qla_sup.c 70.4 KB
Newer Older
A
Andrew Vasquez 已提交
1 2
/*
 * QLogic Fibre Channel HBA Driver
3
 * Copyright (c)  2003-2008 QLogic Corporation
L
Linus Torvalds 已提交
4
 *
A
Andrew Vasquez 已提交
5 6
 * See LICENSE.qla2xxx for copyright and licensing details.
 */
L
Linus Torvalds 已提交
7 8 9
#include "qla_def.h"

#include <linux/delay.h>
10
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
11 12 13 14 15 16 17
#include <asm/uaccess.h>

/*
 * NVRAM support routines
 */

/**
A
Andrew Vasquez 已提交
18
 * qla2x00_lock_nvram_access() -
L
Linus Torvalds 已提交
19 20
 * @ha: HA context
 */
A
Adrian Bunk 已提交
21
static void
22
qla2x00_lock_nvram_access(struct qla_hw_data *ha)
L
Linus Torvalds 已提交
23 24
{
	uint16_t data;
25
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
L
Linus Torvalds 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

	if (!IS_QLA2100(ha) && !IS_QLA2200(ha) && !IS_QLA2300(ha)) {
		data = RD_REG_WORD(&reg->nvram);
		while (data & NVR_BUSY) {
			udelay(100);
			data = RD_REG_WORD(&reg->nvram);
		}

		/* Lock resource */
		WRT_REG_WORD(&reg->u.isp2300.host_semaphore, 0x1);
		RD_REG_WORD(&reg->u.isp2300.host_semaphore);
		udelay(5);
		data = RD_REG_WORD(&reg->u.isp2300.host_semaphore);
		while ((data & BIT_0) == 0) {
			/* Lock failed */
			udelay(100);
			WRT_REG_WORD(&reg->u.isp2300.host_semaphore, 0x1);
			RD_REG_WORD(&reg->u.isp2300.host_semaphore);
			udelay(5);
			data = RD_REG_WORD(&reg->u.isp2300.host_semaphore);
		}
	}
}

/**
A
Andrew Vasquez 已提交
51
 * qla2x00_unlock_nvram_access() -
L
Linus Torvalds 已提交
52 53
 * @ha: HA context
 */
A
Adrian Bunk 已提交
54
static void
55
qla2x00_unlock_nvram_access(struct qla_hw_data *ha)
L
Linus Torvalds 已提交
56
{
57
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
L
Linus Torvalds 已提交
58 59 60 61 62 63 64

	if (!IS_QLA2100(ha) && !IS_QLA2200(ha) && !IS_QLA2300(ha)) {
		WRT_REG_WORD(&reg->u.isp2300.host_semaphore, 0);
		RD_REG_WORD(&reg->u.isp2300.host_semaphore);
	}
}

65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
/**
 * qla2x00_nv_write() - Prepare for NVRAM read/write operation.
 * @ha: HA context
 * @data: Serial interface selector
 */
static void
qla2x00_nv_write(struct qla_hw_data *ha, uint16_t data)
{
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;

	WRT_REG_WORD(&reg->nvram, data | NVR_SELECT | NVR_WRT_ENABLE);
	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
	NVRAM_DELAY();
	WRT_REG_WORD(&reg->nvram, data | NVR_SELECT | NVR_CLOCK |
	    NVR_WRT_ENABLE);
	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
	NVRAM_DELAY();
	WRT_REG_WORD(&reg->nvram, data | NVR_SELECT | NVR_WRT_ENABLE);
	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
	NVRAM_DELAY();
}

/**
 * qla2x00_nvram_request() - Sends read command to NVRAM and gets data from
 *	NVRAM.
 * @ha: HA context
 * @nv_cmd: NVRAM command
 *
 * Bit definitions for NVRAM command:
 *
 *	Bit 26     = start bit
 *	Bit 25, 24 = opcode
 *	Bit 23-16  = address
 *	Bit 15-0   = write data
 *
 * Returns the word read from nvram @addr.
 */
static uint16_t
qla2x00_nvram_request(struct qla_hw_data *ha, uint32_t nv_cmd)
{
	uint8_t		cnt;
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
	uint16_t	data = 0;
	uint16_t	reg_data;

	/* Send command to NVRAM. */
	nv_cmd <<= 5;
	for (cnt = 0; cnt < 11; cnt++) {
		if (nv_cmd & BIT_31)
			qla2x00_nv_write(ha, NVR_DATA_OUT);
		else
			qla2x00_nv_write(ha, 0);
		nv_cmd <<= 1;
	}

	/* Read data from NVRAM. */
	for (cnt = 0; cnt < 16; cnt++) {
		WRT_REG_WORD(&reg->nvram, NVR_SELECT | NVR_CLOCK);
		RD_REG_WORD(&reg->nvram);	/* PCI Posting. */
		NVRAM_DELAY();
		data <<= 1;
		reg_data = RD_REG_WORD(&reg->nvram);
		if (reg_data & NVR_DATA_IN)
			data |= BIT_0;
		WRT_REG_WORD(&reg->nvram, NVR_SELECT);
		RD_REG_WORD(&reg->nvram);	/* PCI Posting. */
		NVRAM_DELAY();
	}

	/* Deselect chip. */
	WRT_REG_WORD(&reg->nvram, NVR_DESELECT);
	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
	NVRAM_DELAY();

	return data;
}


L
Linus Torvalds 已提交
143 144 145 146 147 148 149 150
/**
 * qla2x00_get_nvram_word() - Calculates word position in NVRAM and calls the
 *	request routine to get the word from NVRAM.
 * @ha: HA context
 * @addr: Address in NVRAM to read
 *
 * Returns the word read from nvram @addr.
 */
A
Adrian Bunk 已提交
151
static uint16_t
152
qla2x00_get_nvram_word(struct qla_hw_data *ha, uint32_t addr)
L
Linus Torvalds 已提交
153 154 155 156 157 158 159 160 161 162 163
{
	uint16_t	data;
	uint32_t	nv_cmd;

	nv_cmd = addr << 16;
	nv_cmd |= NV_READ_OP;
	data = qla2x00_nvram_request(ha, nv_cmd);

	return (data);
}

164 165 166 167 168 169 170 171 172 173 174 175 176 177
/**
 * qla2x00_nv_deselect() - Deselect NVRAM operations.
 * @ha: HA context
 */
static void
qla2x00_nv_deselect(struct qla_hw_data *ha)
{
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;

	WRT_REG_WORD(&reg->nvram, NVR_DESELECT);
	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
	NVRAM_DELAY();
}

L
Linus Torvalds 已提交
178 179 180 181 182 183
/**
 * qla2x00_write_nvram_word() - Write NVRAM data.
 * @ha: HA context
 * @addr: Address in NVRAM to write
 * @data: word to program
 */
A
Adrian Bunk 已提交
184
static void
185
qla2x00_write_nvram_word(struct qla_hw_data *ha, uint32_t addr, uint16_t data)
L
Linus Torvalds 已提交
186 187 188
{
	int count;
	uint16_t word;
189
	uint32_t nv_cmd, wait_cnt;
190
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
L
Linus Torvalds 已提交
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217

	qla2x00_nv_write(ha, NVR_DATA_OUT);
	qla2x00_nv_write(ha, 0);
	qla2x00_nv_write(ha, 0);

	for (word = 0; word < 8; word++)
		qla2x00_nv_write(ha, NVR_DATA_OUT);

	qla2x00_nv_deselect(ha);

	/* Write data */
	nv_cmd = (addr << 16) | NV_WRITE_OP;
	nv_cmd |= data;
	nv_cmd <<= 5;
	for (count = 0; count < 27; count++) {
		if (nv_cmd & BIT_31)
			qla2x00_nv_write(ha, NVR_DATA_OUT);
		else
			qla2x00_nv_write(ha, 0);

		nv_cmd <<= 1;
	}

	qla2x00_nv_deselect(ha);

	/* Wait for NVRAM to become ready */
	WRT_REG_WORD(&reg->nvram, NVR_SELECT);
218
	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
219
	wait_cnt = NVR_WAIT_CNT;
L
Linus Torvalds 已提交
220
	do {
221
		if (!--wait_cnt) {
222 223
			DEBUG9_10(qla_printk(KERN_WARNING, ha,
			    "NVRAM didn't go ready...\n"));
224 225
			break;
		}
L
Linus Torvalds 已提交
226 227 228 229 230 231 232 233 234 235 236 237 238 239
		NVRAM_DELAY();
		word = RD_REG_WORD(&reg->nvram);
	} while ((word & NVR_DATA_IN) == 0);

	qla2x00_nv_deselect(ha);

	/* Disable writes */
	qla2x00_nv_write(ha, NVR_DATA_OUT);
	for (count = 0; count < 10; count++)
		qla2x00_nv_write(ha, 0);

	qla2x00_nv_deselect(ha);
}

240
static int
241 242
qla2x00_write_nvram_word_tmo(struct qla_hw_data *ha, uint32_t addr,
	uint16_t data, uint32_t tmo)
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
{
	int ret, count;
	uint16_t word;
	uint32_t nv_cmd;
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;

	ret = QLA_SUCCESS;

	qla2x00_nv_write(ha, NVR_DATA_OUT);
	qla2x00_nv_write(ha, 0);
	qla2x00_nv_write(ha, 0);

	for (word = 0; word < 8; word++)
		qla2x00_nv_write(ha, NVR_DATA_OUT);

	qla2x00_nv_deselect(ha);

	/* Write data */
	nv_cmd = (addr << 16) | NV_WRITE_OP;
	nv_cmd |= data;
	nv_cmd <<= 5;
	for (count = 0; count < 27; count++) {
		if (nv_cmd & BIT_31)
			qla2x00_nv_write(ha, NVR_DATA_OUT);
		else
			qla2x00_nv_write(ha, 0);

		nv_cmd <<= 1;
	}

	qla2x00_nv_deselect(ha);

	/* Wait for NVRAM to become ready */
	WRT_REG_WORD(&reg->nvram, NVR_SELECT);
277
	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
	do {
		NVRAM_DELAY();
		word = RD_REG_WORD(&reg->nvram);
		if (!--tmo) {
			ret = QLA_FUNCTION_FAILED;
			break;
		}
	} while ((word & NVR_DATA_IN) == 0);

	qla2x00_nv_deselect(ha);

	/* Disable writes */
	qla2x00_nv_write(ha, NVR_DATA_OUT);
	for (count = 0; count < 10; count++)
		qla2x00_nv_write(ha, 0);

	qla2x00_nv_deselect(ha);

	return ret;
}

/**
 * qla2x00_clear_nvram_protection() -
 * @ha: HA context
 */
static int
304
qla2x00_clear_nvram_protection(struct qla_hw_data *ha)
305 306 307
{
	int ret, stat;
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
308
	uint32_t word, wait_cnt;
309 310 311 312
	uint16_t wprot, wprot_old;

	/* Clear NVRAM write protection. */
	ret = QLA_FUNCTION_FAILED;
313 314 315

	wprot_old = cpu_to_le16(qla2x00_get_nvram_word(ha, ha->nvram_base));
	stat = qla2x00_write_nvram_word_tmo(ha, ha->nvram_base,
316
	    __constant_cpu_to_le16(0x1234), 100000);
317 318
	wprot = cpu_to_le16(qla2x00_get_nvram_word(ha, ha->nvram_base));
	if (stat != QLA_SUCCESS || wprot != 0x1234) {
319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
		/* Write enable. */
		qla2x00_nv_write(ha, NVR_DATA_OUT);
		qla2x00_nv_write(ha, 0);
		qla2x00_nv_write(ha, 0);
		for (word = 0; word < 8; word++)
			qla2x00_nv_write(ha, NVR_DATA_OUT);

		qla2x00_nv_deselect(ha);

		/* Enable protection register. */
		qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
		qla2x00_nv_write(ha, NVR_PR_ENABLE);
		qla2x00_nv_write(ha, NVR_PR_ENABLE);
		for (word = 0; word < 8; word++)
			qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE);

		qla2x00_nv_deselect(ha);

		/* Clear protection register (ffff is cleared). */
		qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
		qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
		qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
		for (word = 0; word < 8; word++)
			qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE);

		qla2x00_nv_deselect(ha);

		/* Wait for NVRAM to become ready. */
		WRT_REG_WORD(&reg->nvram, NVR_SELECT);
348
		RD_REG_WORD(&reg->nvram);	/* PCI Posting. */
349
		wait_cnt = NVR_WAIT_CNT;
350
		do {
351
			if (!--wait_cnt) {
352
				DEBUG9_10(qla_printk(KERN_WARNING, ha,
353
				    "NVRAM didn't go ready...\n"));
354 355
				break;
			}
356 357 358 359
			NVRAM_DELAY();
			word = RD_REG_WORD(&reg->nvram);
		} while ((word & NVR_DATA_IN) == 0);

360 361
		if (wait_cnt)
			ret = QLA_SUCCESS;
362
	} else
363
		qla2x00_write_nvram_word(ha, ha->nvram_base, wprot_old);
364 365 366 367 368

	return ret;
}

static void
369
qla2x00_set_nvram_protection(struct qla_hw_data *ha, int stat)
370 371
{
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
372
	uint32_t word, wait_cnt;
373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406

	if (stat != QLA_SUCCESS)
		return;

	/* Set NVRAM write protection. */
	/* Write enable. */
	qla2x00_nv_write(ha, NVR_DATA_OUT);
	qla2x00_nv_write(ha, 0);
	qla2x00_nv_write(ha, 0);
	for (word = 0; word < 8; word++)
		qla2x00_nv_write(ha, NVR_DATA_OUT);

	qla2x00_nv_deselect(ha);

	/* Enable protection register. */
	qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
	qla2x00_nv_write(ha, NVR_PR_ENABLE);
	qla2x00_nv_write(ha, NVR_PR_ENABLE);
	for (word = 0; word < 8; word++)
		qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE);

	qla2x00_nv_deselect(ha);

	/* Enable protection register. */
	qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
	qla2x00_nv_write(ha, NVR_PR_ENABLE);
	qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
	for (word = 0; word < 8; word++)
		qla2x00_nv_write(ha, NVR_PR_ENABLE);

	qla2x00_nv_deselect(ha);

	/* Wait for NVRAM to become ready. */
	WRT_REG_WORD(&reg->nvram, NVR_SELECT);
407
	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
408
	wait_cnt = NVR_WAIT_CNT;
409
	do {
410
		if (!--wait_cnt) {
411 412
			DEBUG9_10(qla_printk(KERN_WARNING, ha,
			    "NVRAM didn't go ready...\n"));
413 414
			break;
		}
415 416 417 418 419 420 421 422 423 424
		NVRAM_DELAY();
		word = RD_REG_WORD(&reg->nvram);
	} while ((word & NVR_DATA_IN) == 0);
}


/*****************************************************************************/
/* Flash Manipulation Routines                                               */
/*****************************************************************************/

425 426 427
#define OPTROM_BURST_SIZE	0x1000
#define OPTROM_BURST_DWORDS	(OPTROM_BURST_SIZE / 4)

428
static inline uint32_t
429
flash_conf_addr(struct qla_hw_data *ha, uint32_t faddr)
430
{
431
	return ha->flash_conf_off | faddr;
432 433 434
}

static inline uint32_t
435
flash_data_addr(struct qla_hw_data *ha, uint32_t faddr)
436
{
437
	return ha->flash_data_off | faddr;
438 439 440
}

static inline uint32_t
441
nvram_conf_addr(struct qla_hw_data *ha, uint32_t naddr)
442
{
443
	return ha->nvram_conf_off | naddr;
444 445 446
}

static inline uint32_t
447
nvram_data_addr(struct qla_hw_data *ha, uint32_t naddr)
448
{
449
	return ha->nvram_data_off | naddr;
450 451
}

452
static uint32_t
453
qla24xx_read_flash_dword(struct qla_hw_data *ha, uint32_t addr)
454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
{
	int rval;
	uint32_t cnt, data;
	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;

	WRT_REG_DWORD(&reg->flash_addr, addr & ~FARX_DATA_FLAG);
	/* Wait for READ cycle to complete. */
	rval = QLA_SUCCESS;
	for (cnt = 3000;
	    (RD_REG_DWORD(&reg->flash_addr) & FARX_DATA_FLAG) == 0 &&
	    rval == QLA_SUCCESS; cnt--) {
		if (cnt)
			udelay(10);
		else
			rval = QLA_FUNCTION_TIMEOUT;
469
		cond_resched();
470 471 472 473 474 475 476 477 478 479 480
	}

	/* TODO: What happens if we time out? */
	data = 0xDEADDEAD;
	if (rval == QLA_SUCCESS)
		data = RD_REG_DWORD(&reg->flash_data);

	return data;
}

uint32_t *
481
qla24xx_read_flash_data(scsi_qla_host_t *vha, uint32_t *dwptr, uint32_t faddr,
482 483 484
    uint32_t dwords)
{
	uint32_t i;
485 486
	struct qla_hw_data *ha = vha->hw;

487 488
	/* Dword reads to flash. */
	for (i = 0; i < dwords; i++, faddr++)
489 490
		dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(ha,
		    flash_data_addr(ha, faddr)));
491 492 493 494

	return dwptr;
}

495
static int
496
qla24xx_write_flash_dword(struct qla_hw_data *ha, uint32_t addr, uint32_t data)
497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
{
	int rval;
	uint32_t cnt;
	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;

	WRT_REG_DWORD(&reg->flash_data, data);
	RD_REG_DWORD(&reg->flash_data);		/* PCI Posting. */
	WRT_REG_DWORD(&reg->flash_addr, addr | FARX_DATA_FLAG);
	/* Wait for Write cycle to complete. */
	rval = QLA_SUCCESS;
	for (cnt = 500000; (RD_REG_DWORD(&reg->flash_addr) & FARX_DATA_FLAG) &&
	    rval == QLA_SUCCESS; cnt--) {
		if (cnt)
			udelay(10);
		else
			rval = QLA_FUNCTION_TIMEOUT;
513
		cond_resched();
514 515 516 517
	}
	return rval;
}

518
static void
519
qla24xx_get_flash_manufacturer(struct qla_hw_data *ha, uint8_t *man_id,
520 521 522 523
    uint8_t *flash_id)
{
	uint32_t ids;

524
	ids = qla24xx_read_flash_dword(ha, flash_conf_addr(ha, 0x03ab));
525 526
	*man_id = LSB(ids);
	*flash_id = MSB(ids);
527 528 529 530 531 532 533 534 535

	/* Check if man_id and flash_id are valid. */
	if (ids != 0xDEADDEAD && (*man_id == 0 || *flash_id == 0)) {
		/* Read information using 0x9f opcode
		 * Device ID, Mfg ID would be read in the format:
		 *   <Ext Dev Info><Device ID Part2><Device ID Part 1><Mfg ID>
		 * Example: ATMEL 0x00 01 45 1F
		 * Extract MFG and Dev ID from last two bytes.
		 */
536
		ids = qla24xx_read_flash_dword(ha, flash_conf_addr(ha, 0x009f));
537 538 539
		*man_id = LSB(ids);
		*flash_id = MSB(ids);
	}
540 541
}

542
static int
543
qla2xxx_find_flt_start(scsi_qla_host_t *vha, uint32_t *start)
544 545 546 547 548 549 550
{
	const char *loc, *locations[] = { "DEF", "PCI" };
	uint32_t pcihdr, pcids;
	uint32_t *dcode;
	uint8_t *buf, *bcode, last_image;
	uint16_t cnt, chksum, *wptr;
	struct qla_flt_location *fltl;
551
	struct qla_hw_data *ha = vha->hw;
552
	struct req_que *req = ha->req_q_map[0];
553 554 555 556 557 558 559

	/*
	 * FLT-location structure resides after the last PCI region.
	 */

	/* Begin with sane defaults. */
	loc = locations[0];
560 561 562 563 564 565 566
	*start = 0;
	if (IS_QLA24XX_TYPE(ha))
		*start = FA_FLASH_LAYOUT_ADDR_24;
	else if (IS_QLA25XX(ha))
		*start = FA_FLASH_LAYOUT_ADDR;
	else if (IS_QLA81XX(ha))
		*start = FA_FLASH_LAYOUT_ADDR_81;
567
	/* Begin with first PCI expansion ROM header. */
568 569
	buf = (uint8_t *)req->ring;
	dcode = (uint32_t *)req->ring;
570 571 572 573
	pcihdr = 0;
	last_image = 1;
	do {
		/* Verify PCI expansion ROM header. */
574
		qla24xx_read_flash_data(vha, dcode, pcihdr >> 2, 0x20);
575 576 577 578 579 580
		bcode = buf + (pcihdr % 4);
		if (bcode[0x0] != 0x55 || bcode[0x1] != 0xaa)
			goto end;

		/* Locate PCI data structure. */
		pcids = pcihdr + ((bcode[0x19] << 8) | bcode[0x18]);
581
		qla24xx_read_flash_data(vha, dcode, pcids >> 2, 0x20);
582 583 584 585 586 587 588 589 590 591 592 593 594 595
		bcode = buf + (pcihdr % 4);

		/* Validate signature of PCI data structure. */
		if (bcode[0x0] != 'P' || bcode[0x1] != 'C' ||
		    bcode[0x2] != 'I' || bcode[0x3] != 'R')
			goto end;

		last_image = bcode[0x15] & BIT_7;

		/* Locate next PCI expansion ROM. */
		pcihdr += ((bcode[0x11] << 8) | bcode[0x10]) * 512;
	} while (!last_image);

	/* Now verify FLT-location structure. */
596 597
	fltl = (struct qla_flt_location *)req->ring;
	qla24xx_read_flash_data(vha, dcode, pcihdr >> 2,
598 599 600 601 602
	    sizeof(struct qla_flt_location) >> 2);
	if (fltl->sig[0] != 'Q' || fltl->sig[1] != 'F' ||
	    fltl->sig[2] != 'L' || fltl->sig[3] != 'T')
		goto end;

603
	wptr = (uint16_t *)req->ring;
604 605 606 607 608 609 610 611 612 613 614 615
	cnt = sizeof(struct qla_flt_location) >> 1;
	for (chksum = 0; cnt; cnt--)
		chksum += le16_to_cpu(*wptr++);
	if (chksum) {
		qla_printk(KERN_ERR, ha,
		    "Inconsistent FLTL detected: checksum=0x%x.\n", chksum);
		qla2x00_dump_buffer(buf, sizeof(struct qla_flt_location));
		return QLA_FUNCTION_FAILED;
	}

	/* Good data.  Use specified location. */
	loc = locations[1];
616 617
	*start = (le16_to_cpu(fltl->start_hi) << 16 |
	    le16_to_cpu(fltl->start_lo)) >> 2;
618 619 620 621 622 623
end:
	DEBUG2(qla_printk(KERN_DEBUG, ha, "FLTL[%s] = 0x%x.\n", loc, *start));
	return QLA_SUCCESS;
}

static void
624
qla2xxx_get_flt_info(scsi_qla_host_t *vha, uint32_t flt_addr)
625 626
{
	const char *loc, *locations[] = { "DEF", "FLT" };
627 628 629 630 631 632
	const uint32_t def_fw[] =
		{ FA_RISC_CODE_ADDR, FA_RISC_CODE_ADDR, FA_RISC_CODE_ADDR_81 };
	const uint32_t def_boot[] =
		{ FA_BOOT_CODE_ADDR, FA_BOOT_CODE_ADDR, FA_BOOT_CODE_ADDR_81 };
	const uint32_t def_vpd_nvram[] =
		{ FA_VPD_NVRAM_ADDR, FA_VPD_NVRAM_ADDR, FA_VPD_NVRAM_ADDR_81 };
633 634 635 636 637 638 639 640
	const uint32_t def_vpd0[] =
		{ 0, 0, FA_VPD0_ADDR_81 };
	const uint32_t def_vpd1[] =
		{ 0, 0, FA_VPD1_ADDR_81 };
	const uint32_t def_nvram0[] =
		{ 0, 0, FA_NVRAM0_ADDR_81 };
	const uint32_t def_nvram1[] =
		{ 0, 0, FA_NVRAM1_ADDR_81 };
641 642 643 644 645 646 647 648 649 650
	const uint32_t def_fdt[] =
		{ FA_FLASH_DESCR_ADDR_24, FA_FLASH_DESCR_ADDR,
			FA_FLASH_DESCR_ADDR_81 };
	const uint32_t def_npiv_conf0[] =
		{ FA_NPIV_CONF0_ADDR_24, FA_NPIV_CONF0_ADDR,
			FA_NPIV_CONF0_ADDR_81 };
	const uint32_t def_npiv_conf1[] =
		{ FA_NPIV_CONF1_ADDR_24, FA_NPIV_CONF1_ADDR,
			FA_NPIV_CONF1_ADDR_81 };
	uint32_t def;
651 652 653 654 655
	uint16_t *wptr;
	uint16_t cnt, chksum;
	uint32_t start;
	struct qla_flt_header *flt;
	struct qla_flt_region *region;
656
	struct qla_hw_data *ha = vha->hw;
657
	struct req_que *req = ha->req_q_map[0];
658 659

	ha->flt_region_flt = flt_addr;
660 661
	wptr = (uint16_t *)req->ring;
	flt = (struct qla_flt_header *)req->ring;
662
	region = (struct qla_flt_region *)&flt[1];
663
	ha->isp_ops->read_optrom(vha, (uint8_t *)req->ring,
664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695
	    flt_addr << 2, OPTROM_BURST_SIZE);
	if (*wptr == __constant_cpu_to_le16(0xffff))
		goto no_flash_data;
	if (flt->version != __constant_cpu_to_le16(1)) {
		DEBUG2(qla_printk(KERN_INFO, ha, "Unsupported FLT detected: "
		    "version=0x%x length=0x%x checksum=0x%x.\n",
		    le16_to_cpu(flt->version), le16_to_cpu(flt->length),
		    le16_to_cpu(flt->checksum)));
		goto no_flash_data;
	}

	cnt = (sizeof(struct qla_flt_header) + le16_to_cpu(flt->length)) >> 1;
	for (chksum = 0; cnt; cnt--)
		chksum += le16_to_cpu(*wptr++);
	if (chksum) {
		DEBUG2(qla_printk(KERN_INFO, ha, "Inconsistent FLT detected: "
		    "version=0x%x length=0x%x checksum=0x%x.\n",
		    le16_to_cpu(flt->version), le16_to_cpu(flt->length),
		    chksum));
		goto no_flash_data;
	}

	loc = locations[1];
	cnt = le16_to_cpu(flt->length) / sizeof(struct qla_flt_region);
	for ( ; cnt; cnt--, region++) {
		/* Store addresses as DWORD offsets. */
		start = le32_to_cpu(region->start) >> 2;

		DEBUG3(qla_printk(KERN_DEBUG, ha, "FLT[%02x]: start=0x%x "
		    "end=0x%x size=0x%x.\n", le32_to_cpu(region->code), start,
		    le32_to_cpu(region->end) >> 2, le32_to_cpu(region->size)));

696
		switch (le32_to_cpu(region->code) & 0xff) {
697 698 699 700 701 702 703 704
		case FLT_REG_FW:
			ha->flt_region_fw = start;
			break;
		case FLT_REG_BOOT_CODE:
			ha->flt_region_boot = start;
			break;
		case FLT_REG_VPD_0:
			ha->flt_region_vpd_nvram = start;
705 706 707 708 709 710 711 712 713 714 715 716 717 718
			if (!(PCI_FUNC(ha->pdev->devfn) & 1))
				ha->flt_region_vpd = start;
			break;
		case FLT_REG_VPD_1:
			if (PCI_FUNC(ha->pdev->devfn) & 1)
				ha->flt_region_vpd = start;
			break;
		case FLT_REG_NVRAM_0:
			if (!(PCI_FUNC(ha->pdev->devfn) & 1))
				ha->flt_region_nvram = start;
			break;
		case FLT_REG_NVRAM_1:
			if (PCI_FUNC(ha->pdev->devfn) & 1)
				ha->flt_region_nvram = start;
719 720 721 722
			break;
		case FLT_REG_FDT:
			ha->flt_region_fdt = start;
			break;
723
		case FLT_REG_NPIV_CONF_0:
724
			if (!(PCI_FUNC(ha->pdev->devfn) & 1))
725 726 727
				ha->flt_region_npiv_conf = start;
			break;
		case FLT_REG_NPIV_CONF_1:
728
			if (PCI_FUNC(ha->pdev->devfn) & 1)
729 730
				ha->flt_region_npiv_conf = start;
			break;
731 732 733 734 735 736 737
		}
	}
	goto done;

no_flash_data:
	/* Use hardcoded defaults. */
	loc = locations[0];
738 739 740 741 742 743 744 745 746 747
	def = 0;
	if (IS_QLA24XX_TYPE(ha))
		def = 0;
	else if (IS_QLA25XX(ha))
		def = 1;
	else if (IS_QLA81XX(ha))
		def = 2;
	ha->flt_region_fw = def_fw[def];
	ha->flt_region_boot = def_boot[def];
	ha->flt_region_vpd_nvram = def_vpd_nvram[def];
748 749 750 751
	ha->flt_region_vpd = !(PCI_FUNC(ha->pdev->devfn) & 1) ?
	    def_vpd0[def]: def_vpd1[def];
	ha->flt_region_nvram = !(PCI_FUNC(ha->pdev->devfn) & 1) ?
	    def_nvram0[def]: def_nvram1[def];
752 753 754
	ha->flt_region_fdt = def_fdt[def];
	ha->flt_region_npiv_conf = !(PCI_FUNC(ha->pdev->devfn) & 1) ?
	    def_npiv_conf0[def]: def_npiv_conf1[def];
755 756
done:
	DEBUG2(qla_printk(KERN_DEBUG, ha, "FLT[%s]: boot=0x%x fw=0x%x "
757 758 759
	    "vpd_nvram=0x%x vpd=0x%x nvram=0x%x fdt=0x%x flt=0x%x "
	    "npiv=0x%x.\n", loc, ha->flt_region_boot, ha->flt_region_fw,
	    ha->flt_region_vpd_nvram, ha->flt_region_vpd, ha->flt_region_nvram,
760
	    ha->flt_region_fdt, ha->flt_region_flt, ha->flt_region_npiv_conf));
761 762 763
}

static void
764
qla2xxx_get_fdt_info(scsi_qla_host_t *vha)
765
{
766
#define FLASH_BLK_SIZE_4K	0x1000
767 768
#define FLASH_BLK_SIZE_32K	0x8000
#define FLASH_BLK_SIZE_64K	0x10000
769
	const char *loc, *locations[] = { "MID", "FDT" };
770 771 772 773
	uint16_t cnt, chksum;
	uint16_t *wptr;
	struct qla_fdt_layout *fdt;
	uint8_t	man_id, flash_id;
774
	uint16_t mid, fid;
775
	struct qla_hw_data *ha = vha->hw;
776
	struct req_que *req = ha->req_q_map[0];
777

778 779 780
	wptr = (uint16_t *)req->ring;
	fdt = (struct qla_fdt_layout *)req->ring;
	ha->isp_ops->read_optrom(vha, (uint8_t *)req->ring,
781
	    ha->flt_region_fdt << 2, OPTROM_BURST_SIZE);
782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798
	if (*wptr == __constant_cpu_to_le16(0xffff))
		goto no_flash_data;
	if (fdt->sig[0] != 'Q' || fdt->sig[1] != 'L' || fdt->sig[2] != 'I' ||
	    fdt->sig[3] != 'D')
		goto no_flash_data;

	for (cnt = 0, chksum = 0; cnt < sizeof(struct qla_fdt_layout) >> 1;
	    cnt++)
		chksum += le16_to_cpu(*wptr++);
	if (chksum) {
		DEBUG2(qla_printk(KERN_INFO, ha, "Inconsistent FDT detected: "
		    "checksum=0x%x id=%c version=0x%x.\n", chksum, fdt->sig[0],
		    le16_to_cpu(fdt->version)));
		DEBUG9(qla2x00_dump_buffer((uint8_t *)fdt, sizeof(*fdt)));
		goto no_flash_data;
	}

799 800 801
	loc = locations[1];
	mid = le16_to_cpu(fdt->man_id);
	fid = le16_to_cpu(fdt->id);
802
	ha->fdt_wrt_disable = fdt->wrt_disable_bits;
803
	ha->fdt_erase_cmd = flash_conf_addr(ha, 0x0300 | fdt->erase_cmd);
804 805
	ha->fdt_block_size = le32_to_cpu(fdt->block_size);
	if (fdt->unprotect_sec_cmd) {
806
		ha->fdt_unprotect_sec_cmd = flash_conf_addr(ha, 0x0300 |
807 808
		    fdt->unprotect_sec_cmd);
		ha->fdt_protect_sec_cmd = fdt->protect_sec_cmd ?
809 810
		    flash_conf_addr(ha, 0x0300 | fdt->protect_sec_cmd):
		    flash_conf_addr(ha, 0x0336);
811
	}
812
	goto done;
813
no_flash_data:
814
	loc = locations[0];
815
	qla24xx_get_flash_manufacturer(ha, &man_id, &flash_id);
816 817
	mid = man_id;
	fid = flash_id;
818
	ha->fdt_wrt_disable = 0x9c;
819
	ha->fdt_erase_cmd = flash_conf_addr(ha, 0x03d8);
820 821 822 823 824 825 826 827
	switch (man_id) {
	case 0xbf: /* STT flash. */
		if (flash_id == 0x8e)
			ha->fdt_block_size = FLASH_BLK_SIZE_64K;
		else
			ha->fdt_block_size = FLASH_BLK_SIZE_32K;

		if (flash_id == 0x80)
828
			ha->fdt_erase_cmd = flash_conf_addr(ha, 0x0352);
829 830 831 832 833
		break;
	case 0x13: /* ST M25P80. */
		ha->fdt_block_size = FLASH_BLK_SIZE_64K;
		break;
	case 0x1f: /* Atmel 26DF081A. */
834
		ha->fdt_block_size = FLASH_BLK_SIZE_4K;
835 836 837
		ha->fdt_erase_cmd = flash_conf_addr(ha, 0x0320);
		ha->fdt_unprotect_sec_cmd = flash_conf_addr(ha, 0x0339);
		ha->fdt_protect_sec_cmd = flash_conf_addr(ha, 0x0336);
838 839 840 841 842 843
		break;
	default:
		/* Default to 64 kb sector size. */
		ha->fdt_block_size = FLASH_BLK_SIZE_64K;
		break;
	}
844 845
done:
	DEBUG2(qla_printk(KERN_DEBUG, ha, "FDT[%s]: (0x%x/0x%x) erase=0x%x "
846
	    "pro=%x upro=%x wrtd=0x%x blk=0x%x.\n", loc, mid, fid,
847
	    ha->fdt_erase_cmd, ha->fdt_protect_sec_cmd,
848
	    ha->fdt_unprotect_sec_cmd, ha->fdt_wrt_disable,
849 850 851
	    ha->fdt_block_size));
}

852
int
853
qla2xxx_get_flash_info(scsi_qla_host_t *vha)
854 855 856
{
	int ret;
	uint32_t flt_addr;
857
	struct qla_hw_data *ha = vha->hw;
858

859
	if (!IS_QLA24XX_TYPE(ha) && !IS_QLA25XX(ha) && !IS_QLA81XX(ha))
860 861
		return QLA_SUCCESS;

862
	ret = qla2xxx_find_flt_start(vha, &flt_addr);
863 864 865
	if (ret != QLA_SUCCESS)
		return ret;

866 867
	qla2xxx_get_flt_info(vha, flt_addr);
	qla2xxx_get_fdt_info(vha);
868 869 870 871

	return QLA_SUCCESS;
}

872
void
873
qla2xxx_flash_npiv_conf(scsi_qla_host_t *vha)
874 875 876 877 878
{
#define NPIV_CONFIG_SIZE	(16*1024)
	void *data;
	uint16_t *wptr;
	uint16_t cnt, chksum;
879
	int i;
880 881
	struct qla_npiv_header hdr;
	struct qla_npiv_entry *entry;
882
	struct qla_hw_data *ha = vha->hw;
883

884
	if (!IS_QLA24XX_TYPE(ha) && !IS_QLA25XX(ha) && !IS_QLA81XX(ha))
885 886
		return;

887
	ha->isp_ops->read_optrom(vha, (uint8_t *)&hdr,
888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905
	    ha->flt_region_npiv_conf << 2, sizeof(struct qla_npiv_header));
	if (hdr.version == __constant_cpu_to_le16(0xffff))
		return;
	if (hdr.version != __constant_cpu_to_le16(1)) {
		DEBUG2(qla_printk(KERN_INFO, ha, "Unsupported NPIV-Config "
		    "detected: version=0x%x entries=0x%x checksum=0x%x.\n",
		    le16_to_cpu(hdr.version), le16_to_cpu(hdr.entries),
		    le16_to_cpu(hdr.checksum)));
		return;
	}

	data = kmalloc(NPIV_CONFIG_SIZE, GFP_KERNEL);
	if (!data) {
		DEBUG2(qla_printk(KERN_INFO, ha, "NPIV-Config: Unable to "
		    "allocate memory.\n"));
		return;
	}

906
	ha->isp_ops->read_optrom(vha, (uint8_t *)data,
907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922
	    ha->flt_region_npiv_conf << 2, NPIV_CONFIG_SIZE);

	cnt = (sizeof(struct qla_npiv_header) + le16_to_cpu(hdr.entries) *
	    sizeof(struct qla_npiv_entry)) >> 1;
	for (wptr = data, chksum = 0; cnt; cnt--)
		chksum += le16_to_cpu(*wptr++);
	if (chksum) {
		DEBUG2(qla_printk(KERN_INFO, ha, "Inconsistent NPIV-Config "
		    "detected: version=0x%x entries=0x%x checksum=0x%x.\n",
		    le16_to_cpu(hdr.version), le16_to_cpu(hdr.entries),
		    chksum));
		goto done;
	}

	entry = data + sizeof(struct qla_npiv_header);
	cnt = le16_to_cpu(hdr.entries);
923
	ha->flex_port_count = cnt;
924
	for (i = 0; cnt; cnt--, entry++, i++) {
925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941
		uint16_t flags;
		struct fc_vport_identifiers vid;
		struct fc_vport *vport;

		flags = le16_to_cpu(entry->flags);
		if (flags == 0xffff)
			continue;
		if ((flags & BIT_0) == 0)
			continue;

		memset(&vid, 0, sizeof(vid));
		vid.roles = FC_PORT_ROLE_FCP_INITIATOR;
		vid.vport_type = FC_PORTTYPE_NPIV;
		vid.disable = false;
		vid.port_name = wwn_to_u64(entry->port_name);
		vid.node_name = wwn_to_u64(entry->node_name);

942 943
		memcpy(&ha->npiv_info[i], entry, sizeof(struct qla_npiv_entry));

944
		DEBUG2(qla_printk(KERN_DEBUG, ha, "NPIV[%02x]: wwpn=%llx "
945 946 947 948 949 950 951 952 953 954 955 956
			"wwnn=%llx vf_id=0x%x Q_qos=0x%x F_qos=0x%x.\n", cnt,
			vid.port_name, vid.node_name, le16_to_cpu(entry->vf_id),
			entry->q_qos, entry->f_qos));

		if (i < QLA_PRECONFIG_VPORTS) {
			vport = fc_vport_create(vha->host, 0, &vid);
			if (!vport)
				qla_printk(KERN_INFO, ha,
				"NPIV-Config: Failed to create vport [%02x]: "
				"wwpn=%llx wwnn=%llx.\n", cnt,
				vid.port_name, vid.node_name);
		}
957 958 959
	}
done:
	kfree(data);
960
	ha->npiv_info = NULL;
961 962
}

963 964
static int
qla24xx_unprotect_flash(scsi_qla_host_t *vha)
965
{
966
	struct qla_hw_data *ha = vha->hw;
967 968
	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;

969 970 971
	if (ha->flags.fac_supported)
		return qla81xx_fac_do_write_enable(vha, 1);

972 973 974 975 976
	/* Enable flash write. */
	WRT_REG_DWORD(&reg->ctrl_status,
	    RD_REG_DWORD(&reg->ctrl_status) | CSRX_FLASH_ENABLE);
	RD_REG_DWORD(&reg->ctrl_status);	/* PCI Posting. */

977
	if (!ha->fdt_wrt_disable)
978
		goto done;
979

980
	/* Disable flash write-protection, first clear SR protection bit */
981
	qla24xx_write_flash_dword(ha, flash_conf_addr(ha, 0x101), 0);
982
	/* Then write zero again to clear remaining SR bits.*/
983
	qla24xx_write_flash_dword(ha, flash_conf_addr(ha, 0x101), 0);
984 985
done:
	return QLA_SUCCESS;
986 987
}

988 989
static int
qla24xx_protect_flash(scsi_qla_host_t *vha)
990 991
{
	uint32_t cnt;
992
	struct qla_hw_data *ha = vha->hw;
993 994
	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;

995 996 997
	if (ha->flags.fac_supported)
		return qla81xx_fac_do_write_enable(vha, 0);

998 999 1000
	if (!ha->fdt_wrt_disable)
		goto skip_wrt_protect;

1001
	/* Enable flash write-protection and wait for completion. */
1002
	qla24xx_write_flash_dword(ha, flash_conf_addr(ha, 0x101),
1003
	    ha->fdt_wrt_disable);
1004
	for (cnt = 300; cnt &&
1005
	    qla24xx_read_flash_dword(ha, flash_conf_addr(ha, 0x005)) & BIT_0;
1006 1007 1008 1009
	    cnt--) {
		udelay(10);
	}

1010
skip_wrt_protect:
1011 1012 1013 1014
	/* Disable flash write. */
	WRT_REG_DWORD(&reg->ctrl_status,
	    RD_REG_DWORD(&reg->ctrl_status) & ~CSRX_FLASH_ENABLE);
	RD_REG_DWORD(&reg->ctrl_status);	/* PCI Posting. */
1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034

	return QLA_SUCCESS;
}

static int
qla24xx_erase_sector(scsi_qla_host_t *vha, uint32_t fdata)
{
	struct qla_hw_data *ha = vha->hw;
	uint32_t start, finish;

	if (ha->flags.fac_supported) {
		start = fdata >> 2;
		finish = start + (ha->fdt_block_size >> 2) - 1;
		return qla81xx_fac_erase_sector(vha, flash_data_addr(ha,
		    start), flash_data_addr(ha, finish));
	}

	return qla24xx_write_flash_dword(ha, ha->fdt_erase_cmd,
	    (fdata & 0xff00) | ((fdata << 16) & 0xff0000) |
	    ((fdata >> 16) & 0xff));
1035 1036
}

1037
static int
1038
qla24xx_write_flash_data(scsi_qla_host_t *vha, uint32_t *dwptr, uint32_t faddr,
1039 1040 1041
    uint32_t dwords)
{
	int ret;
1042
	uint32_t liter;
1043
	uint32_t sec_mask, rest_addr;
1044
	uint32_t fdata;
1045 1046
	dma_addr_t optrom_dma;
	void *optrom = NULL;
1047
	struct qla_hw_data *ha = vha->hw;
1048

1049
	/* Prepare burst-capable write on supported ISPs. */
1050
	if ((IS_QLA25XX(ha) || IS_QLA81XX(ha)) && !(faddr & 0xfff) &&
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
	    dwords > OPTROM_BURST_DWORDS) {
		optrom = dma_alloc_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE,
		    &optrom_dma, GFP_KERNEL);
		if (!optrom) {
			qla_printk(KERN_DEBUG, ha,
			    "Unable to allocate memory for optrom burst write "
			    "(%x KB).\n", OPTROM_BURST_SIZE / 1024);
		}
	}

1061
	rest_addr = (ha->fdt_block_size >> 2) - 1;
1062
	sec_mask = ~rest_addr;
1063

1064 1065 1066 1067 1068 1069
	ret = qla24xx_unprotect_flash(vha);
	if (ret != QLA_SUCCESS) {
		qla_printk(KERN_WARNING, ha,
		    "Unable to unprotect flash for update.\n");
		goto done;
	}
1070

1071
	for (liter = 0; liter < dwords; liter++, faddr++, dwptr++) {
1072
		fdata = (faddr & sec_mask) << 2;
1073

1074
		/* Are we at the beginning of a sector? */
1075
		if ((faddr & rest_addr) == 0) {
1076 1077
			/* Do sector unprotect. */
			if (ha->fdt_unprotect_sec_cmd)
1078
				qla24xx_write_flash_dword(ha,
1079
				    ha->fdt_unprotect_sec_cmd,
1080
				    (fdata & 0xff00) | ((fdata << 16) &
1081
				    0xff0000) | ((fdata >> 16) & 0xff));
1082
			ret = qla24xx_erase_sector(vha, fdata);
1083
			if (ret != QLA_SUCCESS) {
1084 1085 1086
				DEBUG9(qla_printk(KERN_WARNING, ha,
				    "Unable to erase sector: address=%x.\n",
				    faddr));
1087
				break;
1088
			}
1089 1090 1091
		}

		/* Go with burst-write. */
1092
		if (optrom && (liter + OPTROM_BURST_DWORDS) <= dwords) {
1093
			/* Copy data to DMA'ble buffer. */
1094
			memcpy(optrom, dwptr, OPTROM_BURST_SIZE);
1095

1096
			ret = qla2x00_load_ram(vha, optrom_dma,
1097
			    flash_data_addr(ha, faddr),
1098
			    OPTROM_BURST_DWORDS);
1099
			if (ret != QLA_SUCCESS) {
1100 1101 1102
				qla_printk(KERN_WARNING, ha,
				    "Unable to burst-write optrom segment "
				    "(%x/%x/%llx).\n", ret,
1103
				    flash_data_addr(ha, faddr),
A
Andrew Morton 已提交
1104
				    (unsigned long long)optrom_dma);
1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115
				qla_printk(KERN_WARNING, ha,
				    "Reverting to slow-write.\n");

				dma_free_coherent(&ha->pdev->dev,
				    OPTROM_BURST_SIZE, optrom, optrom_dma);
				optrom = NULL;
			} else {
				liter += OPTROM_BURST_DWORDS - 1;
				faddr += OPTROM_BURST_DWORDS - 1;
				dwptr += OPTROM_BURST_DWORDS - 1;
				continue;
1116
			}
1117
		}
1118

1119
		ret = qla24xx_write_flash_dword(ha,
1120
		    flash_data_addr(ha, faddr), cpu_to_le32(*dwptr));
1121 1122 1123
		if (ret != QLA_SUCCESS) {
			DEBUG9(printk("%s(%ld) Unable to program flash "
			    "address=%x data=%x.\n", __func__,
1124
			    vha->host_no, faddr, *dwptr));
1125
			break;
1126
		}
1127

1128 1129
		/* Do sector protect. */
		if (ha->fdt_unprotect_sec_cmd &&
1130 1131
		    ((faddr & rest_addr) == rest_addr))
			qla24xx_write_flash_dword(ha,
1132
			    ha->fdt_protect_sec_cmd,
1133 1134 1135
			    (fdata & 0xff00) | ((fdata << 16) &
			    0xff0000) | ((fdata >> 16) & 0xff));
	}
1136

1137 1138 1139 1140 1141
	ret = qla24xx_protect_flash(vha);
	if (ret != QLA_SUCCESS)
		qla_printk(KERN_WARNING, ha,
		    "Unable to protect flash after update.\n");
done:
1142 1143 1144 1145
	if (optrom)
		dma_free_coherent(&ha->pdev->dev,
		    OPTROM_BURST_SIZE, optrom, optrom_dma);

1146 1147 1148 1149
	return ret;
}

uint8_t *
1150
qla2x00_read_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1151 1152 1153 1154
    uint32_t bytes)
{
	uint32_t i;
	uint16_t *wptr;
1155
	struct qla_hw_data *ha = vha->hw;
1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168

	/* Word reads to NVRAM via registers. */
	wptr = (uint16_t *)buf;
	qla2x00_lock_nvram_access(ha);
	for (i = 0; i < bytes >> 1; i++, naddr++)
		wptr[i] = cpu_to_le16(qla2x00_get_nvram_word(ha,
		    naddr));
	qla2x00_unlock_nvram_access(ha);

	return buf;
}

uint8_t *
1169
qla24xx_read_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1170 1171 1172 1173
    uint32_t bytes)
{
	uint32_t i;
	uint32_t *dwptr;
1174
	struct qla_hw_data *ha = vha->hw;
1175 1176 1177 1178

	/* Dword reads to flash. */
	dwptr = (uint32_t *)buf;
	for (i = 0; i < bytes >> 2; i++, naddr++)
1179 1180
		dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(ha,
		    nvram_data_addr(ha, naddr)));
1181 1182 1183 1184 1185

	return buf;
}

int
1186
qla2x00_write_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1187 1188 1189 1190 1191
    uint32_t bytes)
{
	int ret, stat;
	uint32_t i;
	uint16_t *wptr;
1192
	unsigned long flags;
1193
	struct qla_hw_data *ha = vha->hw;
1194 1195 1196

	ret = QLA_SUCCESS;

1197
	spin_lock_irqsave(&ha->hardware_lock, flags);
1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213
	qla2x00_lock_nvram_access(ha);

	/* Disable NVRAM write-protection. */
	stat = qla2x00_clear_nvram_protection(ha);

	wptr = (uint16_t *)buf;
	for (i = 0; i < bytes >> 1; i++, naddr++) {
		qla2x00_write_nvram_word(ha, naddr,
		    cpu_to_le16(*wptr));
		wptr++;
	}

	/* Enable NVRAM write-protection. */
	qla2x00_set_nvram_protection(ha, stat);

	qla2x00_unlock_nvram_access(ha);
1214
	spin_unlock_irqrestore(&ha->hardware_lock, flags);
1215 1216 1217 1218 1219

	return ret;
}

int
1220
qla24xx_write_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1221 1222 1223 1224 1225
    uint32_t bytes)
{
	int ret;
	uint32_t i;
	uint32_t *dwptr;
1226
	struct qla_hw_data *ha = vha->hw;
1227 1228 1229 1230 1231 1232 1233 1234 1235 1236
	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;

	ret = QLA_SUCCESS;

	/* Enable flash write. */
	WRT_REG_DWORD(&reg->ctrl_status,
	    RD_REG_DWORD(&reg->ctrl_status) | CSRX_FLASH_ENABLE);
	RD_REG_DWORD(&reg->ctrl_status);	/* PCI Posting. */

	/* Disable NVRAM write-protection. */
1237 1238
	qla24xx_write_flash_dword(ha, nvram_conf_addr(ha, 0x101), 0);
	qla24xx_write_flash_dword(ha, nvram_conf_addr(ha, 0x101), 0);
1239 1240 1241 1242 1243

	/* Dword writes to flash. */
	dwptr = (uint32_t *)buf;
	for (i = 0; i < bytes >> 2; i++, naddr++, dwptr++) {
		ret = qla24xx_write_flash_dword(ha,
1244
		    nvram_data_addr(ha, naddr), cpu_to_le32(*dwptr));
1245
		if (ret != QLA_SUCCESS) {
1246 1247 1248
			DEBUG9(qla_printk(KERN_WARNING, ha,
			    "Unable to program nvram address=%x data=%x.\n",
			    naddr, *dwptr));
1249 1250 1251 1252 1253
			break;
		}
	}

	/* Enable NVRAM write-protection. */
1254
	qla24xx_write_flash_dword(ha, nvram_conf_addr(ha, 0x101), 0x8c);
1255 1256 1257 1258 1259 1260 1261 1262

	/* Disable flash write. */
	WRT_REG_DWORD(&reg->ctrl_status,
	    RD_REG_DWORD(&reg->ctrl_status) & ~CSRX_FLASH_ENABLE);
	RD_REG_DWORD(&reg->ctrl_status);	/* PCI Posting. */

	return ret;
}
1263

1264
uint8_t *
1265
qla25xx_read_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1266 1267 1268 1269
    uint32_t bytes)
{
	uint32_t i;
	uint32_t *dwptr;
1270
	struct qla_hw_data *ha = vha->hw;
1271 1272 1273 1274 1275

	/* Dword reads to flash. */
	dwptr = (uint32_t *)buf;
	for (i = 0; i < bytes >> 2; i++, naddr++)
		dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(ha,
1276
		    flash_data_addr(ha, ha->flt_region_vpd_nvram | naddr)));
1277 1278 1279 1280 1281

	return buf;
}

int
1282
qla25xx_write_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1283 1284
    uint32_t bytes)
{
1285
	struct qla_hw_data *ha = vha->hw;
1286 1287 1288 1289 1290 1291
#define RMW_BUFFER_SIZE	(64 * 1024)
	uint8_t *dbuf;

	dbuf = vmalloc(RMW_BUFFER_SIZE);
	if (!dbuf)
		return QLA_MEMORY_ALLOC_FAILED;
1292
	ha->isp_ops->read_optrom(vha, dbuf, ha->flt_region_vpd_nvram << 2,
1293 1294
	    RMW_BUFFER_SIZE);
	memcpy(dbuf + (naddr << 2), buf, bytes);
1295
	ha->isp_ops->write_optrom(vha, dbuf, ha->flt_region_vpd_nvram << 2,
1296 1297 1298 1299
	    RMW_BUFFER_SIZE);
	vfree(dbuf);

	return QLA_SUCCESS;
1300
}
1301 1302

static inline void
1303
qla2x00_flip_colors(struct qla_hw_data *ha, uint16_t *pflags)
1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329
{
	if (IS_QLA2322(ha)) {
		/* Flip all colors. */
		if (ha->beacon_color_state == QLA_LED_ALL_ON) {
			/* Turn off. */
			ha->beacon_color_state = 0;
			*pflags = GPIO_LED_ALL_OFF;
		} else {
			/* Turn on. */
			ha->beacon_color_state = QLA_LED_ALL_ON;
			*pflags = GPIO_LED_RGA_ON;
		}
	} else {
		/* Flip green led only. */
		if (ha->beacon_color_state == QLA_LED_GRN_ON) {
			/* Turn off. */
			ha->beacon_color_state = 0;
			*pflags = GPIO_LED_GREEN_OFF_AMBER_OFF;
		} else {
			/* Turn on. */
			ha->beacon_color_state = QLA_LED_GRN_ON;
			*pflags = GPIO_LED_GREEN_ON_AMBER_OFF;
		}
	}
}

1330 1331
#define PIO_REG(h, r) ((h)->pio_address + offsetof(struct device_reg_2xxx, r))

1332
void
1333
qla2x00_beacon_blink(struct scsi_qla_host *vha)
1334 1335 1336 1337 1338
{
	uint16_t gpio_enable;
	uint16_t gpio_data;
	uint16_t led_color = 0;
	unsigned long flags;
1339
	struct qla_hw_data *ha = vha->hw;
1340 1341 1342 1343 1344 1345
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;

	spin_lock_irqsave(&ha->hardware_lock, flags);

	/* Save the Original GPIOE. */
	if (ha->pio_address) {
1346 1347
		gpio_enable = RD_REG_WORD_PIO(PIO_REG(ha, gpioe));
		gpio_data = RD_REG_WORD_PIO(PIO_REG(ha, gpiod));
1348 1349 1350 1351 1352 1353 1354 1355 1356
	} else {
		gpio_enable = RD_REG_WORD(&reg->gpioe);
		gpio_data = RD_REG_WORD(&reg->gpiod);
	}

	/* Set the modified gpio_enable values */
	gpio_enable |= GPIO_LED_MASK;

	if (ha->pio_address) {
1357
		WRT_REG_WORD_PIO(PIO_REG(ha, gpioe), gpio_enable);
1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372
	} else {
		WRT_REG_WORD(&reg->gpioe, gpio_enable);
		RD_REG_WORD(&reg->gpioe);
	}

	qla2x00_flip_colors(ha, &led_color);

	/* Clear out any previously set LED color. */
	gpio_data &= ~GPIO_LED_MASK;

	/* Set the new input LED color to GPIOD. */
	gpio_data |= led_color;

	/* Set the modified gpio_data values */
	if (ha->pio_address) {
1373
		WRT_REG_WORD_PIO(PIO_REG(ha, gpiod), gpio_data);
1374 1375 1376 1377 1378 1379 1380 1381 1382
	} else {
		WRT_REG_WORD(&reg->gpiod, gpio_data);
		RD_REG_WORD(&reg->gpiod);
	}

	spin_unlock_irqrestore(&ha->hardware_lock, flags);
}

int
1383
qla2x00_beacon_on(struct scsi_qla_host *vha)
1384 1385 1386 1387
{
	uint16_t gpio_enable;
	uint16_t gpio_data;
	unsigned long flags;
1388
	struct qla_hw_data *ha = vha->hw;
1389 1390 1391 1392 1393
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;

	ha->fw_options[1] &= ~FO1_SET_EMPHASIS_SWING;
	ha->fw_options[1] |= FO1_DISABLE_GPIO6_7;

1394
	if (qla2x00_set_fw_options(vha, ha->fw_options) != QLA_SUCCESS) {
1395 1396 1397 1398 1399 1400 1401 1402
		qla_printk(KERN_WARNING, ha,
		    "Unable to update fw options (beacon on).\n");
		return QLA_FUNCTION_FAILED;
	}

	/* Turn off LEDs. */
	spin_lock_irqsave(&ha->hardware_lock, flags);
	if (ha->pio_address) {
1403 1404
		gpio_enable = RD_REG_WORD_PIO(PIO_REG(ha, gpioe));
		gpio_data = RD_REG_WORD_PIO(PIO_REG(ha, gpiod));
1405 1406 1407 1408 1409 1410 1411 1412
	} else {
		gpio_enable = RD_REG_WORD(&reg->gpioe);
		gpio_data = RD_REG_WORD(&reg->gpiod);
	}
	gpio_enable |= GPIO_LED_MASK;

	/* Set the modified gpio_enable values. */
	if (ha->pio_address) {
1413
		WRT_REG_WORD_PIO(PIO_REG(ha, gpioe), gpio_enable);
1414 1415 1416 1417 1418 1419 1420 1421
	} else {
		WRT_REG_WORD(&reg->gpioe, gpio_enable);
		RD_REG_WORD(&reg->gpioe);
	}

	/* Clear out previously set LED colour. */
	gpio_data &= ~GPIO_LED_MASK;
	if (ha->pio_address) {
1422
		WRT_REG_WORD_PIO(PIO_REG(ha, gpiod), gpio_data);
1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
	} else {
		WRT_REG_WORD(&reg->gpiod, gpio_data);
		RD_REG_WORD(&reg->gpiod);
	}
	spin_unlock_irqrestore(&ha->hardware_lock, flags);

	/*
	 * Let the per HBA timer kick off the blinking process based on
	 * the following flags. No need to do anything else now.
	 */
	ha->beacon_blink_led = 1;
	ha->beacon_color_state = 0;

	return QLA_SUCCESS;
}

int
1440
qla2x00_beacon_off(struct scsi_qla_host *vha)
1441 1442
{
	int rval = QLA_SUCCESS;
1443
	struct qla_hw_data *ha = vha->hw;
1444 1445 1446 1447 1448 1449 1450 1451 1452

	ha->beacon_blink_led = 0;

	/* Set the on flag so when it gets flipped it will be off. */
	if (IS_QLA2322(ha))
		ha->beacon_color_state = QLA_LED_ALL_ON;
	else
		ha->beacon_color_state = QLA_LED_GRN_ON;

1453
	ha->isp_ops->beacon_blink(vha);	/* This turns green LED off */
1454 1455 1456 1457

	ha->fw_options[1] &= ~FO1_SET_EMPHASIS_SWING;
	ha->fw_options[1] &= ~FO1_DISABLE_GPIO6_7;

1458
	rval = qla2x00_set_fw_options(vha, ha->fw_options);
1459 1460 1461 1462 1463 1464 1465 1466
	if (rval != QLA_SUCCESS)
		qla_printk(KERN_WARNING, ha,
		    "Unable to update fw options (beacon off).\n");
	return rval;
}


static inline void
1467
qla24xx_flip_colors(struct qla_hw_data *ha, uint16_t *pflags)
1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481
{
	/* Flip all colors. */
	if (ha->beacon_color_state == QLA_LED_ALL_ON) {
		/* Turn off. */
		ha->beacon_color_state = 0;
		*pflags = 0;
	} else {
		/* Turn on. */
		ha->beacon_color_state = QLA_LED_ALL_ON;
		*pflags = GPDX_LED_YELLOW_ON | GPDX_LED_AMBER_ON;
	}
}

void
1482
qla24xx_beacon_blink(struct scsi_qla_host *vha)
1483 1484 1485 1486
{
	uint16_t led_color = 0;
	uint32_t gpio_data;
	unsigned long flags;
1487
	struct qla_hw_data *ha = vha->hw;
1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515
	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;

	/* Save the Original GPIOD. */
	spin_lock_irqsave(&ha->hardware_lock, flags);
	gpio_data = RD_REG_DWORD(&reg->gpiod);

	/* Enable the gpio_data reg for update. */
	gpio_data |= GPDX_LED_UPDATE_MASK;

	WRT_REG_DWORD(&reg->gpiod, gpio_data);
	gpio_data = RD_REG_DWORD(&reg->gpiod);

	/* Set the color bits. */
	qla24xx_flip_colors(ha, &led_color);

	/* Clear out any previously set LED color. */
	gpio_data &= ~GPDX_LED_COLOR_MASK;

	/* Set the new input LED color to GPIOD. */
	gpio_data |= led_color;

	/* Set the modified gpio_data values. */
	WRT_REG_DWORD(&reg->gpiod, gpio_data);
	gpio_data = RD_REG_DWORD(&reg->gpiod);
	spin_unlock_irqrestore(&ha->hardware_lock, flags);
}

int
1516
qla24xx_beacon_on(struct scsi_qla_host *vha)
1517 1518 1519
{
	uint32_t gpio_data;
	unsigned long flags;
1520
	struct qla_hw_data *ha = vha->hw;
1521 1522 1523 1524 1525 1526
	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;

	if (ha->beacon_blink_led == 0) {
		/* Enable firmware for update */
		ha->fw_options[1] |= ADD_FO1_DISABLE_GPIO_LED_CTRL;

1527
		if (qla2x00_set_fw_options(vha, ha->fw_options) != QLA_SUCCESS)
1528 1529
			return QLA_FUNCTION_FAILED;

1530
		if (qla2x00_get_fw_options(vha, ha->fw_options) !=
1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557
		    QLA_SUCCESS) {
			qla_printk(KERN_WARNING, ha,
			    "Unable to update fw options (beacon on).\n");
			return QLA_FUNCTION_FAILED;
		}

		spin_lock_irqsave(&ha->hardware_lock, flags);
		gpio_data = RD_REG_DWORD(&reg->gpiod);

		/* Enable the gpio_data reg for update. */
		gpio_data |= GPDX_LED_UPDATE_MASK;
		WRT_REG_DWORD(&reg->gpiod, gpio_data);
		RD_REG_DWORD(&reg->gpiod);

		spin_unlock_irqrestore(&ha->hardware_lock, flags);
	}

	/* So all colors blink together. */
	ha->beacon_color_state = 0;

	/* Let the per HBA timer kick off the blinking process. */
	ha->beacon_blink_led = 1;

	return QLA_SUCCESS;
}

int
1558
qla24xx_beacon_off(struct scsi_qla_host *vha)
1559 1560 1561
{
	uint32_t gpio_data;
	unsigned long flags;
1562
	struct qla_hw_data *ha = vha->hw;
1563 1564 1565 1566 1567
	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;

	ha->beacon_blink_led = 0;
	ha->beacon_color_state = QLA_LED_ALL_ON;

1568
	ha->isp_ops->beacon_blink(vha);	/* Will flip to all off. */
1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581

	/* Give control back to firmware. */
	spin_lock_irqsave(&ha->hardware_lock, flags);
	gpio_data = RD_REG_DWORD(&reg->gpiod);

	/* Disable the gpio_data reg for update. */
	gpio_data &= ~GPDX_LED_UPDATE_MASK;
	WRT_REG_DWORD(&reg->gpiod, gpio_data);
	RD_REG_DWORD(&reg->gpiod);
	spin_unlock_irqrestore(&ha->hardware_lock, flags);

	ha->fw_options[1] &= ~ADD_FO1_DISABLE_GPIO_LED_CTRL;

1582
	if (qla2x00_set_fw_options(vha, ha->fw_options) != QLA_SUCCESS) {
1583 1584 1585 1586 1587
		qla_printk(KERN_WARNING, ha,
		    "Unable to update fw options (beacon off).\n");
		return QLA_FUNCTION_FAILED;
	}

1588
	if (qla2x00_get_fw_options(vha, ha->fw_options) != QLA_SUCCESS) {
1589 1590 1591 1592 1593 1594 1595
		qla_printk(KERN_WARNING, ha,
		    "Unable to get fw options (beacon off).\n");
		return QLA_FUNCTION_FAILED;
	}

	return QLA_SUCCESS;
}
1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606


/*
 * Flash support routines
 */

/**
 * qla2x00_flash_enable() - Setup flash for reading and writing.
 * @ha: HA context
 */
static void
1607
qla2x00_flash_enable(struct qla_hw_data *ha)
1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622
{
	uint16_t data;
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;

	data = RD_REG_WORD(&reg->ctrl_status);
	data |= CSR_FLASH_ENABLE;
	WRT_REG_WORD(&reg->ctrl_status, data);
	RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
}

/**
 * qla2x00_flash_disable() - Disable flash and allow RISC to run.
 * @ha: HA context
 */
static void
1623
qla2x00_flash_disable(struct qla_hw_data *ha)
1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643
{
	uint16_t data;
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;

	data = RD_REG_WORD(&reg->ctrl_status);
	data &= ~(CSR_FLASH_ENABLE);
	WRT_REG_WORD(&reg->ctrl_status, data);
	RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
}

/**
 * qla2x00_read_flash_byte() - Reads a byte from flash
 * @ha: HA context
 * @addr: Address in flash to read
 *
 * A word is read from the chip, but, only the lower byte is valid.
 *
 * Returns the byte read from flash @addr.
 */
static uint8_t
1644
qla2x00_read_flash_byte(struct qla_hw_data *ha, uint32_t addr)
1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682
{
	uint16_t data;
	uint16_t bank_select;
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;

	bank_select = RD_REG_WORD(&reg->ctrl_status);

	if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
		/* Specify 64K address range: */
		/*  clear out Module Select and Flash Address bits [19:16]. */
		bank_select &= ~0xf8;
		bank_select |= addr >> 12 & 0xf0;
		bank_select |= CSR_FLASH_64K_BANK;
		WRT_REG_WORD(&reg->ctrl_status, bank_select);
		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */

		WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
		data = RD_REG_WORD(&reg->flash_data);

		return (uint8_t)data;
	}

	/* Setup bit 16 of flash address. */
	if ((addr & BIT_16) && ((bank_select & CSR_FLASH_64K_BANK) == 0)) {
		bank_select |= CSR_FLASH_64K_BANK;
		WRT_REG_WORD(&reg->ctrl_status, bank_select);
		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */
	} else if (((addr & BIT_16) == 0) &&
	    (bank_select & CSR_FLASH_64K_BANK)) {
		bank_select &= ~(CSR_FLASH_64K_BANK);
		WRT_REG_WORD(&reg->ctrl_status, bank_select);
		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */
	}

	/* Always perform IO mapped accesses to the FLASH registers. */
	if (ha->pio_address) {
		uint16_t data2;

1683
		WRT_REG_WORD_PIO(PIO_REG(ha, flash_address), (uint16_t)addr);
1684
		do {
1685
			data = RD_REG_WORD_PIO(PIO_REG(ha, flash_data));
1686 1687
			barrier();
			cpu_relax();
1688
			data2 = RD_REG_WORD_PIO(PIO_REG(ha, flash_data));
1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704
		} while (data != data2);
	} else {
		WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
		data = qla2x00_debounce_register(&reg->flash_data);
	}

	return (uint8_t)data;
}

/**
 * qla2x00_write_flash_byte() - Write a byte to flash
 * @ha: HA context
 * @addr: Address in flash to write
 * @data: Data to write
 */
static void
1705
qla2x00_write_flash_byte(struct qla_hw_data *ha, uint32_t addr, uint8_t data)
1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741
{
	uint16_t bank_select;
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;

	bank_select = RD_REG_WORD(&reg->ctrl_status);
	if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
		/* Specify 64K address range: */
		/*  clear out Module Select and Flash Address bits [19:16]. */
		bank_select &= ~0xf8;
		bank_select |= addr >> 12 & 0xf0;
		bank_select |= CSR_FLASH_64K_BANK;
		WRT_REG_WORD(&reg->ctrl_status, bank_select);
		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */

		WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
		RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
		WRT_REG_WORD(&reg->flash_data, (uint16_t)data);
		RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */

		return;
	}

	/* Setup bit 16 of flash address. */
	if ((addr & BIT_16) && ((bank_select & CSR_FLASH_64K_BANK) == 0)) {
		bank_select |= CSR_FLASH_64K_BANK;
		WRT_REG_WORD(&reg->ctrl_status, bank_select);
		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */
	} else if (((addr & BIT_16) == 0) &&
	    (bank_select & CSR_FLASH_64K_BANK)) {
		bank_select &= ~(CSR_FLASH_64K_BANK);
		WRT_REG_WORD(&reg->ctrl_status, bank_select);
		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */
	}

	/* Always perform IO mapped accesses to the FLASH registers. */
	if (ha->pio_address) {
1742 1743
		WRT_REG_WORD_PIO(PIO_REG(ha, flash_address), (uint16_t)addr);
		WRT_REG_WORD_PIO(PIO_REG(ha, flash_data), (uint16_t)data);
1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767
	} else {
		WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
		RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
		WRT_REG_WORD(&reg->flash_data, (uint16_t)data);
		RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
	}
}

/**
 * qla2x00_poll_flash() - Polls flash for completion.
 * @ha: HA context
 * @addr: Address in flash to poll
 * @poll_data: Data to be polled
 * @man_id: Flash manufacturer ID
 * @flash_id: Flash ID
 *
 * This function polls the device until bit 7 of what is read matches data
 * bit 7 or until data bit 5 becomes a 1.  If that hapens, the flash ROM timed
 * out (a fatal error).  The flash book recommeds reading bit 7 again after
 * reading bit 5 as a 1.
 *
 * Returns 0 on success, else non-zero.
 */
static int
1768
qla2x00_poll_flash(struct qla_hw_data *ha, uint32_t addr, uint8_t poll_data,
1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791
    uint8_t man_id, uint8_t flash_id)
{
	int status;
	uint8_t flash_data;
	uint32_t cnt;

	status = 1;

	/* Wait for 30 seconds for command to finish. */
	poll_data &= BIT_7;
	for (cnt = 3000000; cnt; cnt--) {
		flash_data = qla2x00_read_flash_byte(ha, addr);
		if ((flash_data & BIT_7) == poll_data) {
			status = 0;
			break;
		}

		if (man_id != 0x40 && man_id != 0xda) {
			if ((flash_data & BIT_5) && cnt > 2)
				cnt = 2;
		}
		udelay(10);
		barrier();
1792
		cond_resched();
1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807
	}
	return status;
}

/**
 * qla2x00_program_flash_address() - Programs a flash address
 * @ha: HA context
 * @addr: Address in flash to program
 * @data: Data to be written in flash
 * @man_id: Flash manufacturer ID
 * @flash_id: Flash ID
 *
 * Returns 0 on success, else non-zero.
 */
static int
1808 1809
qla2x00_program_flash_address(struct qla_hw_data *ha, uint32_t addr,
    uint8_t data, uint8_t man_id, uint8_t flash_id)
1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844
{
	/* Write Program Command Sequence. */
	if (IS_OEM_001(ha)) {
		qla2x00_write_flash_byte(ha, 0xaaa, 0xaa);
		qla2x00_write_flash_byte(ha, 0x555, 0x55);
		qla2x00_write_flash_byte(ha, 0xaaa, 0xa0);
		qla2x00_write_flash_byte(ha, addr, data);
	} else {
		if (man_id == 0xda && flash_id == 0xc1) {
			qla2x00_write_flash_byte(ha, addr, data);
			if (addr & 0x7e)
				return 0;
		} else {
			qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
			qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
			qla2x00_write_flash_byte(ha, 0x5555, 0xa0);
			qla2x00_write_flash_byte(ha, addr, data);
		}
	}

	udelay(150);

	/* Wait for write to complete. */
	return qla2x00_poll_flash(ha, addr, data, man_id, flash_id);
}

/**
 * qla2x00_erase_flash() - Erase the flash.
 * @ha: HA context
 * @man_id: Flash manufacturer ID
 * @flash_id: Flash ID
 *
 * Returns 0 on success, else non-zero.
 */
static int
1845
qla2x00_erase_flash(struct qla_hw_data *ha, uint8_t man_id, uint8_t flash_id)
1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880
{
	/* Individual Sector Erase Command Sequence */
	if (IS_OEM_001(ha)) {
		qla2x00_write_flash_byte(ha, 0xaaa, 0xaa);
		qla2x00_write_flash_byte(ha, 0x555, 0x55);
		qla2x00_write_flash_byte(ha, 0xaaa, 0x80);
		qla2x00_write_flash_byte(ha, 0xaaa, 0xaa);
		qla2x00_write_flash_byte(ha, 0x555, 0x55);
		qla2x00_write_flash_byte(ha, 0xaaa, 0x10);
	} else {
		qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
		qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
		qla2x00_write_flash_byte(ha, 0x5555, 0x80);
		qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
		qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
		qla2x00_write_flash_byte(ha, 0x5555, 0x10);
	}

	udelay(150);

	/* Wait for erase to complete. */
	return qla2x00_poll_flash(ha, 0x00, 0x80, man_id, flash_id);
}

/**
 * qla2x00_erase_flash_sector() - Erase a flash sector.
 * @ha: HA context
 * @addr: Flash sector to erase
 * @sec_mask: Sector address mask
 * @man_id: Flash manufacturer ID
 * @flash_id: Flash ID
 *
 * Returns 0 on success, else non-zero.
 */
static int
1881
qla2x00_erase_flash_sector(struct qla_hw_data *ha, uint32_t addr,
1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906
    uint32_t sec_mask, uint8_t man_id, uint8_t flash_id)
{
	/* Individual Sector Erase Command Sequence */
	qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
	qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
	qla2x00_write_flash_byte(ha, 0x5555, 0x80);
	qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
	qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
	if (man_id == 0x1f && flash_id == 0x13)
		qla2x00_write_flash_byte(ha, addr & sec_mask, 0x10);
	else
		qla2x00_write_flash_byte(ha, addr & sec_mask, 0x30);

	udelay(150);

	/* Wait for erase to complete. */
	return qla2x00_poll_flash(ha, addr, 0x80, man_id, flash_id);
}

/**
 * qla2x00_get_flash_manufacturer() - Read manufacturer ID from flash chip.
 * @man_id: Flash manufacturer ID
 * @flash_id: Flash ID
 */
static void
1907
qla2x00_get_flash_manufacturer(struct qla_hw_data *ha, uint8_t *man_id,
1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919
    uint8_t *flash_id)
{
	qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
	qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
	qla2x00_write_flash_byte(ha, 0x5555, 0x90);
	*man_id = qla2x00_read_flash_byte(ha, 0x0000);
	*flash_id = qla2x00_read_flash_byte(ha, 0x0001);
	qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
	qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
	qla2x00_write_flash_byte(ha, 0x5555, 0xf0);
}

1920
static void
1921 1922
qla2x00_read_flash_data(struct qla_hw_data *ha, uint8_t *tmp_buf,
	uint32_t saddr, uint32_t length)
1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940
{
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
	uint32_t midpoint, ilength;
	uint8_t data;

	midpoint = length / 2;

	WRT_REG_WORD(&reg->nvram, 0);
	RD_REG_WORD(&reg->nvram);
	for (ilength = 0; ilength < length; saddr++, ilength++, tmp_buf++) {
		if (ilength == midpoint) {
			WRT_REG_WORD(&reg->nvram, NVR_SELECT);
			RD_REG_WORD(&reg->nvram);
		}
		data = qla2x00_read_flash_byte(ha, saddr);
		if (saddr % 100)
			udelay(10);
		*tmp_buf = data;
1941
		cond_resched();
1942 1943
	}
}
1944 1945

static inline void
1946
qla2x00_suspend_hba(struct scsi_qla_host *vha)
1947 1948 1949
{
	int cnt;
	unsigned long flags;
1950
	struct qla_hw_data *ha = vha->hw;
1951 1952 1953
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;

	/* Suspend HBA. */
1954
	scsi_block_requests(vha->host);
1955
	ha->isp_ops->disable_intrs(ha);
1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974
	set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);

	/* Pause RISC. */
	spin_lock_irqsave(&ha->hardware_lock, flags);
	WRT_REG_WORD(&reg->hccr, HCCR_PAUSE_RISC);
	RD_REG_WORD(&reg->hccr);
	if (IS_QLA2100(ha) || IS_QLA2200(ha) || IS_QLA2300(ha)) {
		for (cnt = 0; cnt < 30000; cnt++) {
			if ((RD_REG_WORD(&reg->hccr) & HCCR_RISC_PAUSE) != 0)
				break;
			udelay(100);
		}
	} else {
		udelay(10);
	}
	spin_unlock_irqrestore(&ha->hardware_lock, flags);
}

static inline void
1975
qla2x00_resume_hba(struct scsi_qla_host *vha)
1976
{
1977 1978
	struct qla_hw_data *ha = vha->hw;

1979 1980
	/* Resume HBA. */
	clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
1981 1982
	set_bit(ISP_ABORT_NEEDED, &vha->dpc_flags);
	qla2xxx_wake_dpc(vha);
1983
	qla2x00_wait_for_chip_reset(vha);
1984
	scsi_unblock_requests(vha->host);
1985 1986 1987
}

uint8_t *
1988
qla2x00_read_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
1989 1990 1991 1992
    uint32_t offset, uint32_t length)
{
	uint32_t addr, midpoint;
	uint8_t *data;
1993
	struct qla_hw_data *ha = vha->hw;
1994 1995 1996
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;

	/* Suspend HBA. */
1997
	qla2x00_suspend_hba(vha);
1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

	/* Go with read. */
	midpoint = ha->optrom_size / 2;

	qla2x00_flash_enable(ha);
	WRT_REG_WORD(&reg->nvram, 0);
	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
	for (addr = offset, data = buf; addr < length; addr++, data++) {
		if (addr == midpoint) {
			WRT_REG_WORD(&reg->nvram, NVR_SELECT);
			RD_REG_WORD(&reg->nvram);	/* PCI Posting. */
		}

		*data = qla2x00_read_flash_byte(ha, addr);
	}
	qla2x00_flash_disable(ha);

	/* Resume HBA. */
2016
	qla2x00_resume_hba(vha);
2017 2018 2019 2020 2021

	return buf;
}

int
2022
qla2x00_write_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
2023 2024 2025 2026 2027 2028 2029
    uint32_t offset, uint32_t length)
{

	int rval;
	uint8_t man_id, flash_id, sec_number, data;
	uint16_t wd;
	uint32_t addr, liter, sec_mask, rest_addr;
2030
	struct qla_hw_data *ha = vha->hw;
2031 2032 2033
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;

	/* Suspend HBA. */
2034
	qla2x00_suspend_hba(vha);
2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227

	rval = QLA_SUCCESS;
	sec_number = 0;

	/* Reset ISP chip. */
	WRT_REG_WORD(&reg->ctrl_status, CSR_ISP_SOFT_RESET);
	pci_read_config_word(ha->pdev, PCI_COMMAND, &wd);

	/* Go with write. */
	qla2x00_flash_enable(ha);
	do {	/* Loop once to provide quick error exit */
		/* Structure of flash memory based on manufacturer */
		if (IS_OEM_001(ha)) {
			/* OEM variant with special flash part. */
			man_id = flash_id = 0;
			rest_addr = 0xffff;
			sec_mask   = 0x10000;
			goto update_flash;
		}
		qla2x00_get_flash_manufacturer(ha, &man_id, &flash_id);
		switch (man_id) {
		case 0x20: /* ST flash. */
			if (flash_id == 0xd2 || flash_id == 0xe3) {
				/*
				 * ST m29w008at part - 64kb sector size with
				 * 32kb,8kb,8kb,16kb sectors at memory address
				 * 0xf0000.
				 */
				rest_addr = 0xffff;
				sec_mask = 0x10000;
				break;   
			}
			/*
			 * ST m29w010b part - 16kb sector size
			 * Default to 16kb sectors
			 */
			rest_addr = 0x3fff;
			sec_mask = 0x1c000;
			break;
		case 0x40: /* Mostel flash. */
			/* Mostel v29c51001 part - 512 byte sector size. */
			rest_addr = 0x1ff;
			sec_mask = 0x1fe00;
			break;
		case 0xbf: /* SST flash. */
			/* SST39sf10 part - 4kb sector size. */
			rest_addr = 0xfff;
			sec_mask = 0x1f000;
			break;
		case 0xda: /* Winbond flash. */
			/* Winbond W29EE011 part - 256 byte sector size. */
			rest_addr = 0x7f;
			sec_mask = 0x1ff80;
			break;
		case 0xc2: /* Macronix flash. */
			/* 64k sector size. */
			if (flash_id == 0x38 || flash_id == 0x4f) {
				rest_addr = 0xffff;
				sec_mask = 0x10000;
				break;
			}
			/* Fall through... */

		case 0x1f: /* Atmel flash. */
			/* 512k sector size. */
			if (flash_id == 0x13) {
				rest_addr = 0x7fffffff;
				sec_mask =   0x80000000;
				break;
			}
			/* Fall through... */

		case 0x01: /* AMD flash. */
			if (flash_id == 0x38 || flash_id == 0x40 ||
			    flash_id == 0x4f) {
				/* Am29LV081 part - 64kb sector size. */
				/* Am29LV002BT part - 64kb sector size. */
				rest_addr = 0xffff;
				sec_mask = 0x10000;
				break;
			} else if (flash_id == 0x3e) {
				/*
				 * Am29LV008b part - 64kb sector size with
				 * 32kb,8kb,8kb,16kb sector at memory address
				 * h0xf0000.
				 */
				rest_addr = 0xffff;
				sec_mask = 0x10000;
				break;
			} else if (flash_id == 0x20 || flash_id == 0x6e) {
				/*
				 * Am29LV010 part or AM29f010 - 16kb sector
				 * size.
				 */
				rest_addr = 0x3fff;
				sec_mask = 0x1c000;
				break;
			} else if (flash_id == 0x6d) {
				/* Am29LV001 part - 8kb sector size. */
				rest_addr = 0x1fff;
				sec_mask = 0x1e000;
				break;
			}
		default:
			/* Default to 16 kb sector size. */
			rest_addr = 0x3fff;
			sec_mask = 0x1c000;
			break;
		}

update_flash:
		if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
			if (qla2x00_erase_flash(ha, man_id, flash_id)) {
				rval = QLA_FUNCTION_FAILED;
				break;
			}
		}

		for (addr = offset, liter = 0; liter < length; liter++,
		    addr++) {
			data = buf[liter];
			/* Are we at the beginning of a sector? */
			if ((addr & rest_addr) == 0) {
				if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
					if (addr >= 0x10000UL) {
						if (((addr >> 12) & 0xf0) &&
						    ((man_id == 0x01 &&
							flash_id == 0x3e) ||
						     (man_id == 0x20 &&
							 flash_id == 0xd2))) {
							sec_number++;
							if (sec_number == 1) {
								rest_addr =
								    0x7fff;
								sec_mask =
								    0x18000;
							} else if (
							    sec_number == 2 ||
							    sec_number == 3) {
								rest_addr =
								    0x1fff;
								sec_mask =
								    0x1e000;
							} else if (
							    sec_number == 4) {
								rest_addr =
								    0x3fff;
								sec_mask =
								    0x1c000;
							}
						}
					}
				} else if (addr == ha->optrom_size / 2) {
					WRT_REG_WORD(&reg->nvram, NVR_SELECT);
					RD_REG_WORD(&reg->nvram);
				}

				if (flash_id == 0xda && man_id == 0xc1) {
					qla2x00_write_flash_byte(ha, 0x5555,
					    0xaa);
					qla2x00_write_flash_byte(ha, 0x2aaa,
					    0x55);
					qla2x00_write_flash_byte(ha, 0x5555,
					    0xa0);
				} else if (!IS_QLA2322(ha) && !IS_QLA6322(ha)) {
					/* Then erase it */
					if (qla2x00_erase_flash_sector(ha,
					    addr, sec_mask, man_id,
					    flash_id)) {
						rval = QLA_FUNCTION_FAILED;
						break;
					}
					if (man_id == 0x01 && flash_id == 0x6d)
						sec_number++;
				}
			}

			if (man_id == 0x01 && flash_id == 0x6d) {
				if (sec_number == 1 &&
				    addr == (rest_addr - 1)) {
					rest_addr = 0x0fff;
					sec_mask   = 0x1f000;
				} else if (sec_number == 3 && (addr & 0x7ffe)) {
					rest_addr = 0x3fff;
					sec_mask   = 0x1c000;
				}
			}

			if (qla2x00_program_flash_address(ha, addr, data,
			    man_id, flash_id)) {
				rval = QLA_FUNCTION_FAILED;
				break;
			}
2228
			cond_resched();
2229 2230 2231 2232 2233
		}
	} while (0);
	qla2x00_flash_disable(ha);

	/* Resume HBA. */
2234
	qla2x00_resume_hba(vha);
2235 2236 2237 2238 2239

	return rval;
}

uint8_t *
2240
qla24xx_read_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
2241 2242
    uint32_t offset, uint32_t length)
{
2243 2244
	struct qla_hw_data *ha = vha->hw;

2245
	/* Suspend HBA. */
2246
	scsi_block_requests(vha->host);
2247 2248 2249
	set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);

	/* Go with read. */
2250
	qla24xx_read_flash_data(vha, (uint32_t *)buf, offset >> 2, length >> 2);
2251 2252 2253

	/* Resume HBA. */
	clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2254
	scsi_unblock_requests(vha->host);
2255 2256 2257 2258 2259

	return buf;
}

int
2260
qla24xx_write_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
2261 2262 2263
    uint32_t offset, uint32_t length)
{
	int rval;
2264
	struct qla_hw_data *ha = vha->hw;
2265 2266

	/* Suspend HBA. */
2267
	scsi_block_requests(vha->host);
2268 2269 2270
	set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);

	/* Go with write. */
2271
	rval = qla24xx_write_flash_data(vha, (uint32_t *)buf, offset >> 2,
2272 2273 2274
	    length >> 2);

	clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2275
	scsi_unblock_requests(vha->host);
2276 2277 2278

	return rval;
}
2279

2280
uint8_t *
2281
qla25xx_read_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
2282 2283 2284 2285 2286 2287 2288
    uint32_t offset, uint32_t length)
{
	int rval;
	dma_addr_t optrom_dma;
	void *optrom;
	uint8_t *pbuf;
	uint32_t faddr, left, burst;
2289
	struct qla_hw_data *ha = vha->hw;
2290

2291
	if (offset & 0xfff)
2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313
		goto slow_read;
	if (length < OPTROM_BURST_SIZE)
		goto slow_read;

	optrom = dma_alloc_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE,
	    &optrom_dma, GFP_KERNEL);
	if (!optrom) {
		qla_printk(KERN_DEBUG, ha,
		    "Unable to allocate memory for optrom burst read "
		    "(%x KB).\n", OPTROM_BURST_SIZE / 1024);

		goto slow_read;
	}

	pbuf = buf;
	faddr = offset >> 2;
	left = length >> 2;
	burst = OPTROM_BURST_DWORDS;
	while (left != 0) {
		if (burst > left)
			burst = left;

2314
		rval = qla2x00_dump_ram(vha, optrom_dma,
2315
		    flash_data_addr(ha, faddr), burst);
2316 2317 2318 2319
		if (rval) {
			qla_printk(KERN_WARNING, ha,
			    "Unable to burst-read optrom segment "
			    "(%x/%x/%llx).\n", rval,
2320
			    flash_data_addr(ha, faddr),
A
Andrew Morton 已提交
2321
			    (unsigned long long)optrom_dma);
2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342
			qla_printk(KERN_WARNING, ha,
			    "Reverting to slow-read.\n");

			dma_free_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE,
			    optrom, optrom_dma);
			goto slow_read;
		}

		memcpy(pbuf, optrom, burst * 4);

		left -= burst;
		faddr += burst;
		pbuf += burst * 4;
	}

	dma_free_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE, optrom,
	    optrom_dma);

	return buf;

slow_read:
2343
    return qla24xx_read_optrom_data(vha, buf, offset, length);
2344 2345
}

2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364
/**
 * qla2x00_get_fcode_version() - Determine an FCODE image's version.
 * @ha: HA context
 * @pcids: Pointer to the FCODE PCI data structure
 *
 * The process of retrieving the FCODE version information is at best
 * described as interesting.
 *
 * Within the first 100h bytes of the image an ASCII string is present
 * which contains several pieces of information including the FCODE
 * version.  Unfortunately it seems the only reliable way to retrieve
 * the version is by scanning for another sentinel within the string,
 * the FCODE build date:
 *
 *	... 2.00.02 10/17/02 ...
 *
 * Returns QLA_SUCCESS on successful retrieval of version.
 */
static void
2365
qla2x00_get_fcode_version(struct qla_hw_data *ha, uint32_t pcids)
2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438
{
	int ret = QLA_FUNCTION_FAILED;
	uint32_t istart, iend, iter, vend;
	uint8_t do_next, rbyte, *vbyte;

	memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));

	/* Skip the PCI data structure. */
	istart = pcids +
	    ((qla2x00_read_flash_byte(ha, pcids + 0x0B) << 8) |
		qla2x00_read_flash_byte(ha, pcids + 0x0A));
	iend = istart + 0x100;
	do {
		/* Scan for the sentinel date string...eeewww. */
		do_next = 0;
		iter = istart;
		while ((iter < iend) && !do_next) {
			iter++;
			if (qla2x00_read_flash_byte(ha, iter) == '/') {
				if (qla2x00_read_flash_byte(ha, iter + 2) ==
				    '/')
					do_next++;
				else if (qla2x00_read_flash_byte(ha,
				    iter + 3) == '/')
					do_next++;
			}
		}
		if (!do_next)
			break;

		/* Backtrack to previous ' ' (space). */
		do_next = 0;
		while ((iter > istart) && !do_next) {
			iter--;
			if (qla2x00_read_flash_byte(ha, iter) == ' ')
				do_next++;
		}
		if (!do_next)
			break;

		/*
		 * Mark end of version tag, and find previous ' ' (space) or
		 * string length (recent FCODE images -- major hack ahead!!!).
		 */
		vend = iter - 1;
		do_next = 0;
		while ((iter > istart) && !do_next) {
			iter--;
			rbyte = qla2x00_read_flash_byte(ha, iter);
			if (rbyte == ' ' || rbyte == 0xd || rbyte == 0x10)
				do_next++;
		}
		if (!do_next)
			break;

		/* Mark beginning of version tag, and copy data. */
		iter++;
		if ((vend - iter) &&
		    ((vend - iter) < sizeof(ha->fcode_revision))) {
			vbyte = ha->fcode_revision;
			while (iter <= vend) {
				*vbyte++ = qla2x00_read_flash_byte(ha, iter);
				iter++;
			}
			ret = QLA_SUCCESS;
		}
	} while (0);

	if (ret != QLA_SUCCESS)
		memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
}

int
2439
qla2x00_get_flash_version(scsi_qla_host_t *vha, void *mbuf)
2440 2441 2442 2443 2444 2445
{
	int ret = QLA_SUCCESS;
	uint8_t code_type, last_image;
	uint32_t pcihdr, pcids;
	uint8_t *dbyte;
	uint16_t *dcode;
2446
	struct qla_hw_data *ha = vha->hw;
2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465

	if (!ha->pio_address || !mbuf)
		return QLA_FUNCTION_FAILED;

	memset(ha->bios_revision, 0, sizeof(ha->bios_revision));
	memset(ha->efi_revision, 0, sizeof(ha->efi_revision));
	memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
	memset(ha->fw_revision, 0, sizeof(ha->fw_revision));

	qla2x00_flash_enable(ha);

	/* Begin with first PCI expansion ROM header. */
	pcihdr = 0;
	last_image = 1;
	do {
		/* Verify PCI expansion ROM header. */
		if (qla2x00_read_flash_byte(ha, pcihdr) != 0x55 ||
		    qla2x00_read_flash_byte(ha, pcihdr + 0x01) != 0xaa) {
			/* No signature */
2466 2467
			DEBUG2(qla_printk(KERN_DEBUG, ha, "No matching ROM "
			    "signature.\n"));
2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482
			ret = QLA_FUNCTION_FAILED;
			break;
		}

		/* Locate PCI data structure. */
		pcids = pcihdr +
		    ((qla2x00_read_flash_byte(ha, pcihdr + 0x19) << 8) |
			qla2x00_read_flash_byte(ha, pcihdr + 0x18));

		/* Validate signature of PCI data structure. */
		if (qla2x00_read_flash_byte(ha, pcids) != 'P' ||
		    qla2x00_read_flash_byte(ha, pcids + 0x1) != 'C' ||
		    qla2x00_read_flash_byte(ha, pcids + 0x2) != 'I' ||
		    qla2x00_read_flash_byte(ha, pcids + 0x3) != 'R') {
			/* Incorrect header. */
2483 2484
			DEBUG2(qla_printk(KERN_INFO, ha, "PCI data struct not "
			    "found pcir_adr=%x.\n", pcids));
2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497
			ret = QLA_FUNCTION_FAILED;
			break;
		}

		/* Read version */
		code_type = qla2x00_read_flash_byte(ha, pcids + 0x14);
		switch (code_type) {
		case ROM_CODE_TYPE_BIOS:
			/* Intel x86, PC-AT compatible. */
			ha->bios_revision[0] =
			    qla2x00_read_flash_byte(ha, pcids + 0x12);
			ha->bios_revision[1] =
			    qla2x00_read_flash_byte(ha, pcids + 0x13);
2498
			DEBUG3(qla_printk(KERN_DEBUG, ha, "read BIOS %d.%d.\n",
2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511
			    ha->bios_revision[1], ha->bios_revision[0]));
			break;
		case ROM_CODE_TYPE_FCODE:
			/* Open Firmware standard for PCI (FCode). */
			/* Eeeewww... */
			qla2x00_get_fcode_version(ha, pcids);
			break;
		case ROM_CODE_TYPE_EFI:
			/* Extensible Firmware Interface (EFI). */
			ha->efi_revision[0] =
			    qla2x00_read_flash_byte(ha, pcids + 0x12);
			ha->efi_revision[1] =
			    qla2x00_read_flash_byte(ha, pcids + 0x13);
2512
			DEBUG3(qla_printk(KERN_DEBUG, ha, "read EFI %d.%d.\n",
2513 2514 2515
			    ha->efi_revision[1], ha->efi_revision[0]));
			break;
		default:
2516 2517
			DEBUG2(qla_printk(KERN_INFO, ha, "Unrecognized code "
			    "type %x at pcids %x.\n", code_type, pcids));
2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534
			break;
		}

		last_image = qla2x00_read_flash_byte(ha, pcids + 0x15) & BIT_7;

		/* Locate next PCI expansion ROM. */
		pcihdr += ((qla2x00_read_flash_byte(ha, pcids + 0x11) << 8) |
		    qla2x00_read_flash_byte(ha, pcids + 0x10)) * 512;
	} while (!last_image);

	if (IS_QLA2322(ha)) {
		/* Read firmware image information. */
		memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
		dbyte = mbuf;
		memset(dbyte, 0, 8);
		dcode = (uint16_t *)dbyte;

2535
		qla2x00_read_flash_data(ha, dbyte, ha->flt_region_fw * 4 + 10,
2536
		    8);
2537 2538
		DEBUG3(qla_printk(KERN_DEBUG, ha, "dumping fw ver from "
		    "flash:\n"));
2539 2540 2541 2542 2543 2544
		DEBUG3(qla2x00_dump_buffer((uint8_t *)dbyte, 8));

		if ((dcode[0] == 0xffff && dcode[1] == 0xffff &&
		    dcode[2] == 0xffff && dcode[3] == 0xffff) ||
		    (dcode[0] == 0 && dcode[1] == 0 && dcode[2] == 0 &&
		    dcode[3] == 0)) {
2545 2546
			DEBUG2(qla_printk(KERN_INFO, ha, "Unrecognized fw "
			    "revision at %x.\n", ha->flt_region_fw * 4));
2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560
		} else {
			/* values are in big endian */
			ha->fw_revision[0] = dbyte[0] << 16 | dbyte[1];
			ha->fw_revision[1] = dbyte[2] << 16 | dbyte[3];
			ha->fw_revision[2] = dbyte[4] << 16 | dbyte[5];
		}
	}

	qla2x00_flash_disable(ha);

	return ret;
}

int
2561
qla24xx_get_flash_version(scsi_qla_host_t *vha, void *mbuf)
2562 2563 2564 2565 2566 2567 2568
{
	int ret = QLA_SUCCESS;
	uint32_t pcihdr, pcids;
	uint32_t *dcode;
	uint8_t *bcode;
	uint8_t code_type, last_image;
	int i;
2569
	struct qla_hw_data *ha = vha->hw;
2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581

	if (!mbuf)
		return QLA_FUNCTION_FAILED;

	memset(ha->bios_revision, 0, sizeof(ha->bios_revision));
	memset(ha->efi_revision, 0, sizeof(ha->efi_revision));
	memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
	memset(ha->fw_revision, 0, sizeof(ha->fw_revision));

	dcode = mbuf;

	/* Begin with first PCI expansion ROM header. */
2582
	pcihdr = ha->flt_region_boot << 2;
2583 2584 2585
	last_image = 1;
	do {
		/* Verify PCI expansion ROM header. */
2586
		qla24xx_read_flash_data(vha, dcode, pcihdr >> 2, 0x20);
2587 2588 2589
		bcode = mbuf + (pcihdr % 4);
		if (bcode[0x0] != 0x55 || bcode[0x1] != 0xaa) {
			/* No signature */
2590 2591
			DEBUG2(qla_printk(KERN_DEBUG, ha, "No matching ROM "
			    "signature.\n"));
2592 2593 2594 2595 2596 2597 2598
			ret = QLA_FUNCTION_FAILED;
			break;
		}

		/* Locate PCI data structure. */
		pcids = pcihdr + ((bcode[0x19] << 8) | bcode[0x18]);

2599
		qla24xx_read_flash_data(vha, dcode, pcids >> 2, 0x20);
2600 2601 2602 2603 2604 2605
		bcode = mbuf + (pcihdr % 4);

		/* Validate signature of PCI data structure. */
		if (bcode[0x0] != 'P' || bcode[0x1] != 'C' ||
		    bcode[0x2] != 'I' || bcode[0x3] != 'R') {
			/* Incorrect header. */
2606 2607
			DEBUG2(qla_printk(KERN_INFO, ha, "PCI data struct not "
			    "found pcir_adr=%x.\n", pcids));
2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618
			ret = QLA_FUNCTION_FAILED;
			break;
		}

		/* Read version */
		code_type = bcode[0x14];
		switch (code_type) {
		case ROM_CODE_TYPE_BIOS:
			/* Intel x86, PC-AT compatible. */
			ha->bios_revision[0] = bcode[0x12];
			ha->bios_revision[1] = bcode[0x13];
2619
			DEBUG3(qla_printk(KERN_DEBUG, ha, "read BIOS %d.%d.\n",
2620 2621 2622 2623 2624 2625
			    ha->bios_revision[1], ha->bios_revision[0]));
			break;
		case ROM_CODE_TYPE_FCODE:
			/* Open Firmware standard for PCI (FCode). */
			ha->fcode_revision[0] = bcode[0x12];
			ha->fcode_revision[1] = bcode[0x13];
2626
			DEBUG3(qla_printk(KERN_DEBUG, ha, "read FCODE %d.%d.\n",
2627 2628 2629 2630 2631 2632
			    ha->fcode_revision[1], ha->fcode_revision[0]));
			break;
		case ROM_CODE_TYPE_EFI:
			/* Extensible Firmware Interface (EFI). */
			ha->efi_revision[0] = bcode[0x12];
			ha->efi_revision[1] = bcode[0x13];
2633
			DEBUG3(qla_printk(KERN_DEBUG, ha, "read EFI %d.%d.\n",
2634 2635 2636
			    ha->efi_revision[1], ha->efi_revision[0]));
			break;
		default:
2637 2638
			DEBUG2(qla_printk(KERN_INFO, ha, "Unrecognized code "
			    "type %x at pcids %x.\n", code_type, pcids));
2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651
			break;
		}

		last_image = bcode[0x15] & BIT_7;

		/* Locate next PCI expansion ROM. */
		pcihdr += ((bcode[0x11] << 8) | bcode[0x10]) * 512;
	} while (!last_image);

	/* Read firmware image information. */
	memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
	dcode = mbuf;

2652
	qla24xx_read_flash_data(vha, dcode, ha->flt_region_fw + 4, 4);
2653 2654 2655 2656 2657 2658 2659
	for (i = 0; i < 4; i++)
		dcode[i] = be32_to_cpu(dcode[i]);

	if ((dcode[0] == 0xffffffff && dcode[1] == 0xffffffff &&
	    dcode[2] == 0xffffffff && dcode[3] == 0xffffffff) ||
	    (dcode[0] == 0 && dcode[1] == 0 && dcode[2] == 0 &&
	    dcode[3] == 0)) {
2660 2661
		DEBUG2(qla_printk(KERN_INFO, ha, "Unrecognized fw "
		    "revision at %x.\n", ha->flt_region_fw * 4));
2662 2663 2664 2665 2666 2667 2668 2669 2670
	} else {
		ha->fw_revision[0] = dcode[0];
		ha->fw_revision[1] = dcode[1];
		ha->fw_revision[2] = dcode[2];
		ha->fw_revision[3] = dcode[3];
	}

	return ret;
}
2671

2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689
static int
qla2xxx_is_vpd_valid(uint8_t *pos, uint8_t *end)
{
	if (pos >= end || *pos != 0x82)
		return 0;

	pos += 3 + pos[1];
	if (pos >= end || *pos != 0x90)
		return 0;

	pos += 3 + pos[1];
	if (pos >= end || *pos != 0x78)
		return 0;

	return 1;
}

int
2690
qla2xxx_get_vpd_field(scsi_qla_host_t *vha, char *key, char *str, size_t size)
2691
{
2692
	struct qla_hw_data *ha = vha->hw;
2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716
	uint8_t *pos = ha->vpd;
	uint8_t *end = pos + ha->vpd_size;
	int len = 0;

	if (!IS_FWI2_CAPABLE(ha) || !qla2xxx_is_vpd_valid(pos, end))
		return 0;

	while (pos < end && *pos != 0x78) {
		len = (*pos == 0x82) ? pos[1] : pos[2];

		if (!strncmp(pos, key, strlen(key)))
			break;

		if (*pos != 0x90 && *pos != 0x91)
			pos += len;

		pos += 3;
	}

	if (pos < end - len && *pos != 0x78)
		return snprintf(str, size, "%.*s", len, pos + 3);

	return 0;
}