mmu.c 108.6 KB
Newer Older
A
Avi Kivity 已提交
1 2 3 4 5 6 7 8 9
/*
 * Kernel-based Virtual Machine driver for Linux
 *
 * This module enables machines with Intel VT-x extensions to run virtual
 * machines without emulation or binary translation.
 *
 * MMU support
 *
 * Copyright (C) 2006 Qumranet, Inc.
N
Nicolas Kaiser 已提交
10
 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
A
Avi Kivity 已提交
11 12 13 14 15 16 17 18 19
 *
 * Authors:
 *   Yaniv Kamay  <yaniv@qumranet.com>
 *   Avi Kivity   <avi@qumranet.com>
 *
 * This work is licensed under the terms of the GNU GPL, version 2.  See
 * the COPYING file in the top-level directory.
 *
 */
A
Avi Kivity 已提交
20

21
#include "irq.h"
22
#include "mmu.h"
23
#include "x86.h"
A
Avi Kivity 已提交
24
#include "kvm_cache_regs.h"
A
Avi Kivity 已提交
25

26
#include <linux/kvm_host.h>
A
Avi Kivity 已提交
27 28 29 30 31
#include <linux/types.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/highmem.h>
#include <linux/module.h>
32
#include <linux/swap.h>
M
Marcelo Tosatti 已提交
33
#include <linux/hugetlb.h>
34
#include <linux/compiler.h>
35
#include <linux/srcu.h>
36
#include <linux/slab.h>
37
#include <linux/uaccess.h>
A
Avi Kivity 已提交
38

A
Avi Kivity 已提交
39 40
#include <asm/page.h>
#include <asm/cmpxchg.h>
41
#include <asm/io.h>
42
#include <asm/vmx.h>
A
Avi Kivity 已提交
43

44 45 46 47 48 49 50
/*
 * When setting this variable to true it enables Two-Dimensional-Paging
 * where the hardware walks 2 page tables:
 * 1. the guest-virtual to guest-physical
 * 2. while doing 1. it walks guest-physical to host-physical
 * If the hardware supports that we don't need to do shadow paging.
 */
51
bool tdp_enabled = false;
52

53 54 55 56
enum {
	AUDIT_PRE_PAGE_FAULT,
	AUDIT_POST_PAGE_FAULT,
	AUDIT_PRE_PTE_WRITE,
57 58 59
	AUDIT_POST_PTE_WRITE,
	AUDIT_PRE_SYNC,
	AUDIT_POST_SYNC
60
};
61

62
#undef MMU_DEBUG
63 64 65 66 67 68 69 70 71 72 73 74 75

#ifdef MMU_DEBUG

#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
#define rmap_printk(x...) do { if (dbg) printk(x); } while (0)

#else

#define pgprintk(x...) do { } while (0)
#define rmap_printk(x...) do { } while (0)

#endif

76
#ifdef MMU_DEBUG
77
static bool dbg = 0;
78
module_param(dbg, bool, 0644);
79
#endif
A
Avi Kivity 已提交
80

81 82 83
#ifndef MMU_DEBUG
#define ASSERT(x) do { } while (0)
#else
A
Avi Kivity 已提交
84 85 86 87 88
#define ASSERT(x)							\
	if (!(x)) {							\
		printk(KERN_WARNING "assertion failed %s:%d: %s\n",	\
		       __FILE__, __LINE__, #x);				\
	}
89
#endif
A
Avi Kivity 已提交
90

91 92
#define PTE_PREFETCH_NUM		8

93
#define PT_FIRST_AVAIL_BITS_SHIFT 10
A
Avi Kivity 已提交
94 95 96 97 98
#define PT64_SECOND_AVAIL_BITS_SHIFT 52

#define PT64_LEVEL_BITS 9

#define PT64_LEVEL_SHIFT(level) \
M
Mike Day 已提交
99
		(PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
A
Avi Kivity 已提交
100 101 102 103 104 105 106 107

#define PT64_INDEX(address, level)\
	(((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))


#define PT32_LEVEL_BITS 10

#define PT32_LEVEL_SHIFT(level) \
M
Mike Day 已提交
108
		(PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
A
Avi Kivity 已提交
109

110 111 112
#define PT32_LVL_OFFSET_MASK(level) \
	(PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
						* PT32_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
113 114 115 116 117

#define PT32_INDEX(address, level)\
	(((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))


118
#define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
A
Avi Kivity 已提交
119 120
#define PT64_DIR_BASE_ADDR_MASK \
	(PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
121 122 123 124 125 126
#define PT64_LVL_ADDR_MASK(level) \
	(PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
						* PT64_LEVEL_BITS))) - 1))
#define PT64_LVL_OFFSET_MASK(level) \
	(PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
						* PT64_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
127 128 129 130

#define PT32_BASE_ADDR_MASK PAGE_MASK
#define PT32_DIR_BASE_ADDR_MASK \
	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
131 132 133
#define PT32_LVL_ADDR_MASK(level) \
	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
					    * PT32_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
134

135 136
#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
			| PT64_NX_MASK)
A
Avi Kivity 已提交
137

138 139 140 141 142
#define ACC_EXEC_MASK    1
#define ACC_WRITE_MASK   PT_WRITABLE_MASK
#define ACC_USER_MASK    PT_USER_MASK
#define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)

143 144
#include <trace/events/kvm.h>

145 146 147
#define CREATE_TRACE_POINTS
#include "mmutrace.h"

148 149
#define SPTE_HOST_WRITEABLE	(1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
#define SPTE_MMU_WRITEABLE	(1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
150

151 152
#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)

153 154 155
/* make pte_list_desc fit well in cache line */
#define PTE_LIST_EXT 3

156 157 158
struct pte_list_desc {
	u64 *sptes[PTE_LIST_EXT];
	struct pte_list_desc *more;
159 160
};

161 162 163 164
struct kvm_shadow_walk_iterator {
	u64 addr;
	hpa_t shadow_addr;
	u64 *sptep;
165
	int level;
166 167 168 169 170 171 172 173
	unsigned index;
};

#define for_each_shadow_entry(_vcpu, _addr, _walker)    \
	for (shadow_walk_init(&(_walker), _vcpu, _addr);	\
	     shadow_walk_okay(&(_walker));			\
	     shadow_walk_next(&(_walker)))

174 175 176 177 178 179
#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)	\
	for (shadow_walk_init(&(_walker), _vcpu, _addr);		\
	     shadow_walk_okay(&(_walker)) &&				\
		({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });	\
	     __shadow_walk_next(&(_walker), spte))

180
static struct kmem_cache *pte_list_desc_cache;
181
static struct kmem_cache *mmu_page_header_cache;
182
static struct percpu_counter kvm_total_used_mmu_pages;
183

S
Sheng Yang 已提交
184 185 186 187 188
static u64 __read_mostly shadow_nx_mask;
static u64 __read_mostly shadow_x_mask;	/* mutual exclusive with nx_mask */
static u64 __read_mostly shadow_user_mask;
static u64 __read_mostly shadow_accessed_mask;
static u64 __read_mostly shadow_dirty_mask;
189 190 191
static u64 __read_mostly shadow_mmio_mask;

static void mmu_spte_set(u64 *sptep, u64 spte);
192
static void mmu_free_roots(struct kvm_vcpu *vcpu);
193 194 195 196 197 198 199

void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
{
	shadow_mmio_mask = mmio_mask;
}
EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);

200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
/*
 * spte bits of bit 3 ~ bit 11 are used as low 9 bits of generation number,
 * the bits of bits 52 ~ bit 61 are used as high 10 bits of generation
 * number.
 */
#define MMIO_SPTE_GEN_LOW_SHIFT		3
#define MMIO_SPTE_GEN_HIGH_SHIFT	52

#define MMIO_GEN_LOW_SHIFT		9
#define MMIO_GEN_LOW_MASK		((1 << MMIO_GEN_LOW_SHIFT) - 1)
#define MMIO_MAX_GEN			((1 << 19) - 1)

static u64 generation_mmio_spte_mask(unsigned int gen)
{
	u64 mask;

	WARN_ON(gen > MMIO_MAX_GEN);

	mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
	mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
	return mask;
}

static unsigned int get_mmio_spte_generation(u64 spte)
{
	unsigned int gen;

	spte &= ~shadow_mmio_mask;

	gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
	gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
	return gen;
}

static void mark_mmio_spte(struct kvm *kvm, u64 *sptep, u64 gfn,
			   unsigned access)
236
{
237
	struct kvm_mmu_page *sp =  page_header(__pa(sptep));
238
	u64 mask = generation_mmio_spte_mask(0);
239

240
	access &= ACC_WRITE_MASK | ACC_USER_MASK;
241
	mask |= shadow_mmio_mask | access | gfn << PAGE_SHIFT;
242
	sp->mmio_cached = true;
243 244 245

	trace_mark_mmio_spte(sptep, gfn, access, 0);
	mmu_spte_set(sptep, mask);
246 247 248 249 250 251 252 253 254
}

static bool is_mmio_spte(u64 spte)
{
	return (spte & shadow_mmio_mask) == shadow_mmio_mask;
}

static gfn_t get_mmio_spte_gfn(u64 spte)
{
255 256
	u64 mask = generation_mmio_spte_mask(MMIO_MAX_GEN) | shadow_mmio_mask;
	return (spte & ~mask) >> PAGE_SHIFT;
257 258 259 260
}

static unsigned get_mmio_spte_access(u64 spte)
{
261 262
	u64 mask = generation_mmio_spte_mask(MMIO_MAX_GEN) | shadow_mmio_mask;
	return (spte & ~mask) & ~PAGE_MASK;
263 264
}

265 266
static bool set_mmio_spte(struct kvm *kvm, u64 *sptep, gfn_t gfn,
			  pfn_t pfn, unsigned access)
267 268
{
	if (unlikely(is_noslot_pfn(pfn))) {
269
		mark_mmio_spte(kvm, sptep, gfn, access);
270 271 272 273 274
		return true;
	}

	return false;
}
275

276 277 278 279 280
static inline u64 rsvd_bits(int s, int e)
{
	return ((1ULL << (e - s + 1)) - 1) << s;
}

S
Sheng Yang 已提交
281
void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
282
		u64 dirty_mask, u64 nx_mask, u64 x_mask)
S
Sheng Yang 已提交
283 284 285 286 287 288 289 290 291
{
	shadow_user_mask = user_mask;
	shadow_accessed_mask = accessed_mask;
	shadow_dirty_mask = dirty_mask;
	shadow_nx_mask = nx_mask;
	shadow_x_mask = x_mask;
}
EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);

A
Avi Kivity 已提交
292 293 294 295 296
static int is_cpuid_PSE36(void)
{
	return 1;
}

297 298
static int is_nx(struct kvm_vcpu *vcpu)
{
299
	return vcpu->arch.efer & EFER_NX;
300 301
}

302 303
static int is_shadow_present_pte(u64 pte)
{
304
	return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
305 306
}

M
Marcelo Tosatti 已提交
307 308 309 310 311
static int is_large_pte(u64 pte)
{
	return pte & PT_PAGE_SIZE_MASK;
}

312
static int is_dirty_gpte(unsigned long pte)
313
{
A
Avi Kivity 已提交
314
	return pte & PT_DIRTY_MASK;
315 316
}

317
static int is_rmap_spte(u64 pte)
318
{
319
	return is_shadow_present_pte(pte);
320 321
}

322 323 324 325
static int is_last_spte(u64 pte, int level)
{
	if (level == PT_PAGE_TABLE_LEVEL)
		return 1;
326
	if (is_large_pte(pte))
327 328 329 330
		return 1;
	return 0;
}

331
static pfn_t spte_to_pfn(u64 pte)
332
{
333
	return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
334 335
}

336 337 338 339 340 341 342
static gfn_t pse36_gfn_delta(u32 gpte)
{
	int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;

	return (gpte & PT32_DIR_PSE36_MASK) << shift;
}

343
#ifdef CONFIG_X86_64
A
Avi Kivity 已提交
344
static void __set_spte(u64 *sptep, u64 spte)
345
{
346
	*sptep = spte;
347 348
}

349
static void __update_clear_spte_fast(u64 *sptep, u64 spte)
350
{
351 352 353 354 355 356 357
	*sptep = spte;
}

static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
{
	return xchg(sptep, spte);
}
358 359 360 361 362

static u64 __get_spte_lockless(u64 *sptep)
{
	return ACCESS_ONCE(*sptep);
}
363 364 365 366 367 368

static bool __check_direct_spte_mmio_pf(u64 spte)
{
	/* It is valid if the spte is zapped. */
	return spte == 0ull;
}
369
#else
370 371 372 373 374 375 376
union split_spte {
	struct {
		u32 spte_low;
		u32 spte_high;
	};
	u64 spte;
};
377

378 379 380 381 382 383 384 385 386 387 388 389
static void count_spte_clear(u64 *sptep, u64 spte)
{
	struct kvm_mmu_page *sp =  page_header(__pa(sptep));

	if (is_shadow_present_pte(spte))
		return;

	/* Ensure the spte is completely set before we increase the count */
	smp_wmb();
	sp->clear_spte_count++;
}

390 391 392
static void __set_spte(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte;
393

394 395 396 397 398 399 400 401 402 403 404 405 406
	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	ssptep->spte_high = sspte.spte_high;

	/*
	 * If we map the spte from nonpresent to present, We should store
	 * the high bits firstly, then set present bit, so cpu can not
	 * fetch this spte while we are setting the spte.
	 */
	smp_wmb();

	ssptep->spte_low = sspte.spte_low;
407 408
}

409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
static void __update_clear_spte_fast(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte;

	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	ssptep->spte_low = sspte.spte_low;

	/*
	 * If we map the spte from present to nonpresent, we should clear
	 * present bit firstly to avoid vcpu fetch the old high bits.
	 */
	smp_wmb();

	ssptep->spte_high = sspte.spte_high;
425
	count_spte_clear(sptep, spte);
426 427 428 429 430 431 432 433 434 435 436
}

static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte, orig;

	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	/* xchg acts as a barrier before the setting of the high bits */
	orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
437 438
	orig.spte_high = ssptep->spte_high;
	ssptep->spte_high = sspte.spte_high;
439
	count_spte_clear(sptep, spte);
440 441 442

	return orig.spte;
}
443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472

/*
 * The idea using the light way get the spte on x86_32 guest is from
 * gup_get_pte(arch/x86/mm/gup.c).
 * The difference is we can not catch the spte tlb flush if we leave
 * guest mode, so we emulate it by increase clear_spte_count when spte
 * is cleared.
 */
static u64 __get_spte_lockless(u64 *sptep)
{
	struct kvm_mmu_page *sp =  page_header(__pa(sptep));
	union split_spte spte, *orig = (union split_spte *)sptep;
	int count;

retry:
	count = sp->clear_spte_count;
	smp_rmb();

	spte.spte_low = orig->spte_low;
	smp_rmb();

	spte.spte_high = orig->spte_high;
	smp_rmb();

	if (unlikely(spte.spte_low != orig->spte_low ||
	      count != sp->clear_spte_count))
		goto retry;

	return spte.spte;
}
473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489

static bool __check_direct_spte_mmio_pf(u64 spte)
{
	union split_spte sspte = (union split_spte)spte;
	u32 high_mmio_mask = shadow_mmio_mask >> 32;

	/* It is valid if the spte is zapped. */
	if (spte == 0ull)
		return true;

	/* It is valid if the spte is being zapped. */
	if (sspte.spte_low == 0ull &&
	    (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
		return true;

	return false;
}
490 491
#endif

492 493
static bool spte_is_locklessly_modifiable(u64 spte)
{
494 495
	return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
		(SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
496 497
}

498 499
static bool spte_has_volatile_bits(u64 spte)
{
500 501 502 503 504 505 506 507 508
	/*
	 * Always atomicly update spte if it can be updated
	 * out of mmu-lock, it can ensure dirty bit is not lost,
	 * also, it can help us to get a stable is_writable_pte()
	 * to ensure tlb flush is not missed.
	 */
	if (spte_is_locklessly_modifiable(spte))
		return true;

509 510 511 512 513 514
	if (!shadow_accessed_mask)
		return false;

	if (!is_shadow_present_pte(spte))
		return false;

515 516
	if ((spte & shadow_accessed_mask) &&
	      (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
517 518 519 520 521
		return false;

	return true;
}

522 523 524 525 526
static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
{
	return (old_spte & bit_mask) && !(new_spte & bit_mask);
}

527 528 529 530 531 532 533 534 535 536 537 538 539 540
/* Rules for using mmu_spte_set:
 * Set the sptep from nonpresent to present.
 * Note: the sptep being assigned *must* be either not present
 * or in a state where the hardware will not attempt to update
 * the spte.
 */
static void mmu_spte_set(u64 *sptep, u64 new_spte)
{
	WARN_ON(is_shadow_present_pte(*sptep));
	__set_spte(sptep, new_spte);
}

/* Rules for using mmu_spte_update:
 * Update the state bits, it means the mapped pfn is not changged.
541 542 543 544 545 546
 *
 * Whenever we overwrite a writable spte with a read-only one we
 * should flush remote TLBs. Otherwise rmap_write_protect
 * will find a read-only spte, even though the writable spte
 * might be cached on a CPU's TLB, the return value indicates this
 * case.
547
 */
548
static bool mmu_spte_update(u64 *sptep, u64 new_spte)
549
{
550
	u64 old_spte = *sptep;
551
	bool ret = false;
552 553

	WARN_ON(!is_rmap_spte(new_spte));
554

555 556 557 558
	if (!is_shadow_present_pte(old_spte)) {
		mmu_spte_set(sptep, new_spte);
		return ret;
	}
559

560
	if (!spte_has_volatile_bits(old_spte))
561
		__update_clear_spte_fast(sptep, new_spte);
562
	else
563
		old_spte = __update_clear_spte_slow(sptep, new_spte);
564

565 566 567 568 569
	/*
	 * For the spte updated out of mmu-lock is safe, since
	 * we always atomicly update it, see the comments in
	 * spte_has_volatile_bits().
	 */
570 571 572
	if (is_writable_pte(old_spte) && !is_writable_pte(new_spte))
		ret = true;

573
	if (!shadow_accessed_mask)
574
		return ret;
575 576 577 578 579

	if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
		kvm_set_pfn_accessed(spte_to_pfn(old_spte));
	if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
		kvm_set_pfn_dirty(spte_to_pfn(old_spte));
580 581

	return ret;
582 583
}

584 585 586 587 588 589 590 591 592 593 594
/*
 * Rules for using mmu_spte_clear_track_bits:
 * It sets the sptep from present to nonpresent, and track the
 * state bits, it is used to clear the last level sptep.
 */
static int mmu_spte_clear_track_bits(u64 *sptep)
{
	pfn_t pfn;
	u64 old_spte = *sptep;

	if (!spte_has_volatile_bits(old_spte))
595
		__update_clear_spte_fast(sptep, 0ull);
596
	else
597
		old_spte = __update_clear_spte_slow(sptep, 0ull);
598 599 600 601 602

	if (!is_rmap_spte(old_spte))
		return 0;

	pfn = spte_to_pfn(old_spte);
603 604 605 606 607 608 609 610

	/*
	 * KVM does not hold the refcount of the page used by
	 * kvm mmu, before reclaiming the page, we should
	 * unmap it from mmu first.
	 */
	WARN_ON(!kvm_is_mmio_pfn(pfn) && !page_count(pfn_to_page(pfn)));

611 612 613 614 615 616 617 618 619 620 621 622 623 624
	if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
		kvm_set_pfn_accessed(pfn);
	if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
		kvm_set_pfn_dirty(pfn);
	return 1;
}

/*
 * Rules for using mmu_spte_clear_no_track:
 * Directly clear spte without caring the state bits of sptep,
 * it is used to set the upper level spte.
 */
static void mmu_spte_clear_no_track(u64 *sptep)
{
625
	__update_clear_spte_fast(sptep, 0ull);
626 627
}

628 629 630 631 632 633 634
static u64 mmu_spte_get_lockless(u64 *sptep)
{
	return __get_spte_lockless(sptep);
}

static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
{
635 636 637 638 639 640 641 642 643 644 645
	/*
	 * Prevent page table teardown by making any free-er wait during
	 * kvm_flush_remote_tlbs() IPI to all active vcpus.
	 */
	local_irq_disable();
	vcpu->mode = READING_SHADOW_PAGE_TABLES;
	/*
	 * Make sure a following spte read is not reordered ahead of the write
	 * to vcpu->mode.
	 */
	smp_mb();
646 647 648 649
}

static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
{
650 651 652 653 654 655 656 657
	/*
	 * Make sure the write to vcpu->mode is not reordered in front of
	 * reads to sptes.  If it does, kvm_commit_zap_page() can see us
	 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
	 */
	smp_mb();
	vcpu->mode = OUTSIDE_GUEST_MODE;
	local_irq_enable();
658 659
}

660
static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
661
				  struct kmem_cache *base_cache, int min)
662 663 664 665
{
	void *obj;

	if (cache->nobjs >= min)
666
		return 0;
667
	while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
668
		obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
669
		if (!obj)
670
			return -ENOMEM;
671 672
		cache->objects[cache->nobjs++] = obj;
	}
673
	return 0;
674 675
}

676 677 678 679 680
static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
{
	return cache->nobjs;
}

681 682
static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
				  struct kmem_cache *cache)
683 684
{
	while (mc->nobjs)
685
		kmem_cache_free(cache, mc->objects[--mc->nobjs]);
686 687
}

A
Avi Kivity 已提交
688
static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
689
				       int min)
A
Avi Kivity 已提交
690
{
691
	void *page;
A
Avi Kivity 已提交
692 693 694 695

	if (cache->nobjs >= min)
		return 0;
	while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
696
		page = (void *)__get_free_page(GFP_KERNEL);
A
Avi Kivity 已提交
697 698
		if (!page)
			return -ENOMEM;
699
		cache->objects[cache->nobjs++] = page;
A
Avi Kivity 已提交
700 701 702 703 704 705 706
	}
	return 0;
}

static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
{
	while (mc->nobjs)
707
		free_page((unsigned long)mc->objects[--mc->nobjs]);
A
Avi Kivity 已提交
708 709
}

710
static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
711
{
712 713
	int r;

714
	r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
715
				   pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
716 717
	if (r)
		goto out;
718
	r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
719 720
	if (r)
		goto out;
721
	r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
722
				   mmu_page_header_cache, 4);
723 724
out:
	return r;
725 726 727 728
}

static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
{
729 730
	mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
				pte_list_desc_cache);
731
	mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
732 733
	mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
				mmu_page_header_cache);
734 735
}

736
static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
737 738 739 740 741 742 743 744
{
	void *p;

	BUG_ON(!mc->nobjs);
	p = mc->objects[--mc->nobjs];
	return p;
}

745
static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
746
{
747
	return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
748 749
}

750
static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
751
{
752
	kmem_cache_free(pte_list_desc_cache, pte_list_desc);
753 754
}

755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770
static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
{
	if (!sp->role.direct)
		return sp->gfns[index];

	return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
}

static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
{
	if (sp->role.direct)
		BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
	else
		sp->gfns[index] = gfn;
}

M
Marcelo Tosatti 已提交
771
/*
772 773
 * Return the pointer to the large page information for a given gfn,
 * handling slots that are not large page aligned.
M
Marcelo Tosatti 已提交
774
 */
775 776 777
static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
					      struct kvm_memory_slot *slot,
					      int level)
M
Marcelo Tosatti 已提交
778 779 780
{
	unsigned long idx;

781
	idx = gfn_to_index(gfn, slot->base_gfn, level);
782
	return &slot->arch.lpage_info[level - 2][idx];
M
Marcelo Tosatti 已提交
783 784 785 786
}

static void account_shadowed(struct kvm *kvm, gfn_t gfn)
{
787
	struct kvm_memory_slot *slot;
788
	struct kvm_lpage_info *linfo;
789
	int i;
M
Marcelo Tosatti 已提交
790

A
Avi Kivity 已提交
791
	slot = gfn_to_memslot(kvm, gfn);
792 793
	for (i = PT_DIRECTORY_LEVEL;
	     i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
794 795
		linfo = lpage_info_slot(gfn, slot, i);
		linfo->write_count += 1;
796
	}
797
	kvm->arch.indirect_shadow_pages++;
M
Marcelo Tosatti 已提交
798 799 800 801
}

static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
{
802
	struct kvm_memory_slot *slot;
803
	struct kvm_lpage_info *linfo;
804
	int i;
M
Marcelo Tosatti 已提交
805

A
Avi Kivity 已提交
806
	slot = gfn_to_memslot(kvm, gfn);
807 808
	for (i = PT_DIRECTORY_LEVEL;
	     i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
809 810 811
		linfo = lpage_info_slot(gfn, slot, i);
		linfo->write_count -= 1;
		WARN_ON(linfo->write_count < 0);
812
	}
813
	kvm->arch.indirect_shadow_pages--;
M
Marcelo Tosatti 已提交
814 815
}

816 817 818
static int has_wrprotected_page(struct kvm *kvm,
				gfn_t gfn,
				int level)
M
Marcelo Tosatti 已提交
819
{
820
	struct kvm_memory_slot *slot;
821
	struct kvm_lpage_info *linfo;
M
Marcelo Tosatti 已提交
822

A
Avi Kivity 已提交
823
	slot = gfn_to_memslot(kvm, gfn);
M
Marcelo Tosatti 已提交
824
	if (slot) {
825 826
		linfo = lpage_info_slot(gfn, slot, level);
		return linfo->write_count;
M
Marcelo Tosatti 已提交
827 828 829 830 831
	}

	return 1;
}

832
static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
M
Marcelo Tosatti 已提交
833
{
J
Joerg Roedel 已提交
834
	unsigned long page_size;
835
	int i, ret = 0;
M
Marcelo Tosatti 已提交
836

J
Joerg Roedel 已提交
837
	page_size = kvm_host_page_size(kvm, gfn);
M
Marcelo Tosatti 已提交
838

839 840 841 842 843 844 845 846
	for (i = PT_PAGE_TABLE_LEVEL;
	     i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
		if (page_size >= KVM_HPAGE_SIZE(i))
			ret = i;
		else
			break;
	}

847
	return ret;
M
Marcelo Tosatti 已提交
848 849
}

850 851 852
static struct kvm_memory_slot *
gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
			    bool no_dirty_log)
M
Marcelo Tosatti 已提交
853 854
{
	struct kvm_memory_slot *slot;
855 856 857 858 859 860 861 862 863 864 865

	slot = gfn_to_memslot(vcpu->kvm, gfn);
	if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
	      (no_dirty_log && slot->dirty_bitmap))
		slot = NULL;

	return slot;
}

static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
{
866
	return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
867 868 869 870 871
}

static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
{
	int host_level, level, max_level;
M
Marcelo Tosatti 已提交
872

873 874 875 876 877
	host_level = host_mapping_level(vcpu->kvm, large_gfn);

	if (host_level == PT_PAGE_TABLE_LEVEL)
		return host_level;

X
Xiao Guangrong 已提交
878
	max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
879 880

	for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
881 882 883 884
		if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
			break;

	return level - 1;
M
Marcelo Tosatti 已提交
885 886
}

887
/*
888
 * Pte mapping structures:
889
 *
890
 * If pte_list bit zero is zero, then pte_list point to the spte.
891
 *
892 893
 * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
 * pte_list_desc containing more mappings.
894
 *
895
 * Returns the number of pte entries before the spte was added or zero if
896 897
 * the spte was not added.
 *
898
 */
899 900
static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
			unsigned long *pte_list)
901
{
902
	struct pte_list_desc *desc;
903
	int i, count = 0;
904

905 906 907 908 909 910 911
	if (!*pte_list) {
		rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
		*pte_list = (unsigned long)spte;
	} else if (!(*pte_list & 1)) {
		rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
		desc = mmu_alloc_pte_list_desc(vcpu);
		desc->sptes[0] = (u64 *)*pte_list;
A
Avi Kivity 已提交
912
		desc->sptes[1] = spte;
913
		*pte_list = (unsigned long)desc | 1;
914
		++count;
915
	} else {
916 917 918
		rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
		desc = (struct pte_list_desc *)(*pte_list & ~1ul);
		while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
919
			desc = desc->more;
920
			count += PTE_LIST_EXT;
921
		}
922 923
		if (desc->sptes[PTE_LIST_EXT-1]) {
			desc->more = mmu_alloc_pte_list_desc(vcpu);
924 925
			desc = desc->more;
		}
A
Avi Kivity 已提交
926
		for (i = 0; desc->sptes[i]; ++i)
927
			++count;
A
Avi Kivity 已提交
928
		desc->sptes[i] = spte;
929
	}
930
	return count;
931 932
}

933 934 935
static void
pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
			   int i, struct pte_list_desc *prev_desc)
936 937 938
{
	int j;

939
	for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
940
		;
A
Avi Kivity 已提交
941 942
	desc->sptes[i] = desc->sptes[j];
	desc->sptes[j] = NULL;
943 944 945
	if (j != 0)
		return;
	if (!prev_desc && !desc->more)
946
		*pte_list = (unsigned long)desc->sptes[0];
947 948 949 950
	else
		if (prev_desc)
			prev_desc->more = desc->more;
		else
951 952
			*pte_list = (unsigned long)desc->more | 1;
	mmu_free_pte_list_desc(desc);
953 954
}

955
static void pte_list_remove(u64 *spte, unsigned long *pte_list)
956
{
957 958
	struct pte_list_desc *desc;
	struct pte_list_desc *prev_desc;
959 960
	int i;

961 962
	if (!*pte_list) {
		printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
963
		BUG();
964 965 966 967
	} else if (!(*pte_list & 1)) {
		rmap_printk("pte_list_remove:  %p 1->0\n", spte);
		if ((u64 *)*pte_list != spte) {
			printk(KERN_ERR "pte_list_remove:  %p 1->BUG\n", spte);
968 969
			BUG();
		}
970
		*pte_list = 0;
971
	} else {
972 973
		rmap_printk("pte_list_remove:  %p many->many\n", spte);
		desc = (struct pte_list_desc *)(*pte_list & ~1ul);
974 975
		prev_desc = NULL;
		while (desc) {
976
			for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
A
Avi Kivity 已提交
977
				if (desc->sptes[i] == spte) {
978
					pte_list_desc_remove_entry(pte_list,
979
							       desc, i,
980 981 982 983 984 985
							       prev_desc);
					return;
				}
			prev_desc = desc;
			desc = desc->more;
		}
986
		pr_err("pte_list_remove: %p many->many\n", spte);
987 988 989 990
		BUG();
	}
}

991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
typedef void (*pte_list_walk_fn) (u64 *spte);
static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
{
	struct pte_list_desc *desc;
	int i;

	if (!*pte_list)
		return;

	if (!(*pte_list & 1))
		return fn((u64 *)*pte_list);

	desc = (struct pte_list_desc *)(*pte_list & ~1ul);
	while (desc) {
		for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
			fn(desc->sptes[i]);
		desc = desc->more;
	}
}

1011
static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
1012
				    struct kvm_memory_slot *slot)
1013
{
1014
	unsigned long idx;
1015

1016
	idx = gfn_to_index(gfn, slot->base_gfn, level);
1017
	return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
1018 1019
}

1020 1021 1022 1023 1024 1025 1026 1027
/*
 * Take gfn and return the reverse mapping to it.
 */
static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
{
	struct kvm_memory_slot *slot;

	slot = gfn_to_memslot(kvm, gfn);
1028
	return __gfn_to_rmap(gfn, level, slot);
1029 1030
}

1031 1032 1033 1034 1035 1036 1037 1038
static bool rmap_can_add(struct kvm_vcpu *vcpu)
{
	struct kvm_mmu_memory_cache *cache;

	cache = &vcpu->arch.mmu_pte_list_desc_cache;
	return mmu_memory_cache_free_objects(cache);
}

1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
{
	struct kvm_mmu_page *sp;
	unsigned long *rmapp;

	sp = page_header(__pa(spte));
	kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
	rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
	return pte_list_add(vcpu, spte, rmapp);
}

static void rmap_remove(struct kvm *kvm, u64 *spte)
{
	struct kvm_mmu_page *sp;
	gfn_t gfn;
	unsigned long *rmapp;

	sp = page_header(__pa(spte));
	gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
	rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
	pte_list_remove(spte, rmapp);
}

1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122
/*
 * Used by the following functions to iterate through the sptes linked by a
 * rmap.  All fields are private and not assumed to be used outside.
 */
struct rmap_iterator {
	/* private fields */
	struct pte_list_desc *desc;	/* holds the sptep if not NULL */
	int pos;			/* index of the sptep */
};

/*
 * Iteration must be started by this function.  This should also be used after
 * removing/dropping sptes from the rmap link because in such cases the
 * information in the itererator may not be valid.
 *
 * Returns sptep if found, NULL otherwise.
 */
static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
{
	if (!rmap)
		return NULL;

	if (!(rmap & 1)) {
		iter->desc = NULL;
		return (u64 *)rmap;
	}

	iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
	iter->pos = 0;
	return iter->desc->sptes[iter->pos];
}

/*
 * Must be used with a valid iterator: e.g. after rmap_get_first().
 *
 * Returns sptep if found, NULL otherwise.
 */
static u64 *rmap_get_next(struct rmap_iterator *iter)
{
	if (iter->desc) {
		if (iter->pos < PTE_LIST_EXT - 1) {
			u64 *sptep;

			++iter->pos;
			sptep = iter->desc->sptes[iter->pos];
			if (sptep)
				return sptep;
		}

		iter->desc = iter->desc->more;

		if (iter->desc) {
			iter->pos = 0;
			/* desc->sptes[0] cannot be NULL */
			return iter->desc->sptes[iter->pos];
		}
	}

	return NULL;
}

1123
static void drop_spte(struct kvm *kvm, u64 *sptep)
1124
{
1125
	if (mmu_spte_clear_track_bits(sptep))
1126
		rmap_remove(kvm, sptep);
A
Avi Kivity 已提交
1127 1128
}

1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149

static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
{
	if (is_large_pte(*sptep)) {
		WARN_ON(page_header(__pa(sptep))->role.level ==
			PT_PAGE_TABLE_LEVEL);
		drop_spte(kvm, sptep);
		--kvm->stat.lpages;
		return true;
	}

	return false;
}

static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
{
	if (__drop_large_spte(vcpu->kvm, sptep))
		kvm_flush_remote_tlbs(vcpu->kvm);
}

/*
1150
 * Write-protect on the specified @sptep, @pt_protect indicates whether
1151 1152
 * spte writ-protection is caused by protecting shadow page table.
 * @flush indicates whether tlb need be flushed.
1153 1154 1155 1156 1157 1158 1159
 *
 * Note: write protection is difference between drity logging and spte
 * protection:
 * - for dirty logging, the spte can be set to writable at anytime if
 *   its dirty bitmap is properly set.
 * - for spte protection, the spte can be writable only after unsync-ing
 *   shadow page.
1160
 *
1161
 * Return true if the spte is dropped.
1162
 */
1163 1164
static bool
spte_write_protect(struct kvm *kvm, u64 *sptep, bool *flush, bool pt_protect)
1165 1166 1167
{
	u64 spte = *sptep;

1168 1169
	if (!is_writable_pte(spte) &&
	      !(pt_protect && spte_is_locklessly_modifiable(spte)))
1170 1171 1172 1173
		return false;

	rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);

1174 1175 1176 1177 1178
	if (__drop_large_spte(kvm, sptep)) {
		*flush |= true;
		return true;
	}

1179 1180
	if (pt_protect)
		spte &= ~SPTE_MMU_WRITEABLE;
1181
	spte = spte & ~PT_WRITABLE_MASK;
1182

1183 1184
	*flush |= mmu_spte_update(sptep, spte);
	return false;
1185 1186
}

1187
static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp,
1188
				 bool pt_protect)
1189
{
1190 1191
	u64 *sptep;
	struct rmap_iterator iter;
1192
	bool flush = false;
1193

1194 1195
	for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
		BUG_ON(!(*sptep & PT_PRESENT_MASK));
1196 1197 1198 1199
		if (spte_write_protect(kvm, sptep, &flush, pt_protect)) {
			sptep = rmap_get_first(*rmapp, &iter);
			continue;
		}
1200

1201
		sptep = rmap_get_next(&iter);
1202
	}
1203

1204
	return flush;
1205 1206
}

1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
/**
 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
 * @kvm: kvm instance
 * @slot: slot to protect
 * @gfn_offset: start of the BITS_PER_LONG pages we care about
 * @mask: indicates which pages we should protect
 *
 * Used when we do not need to care about huge page mappings: e.g. during dirty
 * logging we do not have any such mappings.
 */
void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
				     struct kvm_memory_slot *slot,
				     gfn_t gfn_offset, unsigned long mask)
1220 1221 1222
{
	unsigned long *rmapp;

1223
	while (mask) {
1224 1225
		rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
				      PT_PAGE_TABLE_LEVEL, slot);
1226
		__rmap_write_protect(kvm, rmapp, false);
M
Marcelo Tosatti 已提交
1227

1228 1229 1230
		/* clear the first set bit */
		mask &= mask - 1;
	}
1231 1232
}

1233
static bool rmap_write_protect(struct kvm *kvm, u64 gfn)
1234 1235
{
	struct kvm_memory_slot *slot;
1236 1237
	unsigned long *rmapp;
	int i;
1238
	bool write_protected = false;
1239 1240

	slot = gfn_to_memslot(kvm, gfn);
1241 1242 1243 1244

	for (i = PT_PAGE_TABLE_LEVEL;
	     i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
		rmapp = __gfn_to_rmap(gfn, i, slot);
1245
		write_protected |= __rmap_write_protect(kvm, rmapp, true);
1246 1247 1248
	}

	return write_protected;
1249 1250
}

F
Frederik Deweerdt 已提交
1251
static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
1252
			   struct kvm_memory_slot *slot, unsigned long data)
1253
{
1254 1255
	u64 *sptep;
	struct rmap_iterator iter;
1256 1257
	int need_tlb_flush = 0;

1258 1259 1260 1261 1262
	while ((sptep = rmap_get_first(*rmapp, &iter))) {
		BUG_ON(!(*sptep & PT_PRESENT_MASK));
		rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", sptep, *sptep);

		drop_spte(kvm, sptep);
1263 1264
		need_tlb_flush = 1;
	}
1265

1266 1267 1268
	return need_tlb_flush;
}

F
Frederik Deweerdt 已提交
1269
static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
1270
			     struct kvm_memory_slot *slot, unsigned long data)
1271
{
1272 1273
	u64 *sptep;
	struct rmap_iterator iter;
1274
	int need_flush = 0;
1275
	u64 new_spte;
1276 1277 1278 1279 1280
	pte_t *ptep = (pte_t *)data;
	pfn_t new_pfn;

	WARN_ON(pte_huge(*ptep));
	new_pfn = pte_pfn(*ptep);
1281 1282 1283 1284 1285

	for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
		BUG_ON(!is_shadow_present_pte(*sptep));
		rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", sptep, *sptep);

1286
		need_flush = 1;
1287

1288
		if (pte_write(*ptep)) {
1289 1290
			drop_spte(kvm, sptep);
			sptep = rmap_get_first(*rmapp, &iter);
1291
		} else {
1292
			new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1293 1294 1295 1296
			new_spte |= (u64)new_pfn << PAGE_SHIFT;

			new_spte &= ~PT_WRITABLE_MASK;
			new_spte &= ~SPTE_HOST_WRITEABLE;
1297
			new_spte &= ~shadow_accessed_mask;
1298 1299 1300 1301

			mmu_spte_clear_track_bits(sptep);
			mmu_spte_set(sptep, new_spte);
			sptep = rmap_get_next(&iter);
1302 1303
		}
	}
1304

1305 1306 1307 1308 1309 1310
	if (need_flush)
		kvm_flush_remote_tlbs(kvm);

	return 0;
}

1311 1312 1313 1314 1315 1316
static int kvm_handle_hva_range(struct kvm *kvm,
				unsigned long start,
				unsigned long end,
				unsigned long data,
				int (*handler)(struct kvm *kvm,
					       unsigned long *rmapp,
1317
					       struct kvm_memory_slot *slot,
1318
					       unsigned long data))
1319
{
1320
	int j;
1321
	int ret = 0;
1322
	struct kvm_memslots *slots;
1323
	struct kvm_memory_slot *memslot;
1324

1325
	slots = kvm_memslots(kvm);
1326

1327
	kvm_for_each_memslot(memslot, slots) {
1328
		unsigned long hva_start, hva_end;
1329
		gfn_t gfn_start, gfn_end;
1330

1331 1332 1333 1334 1335 1336 1337
		hva_start = max(start, memslot->userspace_addr);
		hva_end = min(end, memslot->userspace_addr +
					(memslot->npages << PAGE_SHIFT));
		if (hva_start >= hva_end)
			continue;
		/*
		 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1338
		 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1339
		 */
1340
		gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1341
		gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1342

1343 1344 1345 1346
		for (j = PT_PAGE_TABLE_LEVEL;
		     j < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++j) {
			unsigned long idx, idx_end;
			unsigned long *rmapp;
1347

1348 1349 1350 1351 1352 1353
			/*
			 * {idx(page_j) | page_j intersects with
			 *  [hva_start, hva_end)} = {idx, idx+1, ..., idx_end}.
			 */
			idx = gfn_to_index(gfn_start, memslot->base_gfn, j);
			idx_end = gfn_to_index(gfn_end - 1, memslot->base_gfn, j);
1354

1355
			rmapp = __gfn_to_rmap(gfn_start, j, memslot);
1356

1357 1358
			for (; idx <= idx_end; ++idx)
				ret |= handler(kvm, rmapp++, memslot, data);
1359 1360 1361
		}
	}

1362
	return ret;
1363 1364
}

1365 1366 1367
static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
			  unsigned long data,
			  int (*handler)(struct kvm *kvm, unsigned long *rmapp,
1368
					 struct kvm_memory_slot *slot,
1369 1370 1371
					 unsigned long data))
{
	return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1372 1373 1374 1375
}

int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
{
1376 1377 1378
	return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
}

1379 1380 1381 1382 1383
int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
{
	return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
}

1384 1385
void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
{
F
Frederik Deweerdt 已提交
1386
	kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1387 1388
}

F
Frederik Deweerdt 已提交
1389
static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1390
			 struct kvm_memory_slot *slot, unsigned long data)
1391
{
1392
	u64 *sptep;
1393
	struct rmap_iterator uninitialized_var(iter);
1394 1395
	int young = 0;

1396
	/*
1397 1398
	 * In case of absence of EPT Access and Dirty Bits supports,
	 * emulate the accessed bit for EPT, by checking if this page has
1399 1400 1401 1402 1403
	 * an EPT mapping, and clearing it if it does. On the next access,
	 * a new EPT mapping will be established.
	 * This has some overhead, but not as much as the cost of swapping
	 * out actively used pages or breaking up actively used hugepages.
	 */
1404 1405 1406 1407
	if (!shadow_accessed_mask) {
		young = kvm_unmap_rmapp(kvm, rmapp, slot, data);
		goto out;
	}
1408

1409 1410
	for (sptep = rmap_get_first(*rmapp, &iter); sptep;
	     sptep = rmap_get_next(&iter)) {
1411
		BUG_ON(!is_shadow_present_pte(*sptep));
1412

1413
		if (*sptep & shadow_accessed_mask) {
1414
			young = 1;
1415 1416
			clear_bit((ffs(shadow_accessed_mask) - 1),
				 (unsigned long *)sptep);
1417 1418
		}
	}
1419 1420 1421
out:
	/* @data has hva passed to kvm_age_hva(). */
	trace_kvm_age_page(data, slot, young);
1422 1423 1424
	return young;
}

A
Andrea Arcangeli 已提交
1425
static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1426
			      struct kvm_memory_slot *slot, unsigned long data)
A
Andrea Arcangeli 已提交
1427
{
1428 1429
	u64 *sptep;
	struct rmap_iterator iter;
A
Andrea Arcangeli 已提交
1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
	int young = 0;

	/*
	 * If there's no access bit in the secondary pte set by the
	 * hardware it's up to gup-fast/gup to set the access bit in
	 * the primary pte or in the page structure.
	 */
	if (!shadow_accessed_mask)
		goto out;

1440 1441
	for (sptep = rmap_get_first(*rmapp, &iter); sptep;
	     sptep = rmap_get_next(&iter)) {
1442
		BUG_ON(!is_shadow_present_pte(*sptep));
1443

1444
		if (*sptep & shadow_accessed_mask) {
A
Andrea Arcangeli 已提交
1445 1446 1447 1448 1449 1450 1451 1452
			young = 1;
			break;
		}
	}
out:
	return young;
}

1453 1454
#define RMAP_RECYCLE_THRESHOLD 1000

1455
static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1456 1457
{
	unsigned long *rmapp;
1458 1459 1460
	struct kvm_mmu_page *sp;

	sp = page_header(__pa(spte));
1461

1462
	rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1463

1464
	kvm_unmap_rmapp(vcpu->kvm, rmapp, NULL, 0);
1465 1466 1467
	kvm_flush_remote_tlbs(vcpu->kvm);
}

1468 1469
int kvm_age_hva(struct kvm *kvm, unsigned long hva)
{
1470
	return kvm_handle_hva(kvm, hva, hva, kvm_age_rmapp);
1471 1472
}

A
Andrea Arcangeli 已提交
1473 1474 1475 1476 1477
int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
{
	return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
}

1478
#ifdef MMU_DEBUG
1479
static int is_empty_shadow_page(u64 *spt)
A
Avi Kivity 已提交
1480
{
1481 1482 1483
	u64 *pos;
	u64 *end;

1484
	for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1485
		if (is_shadow_present_pte(*pos)) {
1486
			printk(KERN_ERR "%s: %p %llx\n", __func__,
1487
			       pos, *pos);
A
Avi Kivity 已提交
1488
			return 0;
1489
		}
A
Avi Kivity 已提交
1490 1491
	return 1;
}
1492
#endif
A
Avi Kivity 已提交
1493

1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
/*
 * This value is the sum of all of the kvm instances's
 * kvm->arch.n_used_mmu_pages values.  We need a global,
 * aggregate version in order to make the slab shrinker
 * faster
 */
static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
{
	kvm->arch.n_used_mmu_pages += nr;
	percpu_counter_add(&kvm_total_used_mmu_pages, nr);
}

1506
static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1507
{
1508
	ASSERT(is_empty_shadow_page(sp->spt));
1509
	hlist_del(&sp->hash_link);
1510 1511
	list_del(&sp->link);
	free_page((unsigned long)sp->spt);
1512 1513
	if (!sp->role.direct)
		free_page((unsigned long)sp->gfns);
1514
	kmem_cache_free(mmu_page_header_cache, sp);
1515 1516
}

1517 1518
static unsigned kvm_page_table_hashfn(gfn_t gfn)
{
1519
	return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
1520 1521
}

1522
static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1523
				    struct kvm_mmu_page *sp, u64 *parent_pte)
1524 1525 1526 1527
{
	if (!parent_pte)
		return;

1528
	pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1529 1530
}

1531
static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1532 1533
				       u64 *parent_pte)
{
1534
	pte_list_remove(parent_pte, &sp->parent_ptes);
1535 1536
}

1537 1538 1539 1540
static void drop_parent_pte(struct kvm_mmu_page *sp,
			    u64 *parent_pte)
{
	mmu_page_remove_parent_pte(sp, parent_pte);
1541
	mmu_spte_clear_no_track(parent_pte);
1542 1543
}

1544 1545
static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
					       u64 *parent_pte, int direct)
M
Marcelo Tosatti 已提交
1546
{
1547
	struct kvm_mmu_page *sp;
1548

1549 1550
	sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
	sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1551
	if (!direct)
1552
		sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1553
	set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1554 1555 1556 1557 1558 1559

	/*
	 * The active_mmu_pages list is the FIFO list, do not move the
	 * page until it is zapped. kvm_zap_obsolete_pages depends on
	 * this feature. See the comments in kvm_zap_obsolete_pages().
	 */
1560 1561 1562 1563 1564
	list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
	sp->parent_ptes = 0;
	mmu_page_add_parent_pte(vcpu, sp, parent_pte);
	kvm_mod_used_mmu_pages(vcpu->kvm, +1);
	return sp;
M
Marcelo Tosatti 已提交
1565 1566
}

1567
static void mark_unsync(u64 *spte);
1568
static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1569
{
1570
	pte_list_walk(&sp->parent_ptes, mark_unsync);
1571 1572
}

1573
static void mark_unsync(u64 *spte)
1574
{
1575
	struct kvm_mmu_page *sp;
1576
	unsigned int index;
1577

1578
	sp = page_header(__pa(spte));
1579 1580
	index = spte - sp->spt;
	if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1581
		return;
1582
	if (sp->unsync_children++)
1583
		return;
1584
	kvm_mmu_mark_parents_unsync(sp);
1585 1586
}

1587
static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1588
			       struct kvm_mmu_page *sp)
1589 1590 1591 1592
{
	return 1;
}

M
Marcelo Tosatti 已提交
1593 1594 1595 1596
static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
{
}

1597 1598
static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
				 struct kvm_mmu_page *sp, u64 *spte,
1599
				 const void *pte)
1600 1601 1602 1603
{
	WARN_ON(1);
}

1604 1605 1606 1607 1608 1609 1610 1611 1612 1613
#define KVM_PAGE_ARRAY_NR 16

struct kvm_mmu_pages {
	struct mmu_page_and_offset {
		struct kvm_mmu_page *sp;
		unsigned int idx;
	} page[KVM_PAGE_ARRAY_NR];
	unsigned int nr;
};

1614 1615
static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
			 int idx)
1616
{
1617
	int i;
1618

1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633
	if (sp->unsync)
		for (i=0; i < pvec->nr; i++)
			if (pvec->page[i].sp == sp)
				return 0;

	pvec->page[pvec->nr].sp = sp;
	pvec->page[pvec->nr].idx = idx;
	pvec->nr++;
	return (pvec->nr == KVM_PAGE_ARRAY_NR);
}

static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
			   struct kvm_mmu_pages *pvec)
{
	int i, ret, nr_unsync_leaf = 0;
1634

1635
	for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1636
		struct kvm_mmu_page *child;
1637 1638
		u64 ent = sp->spt[i];

1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667
		if (!is_shadow_present_pte(ent) || is_large_pte(ent))
			goto clear_child_bitmap;

		child = page_header(ent & PT64_BASE_ADDR_MASK);

		if (child->unsync_children) {
			if (mmu_pages_add(pvec, child, i))
				return -ENOSPC;

			ret = __mmu_unsync_walk(child, pvec);
			if (!ret)
				goto clear_child_bitmap;
			else if (ret > 0)
				nr_unsync_leaf += ret;
			else
				return ret;
		} else if (child->unsync) {
			nr_unsync_leaf++;
			if (mmu_pages_add(pvec, child, i))
				return -ENOSPC;
		} else
			 goto clear_child_bitmap;

		continue;

clear_child_bitmap:
		__clear_bit(i, sp->unsync_child_bitmap);
		sp->unsync_children--;
		WARN_ON((int)sp->unsync_children < 0);
1668 1669 1670
	}


1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681
	return nr_unsync_leaf;
}

static int mmu_unsync_walk(struct kvm_mmu_page *sp,
			   struct kvm_mmu_pages *pvec)
{
	if (!sp->unsync_children)
		return 0;

	mmu_pages_add(pvec, sp, 0);
	return __mmu_unsync_walk(sp, pvec);
1682 1683 1684 1685 1686
}

static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
{
	WARN_ON(!sp->unsync);
1687
	trace_kvm_mmu_sync_page(sp);
1688 1689 1690 1691
	sp->unsync = 0;
	--kvm->stat.mmu_unsync;
}

1692 1693 1694 1695
static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
				    struct list_head *invalid_list);
static void kvm_mmu_commit_zap_page(struct kvm *kvm,
				    struct list_head *invalid_list);
1696

1697 1698 1699 1700 1701 1702 1703 1704 1705 1706
/*
 * NOTE: we should pay more attention on the zapped-obsolete page
 * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
 * since it has been deleted from active_mmu_pages but still can be found
 * at hast list.
 *
 * for_each_gfn_indirect_valid_sp has skipped that kind of page and
 * kvm_mmu_get_page(), the only user of for_each_gfn_sp(), has skipped
 * all the obsolete pages.
 */
1707 1708 1709 1710 1711 1712 1713 1714
#define for_each_gfn_sp(_kvm, _sp, _gfn)				\
	hlist_for_each_entry(_sp,					\
	  &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
		if ((_sp)->gfn != (_gfn)) {} else

#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)			\
	for_each_gfn_sp(_kvm, _sp, _gfn)				\
		if ((_sp)->role.direct || (_sp)->role.invalid) {} else
1715

1716
/* @sp->gfn should be write-protected at the call site */
1717
static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1718
			   struct list_head *invalid_list, bool clear_unsync)
1719
{
1720
	if (sp->role.cr4_pae != !!is_pae(vcpu)) {
1721
		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1722 1723 1724
		return 1;
	}

1725
	if (clear_unsync)
1726 1727
		kvm_unlink_unsync_page(vcpu->kvm, sp);

1728
	if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
1729
		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1730 1731 1732 1733 1734 1735 1736
		return 1;
	}

	kvm_mmu_flush_tlb(vcpu);
	return 0;
}

1737 1738 1739
static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
				   struct kvm_mmu_page *sp)
{
1740
	LIST_HEAD(invalid_list);
1741 1742
	int ret;

1743
	ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
1744
	if (ret)
1745 1746
		kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);

1747 1748 1749
	return ret;
}

1750 1751 1752 1753 1754 1755 1756
#ifdef CONFIG_KVM_MMU_AUDIT
#include "mmu_audit.c"
#else
static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
static void mmu_audit_disable(void) { }
#endif

1757 1758
static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
			 struct list_head *invalid_list)
1759
{
1760
	return __kvm_sync_page(vcpu, sp, invalid_list, true);
1761 1762
}

1763 1764 1765 1766
/* @gfn should be write-protected at the call site */
static void kvm_sync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn)
{
	struct kvm_mmu_page *s;
1767
	LIST_HEAD(invalid_list);
1768 1769
	bool flush = false;

1770
	for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
1771
		if (!s->unsync)
1772 1773 1774
			continue;

		WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1775
		kvm_unlink_unsync_page(vcpu->kvm, s);
1776
		if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
1777
			(vcpu->arch.mmu.sync_page(vcpu, s))) {
1778
			kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
1779 1780 1781 1782 1783
			continue;
		}
		flush = true;
	}

1784
	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1785 1786 1787 1788
	if (flush)
		kvm_mmu_flush_tlb(vcpu);
}

1789 1790 1791
struct mmu_page_path {
	struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
	unsigned int idx[PT64_ROOT_LEVEL-1];
1792 1793
};

1794 1795 1796 1797 1798 1799
#define for_each_sp(pvec, sp, parents, i)			\
		for (i = mmu_pages_next(&pvec, &parents, -1),	\
			sp = pvec.page[i].sp;			\
			i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});	\
			i = mmu_pages_next(&pvec, &parents, i))

1800 1801 1802
static int mmu_pages_next(struct kvm_mmu_pages *pvec,
			  struct mmu_page_path *parents,
			  int i)
1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820
{
	int n;

	for (n = i+1; n < pvec->nr; n++) {
		struct kvm_mmu_page *sp = pvec->page[n].sp;

		if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
			parents->idx[0] = pvec->page[n].idx;
			return n;
		}

		parents->parent[sp->role.level-2] = sp;
		parents->idx[sp->role.level-1] = pvec->page[n].idx;
	}

	return n;
}

1821
static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1822
{
1823 1824 1825 1826 1827
	struct kvm_mmu_page *sp;
	unsigned int level = 0;

	do {
		unsigned int idx = parents->idx[level];
1828

1829 1830 1831 1832 1833 1834 1835 1836 1837
		sp = parents->parent[level];
		if (!sp)
			return;

		--sp->unsync_children;
		WARN_ON((int)sp->unsync_children < 0);
		__clear_bit(idx, sp->unsync_child_bitmap);
		level++;
	} while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
1838 1839
}

1840 1841 1842
static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
			       struct mmu_page_path *parents,
			       struct kvm_mmu_pages *pvec)
1843
{
1844 1845 1846
	parents->parent[parent->role.level-1] = NULL;
	pvec->nr = 0;
}
1847

1848 1849 1850 1851 1852 1853 1854
static void mmu_sync_children(struct kvm_vcpu *vcpu,
			      struct kvm_mmu_page *parent)
{
	int i;
	struct kvm_mmu_page *sp;
	struct mmu_page_path parents;
	struct kvm_mmu_pages pages;
1855
	LIST_HEAD(invalid_list);
1856 1857 1858

	kvm_mmu_pages_init(parent, &parents, &pages);
	while (mmu_unsync_walk(parent, &pages)) {
1859
		bool protected = false;
1860 1861 1862 1863 1864 1865 1866

		for_each_sp(pages, sp, parents, i)
			protected |= rmap_write_protect(vcpu->kvm, sp->gfn);

		if (protected)
			kvm_flush_remote_tlbs(vcpu->kvm);

1867
		for_each_sp(pages, sp, parents, i) {
1868
			kvm_sync_page(vcpu, sp, &invalid_list);
1869 1870
			mmu_pages_clear_parents(&parents);
		}
1871
		kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1872
		cond_resched_lock(&vcpu->kvm->mmu_lock);
1873 1874
		kvm_mmu_pages_init(parent, &parents, &pages);
	}
1875 1876
}

1877 1878 1879 1880 1881 1882 1883 1884
static void init_shadow_page_table(struct kvm_mmu_page *sp)
{
	int i;

	for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
		sp->spt[i] = 0ull;
}

1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896
static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
{
	sp->write_flooding_count = 0;
}

static void clear_sp_write_flooding_count(u64 *spte)
{
	struct kvm_mmu_page *sp =  page_header(__pa(spte));

	__clear_sp_write_flooding_count(sp);
}

1897 1898 1899 1900 1901
static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
{
	return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
}

1902 1903 1904 1905
static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
					     gfn_t gfn,
					     gva_t gaddr,
					     unsigned level,
1906
					     int direct,
1907
					     unsigned access,
1908
					     u64 *parent_pte)
1909 1910 1911
{
	union kvm_mmu_page_role role;
	unsigned quadrant;
1912 1913
	struct kvm_mmu_page *sp;
	bool need_sync = false;
1914

1915
	role = vcpu->arch.mmu.base_role;
1916
	role.level = level;
1917
	role.direct = direct;
1918
	if (role.direct)
1919
		role.cr4_pae = 0;
1920
	role.access = access;
1921 1922
	if (!vcpu->arch.mmu.direct_map
	    && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
1923 1924 1925 1926
		quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
		quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
		role.quadrant = quadrant;
	}
1927
	for_each_gfn_sp(vcpu->kvm, sp, gfn) {
1928 1929 1930
		if (is_obsolete_sp(vcpu->kvm, sp))
			continue;

1931 1932
		if (!need_sync && sp->unsync)
			need_sync = true;
1933

1934 1935
		if (sp->role.word != role.word)
			continue;
1936

1937 1938
		if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
			break;
1939

1940 1941
		mmu_page_add_parent_pte(vcpu, sp, parent_pte);
		if (sp->unsync_children) {
1942
			kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1943 1944 1945
			kvm_mmu_mark_parents_unsync(sp);
		} else if (sp->unsync)
			kvm_mmu_mark_parents_unsync(sp);
1946

1947
		__clear_sp_write_flooding_count(sp);
1948 1949 1950
		trace_kvm_mmu_get_page(sp, false);
		return sp;
	}
A
Avi Kivity 已提交
1951
	++vcpu->kvm->stat.mmu_cache_miss;
1952
	sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
1953 1954 1955 1956
	if (!sp)
		return sp;
	sp->gfn = gfn;
	sp->role = role;
1957 1958
	hlist_add_head(&sp->hash_link,
		&vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
1959
	if (!direct) {
1960 1961
		if (rmap_write_protect(vcpu->kvm, gfn))
			kvm_flush_remote_tlbs(vcpu->kvm);
1962 1963 1964
		if (level > PT_PAGE_TABLE_LEVEL && need_sync)
			kvm_sync_pages(vcpu, gfn);

1965 1966
		account_shadowed(vcpu->kvm, gfn);
	}
1967
	sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
1968
	init_shadow_page_table(sp);
A
Avi Kivity 已提交
1969
	trace_kvm_mmu_get_page(sp, true);
1970
	return sp;
1971 1972
}

1973 1974 1975 1976 1977 1978
static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
			     struct kvm_vcpu *vcpu, u64 addr)
{
	iterator->addr = addr;
	iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
	iterator->level = vcpu->arch.mmu.shadow_root_level;
1979 1980 1981 1982 1983 1984

	if (iterator->level == PT64_ROOT_LEVEL &&
	    vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
	    !vcpu->arch.mmu.direct_map)
		--iterator->level;

1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998
	if (iterator->level == PT32E_ROOT_LEVEL) {
		iterator->shadow_addr
			= vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
		iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
		--iterator->level;
		if (!iterator->shadow_addr)
			iterator->level = 0;
	}
}

static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
{
	if (iterator->level < PT_PAGE_TABLE_LEVEL)
		return false;
1999

2000 2001 2002 2003 2004
	iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
	iterator->sptep	= ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
	return true;
}

2005 2006
static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
			       u64 spte)
2007
{
2008
	if (is_last_spte(spte, iterator->level)) {
2009 2010 2011 2012
		iterator->level = 0;
		return;
	}

2013
	iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2014 2015 2016
	--iterator->level;
}

2017 2018 2019 2020 2021
static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
{
	return __shadow_walk_next(iterator, *iterator->sptep);
}

2022 2023 2024 2025
static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp)
{
	u64 spte;

X
Xiao Guangrong 已提交
2026 2027 2028
	spte = __pa(sp->spt) | PT_PRESENT_MASK | PT_WRITABLE_MASK |
	       shadow_user_mask | shadow_x_mask | shadow_accessed_mask;

2029
	mmu_spte_set(sptep, spte);
2030 2031
}

2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048
static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
				   unsigned direct_access)
{
	if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
		struct kvm_mmu_page *child;

		/*
		 * For the direct sp, if the guest pte's dirty bit
		 * changed form clean to dirty, it will corrupt the
		 * sp's access: allow writable in the read-only sp,
		 * so we should update the spte at this point to get
		 * a new sp with the correct access.
		 */
		child = page_header(*sptep & PT64_BASE_ADDR_MASK);
		if (child->role.access == direct_access)
			return;

2049
		drop_parent_pte(child, sptep);
2050 2051 2052 2053
		kvm_flush_remote_tlbs(vcpu->kvm);
	}
}

X
Xiao Guangrong 已提交
2054
static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2055 2056 2057 2058 2059 2060 2061
			     u64 *spte)
{
	u64 pte;
	struct kvm_mmu_page *child;

	pte = *spte;
	if (is_shadow_present_pte(pte)) {
X
Xiao Guangrong 已提交
2062
		if (is_last_spte(pte, sp->role.level)) {
2063
			drop_spte(kvm, spte);
X
Xiao Guangrong 已提交
2064 2065 2066
			if (is_large_pte(pte))
				--kvm->stat.lpages;
		} else {
2067
			child = page_header(pte & PT64_BASE_ADDR_MASK);
2068
			drop_parent_pte(child, spte);
2069
		}
X
Xiao Guangrong 已提交
2070 2071 2072 2073
		return true;
	}

	if (is_mmio_spte(pte))
2074
		mmu_spte_clear_no_track(spte);
2075

X
Xiao Guangrong 已提交
2076
	return false;
2077 2078
}

2079
static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2080
					 struct kvm_mmu_page *sp)
2081
{
2082 2083
	unsigned i;

2084 2085
	for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
		mmu_page_zap_pte(kvm, sp, sp->spt + i);
2086 2087
}

2088
static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
2089
{
2090
	mmu_page_remove_parent_pte(sp, parent_pte);
2091 2092
}

2093
static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2094
{
2095 2096
	u64 *sptep;
	struct rmap_iterator iter;
2097

2098 2099
	while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
		drop_parent_pte(sp, sptep);
2100 2101
}

2102
static int mmu_zap_unsync_children(struct kvm *kvm,
2103 2104
				   struct kvm_mmu_page *parent,
				   struct list_head *invalid_list)
2105
{
2106 2107 2108
	int i, zapped = 0;
	struct mmu_page_path parents;
	struct kvm_mmu_pages pages;
2109

2110
	if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2111
		return 0;
2112 2113 2114 2115 2116 2117

	kvm_mmu_pages_init(parent, &parents, &pages);
	while (mmu_unsync_walk(parent, &pages)) {
		struct kvm_mmu_page *sp;

		for_each_sp(pages, sp, parents, i) {
2118
			kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2119
			mmu_pages_clear_parents(&parents);
2120
			zapped++;
2121 2122 2123 2124 2125
		}
		kvm_mmu_pages_init(parent, &parents, &pages);
	}

	return zapped;
2126 2127
}

2128 2129
static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
				    struct list_head *invalid_list)
2130
{
2131
	int ret;
A
Avi Kivity 已提交
2132

2133
	trace_kvm_mmu_prepare_zap_page(sp);
2134
	++kvm->stat.mmu_shadow_zapped;
2135
	ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
2136
	kvm_mmu_page_unlink_children(kvm, sp);
2137
	kvm_mmu_unlink_parents(kvm, sp);
2138

2139
	if (!sp->role.invalid && !sp->role.direct)
A
Avi Kivity 已提交
2140
		unaccount_shadowed(kvm, sp->gfn);
2141

2142 2143
	if (sp->unsync)
		kvm_unlink_unsync_page(kvm, sp);
2144
	if (!sp->root_count) {
2145 2146
		/* Count self */
		ret++;
2147
		list_move(&sp->link, invalid_list);
2148
		kvm_mod_used_mmu_pages(kvm, -1);
2149
	} else {
A
Avi Kivity 已提交
2150
		list_move(&sp->link, &kvm->arch.active_mmu_pages);
2151 2152 2153 2154 2155 2156 2157

		/*
		 * The obsolete pages can not be used on any vcpus.
		 * See the comments in kvm_mmu_invalidate_zap_all_pages().
		 */
		if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
			kvm_reload_remote_mmus(kvm);
2158
	}
2159 2160

	sp->role.invalid = 1;
2161
	return ret;
2162 2163
}

2164 2165 2166
static void kvm_mmu_commit_zap_page(struct kvm *kvm,
				    struct list_head *invalid_list)
{
2167
	struct kvm_mmu_page *sp, *nsp;
2168 2169 2170 2171

	if (list_empty(invalid_list))
		return;

2172 2173 2174 2175 2176
	/*
	 * wmb: make sure everyone sees our modifications to the page tables
	 * rmb: make sure we see changes to vcpu->mode
	 */
	smp_mb();
X
Xiao Guangrong 已提交
2177

2178 2179 2180 2181 2182
	/*
	 * Wait for all vcpus to exit guest mode and/or lockless shadow
	 * page table walks.
	 */
	kvm_flush_remote_tlbs(kvm);
2183

2184
	list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2185
		WARN_ON(!sp->role.invalid || sp->root_count);
2186
		kvm_mmu_free_page(sp);
2187
	}
2188 2189
}

2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204
static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
					struct list_head *invalid_list)
{
	struct kvm_mmu_page *sp;

	if (list_empty(&kvm->arch.active_mmu_pages))
		return false;

	sp = list_entry(kvm->arch.active_mmu_pages.prev,
			struct kvm_mmu_page, link);
	kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);

	return true;
}

2205 2206
/*
 * Changing the number of mmu pages allocated to the vm
2207
 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2208
 */
2209
void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
2210
{
2211
	LIST_HEAD(invalid_list);
2212

2213 2214
	spin_lock(&kvm->mmu_lock);

2215
	if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2216 2217 2218 2219
		/* Need to free some mmu pages to achieve the goal. */
		while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
			if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
				break;
2220

2221
		kvm_mmu_commit_zap_page(kvm, &invalid_list);
2222
		goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2223 2224
	}

2225
	kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2226 2227

	spin_unlock(&kvm->mmu_lock);
2228 2229
}

2230
int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2231
{
2232
	struct kvm_mmu_page *sp;
2233
	LIST_HEAD(invalid_list);
2234 2235
	int r;

2236
	pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2237
	r = 0;
2238
	spin_lock(&kvm->mmu_lock);
2239
	for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2240
		pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2241 2242
			 sp->role.word);
		r = 1;
2243
		kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2244
	}
2245
	kvm_mmu_commit_zap_page(kvm, &invalid_list);
2246 2247
	spin_unlock(&kvm->mmu_lock);

2248
	return r;
2249
}
2250
EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2251

2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344
/*
 * The function is based on mtrr_type_lookup() in
 * arch/x86/kernel/cpu/mtrr/generic.c
 */
static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
			 u64 start, u64 end)
{
	int i;
	u64 base, mask;
	u8 prev_match, curr_match;
	int num_var_ranges = KVM_NR_VAR_MTRR;

	if (!mtrr_state->enabled)
		return 0xFF;

	/* Make end inclusive end, instead of exclusive */
	end--;

	/* Look in fixed ranges. Just return the type as per start */
	if (mtrr_state->have_fixed && (start < 0x100000)) {
		int idx;

		if (start < 0x80000) {
			idx = 0;
			idx += (start >> 16);
			return mtrr_state->fixed_ranges[idx];
		} else if (start < 0xC0000) {
			idx = 1 * 8;
			idx += ((start - 0x80000) >> 14);
			return mtrr_state->fixed_ranges[idx];
		} else if (start < 0x1000000) {
			idx = 3 * 8;
			idx += ((start - 0xC0000) >> 12);
			return mtrr_state->fixed_ranges[idx];
		}
	}

	/*
	 * Look in variable ranges
	 * Look of multiple ranges matching this address and pick type
	 * as per MTRR precedence
	 */
	if (!(mtrr_state->enabled & 2))
		return mtrr_state->def_type;

	prev_match = 0xFF;
	for (i = 0; i < num_var_ranges; ++i) {
		unsigned short start_state, end_state;

		if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
			continue;

		base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
		       (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
		mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
		       (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);

		start_state = ((start & mask) == (base & mask));
		end_state = ((end & mask) == (base & mask));
		if (start_state != end_state)
			return 0xFE;

		if ((start & mask) != (base & mask))
			continue;

		curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
		if (prev_match == 0xFF) {
			prev_match = curr_match;
			continue;
		}

		if (prev_match == MTRR_TYPE_UNCACHABLE ||
		    curr_match == MTRR_TYPE_UNCACHABLE)
			return MTRR_TYPE_UNCACHABLE;

		if ((prev_match == MTRR_TYPE_WRBACK &&
		     curr_match == MTRR_TYPE_WRTHROUGH) ||
		    (prev_match == MTRR_TYPE_WRTHROUGH &&
		     curr_match == MTRR_TYPE_WRBACK)) {
			prev_match = MTRR_TYPE_WRTHROUGH;
			curr_match = MTRR_TYPE_WRTHROUGH;
		}

		if (prev_match != curr_match)
			return MTRR_TYPE_UNCACHABLE;
	}

	if (prev_match != 0xFF)
		return prev_match;

	return mtrr_state->def_type;
}

2345
u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
2346 2347 2348 2349 2350 2351 2352 2353 2354
{
	u8 mtrr;

	mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
			     (gfn << PAGE_SHIFT) + PAGE_SIZE);
	if (mtrr == 0xfe || mtrr == 0xff)
		mtrr = MTRR_TYPE_WRBACK;
	return mtrr;
}
2355
EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
2356

2357 2358 2359 2360 2361 2362 2363 2364 2365 2366
static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
{
	trace_kvm_mmu_unsync_page(sp);
	++vcpu->kvm->stat.mmu_unsync;
	sp->unsync = 1;

	kvm_mmu_mark_parents_unsync(sp);
}

static void kvm_unsync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn)
2367 2368
{
	struct kvm_mmu_page *s;
2369

2370
	for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2371
		if (s->unsync)
2372
			continue;
2373 2374
		WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
		__kvm_unsync_page(vcpu, s);
2375 2376 2377 2378 2379 2380
	}
}

static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
				  bool can_unsync)
{
2381 2382 2383
	struct kvm_mmu_page *s;
	bool need_unsync = false;

2384
	for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2385 2386 2387
		if (!can_unsync)
			return 1;

2388
		if (s->role.level != PT_PAGE_TABLE_LEVEL)
2389
			return 1;
2390

G
Gleb Natapov 已提交
2391
		if (!s->unsync)
2392
			need_unsync = true;
2393
	}
2394 2395
	if (need_unsync)
		kvm_unsync_pages(vcpu, gfn);
2396 2397 2398
	return 0;
}

A
Avi Kivity 已提交
2399
static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2400
		    unsigned pte_access, int level,
2401
		    gfn_t gfn, pfn_t pfn, bool speculative,
2402
		    bool can_unsync, bool host_writable)
2403
{
2404
	u64 spte;
M
Marcelo Tosatti 已提交
2405
	int ret = 0;
S
Sheng Yang 已提交
2406

2407
	if (set_mmio_spte(vcpu->kvm, sptep, gfn, pfn, pte_access))
2408 2409
		return 0;

2410
	spte = PT_PRESENT_MASK;
2411
	if (!speculative)
2412
		spte |= shadow_accessed_mask;
2413

S
Sheng Yang 已提交
2414 2415 2416 2417
	if (pte_access & ACC_EXEC_MASK)
		spte |= shadow_x_mask;
	else
		spte |= shadow_nx_mask;
2418

2419
	if (pte_access & ACC_USER_MASK)
S
Sheng Yang 已提交
2420
		spte |= shadow_user_mask;
2421

2422
	if (level > PT_PAGE_TABLE_LEVEL)
M
Marcelo Tosatti 已提交
2423
		spte |= PT_PAGE_SIZE_MASK;
2424
	if (tdp_enabled)
2425 2426
		spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
			kvm_is_mmio_pfn(pfn));
2427

2428
	if (host_writable)
2429
		spte |= SPTE_HOST_WRITEABLE;
2430 2431
	else
		pte_access &= ~ACC_WRITE_MASK;
2432

2433
	spte |= (u64)pfn << PAGE_SHIFT;
2434

2435
	if (pte_access & ACC_WRITE_MASK) {
2436

X
Xiao Guangrong 已提交
2437
		/*
2438 2439 2440 2441
		 * Other vcpu creates new sp in the window between
		 * mapping_level() and acquiring mmu-lock. We can
		 * allow guest to retry the access, the mapping can
		 * be fixed if guest refault.
X
Xiao Guangrong 已提交
2442
		 */
2443
		if (level > PT_PAGE_TABLE_LEVEL &&
X
Xiao Guangrong 已提交
2444
		    has_wrprotected_page(vcpu->kvm, gfn, level))
A
Avi Kivity 已提交
2445
			goto done;
2446

2447
		spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
2448

2449 2450 2451 2452 2453 2454
		/*
		 * Optimization: for pte sync, if spte was writable the hash
		 * lookup is unnecessary (and expensive). Write protection
		 * is responsibility of mmu_get_page / kvm_sync_page.
		 * Same reasoning can be applied to dirty page accounting.
		 */
2455
		if (!can_unsync && is_writable_pte(*sptep))
2456 2457
			goto set_pte;

2458
		if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2459
			pgprintk("%s: found shadow page for %llx, marking ro\n",
2460
				 __func__, gfn);
M
Marcelo Tosatti 已提交
2461
			ret = 1;
2462
			pte_access &= ~ACC_WRITE_MASK;
2463
			spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
2464 2465 2466 2467 2468 2469
		}
	}

	if (pte_access & ACC_WRITE_MASK)
		mark_page_dirty(vcpu->kvm, gfn);

2470
set_pte:
2471
	if (mmu_spte_update(sptep, spte))
2472
		kvm_flush_remote_tlbs(vcpu->kvm);
A
Avi Kivity 已提交
2473
done:
M
Marcelo Tosatti 已提交
2474 2475 2476
	return ret;
}

A
Avi Kivity 已提交
2477
static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2478 2479 2480
			 unsigned pte_access, int write_fault, int *emulate,
			 int level, gfn_t gfn, pfn_t pfn, bool speculative,
			 bool host_writable)
M
Marcelo Tosatti 已提交
2481 2482
{
	int was_rmapped = 0;
2483
	int rmap_count;
M
Marcelo Tosatti 已提交
2484

2485 2486
	pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
		 *sptep, write_fault, gfn);
M
Marcelo Tosatti 已提交
2487

A
Avi Kivity 已提交
2488
	if (is_rmap_spte(*sptep)) {
M
Marcelo Tosatti 已提交
2489 2490 2491 2492
		/*
		 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
		 * the parent of the now unreachable PTE.
		 */
2493 2494
		if (level > PT_PAGE_TABLE_LEVEL &&
		    !is_large_pte(*sptep)) {
M
Marcelo Tosatti 已提交
2495
			struct kvm_mmu_page *child;
A
Avi Kivity 已提交
2496
			u64 pte = *sptep;
M
Marcelo Tosatti 已提交
2497 2498

			child = page_header(pte & PT64_BASE_ADDR_MASK);
2499
			drop_parent_pte(child, sptep);
2500
			kvm_flush_remote_tlbs(vcpu->kvm);
A
Avi Kivity 已提交
2501
		} else if (pfn != spte_to_pfn(*sptep)) {
2502
			pgprintk("hfn old %llx new %llx\n",
A
Avi Kivity 已提交
2503
				 spte_to_pfn(*sptep), pfn);
2504
			drop_spte(vcpu->kvm, sptep);
2505
			kvm_flush_remote_tlbs(vcpu->kvm);
2506 2507
		} else
			was_rmapped = 1;
M
Marcelo Tosatti 已提交
2508
	}
2509

2510 2511
	if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
	      true, host_writable)) {
M
Marcelo Tosatti 已提交
2512
		if (write_fault)
2513
			*emulate = 1;
2514
		kvm_mmu_flush_tlb(vcpu);
2515
	}
M
Marcelo Tosatti 已提交
2516

2517 2518 2519
	if (unlikely(is_mmio_spte(*sptep) && emulate))
		*emulate = 1;

A
Avi Kivity 已提交
2520
	pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2521
	pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
A
Avi Kivity 已提交
2522
		 is_large_pte(*sptep)? "2MB" : "4kB",
2523 2524
		 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
		 *sptep, sptep);
A
Avi Kivity 已提交
2525
	if (!was_rmapped && is_large_pte(*sptep))
M
Marcelo Tosatti 已提交
2526 2527
		++vcpu->kvm->stat.lpages;

2528 2529 2530 2531 2532 2533
	if (is_shadow_present_pte(*sptep)) {
		if (!was_rmapped) {
			rmap_count = rmap_add(vcpu, sptep, gfn);
			if (rmap_count > RMAP_RECYCLE_THRESHOLD)
				rmap_recycle(vcpu, sptep, gfn);
		}
2534
	}
2535

X
Xiao Guangrong 已提交
2536
	kvm_release_pfn_clean(pfn);
2537 2538
}

A
Avi Kivity 已提交
2539 2540
static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
{
2541
	mmu_free_roots(vcpu);
A
Avi Kivity 已提交
2542 2543
}

2544 2545 2546 2547 2548 2549 2550 2551
static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
{
	int bit7;

	bit7 = (gpte >> 7) & 1;
	return (gpte & mmu->rsvd_bits_mask[bit7][level-1]) != 0;
}

2552 2553 2554 2555 2556
static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
				     bool no_dirty_log)
{
	struct kvm_memory_slot *slot;

2557
	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2558
	if (!slot)
2559
		return KVM_PFN_ERR_FAULT;
2560

2561
	return gfn_to_pfn_memslot_atomic(slot, gfn);
2562 2563
}

2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583
static bool prefetch_invalid_gpte(struct kvm_vcpu *vcpu,
				  struct kvm_mmu_page *sp, u64 *spte,
				  u64 gpte)
{
	if (is_rsvd_bits_set(&vcpu->arch.mmu, gpte, PT_PAGE_TABLE_LEVEL))
		goto no_present;

	if (!is_present_gpte(gpte))
		goto no_present;

	if (!(gpte & PT_ACCESSED_MASK))
		goto no_present;

	return false;

no_present:
	drop_spte(vcpu->kvm, spte);
	return true;
}

2584 2585 2586 2587 2588 2589 2590 2591 2592 2593
static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
				    struct kvm_mmu_page *sp,
				    u64 *start, u64 *end)
{
	struct page *pages[PTE_PREFETCH_NUM];
	unsigned access = sp->role.access;
	int i, ret;
	gfn_t gfn;

	gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2594
	if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
2595 2596 2597 2598 2599 2600 2601
		return -1;

	ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
	if (ret <= 0)
		return -1;

	for (i = 0; i < ret; i++, gfn++, start++)
2602
		mmu_set_spte(vcpu, start, access, 0, NULL,
2603 2604
			     sp->role.level, gfn, page_to_pfn(pages[i]),
			     true, true);
2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620

	return 0;
}

static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
				  struct kvm_mmu_page *sp, u64 *sptep)
{
	u64 *spte, *start = NULL;
	int i;

	WARN_ON(!sp->role.direct);

	i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
	spte = sp->spt + i;

	for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2621
		if (is_shadow_present_pte(*spte) || spte == sptep) {
2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651
			if (!start)
				continue;
			if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
				break;
			start = NULL;
		} else if (!start)
			start = spte;
	}
}

static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
{
	struct kvm_mmu_page *sp;

	/*
	 * Since it's no accessed bit on EPT, it's no way to
	 * distinguish between actually accessed translations
	 * and prefetched, so disable pte prefetch if EPT is
	 * enabled.
	 */
	if (!shadow_accessed_mask)
		return;

	sp = page_header(__pa(sptep));
	if (sp->role.level > PT_PAGE_TABLE_LEVEL)
		return;

	__direct_pte_prefetch(vcpu, sp, sptep);
}

2652
static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2653 2654
			int map_writable, int level, gfn_t gfn, pfn_t pfn,
			bool prefault)
2655
{
2656
	struct kvm_shadow_walk_iterator iterator;
2657
	struct kvm_mmu_page *sp;
2658
	int emulate = 0;
2659
	gfn_t pseudo_gfn;
A
Avi Kivity 已提交
2660

2661
	for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2662
		if (iterator.level == level) {
2663
			mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
2664 2665
				     write, &emulate, level, gfn, pfn,
				     prefault, map_writable);
2666
			direct_pte_prefetch(vcpu, iterator.sptep);
2667 2668
			++vcpu->stat.pf_fixed;
			break;
A
Avi Kivity 已提交
2669 2670
		}

2671
		if (!is_shadow_present_pte(*iterator.sptep)) {
2672 2673 2674 2675
			u64 base_addr = iterator.addr;

			base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
			pseudo_gfn = base_addr >> PAGE_SHIFT;
2676 2677 2678
			sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
					      iterator.level - 1,
					      1, ACC_ALL, iterator.sptep);
2679

X
Xiao Guangrong 已提交
2680
			link_shadow_page(iterator.sptep, sp);
2681 2682
		}
	}
2683
	return emulate;
A
Avi Kivity 已提交
2684 2685
}

H
Huang Ying 已提交
2686
static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2687
{
H
Huang Ying 已提交
2688 2689 2690 2691 2692 2693 2694
	siginfo_t info;

	info.si_signo	= SIGBUS;
	info.si_errno	= 0;
	info.si_code	= BUS_MCEERR_AR;
	info.si_addr	= (void __user *)address;
	info.si_addr_lsb = PAGE_SHIFT;
2695

H
Huang Ying 已提交
2696
	send_sig_info(SIGBUS, &info, tsk);
2697 2698
}

2699
static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
2700
{
X
Xiao Guangrong 已提交
2701 2702 2703 2704 2705 2706 2707 2708 2709
	/*
	 * Do not cache the mmio info caused by writing the readonly gfn
	 * into the spte otherwise read access on readonly gfn also can
	 * caused mmio page fault and treat it as mmio access.
	 * Return 1 to tell kvm to emulate it.
	 */
	if (pfn == KVM_PFN_ERR_RO_FAULT)
		return 1;

2710
	if (pfn == KVM_PFN_ERR_HWPOISON) {
2711
		kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
2712
		return 0;
2713
	}
2714

2715
	return -EFAULT;
2716 2717
}

2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730
static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
					gfn_t *gfnp, pfn_t *pfnp, int *levelp)
{
	pfn_t pfn = *pfnp;
	gfn_t gfn = *gfnp;
	int level = *levelp;

	/*
	 * Check if it's a transparent hugepage. If this would be an
	 * hugetlbfs page, level wouldn't be set to
	 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
	 * here.
	 */
2731
	if (!is_error_noslot_pfn(pfn) && !kvm_is_mmio_pfn(pfn) &&
2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752
	    level == PT_PAGE_TABLE_LEVEL &&
	    PageTransCompound(pfn_to_page(pfn)) &&
	    !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
		unsigned long mask;
		/*
		 * mmu_notifier_retry was successful and we hold the
		 * mmu_lock here, so the pmd can't become splitting
		 * from under us, and in turn
		 * __split_huge_page_refcount() can't run from under
		 * us and we can safely transfer the refcount from
		 * PG_tail to PG_head as we switch the pfn to tail to
		 * head.
		 */
		*levelp = level = PT_DIRECTORY_LEVEL;
		mask = KVM_PAGES_PER_HPAGE(level) - 1;
		VM_BUG_ON((gfn & mask) != (pfn & mask));
		if (pfn & mask) {
			gfn &= ~mask;
			*gfnp = gfn;
			kvm_release_pfn_clean(pfn);
			pfn &= ~mask;
2753
			kvm_get_pfn(pfn);
2754 2755 2756 2757 2758
			*pfnp = pfn;
		}
	}
}

2759 2760 2761 2762 2763 2764
static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
				pfn_t pfn, unsigned access, int *ret_val)
{
	bool ret = true;

	/* The pfn is invalid, report the error! */
2765
	if (unlikely(is_error_pfn(pfn))) {
2766 2767 2768 2769
		*ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
		goto exit;
	}

2770
	if (unlikely(is_noslot_pfn(pfn)))
2771 2772 2773 2774 2775 2776 2777
		vcpu_cache_mmio_info(vcpu, gva, gfn, access);

	ret = false;
exit:
	return ret;
}

2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868
static bool page_fault_can_be_fast(struct kvm_vcpu *vcpu, u32 error_code)
{
	/*
	 * #PF can be fast only if the shadow page table is present and it
	 * is caused by write-protect, that means we just need change the
	 * W bit of the spte which can be done out of mmu-lock.
	 */
	if (!(error_code & PFERR_PRESENT_MASK) ||
	      !(error_code & PFERR_WRITE_MASK))
		return false;

	return true;
}

static bool
fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 spte)
{
	struct kvm_mmu_page *sp = page_header(__pa(sptep));
	gfn_t gfn;

	WARN_ON(!sp->role.direct);

	/*
	 * The gfn of direct spte is stable since it is calculated
	 * by sp->gfn.
	 */
	gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);

	if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
		mark_page_dirty(vcpu->kvm, gfn);

	return true;
}

/*
 * Return value:
 * - true: let the vcpu to access on the same address again.
 * - false: let the real page fault path to fix it.
 */
static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
			    u32 error_code)
{
	struct kvm_shadow_walk_iterator iterator;
	bool ret = false;
	u64 spte = 0ull;

	if (!page_fault_can_be_fast(vcpu, error_code))
		return false;

	walk_shadow_page_lockless_begin(vcpu);
	for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
		if (!is_shadow_present_pte(spte) || iterator.level < level)
			break;

	/*
	 * If the mapping has been changed, let the vcpu fault on the
	 * same address again.
	 */
	if (!is_rmap_spte(spte)) {
		ret = true;
		goto exit;
	}

	if (!is_last_spte(spte, level))
		goto exit;

	/*
	 * Check if it is a spurious fault caused by TLB lazily flushed.
	 *
	 * Need not check the access of upper level table entries since
	 * they are always ACC_ALL.
	 */
	 if (is_writable_pte(spte)) {
		ret = true;
		goto exit;
	}

	/*
	 * Currently, to simplify the code, only the spte write-protected
	 * by dirty-log can be fast fixed.
	 */
	if (!spte_is_locklessly_modifiable(spte))
		goto exit;

	/*
	 * Currently, fast page fault only works for direct mapping since
	 * the gfn is not stable for indirect shadow page.
	 * See Documentation/virtual/kvm/locking.txt to get more detail.
	 */
	ret = fast_pf_fix_direct_spte(vcpu, iterator.sptep, spte);
exit:
X
Xiao Guangrong 已提交
2869 2870
	trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
			      spte, ret);
2871 2872 2873 2874 2875
	walk_shadow_page_lockless_end(vcpu);

	return ret;
}

2876
static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
2877
			 gva_t gva, pfn_t *pfn, bool write, bool *writable);
2878
static void make_mmu_pages_available(struct kvm_vcpu *vcpu);
2879

2880 2881
static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
			 gfn_t gfn, bool prefault)
2882 2883
{
	int r;
2884
	int level;
2885
	int force_pt_level;
2886
	pfn_t pfn;
2887
	unsigned long mmu_seq;
2888
	bool map_writable, write = error_code & PFERR_WRITE_MASK;
2889

2890 2891 2892 2893 2894 2895 2896 2897 2898 2899
	force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
	if (likely(!force_pt_level)) {
		level = mapping_level(vcpu, gfn);
		/*
		 * This path builds a PAE pagetable - so we can map
		 * 2mb pages at maximum. Therefore check if the level
		 * is larger than that.
		 */
		if (level > PT_DIRECTORY_LEVEL)
			level = PT_DIRECTORY_LEVEL;
2900

2901 2902 2903
		gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
	} else
		level = PT_PAGE_TABLE_LEVEL;
M
Marcelo Tosatti 已提交
2904

2905 2906 2907
	if (fast_page_fault(vcpu, v, level, error_code))
		return 0;

2908
	mmu_seq = vcpu->kvm->mmu_notifier_seq;
2909
	smp_rmb();
2910

2911
	if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
2912
		return 0;
2913

2914 2915
	if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
		return r;
2916

2917
	spin_lock(&vcpu->kvm->mmu_lock);
2918
	if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
2919
		goto out_unlock;
2920
	make_mmu_pages_available(vcpu);
2921 2922
	if (likely(!force_pt_level))
		transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
2923 2924
	r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
			 prefault);
2925 2926 2927
	spin_unlock(&vcpu->kvm->mmu_lock);


2928
	return r;
2929 2930 2931 2932 2933

out_unlock:
	spin_unlock(&vcpu->kvm->mmu_lock);
	kvm_release_pfn_clean(pfn);
	return 0;
2934 2935 2936
}


2937 2938 2939
static void mmu_free_roots(struct kvm_vcpu *vcpu)
{
	int i;
2940
	struct kvm_mmu_page *sp;
2941
	LIST_HEAD(invalid_list);
2942

2943
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
A
Avi Kivity 已提交
2944
		return;
2945

2946 2947 2948
	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
	    (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
	     vcpu->arch.mmu.direct_map)) {
2949
		hpa_t root = vcpu->arch.mmu.root_hpa;
2950

2951
		spin_lock(&vcpu->kvm->mmu_lock);
2952 2953
		sp = page_header(root);
		--sp->root_count;
2954 2955 2956 2957
		if (!sp->root_count && sp->role.invalid) {
			kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
			kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
		}
2958
		spin_unlock(&vcpu->kvm->mmu_lock);
2959
		vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2960 2961
		return;
	}
2962 2963

	spin_lock(&vcpu->kvm->mmu_lock);
2964
	for (i = 0; i < 4; ++i) {
2965
		hpa_t root = vcpu->arch.mmu.pae_root[i];
2966

A
Avi Kivity 已提交
2967 2968
		if (root) {
			root &= PT64_BASE_ADDR_MASK;
2969 2970
			sp = page_header(root);
			--sp->root_count;
2971
			if (!sp->root_count && sp->role.invalid)
2972 2973
				kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
							 &invalid_list);
A
Avi Kivity 已提交
2974
		}
2975
		vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
2976
	}
2977
	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2978
	spin_unlock(&vcpu->kvm->mmu_lock);
2979
	vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2980 2981
}

2982 2983 2984 2985 2986
static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
{
	int ret = 0;

	if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
2987
		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2988 2989 2990 2991 2992 2993
		ret = 1;
	}

	return ret;
}

2994 2995 2996
static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
{
	struct kvm_mmu_page *sp;
2997
	unsigned i;
2998 2999 3000

	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
		spin_lock(&vcpu->kvm->mmu_lock);
3001
		make_mmu_pages_available(vcpu);
3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012
		sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
				      1, ACC_ALL, NULL);
		++sp->root_count;
		spin_unlock(&vcpu->kvm->mmu_lock);
		vcpu->arch.mmu.root_hpa = __pa(sp->spt);
	} else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
		for (i = 0; i < 4; ++i) {
			hpa_t root = vcpu->arch.mmu.pae_root[i];

			ASSERT(!VALID_PAGE(root));
			spin_lock(&vcpu->kvm->mmu_lock);
3013
			make_mmu_pages_available(vcpu);
3014 3015
			sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
					      i << 30,
3016 3017 3018 3019 3020 3021 3022
					      PT32_ROOT_LEVEL, 1, ACC_ALL,
					      NULL);
			root = __pa(sp->spt);
			++sp->root_count;
			spin_unlock(&vcpu->kvm->mmu_lock);
			vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
		}
3023
		vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3024 3025 3026 3027 3028 3029 3030
	} else
		BUG();

	return 0;
}

static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3031
{
3032
	struct kvm_mmu_page *sp;
3033 3034 3035
	u64 pdptr, pm_mask;
	gfn_t root_gfn;
	int i;
3036

3037
	root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
3038

3039 3040 3041 3042 3043 3044 3045 3046
	if (mmu_check_root(vcpu, root_gfn))
		return 1;

	/*
	 * Do we shadow a long mode page table? If so we need to
	 * write-protect the guests page table root.
	 */
	if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3047
		hpa_t root = vcpu->arch.mmu.root_hpa;
3048 3049

		ASSERT(!VALID_PAGE(root));
3050

3051
		spin_lock(&vcpu->kvm->mmu_lock);
3052
		make_mmu_pages_available(vcpu);
3053 3054
		sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
				      0, ACC_ALL, NULL);
3055 3056
		root = __pa(sp->spt);
		++sp->root_count;
3057
		spin_unlock(&vcpu->kvm->mmu_lock);
3058
		vcpu->arch.mmu.root_hpa = root;
3059
		return 0;
3060
	}
3061

3062 3063
	/*
	 * We shadow a 32 bit page table. This may be a legacy 2-level
3064 3065
	 * or a PAE 3-level page table. In either case we need to be aware that
	 * the shadow page table may be a PAE or a long mode page table.
3066
	 */
3067 3068 3069 3070
	pm_mask = PT_PRESENT_MASK;
	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
		pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;

3071
	for (i = 0; i < 4; ++i) {
3072
		hpa_t root = vcpu->arch.mmu.pae_root[i];
3073 3074

		ASSERT(!VALID_PAGE(root));
3075
		if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
3076
			pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
3077
			if (!is_present_gpte(pdptr)) {
3078
				vcpu->arch.mmu.pae_root[i] = 0;
A
Avi Kivity 已提交
3079 3080
				continue;
			}
A
Avi Kivity 已提交
3081
			root_gfn = pdptr >> PAGE_SHIFT;
3082 3083
			if (mmu_check_root(vcpu, root_gfn))
				return 1;
3084
		}
3085
		spin_lock(&vcpu->kvm->mmu_lock);
3086
		make_mmu_pages_available(vcpu);
3087
		sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
3088
				      PT32_ROOT_LEVEL, 0,
3089
				      ACC_ALL, NULL);
3090 3091
		root = __pa(sp->spt);
		++sp->root_count;
3092 3093
		spin_unlock(&vcpu->kvm->mmu_lock);

3094
		vcpu->arch.mmu.pae_root[i] = root | pm_mask;
3095
	}
3096
	vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122

	/*
	 * If we shadow a 32 bit page table with a long mode page
	 * table we enter this path.
	 */
	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
		if (vcpu->arch.mmu.lm_root == NULL) {
			/*
			 * The additional page necessary for this is only
			 * allocated on demand.
			 */

			u64 *lm_root;

			lm_root = (void*)get_zeroed_page(GFP_KERNEL);
			if (lm_root == NULL)
				return 1;

			lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;

			vcpu->arch.mmu.lm_root = lm_root;
		}

		vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
	}

3123
	return 0;
3124 3125
}

3126 3127 3128 3129 3130 3131 3132 3133
static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
{
	if (vcpu->arch.mmu.direct_map)
		return mmu_alloc_direct_roots(vcpu);
	else
		return mmu_alloc_shadow_roots(vcpu);
}

3134 3135 3136 3137 3138
static void mmu_sync_roots(struct kvm_vcpu *vcpu)
{
	int i;
	struct kvm_mmu_page *sp;

3139 3140 3141
	if (vcpu->arch.mmu.direct_map)
		return;

3142 3143
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
		return;
3144

3145
	vcpu_clear_mmio_info(vcpu, ~0ul);
3146
	kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3147
	if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3148 3149 3150
		hpa_t root = vcpu->arch.mmu.root_hpa;
		sp = page_header(root);
		mmu_sync_children(vcpu, sp);
3151
		kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3152 3153 3154 3155 3156
		return;
	}
	for (i = 0; i < 4; ++i) {
		hpa_t root = vcpu->arch.mmu.pae_root[i];

3157
		if (root && VALID_PAGE(root)) {
3158 3159 3160 3161 3162
			root &= PT64_BASE_ADDR_MASK;
			sp = page_header(root);
			mmu_sync_children(vcpu, sp);
		}
	}
3163
	kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3164 3165 3166 3167 3168 3169
}

void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
{
	spin_lock(&vcpu->kvm->mmu_lock);
	mmu_sync_roots(vcpu);
3170
	spin_unlock(&vcpu->kvm->mmu_lock);
3171 3172
}

3173
static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
3174
				  u32 access, struct x86_exception *exception)
A
Avi Kivity 已提交
3175
{
3176 3177
	if (exception)
		exception->error_code = 0;
A
Avi Kivity 已提交
3178 3179 3180
	return vaddr;
}

3181
static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
3182 3183
					 u32 access,
					 struct x86_exception *exception)
3184
{
3185 3186
	if (exception)
		exception->error_code = 0;
3187 3188 3189
	return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access);
}

3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246
static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
{
	if (direct)
		return vcpu_match_mmio_gpa(vcpu, addr);

	return vcpu_match_mmio_gva(vcpu, addr);
}


/*
 * On direct hosts, the last spte is only allows two states
 * for mmio page fault:
 *   - It is the mmio spte
 *   - It is zapped or it is being zapped.
 *
 * This function completely checks the spte when the last spte
 * is not the mmio spte.
 */
static bool check_direct_spte_mmio_pf(u64 spte)
{
	return __check_direct_spte_mmio_pf(spte);
}

static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
{
	struct kvm_shadow_walk_iterator iterator;
	u64 spte = 0ull;

	walk_shadow_page_lockless_begin(vcpu);
	for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
		if (!is_shadow_present_pte(spte))
			break;
	walk_shadow_page_lockless_end(vcpu);

	return spte;
}

/*
 * If it is a real mmio page fault, return 1 and emulat the instruction
 * directly, return 0 to let CPU fault again on the address, -1 is
 * returned if bug is detected.
 */
int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
{
	u64 spte;

	if (quickly_check_mmio_pf(vcpu, addr, direct))
		return 1;

	spte = walk_shadow_page_get_mmio_spte(vcpu, addr);

	if (is_mmio_spte(spte)) {
		gfn_t gfn = get_mmio_spte_gfn(spte);
		unsigned access = get_mmio_spte_access(spte);

		if (direct)
			addr = 0;
X
Xiao Guangrong 已提交
3247 3248

		trace_handle_mmio_page_fault(addr, gfn, access);
3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277
		vcpu_cache_mmio_info(vcpu, addr, gfn, access);
		return 1;
	}

	/*
	 * It's ok if the gva is remapped by other cpus on shadow guest,
	 * it's a BUG if the gfn is not a mmio page.
	 */
	if (direct && !check_direct_spte_mmio_pf(spte))
		return -1;

	/*
	 * If the page table is zapped by other cpus, let CPU fault again on
	 * the address.
	 */
	return 0;
}
EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);

static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
				  u32 error_code, bool direct)
{
	int ret;

	ret = handle_mmio_page_fault_common(vcpu, addr, direct);
	WARN_ON(ret < 0);
	return ret;
}

A
Avi Kivity 已提交
3278
static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
3279
				u32 error_code, bool prefault)
A
Avi Kivity 已提交
3280
{
3281
	gfn_t gfn;
3282
	int r;
A
Avi Kivity 已提交
3283

3284
	pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
3285 3286 3287 3288

	if (unlikely(error_code & PFERR_RSVD_MASK))
		return handle_mmio_page_fault(vcpu, gva, error_code, true);

3289 3290 3291
	r = mmu_topup_memory_caches(vcpu);
	if (r)
		return r;
3292

A
Avi Kivity 已提交
3293
	ASSERT(vcpu);
3294
	ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
A
Avi Kivity 已提交
3295

3296
	gfn = gva >> PAGE_SHIFT;
A
Avi Kivity 已提交
3297

3298
	return nonpaging_map(vcpu, gva & PAGE_MASK,
3299
			     error_code, gfn, prefault);
A
Avi Kivity 已提交
3300 3301
}

3302
static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3303 3304
{
	struct kvm_arch_async_pf arch;
X
Xiao Guangrong 已提交
3305

3306
	arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3307
	arch.gfn = gfn;
3308
	arch.direct_map = vcpu->arch.mmu.direct_map;
X
Xiao Guangrong 已提交
3309
	arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322

	return kvm_setup_async_pf(vcpu, gva, gfn, &arch);
}

static bool can_do_async_pf(struct kvm_vcpu *vcpu)
{
	if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
		     kvm_event_needs_reinjection(vcpu)))
		return false;

	return kvm_x86_ops->interrupt_allowed(vcpu);
}

3323
static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3324
			 gva_t gva, pfn_t *pfn, bool write, bool *writable)
3325 3326 3327
{
	bool async;

3328
	*pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
3329 3330 3331 3332

	if (!async)
		return false; /* *pfn has correct page already */

3333
	if (!prefault && can_do_async_pf(vcpu)) {
3334
		trace_kvm_try_async_get_page(gva, gfn);
3335 3336 3337 3338 3339 3340 3341 3342
		if (kvm_find_async_pf_gfn(vcpu, gfn)) {
			trace_kvm_async_pf_doublefault(gva, gfn);
			kvm_make_request(KVM_REQ_APF_HALT, vcpu);
			return true;
		} else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
			return true;
	}

3343
	*pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
3344 3345 3346 3347

	return false;
}

G
Gleb Natapov 已提交
3348
static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
3349
			  bool prefault)
3350
{
3351
	pfn_t pfn;
3352
	int r;
3353
	int level;
3354
	int force_pt_level;
M
Marcelo Tosatti 已提交
3355
	gfn_t gfn = gpa >> PAGE_SHIFT;
3356
	unsigned long mmu_seq;
3357 3358
	int write = error_code & PFERR_WRITE_MASK;
	bool map_writable;
3359 3360 3361 3362

	ASSERT(vcpu);
	ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));

3363 3364 3365
	if (unlikely(error_code & PFERR_RSVD_MASK))
		return handle_mmio_page_fault(vcpu, gpa, error_code, true);

3366 3367 3368 3369
	r = mmu_topup_memory_caches(vcpu);
	if (r)
		return r;

3370 3371 3372 3373 3374 3375
	force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
	if (likely(!force_pt_level)) {
		level = mapping_level(vcpu, gfn);
		gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
	} else
		level = PT_PAGE_TABLE_LEVEL;
3376

3377 3378 3379
	if (fast_page_fault(vcpu, gpa, level, error_code))
		return 0;

3380
	mmu_seq = vcpu->kvm->mmu_notifier_seq;
3381
	smp_rmb();
3382

3383
	if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3384 3385
		return 0;

3386 3387 3388
	if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
		return r;

3389
	spin_lock(&vcpu->kvm->mmu_lock);
3390
	if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3391
		goto out_unlock;
3392
	make_mmu_pages_available(vcpu);
3393 3394
	if (likely(!force_pt_level))
		transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3395
	r = __direct_map(vcpu, gpa, write, map_writable,
3396
			 level, gfn, pfn, prefault);
3397 3398 3399
	spin_unlock(&vcpu->kvm->mmu_lock);

	return r;
3400 3401 3402 3403 3404

out_unlock:
	spin_unlock(&vcpu->kvm->mmu_lock);
	kvm_release_pfn_clean(pfn);
	return 0;
3405 3406
}

A
Avi Kivity 已提交
3407 3408
static void nonpaging_free(struct kvm_vcpu *vcpu)
{
3409
	mmu_free_roots(vcpu);
A
Avi Kivity 已提交
3410 3411
}

3412 3413
static int nonpaging_init_context(struct kvm_vcpu *vcpu,
				  struct kvm_mmu *context)
A
Avi Kivity 已提交
3414 3415 3416 3417 3418
{
	context->new_cr3 = nonpaging_new_cr3;
	context->page_fault = nonpaging_page_fault;
	context->gva_to_gpa = nonpaging_gva_to_gpa;
	context->free = nonpaging_free;
3419
	context->sync_page = nonpaging_sync_page;
M
Marcelo Tosatti 已提交
3420
	context->invlpg = nonpaging_invlpg;
3421
	context->update_pte = nonpaging_update_pte;
3422
	context->root_level = 0;
A
Avi Kivity 已提交
3423
	context->shadow_root_level = PT32E_ROOT_LEVEL;
A
Avi Kivity 已提交
3424
	context->root_hpa = INVALID_PAGE;
3425
	context->direct_map = true;
3426
	context->nx = false;
A
Avi Kivity 已提交
3427 3428 3429
	return 0;
}

3430
void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
3431
{
A
Avi Kivity 已提交
3432
	++vcpu->stat.tlb_flush;
3433
	kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
A
Avi Kivity 已提交
3434 3435 3436 3437
}

static void paging_new_cr3(struct kvm_vcpu *vcpu)
{
3438
	pgprintk("%s: cr3 %lx\n", __func__, kvm_read_cr3(vcpu));
3439
	mmu_free_roots(vcpu);
A
Avi Kivity 已提交
3440 3441
}

3442 3443
static unsigned long get_cr3(struct kvm_vcpu *vcpu)
{
3444
	return kvm_read_cr3(vcpu);
3445 3446
}

3447 3448
static void inject_page_fault(struct kvm_vcpu *vcpu,
			      struct x86_exception *fault)
A
Avi Kivity 已提交
3449
{
3450
	vcpu->arch.mmu.inject_page_fault(vcpu, fault);
A
Avi Kivity 已提交
3451 3452 3453 3454 3455 3456 3457
}

static void paging_free(struct kvm_vcpu *vcpu)
{
	nonpaging_free(vcpu);
}

3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469
static inline void protect_clean_gpte(unsigned *access, unsigned gpte)
{
	unsigned mask;

	BUILD_BUG_ON(PT_WRITABLE_MASK != ACC_WRITE_MASK);

	mask = (unsigned)~ACC_WRITE_MASK;
	/* Allow write access to dirty gptes */
	mask |= (gpte >> (PT_DIRTY_SHIFT - PT_WRITABLE_SHIFT)) & PT_WRITABLE_MASK;
	*access &= mask;
}

3470 3471
static bool sync_mmio_spte(struct kvm *kvm, u64 *sptep, gfn_t gfn,
			   unsigned access, int *nr_present)
3472 3473 3474 3475 3476 3477 3478 3479
{
	if (unlikely(is_mmio_spte(*sptep))) {
		if (gfn != get_mmio_spte_gfn(*sptep)) {
			mmu_spte_clear_no_track(sptep);
			return true;
		}

		(*nr_present)++;
3480
		mark_mmio_spte(kvm, sptep, gfn, access);
3481 3482 3483 3484 3485 3486
		return true;
	}

	return false;
}

3487 3488 3489 3490 3491 3492 3493 3494 3495 3496
static inline unsigned gpte_access(struct kvm_vcpu *vcpu, u64 gpte)
{
	unsigned access;

	access = (gpte & (PT_WRITABLE_MASK | PT_USER_MASK)) | ACC_EXEC_MASK;
	access &= ~(gpte >> PT64_NX_SHIFT);

	return access;
}

A
Avi Kivity 已提交
3497 3498 3499 3500 3501 3502 3503 3504 3505
static inline bool is_last_gpte(struct kvm_mmu *mmu, unsigned level, unsigned gpte)
{
	unsigned index;

	index = level - 1;
	index |= (gpte & PT_PAGE_SIZE_MASK) >> (PT_PAGE_SIZE_SHIFT - 2);
	return mmu->last_pte_bitmap & (1 << index);
}

A
Avi Kivity 已提交
3506 3507 3508 3509 3510 3511 3512 3513
#define PTTYPE 64
#include "paging_tmpl.h"
#undef PTTYPE

#define PTTYPE 32
#include "paging_tmpl.h"
#undef PTTYPE

3514
static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3515
				  struct kvm_mmu *context)
3516 3517 3518 3519
{
	int maxphyaddr = cpuid_maxphyaddr(vcpu);
	u64 exb_bit_rsvd = 0;

3520
	if (!context->nx)
3521
		exb_bit_rsvd = rsvd_bits(63, 63);
3522
	switch (context->root_level) {
3523 3524 3525 3526
	case PT32_ROOT_LEVEL:
		/* no rsvd bits for 2 level 4K page table entries */
		context->rsvd_bits_mask[0][1] = 0;
		context->rsvd_bits_mask[0][0] = 0;
3527 3528 3529 3530 3531 3532 3533
		context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];

		if (!is_pse(vcpu)) {
			context->rsvd_bits_mask[1][1] = 0;
			break;
		}

3534 3535 3536 3537 3538 3539 3540 3541
		if (is_cpuid_PSE36())
			/* 36bits PSE 4MB page */
			context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
		else
			/* 32 bits PSE 4MB page */
			context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
		break;
	case PT32E_ROOT_LEVEL:
3542 3543 3544
		context->rsvd_bits_mask[0][2] =
			rsvd_bits(maxphyaddr, 63) |
			rsvd_bits(7, 8) | rsvd_bits(1, 2);	/* PDPTE */
3545
		context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3546
			rsvd_bits(maxphyaddr, 62);	/* PDE */
3547 3548 3549 3550 3551
		context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
			rsvd_bits(maxphyaddr, 62); 	/* PTE */
		context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
			rsvd_bits(maxphyaddr, 62) |
			rsvd_bits(13, 20);		/* large page */
3552
		context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3553 3554 3555 3556 3557 3558 3559
		break;
	case PT64_ROOT_LEVEL:
		context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
			rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
		context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
			rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
		context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3560
			rsvd_bits(maxphyaddr, 51);
3561 3562 3563
		context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
			rsvd_bits(maxphyaddr, 51);
		context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
3564 3565 3566
		context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
			rsvd_bits(maxphyaddr, 51) |
			rsvd_bits(13, 29);
3567
		context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3568 3569
			rsvd_bits(maxphyaddr, 51) |
			rsvd_bits(13, 20);		/* large page */
3570
		context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3571 3572 3573 3574
		break;
	}
}

3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606
static void update_permission_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
{
	unsigned bit, byte, pfec;
	u8 map;
	bool fault, x, w, u, wf, uf, ff, smep;

	smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
	for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
		pfec = byte << 1;
		map = 0;
		wf = pfec & PFERR_WRITE_MASK;
		uf = pfec & PFERR_USER_MASK;
		ff = pfec & PFERR_FETCH_MASK;
		for (bit = 0; bit < 8; ++bit) {
			x = bit & ACC_EXEC_MASK;
			w = bit & ACC_WRITE_MASK;
			u = bit & ACC_USER_MASK;

			/* Not really needed: !nx will cause pte.nx to fault */
			x |= !mmu->nx;
			/* Allow supervisor writes if !cr0.wp */
			w |= !is_write_protection(vcpu) && !uf;
			/* Disallow supervisor fetches of user code if cr4.smep */
			x &= !(smep && u && !uf);

			fault = (ff && !x) || (uf && !u) || (wf && !w);
			map |= fault << bit;
		}
		mmu->permissions[byte] = map;
	}
}

A
Avi Kivity 已提交
3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624
static void update_last_pte_bitmap(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
{
	u8 map;
	unsigned level, root_level = mmu->root_level;
	const unsigned ps_set_index = 1 << 2;  /* bit 2 of index: ps */

	if (root_level == PT32E_ROOT_LEVEL)
		--root_level;
	/* PT_PAGE_TABLE_LEVEL always terminates */
	map = 1 | (1 << ps_set_index);
	for (level = PT_DIRECTORY_LEVEL; level <= root_level; ++level) {
		if (level <= PT_PDPE_LEVEL
		    && (mmu->root_level >= PT32E_ROOT_LEVEL || is_pse(vcpu)))
			map |= 1 << (ps_set_index | (level - 1));
	}
	mmu->last_pte_bitmap = map;
}

3625 3626 3627
static int paging64_init_context_common(struct kvm_vcpu *vcpu,
					struct kvm_mmu *context,
					int level)
A
Avi Kivity 已提交
3628
{
3629
	context->nx = is_nx(vcpu);
3630
	context->root_level = level;
3631

3632
	reset_rsvds_bits_mask(vcpu, context);
3633
	update_permission_bitmask(vcpu, context);
A
Avi Kivity 已提交
3634
	update_last_pte_bitmap(vcpu, context);
A
Avi Kivity 已提交
3635 3636 3637 3638 3639

	ASSERT(is_pae(vcpu));
	context->new_cr3 = paging_new_cr3;
	context->page_fault = paging64_page_fault;
	context->gva_to_gpa = paging64_gva_to_gpa;
3640
	context->sync_page = paging64_sync_page;
M
Marcelo Tosatti 已提交
3641
	context->invlpg = paging64_invlpg;
3642
	context->update_pte = paging64_update_pte;
A
Avi Kivity 已提交
3643
	context->free = paging_free;
3644
	context->shadow_root_level = level;
A
Avi Kivity 已提交
3645
	context->root_hpa = INVALID_PAGE;
3646
	context->direct_map = false;
A
Avi Kivity 已提交
3647 3648 3649
	return 0;
}

3650 3651
static int paging64_init_context(struct kvm_vcpu *vcpu,
				 struct kvm_mmu *context)
3652
{
3653
	return paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
3654 3655
}

3656 3657
static int paging32_init_context(struct kvm_vcpu *vcpu,
				 struct kvm_mmu *context)
A
Avi Kivity 已提交
3658
{
3659
	context->nx = false;
3660
	context->root_level = PT32_ROOT_LEVEL;
3661

3662
	reset_rsvds_bits_mask(vcpu, context);
3663
	update_permission_bitmask(vcpu, context);
A
Avi Kivity 已提交
3664
	update_last_pte_bitmap(vcpu, context);
A
Avi Kivity 已提交
3665 3666 3667 3668 3669

	context->new_cr3 = paging_new_cr3;
	context->page_fault = paging32_page_fault;
	context->gva_to_gpa = paging32_gva_to_gpa;
	context->free = paging_free;
3670
	context->sync_page = paging32_sync_page;
M
Marcelo Tosatti 已提交
3671
	context->invlpg = paging32_invlpg;
3672
	context->update_pte = paging32_update_pte;
A
Avi Kivity 已提交
3673
	context->shadow_root_level = PT32E_ROOT_LEVEL;
A
Avi Kivity 已提交
3674
	context->root_hpa = INVALID_PAGE;
3675
	context->direct_map = false;
A
Avi Kivity 已提交
3676 3677 3678
	return 0;
}

3679 3680
static int paging32E_init_context(struct kvm_vcpu *vcpu,
				  struct kvm_mmu *context)
A
Avi Kivity 已提交
3681
{
3682
	return paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
A
Avi Kivity 已提交
3683 3684
}

3685 3686
static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
{
3687
	struct kvm_mmu *context = vcpu->arch.walk_mmu;
3688

3689
	context->base_role.word = 0;
3690 3691 3692
	context->new_cr3 = nonpaging_new_cr3;
	context->page_fault = tdp_page_fault;
	context->free = nonpaging_free;
3693
	context->sync_page = nonpaging_sync_page;
M
Marcelo Tosatti 已提交
3694
	context->invlpg = nonpaging_invlpg;
3695
	context->update_pte = nonpaging_update_pte;
3696
	context->shadow_root_level = kvm_x86_ops->get_tdp_level();
3697
	context->root_hpa = INVALID_PAGE;
3698
	context->direct_map = true;
3699
	context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
3700
	context->get_cr3 = get_cr3;
3701
	context->get_pdptr = kvm_pdptr_read;
3702
	context->inject_page_fault = kvm_inject_page_fault;
3703 3704

	if (!is_paging(vcpu)) {
3705
		context->nx = false;
3706 3707 3708
		context->gva_to_gpa = nonpaging_gva_to_gpa;
		context->root_level = 0;
	} else if (is_long_mode(vcpu)) {
3709
		context->nx = is_nx(vcpu);
3710
		context->root_level = PT64_ROOT_LEVEL;
3711 3712
		reset_rsvds_bits_mask(vcpu, context);
		context->gva_to_gpa = paging64_gva_to_gpa;
3713
	} else if (is_pae(vcpu)) {
3714
		context->nx = is_nx(vcpu);
3715
		context->root_level = PT32E_ROOT_LEVEL;
3716 3717
		reset_rsvds_bits_mask(vcpu, context);
		context->gva_to_gpa = paging64_gva_to_gpa;
3718
	} else {
3719
		context->nx = false;
3720
		context->root_level = PT32_ROOT_LEVEL;
3721 3722
		reset_rsvds_bits_mask(vcpu, context);
		context->gva_to_gpa = paging32_gva_to_gpa;
3723 3724
	}

3725
	update_permission_bitmask(vcpu, context);
A
Avi Kivity 已提交
3726
	update_last_pte_bitmap(vcpu, context);
3727

3728 3729 3730
	return 0;
}

3731
int kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
A
Avi Kivity 已提交
3732
{
3733
	int r;
3734
	bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
A
Avi Kivity 已提交
3735
	ASSERT(vcpu);
3736
	ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
A
Avi Kivity 已提交
3737 3738

	if (!is_paging(vcpu))
3739
		r = nonpaging_init_context(vcpu, context);
A
Avi Kivity 已提交
3740
	else if (is_long_mode(vcpu))
3741
		r = paging64_init_context(vcpu, context);
A
Avi Kivity 已提交
3742
	else if (is_pae(vcpu))
3743
		r = paging32E_init_context(vcpu, context);
A
Avi Kivity 已提交
3744
	else
3745
		r = paging32_init_context(vcpu, context);
3746

3747
	vcpu->arch.mmu.base_role.nxe = is_nx(vcpu);
3748
	vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
3749
	vcpu->arch.mmu.base_role.cr0_wp  = is_write_protection(vcpu);
3750 3751
	vcpu->arch.mmu.base_role.smep_andnot_wp
		= smep && !is_write_protection(vcpu);
3752 3753 3754 3755 3756 3757 3758

	return r;
}
EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);

static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
{
3759
	int r = kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
3760

3761 3762
	vcpu->arch.walk_mmu->set_cr3           = kvm_x86_ops->set_cr3;
	vcpu->arch.walk_mmu->get_cr3           = get_cr3;
3763
	vcpu->arch.walk_mmu->get_pdptr         = kvm_pdptr_read;
3764
	vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
3765 3766

	return r;
A
Avi Kivity 已提交
3767 3768
}

3769 3770 3771 3772 3773
static int init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
{
	struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;

	g_context->get_cr3           = get_cr3;
3774
	g_context->get_pdptr         = kvm_pdptr_read;
3775 3776 3777 3778 3779 3780 3781 3782 3783
	g_context->inject_page_fault = kvm_inject_page_fault;

	/*
	 * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
	 * translation of l2_gpa to l1_gpa addresses is done using the
	 * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
	 * functions between mmu and nested_mmu are swapped.
	 */
	if (!is_paging(vcpu)) {
3784
		g_context->nx = false;
3785 3786 3787
		g_context->root_level = 0;
		g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
	} else if (is_long_mode(vcpu)) {
3788
		g_context->nx = is_nx(vcpu);
3789
		g_context->root_level = PT64_ROOT_LEVEL;
3790
		reset_rsvds_bits_mask(vcpu, g_context);
3791 3792
		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
	} else if (is_pae(vcpu)) {
3793
		g_context->nx = is_nx(vcpu);
3794
		g_context->root_level = PT32E_ROOT_LEVEL;
3795
		reset_rsvds_bits_mask(vcpu, g_context);
3796 3797
		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
	} else {
3798
		g_context->nx = false;
3799
		g_context->root_level = PT32_ROOT_LEVEL;
3800
		reset_rsvds_bits_mask(vcpu, g_context);
3801 3802 3803
		g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
	}

3804
	update_permission_bitmask(vcpu, g_context);
A
Avi Kivity 已提交
3805
	update_last_pte_bitmap(vcpu, g_context);
3806

3807 3808 3809
	return 0;
}

3810 3811
static int init_kvm_mmu(struct kvm_vcpu *vcpu)
{
3812 3813 3814
	if (mmu_is_nested(vcpu))
		return init_kvm_nested_mmu(vcpu);
	else if (tdp_enabled)
3815 3816 3817 3818 3819
		return init_kvm_tdp_mmu(vcpu);
	else
		return init_kvm_softmmu(vcpu);
}

A
Avi Kivity 已提交
3820 3821 3822
static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
{
	ASSERT(vcpu);
3823 3824
	if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
		/* mmu.free() should set root_hpa = INVALID_PAGE */
3825
		vcpu->arch.mmu.free(vcpu);
A
Avi Kivity 已提交
3826 3827 3828
}

int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
3829 3830
{
	destroy_kvm_mmu(vcpu);
3831
	return init_kvm_mmu(vcpu);
A
Avi Kivity 已提交
3832
}
3833
EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
A
Avi Kivity 已提交
3834 3835

int kvm_mmu_load(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
3836
{
3837 3838
	int r;

3839
	r = mmu_topup_memory_caches(vcpu);
A
Avi Kivity 已提交
3840 3841
	if (r)
		goto out;
3842
	r = mmu_alloc_roots(vcpu);
3843
	kvm_mmu_sync_roots(vcpu);
3844 3845
	if (r)
		goto out;
3846
	/* set_cr3() should ensure TLB has been flushed */
3847
	vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
3848 3849
out:
	return r;
A
Avi Kivity 已提交
3850
}
A
Avi Kivity 已提交
3851 3852 3853 3854 3855 3856
EXPORT_SYMBOL_GPL(kvm_mmu_load);

void kvm_mmu_unload(struct kvm_vcpu *vcpu)
{
	mmu_free_roots(vcpu);
}
3857
EXPORT_SYMBOL_GPL(kvm_mmu_unload);
A
Avi Kivity 已提交
3858

3859
static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
3860 3861
				  struct kvm_mmu_page *sp, u64 *spte,
				  const void *new)
3862
{
3863
	if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
3864 3865
		++vcpu->kvm->stat.mmu_pde_zapped;
		return;
3866
        }
3867

A
Avi Kivity 已提交
3868
	++vcpu->kvm->stat.mmu_pte_updated;
3869
	vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
3870 3871
}

3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884
static bool need_remote_flush(u64 old, u64 new)
{
	if (!is_shadow_present_pte(old))
		return false;
	if (!is_shadow_present_pte(new))
		return true;
	if ((old ^ new) & PT64_BASE_ADDR_MASK)
		return true;
	old ^= PT64_NX_MASK;
	new ^= PT64_NX_MASK;
	return (old & ~new & PT64_PERM_MASK) != 0;
}

3885 3886
static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
				    bool remote_flush, bool local_flush)
3887
{
3888 3889 3890 3891
	if (zap_page)
		return;

	if (remote_flush)
3892
		kvm_flush_remote_tlbs(vcpu->kvm);
3893
	else if (local_flush)
3894 3895 3896
		kvm_mmu_flush_tlb(vcpu);
}

3897 3898
static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
				    const u8 *new, int *bytes)
3899
{
3900 3901
	u64 gentry;
	int r;
3902 3903 3904

	/*
	 * Assume that the pte write on a page table of the same type
3905 3906
	 * as the current vcpu paging mode since we update the sptes only
	 * when they have the same mode.
3907
	 */
3908
	if (is_pae(vcpu) && *bytes == 4) {
3909
		/* Handle a 32-bit guest writing two halves of a 64-bit gpte */
3910 3911
		*gpa &= ~(gpa_t)7;
		*bytes = 8;
3912
		r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, 8);
3913 3914
		if (r)
			gentry = 0;
3915 3916 3917
		new = (const u8 *)&gentry;
	}

3918
	switch (*bytes) {
3919 3920 3921 3922 3923 3924 3925 3926 3927
	case 4:
		gentry = *(const u32 *)new;
		break;
	case 8:
		gentry = *(const u64 *)new;
		break;
	default:
		gentry = 0;
		break;
3928 3929
	}

3930 3931 3932 3933 3934 3935 3936
	return gentry;
}

/*
 * If we're seeing too many writes to a page, it may no longer be a page table,
 * or we may be forking, in which case it is better to unmap the page.
 */
3937
static bool detect_write_flooding(struct kvm_mmu_page *sp)
3938
{
3939 3940 3941 3942
	/*
	 * Skip write-flooding detected for the sp whose level is 1, because
	 * it can become unsync, then the guest page is not write-protected.
	 */
3943
	if (sp->role.level == PT_PAGE_TABLE_LEVEL)
3944
		return false;
3945

3946
	return ++sp->write_flooding_count >= 3;
3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962
}

/*
 * Misaligned accesses are too much trouble to fix up; also, they usually
 * indicate a page is not used as a page table.
 */
static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
				    int bytes)
{
	unsigned offset, pte_size, misaligned;

	pgprintk("misaligned: gpa %llx bytes %d role %x\n",
		 gpa, bytes, sp->role.word);

	offset = offset_in_page(gpa);
	pte_size = sp->role.cr4_pae ? 8 : 4;
3963 3964 3965 3966 3967 3968 3969 3970

	/*
	 * Sometimes, the OS only writes the last one bytes to update status
	 * bits, for example, in linux, andb instruction is used in clear_bit().
	 */
	if (!(offset & (pte_size - 1)) && bytes == 1)
		return false;

3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016
	misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
	misaligned |= bytes < 4;

	return misaligned;
}

static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
{
	unsigned page_offset, quadrant;
	u64 *spte;
	int level;

	page_offset = offset_in_page(gpa);
	level = sp->role.level;
	*nspte = 1;
	if (!sp->role.cr4_pae) {
		page_offset <<= 1;	/* 32->64 */
		/*
		 * A 32-bit pde maps 4MB while the shadow pdes map
		 * only 2MB.  So we need to double the offset again
		 * and zap two pdes instead of one.
		 */
		if (level == PT32_ROOT_LEVEL) {
			page_offset &= ~7; /* kill rounding error */
			page_offset <<= 1;
			*nspte = 2;
		}
		quadrant = page_offset >> PAGE_SHIFT;
		page_offset &= ~PAGE_MASK;
		if (quadrant != sp->role.quadrant)
			return NULL;
	}

	spte = &sp->spt[page_offset / sizeof(*spte)];
	return spte;
}

void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
		       const u8 *new, int bytes)
{
	gfn_t gfn = gpa >> PAGE_SHIFT;
	union kvm_mmu_page_role mask = { .word = 0 };
	struct kvm_mmu_page *sp;
	LIST_HEAD(invalid_list);
	u64 entry, gentry, *spte;
	int npte;
4017
	bool remote_flush, local_flush, zap_page;
4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040

	/*
	 * If we don't have indirect shadow pages, it means no page is
	 * write-protected, so we can exit simply.
	 */
	if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
		return;

	zap_page = remote_flush = local_flush = false;

	pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);

	gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);

	/*
	 * No need to care whether allocation memory is successful
	 * or not since pte prefetch is skiped if it does not have
	 * enough objects in the cache.
	 */
	mmu_topup_memory_caches(vcpu);

	spin_lock(&vcpu->kvm->mmu_lock);
	++vcpu->kvm->stat.mmu_pte_write;
4041
	kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
4042

4043
	mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
4044
	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
4045
		if (detect_write_misaligned(sp, gpa, bytes) ||
4046
		      detect_write_flooding(sp)) {
4047
			zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
4048
						     &invalid_list);
A
Avi Kivity 已提交
4049
			++vcpu->kvm->stat.mmu_flooded;
4050 4051
			continue;
		}
4052 4053 4054 4055 4056

		spte = get_written_sptes(sp, gpa, &npte);
		if (!spte)
			continue;

4057
		local_flush = true;
4058
		while (npte--) {
4059
			entry = *spte;
4060
			mmu_page_zap_pte(vcpu->kvm, sp, spte);
4061 4062
			if (gentry &&
			      !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
4063
			      & mask.word) && rmap_can_add(vcpu))
4064
				mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
G
Gleb Natapov 已提交
4065
			if (need_remote_flush(entry, *spte))
4066
				remote_flush = true;
4067
			++spte;
4068 4069
		}
	}
4070
	mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
4071
	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4072
	kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
4073
	spin_unlock(&vcpu->kvm->mmu_lock);
4074 4075
}

4076 4077
int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
{
4078 4079
	gpa_t gpa;
	int r;
4080

4081
	if (vcpu->arch.mmu.direct_map)
4082 4083
		return 0;

4084
	gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
4085 4086

	r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4087

4088
	return r;
4089
}
4090
EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
4091

4092
static void make_mmu_pages_available(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
4093
{
4094
	LIST_HEAD(invalid_list);
4095

4096 4097 4098
	if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
		return;

4099 4100 4101
	while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
		if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
			break;
A
Avi Kivity 已提交
4102

A
Avi Kivity 已提交
4103
		++vcpu->kvm->stat.mmu_recycled;
A
Avi Kivity 已提交
4104
	}
4105
	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
A
Avi Kivity 已提交
4106 4107
}

4108 4109 4110 4111 4112 4113 4114 4115
static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
{
	if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
		return vcpu_match_mmio_gpa(vcpu, addr);

	return vcpu_match_mmio_gva(vcpu, addr);
}

4116 4117
int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
		       void *insn, int insn_len)
4118
{
4119
	int r, emulation_type = EMULTYPE_RETRY;
4120 4121
	enum emulation_result er;

G
Gleb Natapov 已提交
4122
	r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
4123 4124 4125 4126 4127 4128 4129 4130
	if (r < 0)
		goto out;

	if (!r) {
		r = 1;
		goto out;
	}

4131 4132 4133 4134
	if (is_mmio_page_fault(vcpu, cr2))
		emulation_type = 0;

	er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
4135 4136 4137 4138 4139 4140

	switch (er) {
	case EMULATE_DONE:
		return 1;
	case EMULATE_DO_MMIO:
		++vcpu->stat.mmio_exits;
4141
		/* fall through */
4142
	case EMULATE_FAIL:
4143
		return 0;
4144 4145 4146 4147 4148 4149 4150 4151
	default:
		BUG();
	}
out:
	return r;
}
EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);

M
Marcelo Tosatti 已提交
4152 4153 4154 4155 4156 4157 4158 4159
void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
{
	vcpu->arch.mmu.invlpg(vcpu, gva);
	kvm_mmu_flush_tlb(vcpu);
	++vcpu->stat.invlpg;
}
EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);

4160 4161 4162 4163 4164 4165
void kvm_enable_tdp(void)
{
	tdp_enabled = true;
}
EXPORT_SYMBOL_GPL(kvm_enable_tdp);

4166 4167 4168 4169 4170 4171
void kvm_disable_tdp(void)
{
	tdp_enabled = false;
}
EXPORT_SYMBOL_GPL(kvm_disable_tdp);

A
Avi Kivity 已提交
4172 4173
static void free_mmu_pages(struct kvm_vcpu *vcpu)
{
4174
	free_page((unsigned long)vcpu->arch.mmu.pae_root);
4175 4176
	if (vcpu->arch.mmu.lm_root != NULL)
		free_page((unsigned long)vcpu->arch.mmu.lm_root);
A
Avi Kivity 已提交
4177 4178 4179 4180
}

static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
{
4181
	struct page *page;
A
Avi Kivity 已提交
4182 4183 4184 4185
	int i;

	ASSERT(vcpu);

4186 4187 4188 4189 4190 4191 4192
	/*
	 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
	 * Therefore we need to allocate shadow page tables in the first
	 * 4GB of memory, which happens to fit the DMA32 zone.
	 */
	page = alloc_page(GFP_KERNEL | __GFP_DMA32);
	if (!page)
4193 4194
		return -ENOMEM;

4195
	vcpu->arch.mmu.pae_root = page_address(page);
4196
	for (i = 0; i < 4; ++i)
4197
		vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
4198

A
Avi Kivity 已提交
4199 4200 4201
	return 0;
}

4202
int kvm_mmu_create(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
4203 4204
{
	ASSERT(vcpu);
4205 4206 4207 4208 4209

	vcpu->arch.walk_mmu = &vcpu->arch.mmu;
	vcpu->arch.mmu.root_hpa = INVALID_PAGE;
	vcpu->arch.mmu.translate_gpa = translate_gpa;
	vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
A
Avi Kivity 已提交
4210

4211 4212
	return alloc_mmu_pages(vcpu);
}
A
Avi Kivity 已提交
4213

4214 4215 4216
int kvm_mmu_setup(struct kvm_vcpu *vcpu)
{
	ASSERT(vcpu);
4217
	ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
4218

4219
	return init_kvm_mmu(vcpu);
A
Avi Kivity 已提交
4220 4221
}

4222
void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
A
Avi Kivity 已提交
4223
{
4224 4225 4226
	struct kvm_memory_slot *memslot;
	gfn_t last_gfn;
	int i;
A
Avi Kivity 已提交
4227

4228 4229
	memslot = id_to_memslot(kvm->memslots, slot);
	last_gfn = memslot->base_gfn + memslot->npages - 1;
A
Avi Kivity 已提交
4230

4231 4232
	spin_lock(&kvm->mmu_lock);

4233 4234 4235 4236
	for (i = PT_PAGE_TABLE_LEVEL;
	     i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
		unsigned long *rmapp;
		unsigned long last_index, index;
A
Avi Kivity 已提交
4237

4238 4239
		rmapp = memslot->arch.rmap[i - PT_PAGE_TABLE_LEVEL];
		last_index = gfn_to_index(last_gfn, memslot->base_gfn, i);
4240

4241 4242 4243
		for (index = 0; index <= last_index; ++index, ++rmapp) {
			if (*rmapp)
				__rmap_write_protect(kvm, rmapp, false);
4244 4245 4246 4247 4248

			if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
				kvm_flush_remote_tlbs(kvm);
				cond_resched_lock(&kvm->mmu_lock);
			}
4249
		}
A
Avi Kivity 已提交
4250
	}
4251

4252
	kvm_flush_remote_tlbs(kvm);
4253
	spin_unlock(&kvm->mmu_lock);
A
Avi Kivity 已提交
4254
}
4255

X
Xiao Guangrong 已提交
4256
#define BATCH_ZAP_PAGES	10
4257 4258 4259
static void kvm_zap_obsolete_pages(struct kvm *kvm)
{
	struct kvm_mmu_page *sp, *node;
X
Xiao Guangrong 已提交
4260
	int batch = 0;
4261 4262 4263 4264

restart:
	list_for_each_entry_safe_reverse(sp, node,
	      &kvm->arch.active_mmu_pages, link) {
X
Xiao Guangrong 已提交
4265 4266
		int ret;

4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281
		/*
		 * No obsolete page exists before new created page since
		 * active_mmu_pages is the FIFO list.
		 */
		if (!is_obsolete_sp(kvm, sp))
			break;

		/*
		 * Since we are reversely walking the list and the invalid
		 * list will be moved to the head, skip the invalid page
		 * can help us to avoid the infinity list walking.
		 */
		if (sp->role.invalid)
			continue;

4282 4283 4284 4285
		/*
		 * Need not flush tlb since we only zap the sp with invalid
		 * generation number.
		 */
X
Xiao Guangrong 已提交
4286
		if (batch >= BATCH_ZAP_PAGES &&
4287
		      cond_resched_lock(&kvm->mmu_lock)) {
X
Xiao Guangrong 已提交
4288
			batch = 0;
4289 4290 4291
			goto restart;
		}

4292 4293
		ret = kvm_mmu_prepare_zap_page(kvm, sp,
				&kvm->arch.zapped_obsolete_pages);
X
Xiao Guangrong 已提交
4294 4295 4296
		batch += ret;

		if (ret)
4297 4298 4299
			goto restart;
	}

4300 4301 4302 4303
	/*
	 * Should flush tlb before free page tables since lockless-walking
	 * may use the pages.
	 */
4304
	kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318
}

/*
 * Fast invalidate all shadow pages and use lock-break technique
 * to zap obsolete pages.
 *
 * It's required when memslot is being deleted or VM is being
 * destroyed, in these cases, we should ensure that KVM MMU does
 * not use any resource of the being-deleted slot or all slots
 * after calling the function.
 */
void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
{
	spin_lock(&kvm->mmu_lock);
4319
	trace_kvm_mmu_invalidate_zap_all_pages(kvm);
4320 4321
	kvm->arch.mmu_valid_gen++;

4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332
	/*
	 * Notify all vcpus to reload its shadow page table
	 * and flush TLB. Then all vcpus will switch to new
	 * shadow page table with the new mmu_valid_gen.
	 *
	 * Note: we should do this under the protection of
	 * mmu-lock, otherwise, vcpu would purge shadow page
	 * but miss tlb flush.
	 */
	kvm_reload_remote_mmus(kvm);

4333 4334 4335 4336
	kvm_zap_obsolete_pages(kvm);
	spin_unlock(&kvm->mmu_lock);
}

4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354
void kvm_mmu_zap_mmio_sptes(struct kvm *kvm)
{
	struct kvm_mmu_page *sp, *node;
	LIST_HEAD(invalid_list);

	spin_lock(&kvm->mmu_lock);
restart:
	list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
		if (!sp->mmio_cached)
			continue;
		if (kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list))
			goto restart;
	}

	kvm_mmu_commit_zap_page(kvm, &invalid_list);
	spin_unlock(&kvm->mmu_lock);
}

4355 4356 4357 4358 4359
static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
{
	return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
}

4360
static int mmu_shrink(struct shrinker *shrink, struct shrink_control *sc)
4361 4362
{
	struct kvm *kvm;
4363
	int nr_to_scan = sc->nr_to_scan;
4364 4365 4366

	if (nr_to_scan == 0)
		goto out;
4367

4368
	raw_spin_lock(&kvm_lock);
4369 4370

	list_for_each_entry(kvm, &vm_list, vm_list) {
4371
		int idx;
4372
		LIST_HEAD(invalid_list);
4373

4374 4375 4376 4377 4378 4379 4380 4381
		/*
		 * Never scan more than sc->nr_to_scan VM instances.
		 * Will not hit this condition practically since we do not try
		 * to shrink more than one VM and it is very unlikely to see
		 * !n_used_mmu_pages so many times.
		 */
		if (!nr_to_scan--)
			break;
4382 4383 4384 4385 4386 4387
		/*
		 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
		 * here. We may skip a VM instance errorneosly, but we do not
		 * want to shrink a VM that only started to populate its MMU
		 * anyway.
		 */
4388 4389
		if (!kvm->arch.n_used_mmu_pages &&
		      !kvm_has_zapped_obsolete_pages(kvm))
4390 4391
			continue;

4392
		idx = srcu_read_lock(&kvm->srcu);
4393 4394
		spin_lock(&kvm->mmu_lock);

4395 4396 4397 4398 4399 4400
		if (kvm_has_zapped_obsolete_pages(kvm)) {
			kvm_mmu_commit_zap_page(kvm,
			      &kvm->arch.zapped_obsolete_pages);
			goto unlock;
		}

4401
		prepare_zap_oldest_mmu_page(kvm, &invalid_list);
4402
		kvm_mmu_commit_zap_page(kvm, &invalid_list);
4403

4404
unlock:
4405
		spin_unlock(&kvm->mmu_lock);
4406
		srcu_read_unlock(&kvm->srcu, idx);
4407 4408 4409

		list_move_tail(&kvm->vm_list, &vm_list);
		break;
4410 4411
	}

4412
	raw_spin_unlock(&kvm_lock);
4413

4414 4415
out:
	return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
4416 4417 4418 4419 4420 4421 4422
}

static struct shrinker mmu_shrinker = {
	.shrink = mmu_shrink,
	.seeks = DEFAULT_SEEKS * 10,
};

I
Ingo Molnar 已提交
4423
static void mmu_destroy_caches(void)
4424
{
4425 4426
	if (pte_list_desc_cache)
		kmem_cache_destroy(pte_list_desc_cache);
4427 4428
	if (mmu_page_header_cache)
		kmem_cache_destroy(mmu_page_header_cache);
4429 4430 4431 4432
}

int kvm_mmu_module_init(void)
{
4433 4434
	pte_list_desc_cache = kmem_cache_create("pte_list_desc",
					    sizeof(struct pte_list_desc),
4435
					    0, 0, NULL);
4436
	if (!pte_list_desc_cache)
4437 4438
		goto nomem;

4439 4440
	mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
						  sizeof(struct kvm_mmu_page),
4441
						  0, 0, NULL);
4442 4443 4444
	if (!mmu_page_header_cache)
		goto nomem;

4445 4446 4447
	if (percpu_counter_init(&kvm_total_used_mmu_pages, 0))
		goto nomem;

4448 4449
	register_shrinker(&mmu_shrinker);

4450 4451 4452
	return 0;

nomem:
4453
	mmu_destroy_caches();
4454 4455 4456
	return -ENOMEM;
}

4457 4458 4459 4460 4461 4462 4463
/*
 * Caculate mmu pages needed for kvm.
 */
unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
{
	unsigned int nr_mmu_pages;
	unsigned int  nr_pages = 0;
4464
	struct kvm_memslots *slots;
4465
	struct kvm_memory_slot *memslot;
4466

4467 4468
	slots = kvm_memslots(kvm);

4469 4470
	kvm_for_each_memslot(memslot, slots)
		nr_pages += memslot->npages;
4471 4472 4473 4474 4475 4476 4477 4478

	nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
	nr_mmu_pages = max(nr_mmu_pages,
			(unsigned int) KVM_MIN_ALLOC_MMU_PAGES);

	return nr_mmu_pages;
}

4479 4480 4481
int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
{
	struct kvm_shadow_walk_iterator iterator;
4482
	u64 spte;
4483 4484
	int nr_sptes = 0;

4485 4486 4487
	walk_shadow_page_lockless_begin(vcpu);
	for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
		sptes[iterator.level-1] = spte;
4488
		nr_sptes++;
4489
		if (!is_shadow_present_pte(spte))
4490 4491
			break;
	}
4492
	walk_shadow_page_lockless_end(vcpu);
4493 4494 4495 4496 4497

	return nr_sptes;
}
EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);

4498 4499 4500 4501 4502 4503 4504
void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
{
	ASSERT(vcpu);

	destroy_kvm_mmu(vcpu);
	free_mmu_pages(vcpu);
	mmu_free_memory_caches(vcpu);
4505 4506 4507 4508 4509 4510 4511
}

void kvm_mmu_module_exit(void)
{
	mmu_destroy_caches();
	percpu_counter_destroy(&kvm_total_used_mmu_pages);
	unregister_shrinker(&mmu_shrinker);
4512 4513
	mmu_audit_disable();
}