetch is skiped if it does not have
	 * enough objects in the cache.
	 */
	mmu_topup_memory_caches(vcpu);

	spin_lock(&vcpu->kvm->mmu_lock);
	++vcpu->kvm->stat.mmu_pte_write;
4111
	kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
4112

4113
	mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
4114
	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
4115
		if (detect_write_misaligned(sp, gpa, bytes) ||
4116
		      detect_write_flooding(sp)) {
4117
			zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
4118
						     &invalid_list);
A
Avi Kivity 已提交
4119
			++vcpu->kvm->stat.mmu_flooded;
4120 4121
			continue;
		}
4122 4123 4124 4125 4126

		spte = get_written_sptes(sp, gpa, &npte);
		if (!spte)
			continue;

4127
		local_flush = true;
4128
		while (npte--) {
4129
			entry = *spte;
4130
			mmu_page_zap_pte(vcpu->kvm, sp, spte);
4131 4132
			if (gentry &&
			      !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
4133
			      & mask.word) && rmap_can_add(vcpu))
4134
				mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
G
Gleb Natapov 已提交
4135
			if (need_remote_flush(entry, *spte))
4136
				remote_flush = true;
4137
			++spte;
4138 4139
		}
	}
4140
	mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
4141
	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4142
	kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
4143
	spin_unlock(&vcpu->kvm->mmu_lock);
4144 4145
}

4146 4147
int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
{
4148 4149
	gpa_t gpa;
	int r;
4150

4151
	if (vcpu->arch.mmu.direct_map)
4152 4153
		return 0;

4154
	gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
4155 4156

	r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4157

4158
	return r;
4159
}
4160
EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
4161

4162
static void make_mmu_pages_available(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
4163
{
4164
	LIST_HEAD(invalid_list);
4165

4166 4167 4168
	if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
		return;

4169 4170 4171
	while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
		if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
			break;
A
Avi Kivity 已提交
4172

A
Avi Kivity 已提交
4173
		++vcpu->kvm->stat.mmu_recycled;
A
Avi Kivity 已提交
4174
	}
4175
	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
A
Avi Kivity 已提交
4176 4177
}

4178 4179 4180 4181 4182 4183 4184 4185
static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
{
	if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
		return vcpu_match_mmio_gpa(vcpu, addr);

	return vcpu_match_mmio_gva(vcpu, addr);
}

4186 4187
int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
		       void *insn, int insn_len)
4188
{
4189
	int r, emulation_type = EMULTYPE_RETRY;
4190 4191
	enum emulation_result er;

G
Gleb Natapov 已提交
4192
	r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
4193 4194 4195 4196 4197 4198 4199 4200
	if (r < 0)
		goto out;

	if (!r) {
		r = 1;
		goto out;
	}

4201 4202 4203 4204
	if (is_mmio_page_fault(vcpu, cr2))
		emulation_type = 0;

	er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
4205 4206 4207 4208

	switch (er) {
	case EMULATE_DONE:
		return 1;
P
Paolo Bonzini 已提交
4209
	case EMULATE_USER_EXIT:
4210
		++vcpu->stat.mmio_exits;
4211
		/* fall through */
4212
	case EMULATE_FAIL:
4213
		return 0;
4214 4215 4216 4217 4218 4219 4220 4221
	default:
		BUG();
	}
out:
	return r;
}
EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);

M
Marcelo Tosatti 已提交
4222 4223 4224
void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
{
	vcpu->arch.mmu.invlpg(vcpu, gva);
4225
	kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
M
Marcelo Tosatti 已提交
4226 4227 4228 4229
	++vcpu->stat.invlpg;
}
EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);

4230 4231 4232 4233 4234 4235
void kvm_enable_tdp(void)
{
	tdp_enabled = true;
}
EXPORT_SYMBOL_GPL(kvm_enable_tdp);

4236 4237 4238 4239 4240 4241
void kvm_disable_tdp(void)
{
	tdp_enabled = false;
}
EXPORT_SYMBOL_GPL(kvm_disable_tdp);

A
Avi Kivity 已提交
4242 4243
static void free_mmu_pages(struct kvm_vcpu *vcpu)
{
4244
	free_page((unsigned long)vcpu->arch.mmu.pae_root);
4245 4246
	if (vcpu->arch.mmu.lm_root != NULL)
		free_page((unsigned long)vcpu->arch.mmu.lm_root);
A
Avi Kivity 已提交
4247 4248 4249 4250
}

static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
{
4251
	struct page *page;
A
Avi Kivity 已提交
4252 4253
	int i;

4254 4255 4256 4257 4258 4259 4260
	/*
	 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
	 * Therefore we need to allocate shadow page tables in the first
	 * 4GB of memory, which happens to fit the DMA32 zone.
	 */
	page = alloc_page(GFP_KERNEL | __GFP_DMA32);
	if (!page)
4261 4262
		return -ENOMEM;

4263
	vcpu->arch.mmu.pae_root = page_address(page);
4264
	for (i = 0; i < 4; ++i)
4265
		vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
4266

A
Avi Kivity 已提交
4267 4268 4269
	return 0;
}

4270
int kvm_mmu_create(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
4271
{
4272 4273 4274 4275
	vcpu->arch.walk_mmu = &vcpu->arch.mmu;
	vcpu->arch.mmu.root_hpa = INVALID_PAGE;
	vcpu->arch.mmu.translate_gpa = translate_gpa;
	vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
A
Avi Kivity 已提交
4276

4277 4278
	return alloc_mmu_pages(vcpu);
}
A
Avi Kivity 已提交
4279

4280
void kvm_mmu_setup(struct kvm_vcpu *vcpu)
4281
{
4282
	MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
4283

4284
	init_kvm_mmu(vcpu);
A
Avi Kivity 已提交
4285 4286
}

4287
void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
A
Avi Kivity 已提交
4288
{
4289 4290 4291
	struct kvm_memory_slot *memslot;
	gfn_t last_gfn;
	int i;
A
Avi Kivity 已提交
4292

4293 4294
	memslot = id_to_memslot(kvm->memslots, slot);
	last_gfn = memslot->base_gfn + memslot->npages - 1;
A
Avi Kivity 已提交
4295

4296 4297
	spin_lock(&kvm->mmu_lock);

4298 4299 4300 4301
	for (i = PT_PAGE_TABLE_LEVEL;
	     i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
		unsigned long *rmapp;
		unsigned long last_index, index;
A
Avi Kivity 已提交
4302

4303 4304
		rmapp = memslot->arch.rmap[i - PT_PAGE_TABLE_LEVEL];
		last_index = gfn_to_index(last_gfn, memslot->base_gfn, i);
4305

4306 4307 4308
		for (index = 0; index <= last_index; ++index, ++rmapp) {
			if (*rmapp)
				__rmap_write_protect(kvm, rmapp, false);
4309

4310
			if (need_resched() || spin_needbreak(&kvm->mmu_lock))
4311
				cond_resched_lock(&kvm->mmu_lock);
4312
		}
A
Avi Kivity 已提交
4313
	}
4314

4315
	spin_unlock(&kvm->mmu_lock);
4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335

	/*
	 * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
	 * which do tlb flush out of mmu-lock should be serialized by
	 * kvm->slots_lock otherwise tlb flush would be missed.
	 */
	lockdep_assert_held(&kvm->slots_lock);

	/*
	 * We can flush all the TLBs out of the mmu lock without TLB
	 * corruption since we just change the spte from writable to
	 * readonly so that we only need to care the case of changing
	 * spte from present to present (changing the spte from present
	 * to nonpresent will flush all the TLBs immediately), in other
	 * words, the only case we care is mmu_spte_update() where we
	 * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
	 * instead of PT_WRITABLE_MASK, that means it does not depend
	 * on PT_WRITABLE_MASK anymore.
	 */
	kvm_flush_remote_tlbs(kvm);
A
Avi Kivity 已提交
4336
}
4337

X
Xiao Guangrong 已提交
4338
#define BATCH_ZAP_PAGES	10
4339 4340 4341
static void kvm_zap_obsolete_pages(struct kvm *kvm)
{
	struct kvm_mmu_page *sp, *node;
X
Xiao Guangrong 已提交
4342
	int batch = 0;
4343 4344 4345 4346

restart:
	list_for_each_entry_safe_reverse(sp, node,
	      &kvm->arch.active_mmu_pages, link) {
X
Xiao Guangrong 已提交
4347 4348
		int ret;

4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363
		/*
		 * No obsolete page exists before new created page since
		 * active_mmu_pages is the FIFO list.
		 */
		if (!is_obsolete_sp(kvm, sp))
			break;

		/*
		 * Since we are reversely walking the list and the invalid
		 * list will be moved to the head, skip the invalid page
		 * can help us to avoid the infinity list walking.
		 */
		if (sp->role.invalid)
			continue;

4364 4365 4366 4367
		/*
		 * Need not flush tlb since we only zap the sp with invalid
		 * generation number.
		 */
X
Xiao Guangrong 已提交
4368
		if (batch >= BATCH_ZAP_PAGES &&
4369
		      cond_resched_lock(&kvm->mmu_lock)) {
X
Xiao Guangrong 已提交
4370
			batch = 0;
4371 4372 4373
			goto restart;
		}

4374 4375
		ret = kvm_mmu_prepare_zap_page(kvm, sp,
				&kvm->arch.zapped_obsolete_pages);
X
Xiao Guangrong 已提交
4376 4377 4378
		batch += ret;

		if (ret)
4379 4380 4381
			goto restart;
	}

4382 4383 4384 4385
	/*
	 * Should flush tlb before free page tables since lockless-walking
	 * may use the pages.
	 */
4386
	kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400
}

/*
 * Fast invalidate all shadow pages and use lock-break technique
 * to zap obsolete pages.
 *
 * It's required when memslot is being deleted or VM is being
 * destroyed, in these cases, we should ensure that KVM MMU does
 * not use any resource of the being-deleted slot or all slots
 * after calling the function.
 */
void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
{
	spin_lock(&kvm->mmu_lock);
4401
	trace_kvm_mmu_invalidate_zap_all_pages(kvm);
4402 4403
	kvm->arch.mmu_valid_gen++;

4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414
	/*
	 * Notify all vcpus to reload its shadow page table
	 * and flush TLB. Then all vcpus will switch to new
	 * shadow page table with the new mmu_valid_gen.
	 *
	 * Note: we should do this under the protection of
	 * mmu-lock, otherwise, vcpu would purge shadow page
	 * but miss tlb flush.
	 */
	kvm_reload_remote_mmus(kvm);

4415 4416 4417 4418
	kvm_zap_obsolete_pages(kvm);
	spin_unlock(&kvm->mmu_lock);
}

4419 4420 4421 4422 4423
static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
{
	return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
}

4424 4425 4426 4427 4428 4429
void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm)
{
	/*
	 * The very rare case: if the generation-number is round,
	 * zap all shadow pages.
	 */
4430
	if (unlikely(kvm_current_mmio_generation(kvm) == 0)) {
4431
		printk_ratelimited(KERN_DEBUG "kvm: zapping shadow pages for mmio generation wraparound\n");
4432
		kvm_mmu_invalidate_zap_all_pages(kvm);
4433
	}
4434 4435
}

4436 4437
static unsigned long
mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
4438 4439
{
	struct kvm *kvm;
4440
	int nr_to_scan = sc->nr_to_scan;
4441
	unsigned long freed = 0;
4442

4443
	spin_lock(&kvm_lock);
4444 4445

	list_for_each_entry(kvm, &vm_list, vm_list) {
4446
		int idx;
4447
		LIST_HEAD(invalid_list);
4448

4449 4450 4451 4452 4453 4454 4455 4456
		/*
		 * Never scan more than sc->nr_to_scan VM instances.
		 * Will not hit this condition practically since we do not try
		 * to shrink more than one VM and it is very unlikely to see
		 * !n_used_mmu_pages so many times.
		 */
		if (!nr_to_scan--)
			break;
4457 4458 4459 4460 4461 4462
		/*
		 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
		 * here. We may skip a VM instance errorneosly, but we do not
		 * want to shrink a VM that only started to populate its MMU
		 * anyway.
		 */
4463 4464
		if (!kvm->arch.n_used_mmu_pages &&
		      !kvm_has_zapped_obsolete_pages(kvm))
4465 4466
			continue;

4467
		idx = srcu_read_lock(&kvm->srcu);
4468 4469
		spin_lock(&kvm->mmu_lock);

4470 4471 4472 4473 4474 4475
		if (kvm_has_zapped_obsolete_pages(kvm)) {
			kvm_mmu_commit_zap_page(kvm,
			      &kvm->arch.zapped_obsolete_pages);
			goto unlock;
		}

4476 4477
		if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
			freed++;
4478
		kvm_mmu_commit_zap_page(kvm, &invalid_list);
4479

4480
unlock:
4481
		spin_unlock(&kvm->mmu_lock);
4482
		srcu_read_unlock(&kvm->srcu, idx);
4483

4484 4485 4486 4487 4488
		/*
		 * unfair on small ones
		 * per-vm shrinkers cry out
		 * sadness comes quickly
		 */
4489 4490
		list_move_tail(&kvm->vm_list, &vm_list);
		break;
4491 4492
	}

4493
	spin_unlock(&kvm_lock);
4494 4495 4496 4497 4498 4499
	return freed;
}

static unsigned long
mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
{
4500
	return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
4501 4502 4503
}

static struct shrinker mmu_shrinker = {
4504 4505
	.count_objects = mmu_shrink_count,
	.scan_objects = mmu_shrink_scan,
4506 4507 4508
	.seeks = DEFAULT_SEEKS * 10,
};

I
Ingo Molnar 已提交
4509
static void mmu_destroy_caches(void)
4510
{
4511 4512
	if (pte_list_desc_cache)
		kmem_cache_destroy(pte_list_desc_cache);
4513 4514
	if (mmu_page_header_cache)
		kmem_cache_destroy(mmu_page_header_cache);
4515 4516 4517 4518
}

int kvm_mmu_module_init(void)
{
4519 4520
	pte_list_desc_cache = kmem_cache_create("pte_list_desc",
					    sizeof(struct pte_list_desc),
4521
					    0, 0, NULL);
4522
	if (!pte_list_desc_cache)
4523 4524
		goto nomem;

4525 4526
	mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
						  sizeof(struct kvm_mmu_page),
4527
						  0, 0, NULL);
4528 4529 4530
	if (!mmu_page_header_cache)
		goto nomem;

4531
	if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
4532 4533
		goto nomem;

4534 4535
	register_shrinker(&mmu_shrinker);

4536 4537 4538
	return 0;

nomem:
4539
	mmu_destroy_caches();
4540 4541 4542
	return -ENOMEM;
}

4543 4544 4545 4546 4547 4548 4549
/*
 * Caculate mmu pages needed for kvm.
 */
unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
{
	unsigned int nr_mmu_pages;
	unsigned int  nr_pages = 0;
4550
	struct kvm_memslots *slots;
4551
	struct kvm_memory_slot *memslot;
4552

4553 4554
	slots = kvm_memslots(kvm);

4555 4556
	kvm_for_each_memslot(memslot, slots)
		nr_pages += memslot->npages;
4557 4558 4559 4560 4561 4562 4563 4564

	nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
	nr_mmu_pages = max(nr_mmu_pages,
			(unsigned int) KVM_MIN_ALLOC_MMU_PAGES);

	return nr_mmu_pages;
}

4565 4566 4567
int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
{
	struct kvm_shadow_walk_iterator iterator;
4568
	u64 spte;
4569 4570
	int nr_sptes = 0;

4571 4572 4573
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
		return nr_sptes;

4574 4575 4576
	walk_shadow_page_lockless_begin(vcpu);
	for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
		sptes[iterator.level-1] = spte;
4577
		nr_sptes++;
4578
		if (!is_shadow_present_pte(spte))
4579 4580
			break;
	}
4581
	walk_shadow_page_lockless_end(vcpu);
4582 4583 4584 4585 4586

	return nr_sptes;
}
EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);

4587 4588
void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
{
4589
	kvm_mmu_unload(vcpu);
4590 4591
	free_mmu_pages(vcpu);
	mmu_free_memory_caches(vcpu);
4592 4593 4594 4595 4596 4597 4598
}

void kvm_mmu_module_exit(void)
{
	mmu_destroy_caches();
	percpu_counter_destroy(&kvm_total_used_mmu_pages);
	unregister_shrinker(&mmu_shrinker);
4599 4600
	mmu_audit_disable();
}