qla_sup.c 71.4 KB
Newer Older
A
Andrew Vasquez 已提交
1 2
/*
 * QLogic Fibre Channel HBA Driver
3
 * Copyright (c)  2003-2008 QLogic Corporation
L
Linus Torvalds 已提交
4
 *
A
Andrew Vasquez 已提交
5 6
 * See LICENSE.qla2xxx for copyright and licensing details.
 */
L
Linus Torvalds 已提交
7 8 9
#include "qla_def.h"

#include <linux/delay.h>
10
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
11 12 13 14 15 16 17
#include <asm/uaccess.h>

/*
 * NVRAM support routines
 */

/**
A
Andrew Vasquez 已提交
18
 * qla2x00_lock_nvram_access() -
L
Linus Torvalds 已提交
19 20
 * @ha: HA context
 */
A
Adrian Bunk 已提交
21
static void
22
qla2x00_lock_nvram_access(struct qla_hw_data *ha)
L
Linus Torvalds 已提交
23 24
{
	uint16_t data;
25
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
L
Linus Torvalds 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

	if (!IS_QLA2100(ha) && !IS_QLA2200(ha) && !IS_QLA2300(ha)) {
		data = RD_REG_WORD(&reg->nvram);
		while (data & NVR_BUSY) {
			udelay(100);
			data = RD_REG_WORD(&reg->nvram);
		}

		/* Lock resource */
		WRT_REG_WORD(&reg->u.isp2300.host_semaphore, 0x1);
		RD_REG_WORD(&reg->u.isp2300.host_semaphore);
		udelay(5);
		data = RD_REG_WORD(&reg->u.isp2300.host_semaphore);
		while ((data & BIT_0) == 0) {
			/* Lock failed */
			udelay(100);
			WRT_REG_WORD(&reg->u.isp2300.host_semaphore, 0x1);
			RD_REG_WORD(&reg->u.isp2300.host_semaphore);
			udelay(5);
			data = RD_REG_WORD(&reg->u.isp2300.host_semaphore);
		}
	}
}

/**
A
Andrew Vasquez 已提交
51
 * qla2x00_unlock_nvram_access() -
L
Linus Torvalds 已提交
52 53
 * @ha: HA context
 */
A
Adrian Bunk 已提交
54
static void
55
qla2x00_unlock_nvram_access(struct qla_hw_data *ha)
L
Linus Torvalds 已提交
56
{
57
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
L
Linus Torvalds 已提交
58 59 60 61 62 63 64

	if (!IS_QLA2100(ha) && !IS_QLA2200(ha) && !IS_QLA2300(ha)) {
		WRT_REG_WORD(&reg->u.isp2300.host_semaphore, 0);
		RD_REG_WORD(&reg->u.isp2300.host_semaphore);
	}
}

65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
/**
 * qla2x00_nv_write() - Prepare for NVRAM read/write operation.
 * @ha: HA context
 * @data: Serial interface selector
 */
static void
qla2x00_nv_write(struct qla_hw_data *ha, uint16_t data)
{
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;

	WRT_REG_WORD(&reg->nvram, data | NVR_SELECT | NVR_WRT_ENABLE);
	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
	NVRAM_DELAY();
	WRT_REG_WORD(&reg->nvram, data | NVR_SELECT | NVR_CLOCK |
	    NVR_WRT_ENABLE);
	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
	NVRAM_DELAY();
	WRT_REG_WORD(&reg->nvram, data | NVR_SELECT | NVR_WRT_ENABLE);
	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
	NVRAM_DELAY();
}

/**
 * qla2x00_nvram_request() - Sends read command to NVRAM and gets data from
 *	NVRAM.
 * @ha: HA context
 * @nv_cmd: NVRAM command
 *
 * Bit definitions for NVRAM command:
 *
 *	Bit 26     = start bit
 *	Bit 25, 24 = opcode
 *	Bit 23-16  = address
 *	Bit 15-0   = write data
 *
 * Returns the word read from nvram @addr.
 */
static uint16_t
qla2x00_nvram_request(struct qla_hw_data *ha, uint32_t nv_cmd)
{
	uint8_t		cnt;
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
	uint16_t	data = 0;
	uint16_t	reg_data;

	/* Send command to NVRAM. */
	nv_cmd <<= 5;
	for (cnt = 0; cnt < 11; cnt++) {
		if (nv_cmd & BIT_31)
			qla2x00_nv_write(ha, NVR_DATA_OUT);
		else
			qla2x00_nv_write(ha, 0);
		nv_cmd <<= 1;
	}

	/* Read data from NVRAM. */
	for (cnt = 0; cnt < 16; cnt++) {
		WRT_REG_WORD(&reg->nvram, NVR_SELECT | NVR_CLOCK);
		RD_REG_WORD(&reg->nvram);	/* PCI Posting. */
		NVRAM_DELAY();
		data <<= 1;
		reg_data = RD_REG_WORD(&reg->nvram);
		if (reg_data & NVR_DATA_IN)
			data |= BIT_0;
		WRT_REG_WORD(&reg->nvram, NVR_SELECT);
		RD_REG_WORD(&reg->nvram);	/* PCI Posting. */
		NVRAM_DELAY();
	}

	/* Deselect chip. */
	WRT_REG_WORD(&reg->nvram, NVR_DESELECT);
	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
	NVRAM_DELAY();

	return data;
}


L
Linus Torvalds 已提交
143 144 145 146 147 148 149 150
/**
 * qla2x00_get_nvram_word() - Calculates word position in NVRAM and calls the
 *	request routine to get the word from NVRAM.
 * @ha: HA context
 * @addr: Address in NVRAM to read
 *
 * Returns the word read from nvram @addr.
 */
A
Adrian Bunk 已提交
151
static uint16_t
152
qla2x00_get_nvram_word(struct qla_hw_data *ha, uint32_t addr)
L
Linus Torvalds 已提交
153 154 155 156 157 158 159 160 161 162 163
{
	uint16_t	data;
	uint32_t	nv_cmd;

	nv_cmd = addr << 16;
	nv_cmd |= NV_READ_OP;
	data = qla2x00_nvram_request(ha, nv_cmd);

	return (data);
}

164 165 166 167 168 169 170 171 172 173 174 175 176 177
/**
 * qla2x00_nv_deselect() - Deselect NVRAM operations.
 * @ha: HA context
 */
static void
qla2x00_nv_deselect(struct qla_hw_data *ha)
{
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;

	WRT_REG_WORD(&reg->nvram, NVR_DESELECT);
	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
	NVRAM_DELAY();
}

L
Linus Torvalds 已提交
178 179 180 181 182 183
/**
 * qla2x00_write_nvram_word() - Write NVRAM data.
 * @ha: HA context
 * @addr: Address in NVRAM to write
 * @data: word to program
 */
A
Adrian Bunk 已提交
184
static void
185
qla2x00_write_nvram_word(struct qla_hw_data *ha, uint32_t addr, uint16_t data)
L
Linus Torvalds 已提交
186 187 188
{
	int count;
	uint16_t word;
189
	uint32_t nv_cmd, wait_cnt;
190
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
L
Linus Torvalds 已提交
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217

	qla2x00_nv_write(ha, NVR_DATA_OUT);
	qla2x00_nv_write(ha, 0);
	qla2x00_nv_write(ha, 0);

	for (word = 0; word < 8; word++)
		qla2x00_nv_write(ha, NVR_DATA_OUT);

	qla2x00_nv_deselect(ha);

	/* Write data */
	nv_cmd = (addr << 16) | NV_WRITE_OP;
	nv_cmd |= data;
	nv_cmd <<= 5;
	for (count = 0; count < 27; count++) {
		if (nv_cmd & BIT_31)
			qla2x00_nv_write(ha, NVR_DATA_OUT);
		else
			qla2x00_nv_write(ha, 0);

		nv_cmd <<= 1;
	}

	qla2x00_nv_deselect(ha);

	/* Wait for NVRAM to become ready */
	WRT_REG_WORD(&reg->nvram, NVR_SELECT);
218
	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
219
	wait_cnt = NVR_WAIT_CNT;
L
Linus Torvalds 已提交
220
	do {
221 222
		if (!--wait_cnt) {
			DEBUG9_10(printk("%s(%ld): NVRAM didn't go ready...\n",
223
			    __func__, vha->host_no));
224 225
			break;
		}
L
Linus Torvalds 已提交
226 227 228 229 230 231 232 233 234 235 236 237 238 239
		NVRAM_DELAY();
		word = RD_REG_WORD(&reg->nvram);
	} while ((word & NVR_DATA_IN) == 0);

	qla2x00_nv_deselect(ha);

	/* Disable writes */
	qla2x00_nv_write(ha, NVR_DATA_OUT);
	for (count = 0; count < 10; count++)
		qla2x00_nv_write(ha, 0);

	qla2x00_nv_deselect(ha);
}

240
static int
241 242
qla2x00_write_nvram_word_tmo(struct qla_hw_data *ha, uint32_t addr,
	uint16_t data, uint32_t tmo)
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
{
	int ret, count;
	uint16_t word;
	uint32_t nv_cmd;
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;

	ret = QLA_SUCCESS;

	qla2x00_nv_write(ha, NVR_DATA_OUT);
	qla2x00_nv_write(ha, 0);
	qla2x00_nv_write(ha, 0);

	for (word = 0; word < 8; word++)
		qla2x00_nv_write(ha, NVR_DATA_OUT);

	qla2x00_nv_deselect(ha);

	/* Write data */
	nv_cmd = (addr << 16) | NV_WRITE_OP;
	nv_cmd |= data;
	nv_cmd <<= 5;
	for (count = 0; count < 27; count++) {
		if (nv_cmd & BIT_31)
			qla2x00_nv_write(ha, NVR_DATA_OUT);
		else
			qla2x00_nv_write(ha, 0);

		nv_cmd <<= 1;
	}

	qla2x00_nv_deselect(ha);

	/* Wait for NVRAM to become ready */
	WRT_REG_WORD(&reg->nvram, NVR_SELECT);
277
	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
	do {
		NVRAM_DELAY();
		word = RD_REG_WORD(&reg->nvram);
		if (!--tmo) {
			ret = QLA_FUNCTION_FAILED;
			break;
		}
	} while ((word & NVR_DATA_IN) == 0);

	qla2x00_nv_deselect(ha);

	/* Disable writes */
	qla2x00_nv_write(ha, NVR_DATA_OUT);
	for (count = 0; count < 10; count++)
		qla2x00_nv_write(ha, 0);

	qla2x00_nv_deselect(ha);

	return ret;
}

/**
 * qla2x00_clear_nvram_protection() -
 * @ha: HA context
 */
static int
304
qla2x00_clear_nvram_protection(struct qla_hw_data *ha)
305 306 307
{
	int ret, stat;
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
308
	uint32_t word, wait_cnt;
309 310 311 312
	uint16_t wprot, wprot_old;

	/* Clear NVRAM write protection. */
	ret = QLA_FUNCTION_FAILED;
313 314 315

	wprot_old = cpu_to_le16(qla2x00_get_nvram_word(ha, ha->nvram_base));
	stat = qla2x00_write_nvram_word_tmo(ha, ha->nvram_base,
316
	    __constant_cpu_to_le16(0x1234), 100000);
317 318
	wprot = cpu_to_le16(qla2x00_get_nvram_word(ha, ha->nvram_base));
	if (stat != QLA_SUCCESS || wprot != 0x1234) {
319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
		/* Write enable. */
		qla2x00_nv_write(ha, NVR_DATA_OUT);
		qla2x00_nv_write(ha, 0);
		qla2x00_nv_write(ha, 0);
		for (word = 0; word < 8; word++)
			qla2x00_nv_write(ha, NVR_DATA_OUT);

		qla2x00_nv_deselect(ha);

		/* Enable protection register. */
		qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
		qla2x00_nv_write(ha, NVR_PR_ENABLE);
		qla2x00_nv_write(ha, NVR_PR_ENABLE);
		for (word = 0; word < 8; word++)
			qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE);

		qla2x00_nv_deselect(ha);

		/* Clear protection register (ffff is cleared). */
		qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
		qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
		qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
		for (word = 0; word < 8; word++)
			qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE);

		qla2x00_nv_deselect(ha);

		/* Wait for NVRAM to become ready. */
		WRT_REG_WORD(&reg->nvram, NVR_SELECT);
348
		RD_REG_WORD(&reg->nvram);	/* PCI Posting. */
349
		wait_cnt = NVR_WAIT_CNT;
350
		do {
351
			if (!--wait_cnt) {
352 353
				DEBUG9_10(qla_printk(
				    "NVRAM didn't go ready...\n"));
354 355
				break;
			}
356 357 358 359
			NVRAM_DELAY();
			word = RD_REG_WORD(&reg->nvram);
		} while ((word & NVR_DATA_IN) == 0);

360 361
		if (wait_cnt)
			ret = QLA_SUCCESS;
362
	} else
363
		qla2x00_write_nvram_word(ha, ha->nvram_base, wprot_old);
364 365 366 367 368

	return ret;
}

static void
369
qla2x00_set_nvram_protection(struct qla_hw_data *ha, int stat)
370 371
{
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
372
	uint32_t word, wait_cnt;
373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406

	if (stat != QLA_SUCCESS)
		return;

	/* Set NVRAM write protection. */
	/* Write enable. */
	qla2x00_nv_write(ha, NVR_DATA_OUT);
	qla2x00_nv_write(ha, 0);
	qla2x00_nv_write(ha, 0);
	for (word = 0; word < 8; word++)
		qla2x00_nv_write(ha, NVR_DATA_OUT);

	qla2x00_nv_deselect(ha);

	/* Enable protection register. */
	qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
	qla2x00_nv_write(ha, NVR_PR_ENABLE);
	qla2x00_nv_write(ha, NVR_PR_ENABLE);
	for (word = 0; word < 8; word++)
		qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE);

	qla2x00_nv_deselect(ha);

	/* Enable protection register. */
	qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
	qla2x00_nv_write(ha, NVR_PR_ENABLE);
	qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
	for (word = 0; word < 8; word++)
		qla2x00_nv_write(ha, NVR_PR_ENABLE);

	qla2x00_nv_deselect(ha);

	/* Wait for NVRAM to become ready. */
	WRT_REG_WORD(&reg->nvram, NVR_SELECT);
407
	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
408
	wait_cnt = NVR_WAIT_CNT;
409
	do {
410
		if (!--wait_cnt) {
411
			DEBUG9_10(qla_printk("NVRAM didn't go ready...\n"));
412 413
			break;
		}
414 415 416 417 418 419 420 421 422 423
		NVRAM_DELAY();
		word = RD_REG_WORD(&reg->nvram);
	} while ((word & NVR_DATA_IN) == 0);
}


/*****************************************************************************/
/* Flash Manipulation Routines                                               */
/*****************************************************************************/

424 425 426
#define OPTROM_BURST_SIZE	0x1000
#define OPTROM_BURST_DWORDS	(OPTROM_BURST_SIZE / 4)

427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
static inline uint32_t
flash_conf_to_access_addr(uint32_t faddr)
{
	return FARX_ACCESS_FLASH_CONF | faddr;
}

static inline uint32_t
flash_data_to_access_addr(uint32_t faddr)
{
	return FARX_ACCESS_FLASH_DATA | faddr;
}

static inline uint32_t
nvram_conf_to_access_addr(uint32_t naddr)
{
	return FARX_ACCESS_NVRAM_CONF | naddr;
}

static inline uint32_t
nvram_data_to_access_addr(uint32_t naddr)
{
	return FARX_ACCESS_NVRAM_DATA | naddr;
}

451
static uint32_t
452
qla24xx_read_flash_dword(struct qla_hw_data *ha, uint32_t addr)
453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
{
	int rval;
	uint32_t cnt, data;
	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;

	WRT_REG_DWORD(&reg->flash_addr, addr & ~FARX_DATA_FLAG);
	/* Wait for READ cycle to complete. */
	rval = QLA_SUCCESS;
	for (cnt = 3000;
	    (RD_REG_DWORD(&reg->flash_addr) & FARX_DATA_FLAG) == 0 &&
	    rval == QLA_SUCCESS; cnt--) {
		if (cnt)
			udelay(10);
		else
			rval = QLA_FUNCTION_TIMEOUT;
468
		cond_resched();
469 470 471 472 473 474 475 476 477 478 479
	}

	/* TODO: What happens if we time out? */
	data = 0xDEADDEAD;
	if (rval == QLA_SUCCESS)
		data = RD_REG_DWORD(&reg->flash_data);

	return data;
}

uint32_t *
480
qla24xx_read_flash_data(scsi_qla_host_t *vha, uint32_t *dwptr, uint32_t faddr,
481 482 483 484 485
    uint32_t dwords)
{
	uint32_t i;
	/* Dword reads to flash. */
	for (i = 0; i < dwords; i++, faddr++)
486
		dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(vha->hw,
487 488 489 490 491
		    flash_data_to_access_addr(faddr)));

	return dwptr;
}

492
static int
493
qla24xx_write_flash_dword(struct qla_hw_data *ha, uint32_t addr, uint32_t data)
494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509
{
	int rval;
	uint32_t cnt;
	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;

	WRT_REG_DWORD(&reg->flash_data, data);
	RD_REG_DWORD(&reg->flash_data);		/* PCI Posting. */
	WRT_REG_DWORD(&reg->flash_addr, addr | FARX_DATA_FLAG);
	/* Wait for Write cycle to complete. */
	rval = QLA_SUCCESS;
	for (cnt = 500000; (RD_REG_DWORD(&reg->flash_addr) & FARX_DATA_FLAG) &&
	    rval == QLA_SUCCESS; cnt--) {
		if (cnt)
			udelay(10);
		else
			rval = QLA_FUNCTION_TIMEOUT;
510
		cond_resched();
511 512 513 514
	}
	return rval;
}

515
static void
516
qla24xx_get_flash_manufacturer(struct qla_hw_data *ha, uint8_t *man_id,
517 518 519 520 521 522 523
    uint8_t *flash_id)
{
	uint32_t ids;

	ids = qla24xx_read_flash_dword(ha, flash_data_to_access_addr(0xd03ab));
	*man_id = LSB(ids);
	*flash_id = MSB(ids);
524 525 526 527 528 529 530 531 532 533 534 535 536 537

	/* Check if man_id and flash_id are valid. */
	if (ids != 0xDEADDEAD && (*man_id == 0 || *flash_id == 0)) {
		/* Read information using 0x9f opcode
		 * Device ID, Mfg ID would be read in the format:
		 *   <Ext Dev Info><Device ID Part2><Device ID Part 1><Mfg ID>
		 * Example: ATMEL 0x00 01 45 1F
		 * Extract MFG and Dev ID from last two bytes.
		 */
		ids = qla24xx_read_flash_dword(ha,
		    flash_data_to_access_addr(0xd009f));
		*man_id = LSB(ids);
		*flash_id = MSB(ids);
	}
538 539
}

540
static int
541
qla2xxx_find_flt_start(scsi_qla_host_t *vha, uint32_t *start)
542 543 544 545 546 547 548
{
	const char *loc, *locations[] = { "DEF", "PCI" };
	uint32_t pcihdr, pcids;
	uint32_t *dcode;
	uint8_t *buf, *bcode, last_image;
	uint16_t cnt, chksum, *wptr;
	struct qla_flt_location *fltl;
549
	struct qla_hw_data *ha = vha->hw;
550
	struct req_que *req = ha->req_q_map[0];
551 552 553 554 555 556 557 558 559 560 561

	/*
	 * FLT-location structure resides after the last PCI region.
	 */

	/* Begin with sane defaults. */
	loc = locations[0];
	*start = IS_QLA24XX_TYPE(ha) ? FA_FLASH_LAYOUT_ADDR_24:
	    FA_FLASH_LAYOUT_ADDR;

	/* Begin with first PCI expansion ROM header. */
562 563
	buf = (uint8_t *)req->ring;
	dcode = (uint32_t *)req->ring;
564 565 566 567
	pcihdr = 0;
	last_image = 1;
	do {
		/* Verify PCI expansion ROM header. */
568
		qla24xx_read_flash_data(vha, dcode, pcihdr >> 2, 0x20);
569 570 571 572 573 574
		bcode = buf + (pcihdr % 4);
		if (bcode[0x0] != 0x55 || bcode[0x1] != 0xaa)
			goto end;

		/* Locate PCI data structure. */
		pcids = pcihdr + ((bcode[0x19] << 8) | bcode[0x18]);
575
		qla24xx_read_flash_data(vha, dcode, pcids >> 2, 0x20);
576 577 578 579 580 581 582 583 584 585 586 587 588 589
		bcode = buf + (pcihdr % 4);

		/* Validate signature of PCI data structure. */
		if (bcode[0x0] != 'P' || bcode[0x1] != 'C' ||
		    bcode[0x2] != 'I' || bcode[0x3] != 'R')
			goto end;

		last_image = bcode[0x15] & BIT_7;

		/* Locate next PCI expansion ROM. */
		pcihdr += ((bcode[0x11] << 8) | bcode[0x10]) * 512;
	} while (!last_image);

	/* Now verify FLT-location structure. */
590 591
	fltl = (struct qla_flt_location *)req->ring;
	qla24xx_read_flash_data(vha, dcode, pcihdr >> 2,
592 593 594 595 596
	    sizeof(struct qla_flt_location) >> 2);
	if (fltl->sig[0] != 'Q' || fltl->sig[1] != 'F' ||
	    fltl->sig[2] != 'L' || fltl->sig[3] != 'T')
		goto end;

597
	wptr = (uint16_t *)req->ring;
598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617
	cnt = sizeof(struct qla_flt_location) >> 1;
	for (chksum = 0; cnt; cnt--)
		chksum += le16_to_cpu(*wptr++);
	if (chksum) {
		qla_printk(KERN_ERR, ha,
		    "Inconsistent FLTL detected: checksum=0x%x.\n", chksum);
		qla2x00_dump_buffer(buf, sizeof(struct qla_flt_location));
		return QLA_FUNCTION_FAILED;
	}

	/* Good data.  Use specified location. */
	loc = locations[1];
	*start = le16_to_cpu(fltl->start_hi) << 16 |
	    le16_to_cpu(fltl->start_lo);
end:
	DEBUG2(qla_printk(KERN_DEBUG, ha, "FLTL[%s] = 0x%x.\n", loc, *start));
	return QLA_SUCCESS;
}

static void
618
qla2xxx_get_flt_info(scsi_qla_host_t *vha, uint32_t flt_addr)
619 620 621 622 623 624 625
{
	const char *loc, *locations[] = { "DEF", "FLT" };
	uint16_t *wptr;
	uint16_t cnt, chksum;
	uint32_t start;
	struct qla_flt_header *flt;
	struct qla_flt_region *region;
626
	struct qla_hw_data *ha = vha->hw;
627
	struct req_que *req = ha->req_q_map[0];
628 629

	ha->flt_region_flt = flt_addr;
630 631
	wptr = (uint16_t *)req->ring;
	flt = (struct qla_flt_header *)req->ring;
632
	region = (struct qla_flt_region *)&flt[1];
633
	ha->isp_ops->read_optrom(vha, (uint8_t *)req->ring,
634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686
	    flt_addr << 2, OPTROM_BURST_SIZE);
	if (*wptr == __constant_cpu_to_le16(0xffff))
		goto no_flash_data;
	if (flt->version != __constant_cpu_to_le16(1)) {
		DEBUG2(qla_printk(KERN_INFO, ha, "Unsupported FLT detected: "
		    "version=0x%x length=0x%x checksum=0x%x.\n",
		    le16_to_cpu(flt->version), le16_to_cpu(flt->length),
		    le16_to_cpu(flt->checksum)));
		goto no_flash_data;
	}

	cnt = (sizeof(struct qla_flt_header) + le16_to_cpu(flt->length)) >> 1;
	for (chksum = 0; cnt; cnt--)
		chksum += le16_to_cpu(*wptr++);
	if (chksum) {
		DEBUG2(qla_printk(KERN_INFO, ha, "Inconsistent FLT detected: "
		    "version=0x%x length=0x%x checksum=0x%x.\n",
		    le16_to_cpu(flt->version), le16_to_cpu(flt->length),
		    chksum));
		goto no_flash_data;
	}

	loc = locations[1];
	cnt = le16_to_cpu(flt->length) / sizeof(struct qla_flt_region);
	for ( ; cnt; cnt--, region++) {
		/* Store addresses as DWORD offsets. */
		start = le32_to_cpu(region->start) >> 2;

		DEBUG3(qla_printk(KERN_DEBUG, ha, "FLT[%02x]: start=0x%x "
		    "end=0x%x size=0x%x.\n", le32_to_cpu(region->code), start,
		    le32_to_cpu(region->end) >> 2, le32_to_cpu(region->size)));

		switch (le32_to_cpu(region->code)) {
		case FLT_REG_FW:
			ha->flt_region_fw = start;
			break;
		case FLT_REG_BOOT_CODE:
			ha->flt_region_boot = start;
			break;
		case FLT_REG_VPD_0:
			ha->flt_region_vpd_nvram = start;
			break;
		case FLT_REG_FDT:
			ha->flt_region_fdt = start;
			break;
		case FLT_REG_HW_EVENT_0:
			if (!PCI_FUNC(ha->pdev->devfn))
				ha->flt_region_hw_event = start;
			break;
		case FLT_REG_HW_EVENT_1:
			if (PCI_FUNC(ha->pdev->devfn))
				ha->flt_region_hw_event = start;
			break;
687 688 689 690 691 692 693 694
		case FLT_REG_NPIV_CONF_0:
			if (!PCI_FUNC(ha->pdev->devfn))
				ha->flt_region_npiv_conf = start;
			break;
		case FLT_REG_NPIV_CONF_1:
			if (PCI_FUNC(ha->pdev->devfn))
				ha->flt_region_npiv_conf = start;
			break;
695 696 697 698 699 700 701 702 703 704 705 706 707 708
		}
	}
	goto done;

no_flash_data:
	/* Use hardcoded defaults. */
	loc = locations[0];
	ha->flt_region_fw = FA_RISC_CODE_ADDR;
	ha->flt_region_boot = FA_BOOT_CODE_ADDR;
	ha->flt_region_vpd_nvram = FA_VPD_NVRAM_ADDR;
	ha->flt_region_fdt = IS_QLA24XX_TYPE(ha) ? FA_FLASH_DESCR_ADDR_24:
	    FA_FLASH_DESCR_ADDR;
	ha->flt_region_hw_event = !PCI_FUNC(ha->pdev->devfn) ?
	    FA_HW_EVENT0_ADDR: FA_HW_EVENT1_ADDR;
709 710 711
	ha->flt_region_npiv_conf = !PCI_FUNC(ha->pdev->devfn) ?
	    (IS_QLA24XX_TYPE(ha) ? FA_NPIV_CONF0_ADDR_24: FA_NPIV_CONF0_ADDR):
	    (IS_QLA24XX_TYPE(ha) ? FA_NPIV_CONF1_ADDR_24: FA_NPIV_CONF1_ADDR);
712 713
done:
	DEBUG2(qla_printk(KERN_DEBUG, ha, "FLT[%s]: boot=0x%x fw=0x%x "
714
	    "vpd_nvram=0x%x fdt=0x%x flt=0x%x hwe=0x%x npiv=0x%x.\n", loc,
715
	    ha->flt_region_boot, ha->flt_region_fw, ha->flt_region_vpd_nvram,
716 717
	    ha->flt_region_fdt, ha->flt_region_flt, ha->flt_region_hw_event,
	    ha->flt_region_npiv_conf));
718 719 720
}

static void
721
qla2xxx_get_fdt_info(scsi_qla_host_t *vha)
722
{
723
#define FLASH_BLK_SIZE_4K	0x1000
724 725
#define FLASH_BLK_SIZE_32K	0x8000
#define FLASH_BLK_SIZE_64K	0x10000
726
	const char *loc, *locations[] = { "MID", "FDT" };
727 728 729 730
	uint16_t cnt, chksum;
	uint16_t *wptr;
	struct qla_fdt_layout *fdt;
	uint8_t	man_id, flash_id;
731
	uint16_t mid, fid;
732
	struct qla_hw_data *ha = vha->hw;
733
	struct req_que *req = ha->req_q_map[0];
734

735 736 737
	wptr = (uint16_t *)req->ring;
	fdt = (struct qla_fdt_layout *)req->ring;
	ha->isp_ops->read_optrom(vha, (uint8_t *)req->ring,
738
	    ha->flt_region_fdt << 2, OPTROM_BURST_SIZE);
739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755
	if (*wptr == __constant_cpu_to_le16(0xffff))
		goto no_flash_data;
	if (fdt->sig[0] != 'Q' || fdt->sig[1] != 'L' || fdt->sig[2] != 'I' ||
	    fdt->sig[3] != 'D')
		goto no_flash_data;

	for (cnt = 0, chksum = 0; cnt < sizeof(struct qla_fdt_layout) >> 1;
	    cnt++)
		chksum += le16_to_cpu(*wptr++);
	if (chksum) {
		DEBUG2(qla_printk(KERN_INFO, ha, "Inconsistent FDT detected: "
		    "checksum=0x%x id=%c version=0x%x.\n", chksum, fdt->sig[0],
		    le16_to_cpu(fdt->version)));
		DEBUG9(qla2x00_dump_buffer((uint8_t *)fdt, sizeof(*fdt)));
		goto no_flash_data;
	}

756 757 758
	loc = locations[1];
	mid = le16_to_cpu(fdt->man_id);
	fid = le16_to_cpu(fdt->id);
759 760 761 762 763 764 765 766 767 768
	ha->fdt_wrt_disable = fdt->wrt_disable_bits;
	ha->fdt_erase_cmd = flash_conf_to_access_addr(0x0300 | fdt->erase_cmd);
	ha->fdt_block_size = le32_to_cpu(fdt->block_size);
	if (fdt->unprotect_sec_cmd) {
		ha->fdt_unprotect_sec_cmd = flash_conf_to_access_addr(0x0300 |
		    fdt->unprotect_sec_cmd);
		ha->fdt_protect_sec_cmd = fdt->protect_sec_cmd ?
		    flash_conf_to_access_addr(0x0300 | fdt->protect_sec_cmd):
		    flash_conf_to_access_addr(0x0336);
	}
769
	goto done;
770
no_flash_data:
771
	loc = locations[0];
772
	qla24xx_get_flash_manufacturer(ha, &man_id, &flash_id);
773 774
	mid = man_id;
	fid = flash_id;
775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790
	ha->fdt_wrt_disable = 0x9c;
	ha->fdt_erase_cmd = flash_conf_to_access_addr(0x03d8);
	switch (man_id) {
	case 0xbf: /* STT flash. */
		if (flash_id == 0x8e)
			ha->fdt_block_size = FLASH_BLK_SIZE_64K;
		else
			ha->fdt_block_size = FLASH_BLK_SIZE_32K;

		if (flash_id == 0x80)
			ha->fdt_erase_cmd = flash_conf_to_access_addr(0x0352);
		break;
	case 0x13: /* ST M25P80. */
		ha->fdt_block_size = FLASH_BLK_SIZE_64K;
		break;
	case 0x1f: /* Atmel 26DF081A. */
791
		ha->fdt_block_size = FLASH_BLK_SIZE_4K;
792 793 794 795 796 797 798 799 800
		ha->fdt_erase_cmd = flash_conf_to_access_addr(0x0320);
		ha->fdt_unprotect_sec_cmd = flash_conf_to_access_addr(0x0339);
		ha->fdt_protect_sec_cmd = flash_conf_to_access_addr(0x0336);
		break;
	default:
		/* Default to 64 kb sector size. */
		ha->fdt_block_size = FLASH_BLK_SIZE_64K;
		break;
	}
801 802
done:
	DEBUG2(qla_printk(KERN_DEBUG, ha, "FDT[%s]: (0x%x/0x%x) erase=0x%x "
803
	    "pro=%x upro=%x wrtd=0x%x blk=0x%x.\n", loc, mid, fid,
804
	    ha->fdt_erase_cmd, ha->fdt_protect_sec_cmd,
805
	    ha->fdt_unprotect_sec_cmd, ha->fdt_wrt_disable,
806 807 808
	    ha->fdt_block_size));
}

809
int
810
qla2xxx_get_flash_info(scsi_qla_host_t *vha)
811 812 813
{
	int ret;
	uint32_t flt_addr;
814
	struct qla_hw_data *ha = vha->hw;
815 816 817 818

	if (!IS_QLA24XX_TYPE(ha) && !IS_QLA25XX(ha))
		return QLA_SUCCESS;

819
	ret = qla2xxx_find_flt_start(vha, &flt_addr);
820 821 822
	if (ret != QLA_SUCCESS)
		return ret;

823 824
	qla2xxx_get_flt_info(vha, flt_addr);
	qla2xxx_get_fdt_info(vha);
825 826 827 828

	return QLA_SUCCESS;
}

829
void
830
qla2xxx_flash_npiv_conf(scsi_qla_host_t *vha)
831 832 833 834 835
{
#define NPIV_CONFIG_SIZE	(16*1024)
	void *data;
	uint16_t *wptr;
	uint16_t cnt, chksum;
836
	int i;
837 838
	struct qla_npiv_header hdr;
	struct qla_npiv_entry *entry;
839
	struct qla_hw_data *ha = vha->hw;
840 841 842 843

	if (!IS_QLA24XX_TYPE(ha) && !IS_QLA25XX(ha))
		return;

844
	ha->isp_ops->read_optrom(vha, (uint8_t *)&hdr,
845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862
	    ha->flt_region_npiv_conf << 2, sizeof(struct qla_npiv_header));
	if (hdr.version == __constant_cpu_to_le16(0xffff))
		return;
	if (hdr.version != __constant_cpu_to_le16(1)) {
		DEBUG2(qla_printk(KERN_INFO, ha, "Unsupported NPIV-Config "
		    "detected: version=0x%x entries=0x%x checksum=0x%x.\n",
		    le16_to_cpu(hdr.version), le16_to_cpu(hdr.entries),
		    le16_to_cpu(hdr.checksum)));
		return;
	}

	data = kmalloc(NPIV_CONFIG_SIZE, GFP_KERNEL);
	if (!data) {
		DEBUG2(qla_printk(KERN_INFO, ha, "NPIV-Config: Unable to "
		    "allocate memory.\n"));
		return;
	}

863
	ha->isp_ops->read_optrom(vha, (uint8_t *)data,
864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879
	    ha->flt_region_npiv_conf << 2, NPIV_CONFIG_SIZE);

	cnt = (sizeof(struct qla_npiv_header) + le16_to_cpu(hdr.entries) *
	    sizeof(struct qla_npiv_entry)) >> 1;
	for (wptr = data, chksum = 0; cnt; cnt--)
		chksum += le16_to_cpu(*wptr++);
	if (chksum) {
		DEBUG2(qla_printk(KERN_INFO, ha, "Inconsistent NPIV-Config "
		    "detected: version=0x%x entries=0x%x checksum=0x%x.\n",
		    le16_to_cpu(hdr.version), le16_to_cpu(hdr.entries),
		    chksum));
		goto done;
	}

	entry = data + sizeof(struct qla_npiv_header);
	cnt = le16_to_cpu(hdr.entries);
880
	for (i = 0; cnt; cnt--, entry++, i++) {
881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897
		uint16_t flags;
		struct fc_vport_identifiers vid;
		struct fc_vport *vport;

		flags = le16_to_cpu(entry->flags);
		if (flags == 0xffff)
			continue;
		if ((flags & BIT_0) == 0)
			continue;

		memset(&vid, 0, sizeof(vid));
		vid.roles = FC_PORT_ROLE_FCP_INITIATOR;
		vid.vport_type = FC_PORTTYPE_NPIV;
		vid.disable = false;
		vid.port_name = wwn_to_u64(entry->port_name);
		vid.node_name = wwn_to_u64(entry->node_name);

898 899
		memcpy(&ha->npiv_info[i], entry, sizeof(struct qla_npiv_entry));

900
		DEBUG2(qla_printk(KERN_DEBUG, ha, "NPIV[%02x]: wwpn=%llx "
901 902 903 904 905 906 907 908 909 910 911 912
			"wwnn=%llx vf_id=0x%x Q_qos=0x%x F_qos=0x%x.\n", cnt,
			vid.port_name, vid.node_name, le16_to_cpu(entry->vf_id),
			entry->q_qos, entry->f_qos));

		if (i < QLA_PRECONFIG_VPORTS) {
			vport = fc_vport_create(vha->host, 0, &vid);
			if (!vport)
				qla_printk(KERN_INFO, ha,
				"NPIV-Config: Failed to create vport [%02x]: "
				"wwpn=%llx wwnn=%llx.\n", cnt,
				vid.port_name, vid.node_name);
		}
913 914 915
	}
done:
	kfree(data);
916
	ha->npiv_info = NULL;
917 918
}

919
static void
920
qla24xx_unprotect_flash(struct qla_hw_data *ha)
921 922 923 924 925 926 927 928
{
	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;

	/* Enable flash write. */
	WRT_REG_DWORD(&reg->ctrl_status,
	    RD_REG_DWORD(&reg->ctrl_status) | CSRX_FLASH_ENABLE);
	RD_REG_DWORD(&reg->ctrl_status);	/* PCI Posting. */

929 930 931
	if (!ha->fdt_wrt_disable)
		return;

932 933 934 935 936 937 938
	/* Disable flash write-protection. */
	qla24xx_write_flash_dword(ha, flash_conf_to_access_addr(0x101), 0);
	/* Some flash parts need an additional zero-write to clear bits.*/
	qla24xx_write_flash_dword(ha, flash_conf_to_access_addr(0x101), 0);
}

static void
939
qla24xx_protect_flash(struct qla_hw_data *ha)
940 941 942 943
{
	uint32_t cnt;
	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;

944 945 946
	if (!ha->fdt_wrt_disable)
		goto skip_wrt_protect;

947
	/* Enable flash write-protection and wait for completion. */
948 949
	qla24xx_write_flash_dword(ha, flash_conf_to_access_addr(0x101),
	    ha->fdt_wrt_disable);
950 951 952 953 954 955 956
	for (cnt = 300; cnt &&
	    qla24xx_read_flash_dword(ha,
		    flash_conf_to_access_addr(0x005)) & BIT_0;
	    cnt--) {
		udelay(10);
	}

957
skip_wrt_protect:
958 959 960 961 962 963
	/* Disable flash write. */
	WRT_REG_DWORD(&reg->ctrl_status,
	    RD_REG_DWORD(&reg->ctrl_status) & ~CSRX_FLASH_ENABLE);
	RD_REG_DWORD(&reg->ctrl_status);	/* PCI Posting. */
}

964
static int
965
qla24xx_write_flash_data(scsi_qla_host_t *vha, uint32_t *dwptr, uint32_t faddr,
966 967 968
    uint32_t dwords)
{
	int ret;
969
	uint32_t liter, miter;
970
	uint32_t sec_mask, rest_addr;
971
	uint32_t fdata, findex;
972 973 974
	dma_addr_t optrom_dma;
	void *optrom = NULL;
	uint32_t *s, *d;
975
	struct qla_hw_data *ha = vha->hw;
976 977 978

	ret = QLA_SUCCESS;

979
	/* Prepare burst-capable write on supported ISPs. */
980
	if (IS_QLA25XX(ha) && !(faddr & 0xfff) &&
981 982 983 984 985 986 987 988 989 990
	    dwords > OPTROM_BURST_DWORDS) {
		optrom = dma_alloc_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE,
		    &optrom_dma, GFP_KERNEL);
		if (!optrom) {
			qla_printk(KERN_DEBUG, ha,
			    "Unable to allocate memory for optrom burst write "
			    "(%x KB).\n", OPTROM_BURST_SIZE / 1024);
		}
	}

991 992
	rest_addr = (ha->fdt_block_size >> 2) - 1;
	sec_mask = 0x80000 - (ha->fdt_block_size >> 2);
993

994
	qla24xx_unprotect_flash(ha);
995

996
	for (liter = 0; liter < dwords; liter++, faddr++, dwptr++) {
997 998 999

		findex = faddr;
		fdata = (findex & sec_mask) << 2;
1000

1001 1002
		/* Are we at the beginning of a sector? */
		if ((findex & rest_addr) == 0) {
1003 1004
			/* Do sector unprotect. */
			if (ha->fdt_unprotect_sec_cmd)
1005
				qla24xx_write_flash_dword(ha,
1006
				    ha->fdt_unprotect_sec_cmd,
1007
				    (fdata & 0xff00) | ((fdata << 16) &
1008
				    0xff0000) | ((fdata >> 16) & 0xff));
1009
			ret = qla24xx_write_flash_dword(ha, ha->fdt_erase_cmd,
1010 1011 1012
			    (fdata & 0xff00) |((fdata << 16) &
			    0xff0000) | ((fdata >> 16) & 0xff));
			if (ret != QLA_SUCCESS) {
1013 1014
				DEBUG9(qla_printk("Unable to flash sector: "
				    "address=%x.\n", faddr));
1015
				break;
1016
			}
1017 1018 1019
		}

		/* Go with burst-write. */
1020
		if (optrom && (liter + OPTROM_BURST_DWORDS) <= dwords) {
1021 1022 1023 1024 1025
			/* Copy data to DMA'ble buffer. */
			for (miter = 0, s = optrom, d = dwptr;
			    miter < OPTROM_BURST_DWORDS; miter++, s++, d++)
				*s = cpu_to_le32(*d);

1026
			ret = qla2x00_load_ram(vha, optrom_dma,
1027
			    flash_data_to_access_addr(faddr),
1028
			    OPTROM_BURST_DWORDS);
1029
			if (ret != QLA_SUCCESS) {
1030 1031 1032 1033
				qla_printk(KERN_WARNING, ha,
				    "Unable to burst-write optrom segment "
				    "(%x/%x/%llx).\n", ret,
				    flash_data_to_access_addr(faddr),
A
Andrew Morton 已提交
1034
				    (unsigned long long)optrom_dma);
1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
				qla_printk(KERN_WARNING, ha,
				    "Reverting to slow-write.\n");

				dma_free_coherent(&ha->pdev->dev,
				    OPTROM_BURST_SIZE, optrom, optrom_dma);
				optrom = NULL;
			} else {
				liter += OPTROM_BURST_DWORDS - 1;
				faddr += OPTROM_BURST_DWORDS - 1;
				dwptr += OPTROM_BURST_DWORDS - 1;
				continue;
1046
			}
1047
		}
1048

1049 1050 1051 1052 1053
		ret = qla24xx_write_flash_dword(ha,
		    flash_data_to_access_addr(faddr), cpu_to_le32(*dwptr));
		if (ret != QLA_SUCCESS) {
			DEBUG9(printk("%s(%ld) Unable to program flash "
			    "address=%x data=%x.\n", __func__,
1054
			    vha->host_no, faddr, *dwptr));
1055
			break;
1056
		}
1057

1058 1059
		/* Do sector protect. */
		if (ha->fdt_unprotect_sec_cmd &&
1060 1061
		    ((faddr & rest_addr) == rest_addr))
			qla24xx_write_flash_dword(ha,
1062
			    ha->fdt_protect_sec_cmd,
1063 1064 1065
			    (fdata & 0xff00) | ((fdata << 16) &
			    0xff0000) | ((fdata >> 16) & 0xff));
	}
1066

1067
	qla24xx_protect_flash(ha);
1068

1069 1070 1071 1072
	if (optrom)
		dma_free_coherent(&ha->pdev->dev,
		    OPTROM_BURST_SIZE, optrom, optrom_dma);

1073 1074 1075 1076
	return ret;
}

uint8_t *
1077
qla2x00_read_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1078 1079 1080 1081
    uint32_t bytes)
{
	uint32_t i;
	uint16_t *wptr;
1082
	struct qla_hw_data *ha = vha->hw;
1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095

	/* Word reads to NVRAM via registers. */
	wptr = (uint16_t *)buf;
	qla2x00_lock_nvram_access(ha);
	for (i = 0; i < bytes >> 1; i++, naddr++)
		wptr[i] = cpu_to_le16(qla2x00_get_nvram_word(ha,
		    naddr));
	qla2x00_unlock_nvram_access(ha);

	return buf;
}

uint8_t *
1096
qla24xx_read_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1097 1098 1099 1100 1101 1102 1103 1104
    uint32_t bytes)
{
	uint32_t i;
	uint32_t *dwptr;

	/* Dword reads to flash. */
	dwptr = (uint32_t *)buf;
	for (i = 0; i < bytes >> 2; i++, naddr++)
1105
		dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(vha->hw,
1106 1107 1108 1109 1110 1111
		    nvram_data_to_access_addr(naddr)));

	return buf;
}

int
1112
qla2x00_write_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1113 1114 1115 1116 1117
    uint32_t bytes)
{
	int ret, stat;
	uint32_t i;
	uint16_t *wptr;
1118
	unsigned long flags;
1119
	struct qla_hw_data *ha = vha->hw;
1120 1121 1122

	ret = QLA_SUCCESS;

1123
	spin_lock_irqsave(&ha->hardware_lock, flags);
1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
	qla2x00_lock_nvram_access(ha);

	/* Disable NVRAM write-protection. */
	stat = qla2x00_clear_nvram_protection(ha);

	wptr = (uint16_t *)buf;
	for (i = 0; i < bytes >> 1; i++, naddr++) {
		qla2x00_write_nvram_word(ha, naddr,
		    cpu_to_le16(*wptr));
		wptr++;
	}

	/* Enable NVRAM write-protection. */
	qla2x00_set_nvram_protection(ha, stat);

	qla2x00_unlock_nvram_access(ha);
1140
	spin_unlock_irqrestore(&ha->hardware_lock, flags);
1141 1142 1143 1144 1145

	return ret;
}

int
1146
qla24xx_write_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1147 1148 1149 1150 1151
    uint32_t bytes)
{
	int ret;
	uint32_t i;
	uint32_t *dwptr;
1152
	struct qla_hw_data *ha = vha->hw;
1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174
	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;

	ret = QLA_SUCCESS;

	/* Enable flash write. */
	WRT_REG_DWORD(&reg->ctrl_status,
	    RD_REG_DWORD(&reg->ctrl_status) | CSRX_FLASH_ENABLE);
	RD_REG_DWORD(&reg->ctrl_status);	/* PCI Posting. */

	/* Disable NVRAM write-protection. */
	qla24xx_write_flash_dword(ha, nvram_conf_to_access_addr(0x101),
	    0);
	qla24xx_write_flash_dword(ha, nvram_conf_to_access_addr(0x101),
	    0);

	/* Dword writes to flash. */
	dwptr = (uint32_t *)buf;
	for (i = 0; i < bytes >> 2; i++, naddr++, dwptr++) {
		ret = qla24xx_write_flash_dword(ha,
		    nvram_data_to_access_addr(naddr),
		    cpu_to_le32(*dwptr));
		if (ret != QLA_SUCCESS) {
1175 1176
			DEBUG9(qla_printk("Unable to program nvram address=%x "
			    "data=%x.\n", naddr, *dwptr));
1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
			break;
		}
	}

	/* Enable NVRAM write-protection. */
	qla24xx_write_flash_dword(ha, nvram_conf_to_access_addr(0x101),
	    0x8c);

	/* Disable flash write. */
	WRT_REG_DWORD(&reg->ctrl_status,
	    RD_REG_DWORD(&reg->ctrl_status) & ~CSRX_FLASH_ENABLE);
	RD_REG_DWORD(&reg->ctrl_status);	/* PCI Posting. */

	return ret;
}
1192

1193
uint8_t *
1194
qla25xx_read_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1195 1196 1197 1198
    uint32_t bytes)
{
	uint32_t i;
	uint32_t *dwptr;
1199
	struct qla_hw_data *ha = vha->hw;
1200 1201 1202 1203 1204

	/* Dword reads to flash. */
	dwptr = (uint32_t *)buf;
	for (i = 0; i < bytes >> 2; i++, naddr++)
		dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(ha,
1205 1206
		    flash_data_to_access_addr(ha->flt_region_vpd_nvram |
		    naddr)));
1207 1208 1209 1210 1211

	return buf;
}

int
1212
qla25xx_write_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1213 1214
    uint32_t bytes)
{
1215
	struct qla_hw_data *ha = vha->hw;
1216 1217 1218 1219 1220 1221
#define RMW_BUFFER_SIZE	(64 * 1024)
	uint8_t *dbuf;

	dbuf = vmalloc(RMW_BUFFER_SIZE);
	if (!dbuf)
		return QLA_MEMORY_ALLOC_FAILED;
1222
	ha->isp_ops->read_optrom(vha, dbuf, ha->flt_region_vpd_nvram << 2,
1223 1224
	    RMW_BUFFER_SIZE);
	memcpy(dbuf + (naddr << 2), buf, bytes);
1225
	ha->isp_ops->write_optrom(vha, dbuf, ha->flt_region_vpd_nvram << 2,
1226 1227 1228 1229
	    RMW_BUFFER_SIZE);
	vfree(dbuf);

	return QLA_SUCCESS;
1230
}
1231 1232

static inline void
1233
qla2x00_flip_colors(struct qla_hw_data *ha, uint16_t *pflags)
1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259
{
	if (IS_QLA2322(ha)) {
		/* Flip all colors. */
		if (ha->beacon_color_state == QLA_LED_ALL_ON) {
			/* Turn off. */
			ha->beacon_color_state = 0;
			*pflags = GPIO_LED_ALL_OFF;
		} else {
			/* Turn on. */
			ha->beacon_color_state = QLA_LED_ALL_ON;
			*pflags = GPIO_LED_RGA_ON;
		}
	} else {
		/* Flip green led only. */
		if (ha->beacon_color_state == QLA_LED_GRN_ON) {
			/* Turn off. */
			ha->beacon_color_state = 0;
			*pflags = GPIO_LED_GREEN_OFF_AMBER_OFF;
		} else {
			/* Turn on. */
			ha->beacon_color_state = QLA_LED_GRN_ON;
			*pflags = GPIO_LED_GREEN_ON_AMBER_OFF;
		}
	}
}

1260 1261
#define PIO_REG(h, r) ((h)->pio_address + offsetof(struct device_reg_2xxx, r))

1262
void
1263
qla2x00_beacon_blink(struct scsi_qla_host *vha)
1264 1265 1266 1267 1268
{
	uint16_t gpio_enable;
	uint16_t gpio_data;
	uint16_t led_color = 0;
	unsigned long flags;
1269
	struct qla_hw_data *ha = vha->hw;
1270 1271 1272 1273 1274 1275
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;

	spin_lock_irqsave(&ha->hardware_lock, flags);

	/* Save the Original GPIOE. */
	if (ha->pio_address) {
1276 1277
		gpio_enable = RD_REG_WORD_PIO(PIO_REG(ha, gpioe));
		gpio_data = RD_REG_WORD_PIO(PIO_REG(ha, gpiod));
1278 1279 1280 1281 1282 1283 1284 1285 1286
	} else {
		gpio_enable = RD_REG_WORD(&reg->gpioe);
		gpio_data = RD_REG_WORD(&reg->gpiod);
	}

	/* Set the modified gpio_enable values */
	gpio_enable |= GPIO_LED_MASK;

	if (ha->pio_address) {
1287
		WRT_REG_WORD_PIO(PIO_REG(ha, gpioe), gpio_enable);
1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302
	} else {
		WRT_REG_WORD(&reg->gpioe, gpio_enable);
		RD_REG_WORD(&reg->gpioe);
	}

	qla2x00_flip_colors(ha, &led_color);

	/* Clear out any previously set LED color. */
	gpio_data &= ~GPIO_LED_MASK;

	/* Set the new input LED color to GPIOD. */
	gpio_data |= led_color;

	/* Set the modified gpio_data values */
	if (ha->pio_address) {
1303
		WRT_REG_WORD_PIO(PIO_REG(ha, gpiod), gpio_data);
1304 1305 1306 1307 1308 1309 1310 1311 1312
	} else {
		WRT_REG_WORD(&reg->gpiod, gpio_data);
		RD_REG_WORD(&reg->gpiod);
	}

	spin_unlock_irqrestore(&ha->hardware_lock, flags);
}

int
1313
qla2x00_beacon_on(struct scsi_qla_host *vha)
1314 1315 1316 1317
{
	uint16_t gpio_enable;
	uint16_t gpio_data;
	unsigned long flags;
1318
	struct qla_hw_data *ha = vha->hw;
1319 1320 1321 1322 1323
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;

	ha->fw_options[1] &= ~FO1_SET_EMPHASIS_SWING;
	ha->fw_options[1] |= FO1_DISABLE_GPIO6_7;

1324
	if (qla2x00_set_fw_options(vha, ha->fw_options) != QLA_SUCCESS) {
1325 1326 1327 1328 1329 1330 1331 1332
		qla_printk(KERN_WARNING, ha,
		    "Unable to update fw options (beacon on).\n");
		return QLA_FUNCTION_FAILED;
	}

	/* Turn off LEDs. */
	spin_lock_irqsave(&ha->hardware_lock, flags);
	if (ha->pio_address) {
1333 1334
		gpio_enable = RD_REG_WORD_PIO(PIO_REG(ha, gpioe));
		gpio_data = RD_REG_WORD_PIO(PIO_REG(ha, gpiod));
1335 1336 1337 1338 1339 1340 1341 1342
	} else {
		gpio_enable = RD_REG_WORD(&reg->gpioe);
		gpio_data = RD_REG_WORD(&reg->gpiod);
	}
	gpio_enable |= GPIO_LED_MASK;

	/* Set the modified gpio_enable values. */
	if (ha->pio_address) {
1343
		WRT_REG_WORD_PIO(PIO_REG(ha, gpioe), gpio_enable);
1344 1345 1346 1347 1348 1349 1350 1351
	} else {
		WRT_REG_WORD(&reg->gpioe, gpio_enable);
		RD_REG_WORD(&reg->gpioe);
	}

	/* Clear out previously set LED colour. */
	gpio_data &= ~GPIO_LED_MASK;
	if (ha->pio_address) {
1352
		WRT_REG_WORD_PIO(PIO_REG(ha, gpiod), gpio_data);
1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
	} else {
		WRT_REG_WORD(&reg->gpiod, gpio_data);
		RD_REG_WORD(&reg->gpiod);
	}
	spin_unlock_irqrestore(&ha->hardware_lock, flags);

	/*
	 * Let the per HBA timer kick off the blinking process based on
	 * the following flags. No need to do anything else now.
	 */
	ha->beacon_blink_led = 1;
	ha->beacon_color_state = 0;

	return QLA_SUCCESS;
}

int
1370
qla2x00_beacon_off(struct scsi_qla_host *vha)
1371 1372
{
	int rval = QLA_SUCCESS;
1373
	struct qla_hw_data *ha = vha->hw;
1374 1375 1376 1377 1378 1379 1380 1381 1382

	ha->beacon_blink_led = 0;

	/* Set the on flag so when it gets flipped it will be off. */
	if (IS_QLA2322(ha))
		ha->beacon_color_state = QLA_LED_ALL_ON;
	else
		ha->beacon_color_state = QLA_LED_GRN_ON;

1383
	ha->isp_ops->beacon_blink(vha);	/* This turns green LED off */
1384 1385 1386 1387

	ha->fw_options[1] &= ~FO1_SET_EMPHASIS_SWING;
	ha->fw_options[1] &= ~FO1_DISABLE_GPIO6_7;

1388
	rval = qla2x00_set_fw_options(vha, ha->fw_options);
1389 1390 1391 1392 1393 1394 1395 1396
	if (rval != QLA_SUCCESS)
		qla_printk(KERN_WARNING, ha,
		    "Unable to update fw options (beacon off).\n");
	return rval;
}


static inline void
1397
qla24xx_flip_colors(struct qla_hw_data *ha, uint16_t *pflags)
1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
{
	/* Flip all colors. */
	if (ha->beacon_color_state == QLA_LED_ALL_ON) {
		/* Turn off. */
		ha->beacon_color_state = 0;
		*pflags = 0;
	} else {
		/* Turn on. */
		ha->beacon_color_state = QLA_LED_ALL_ON;
		*pflags = GPDX_LED_YELLOW_ON | GPDX_LED_AMBER_ON;
	}
}

void
1412
qla24xx_beacon_blink(struct scsi_qla_host *vha)
1413 1414 1415 1416
{
	uint16_t led_color = 0;
	uint32_t gpio_data;
	unsigned long flags;
1417
	struct qla_hw_data *ha = vha->hw;
1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445
	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;

	/* Save the Original GPIOD. */
	spin_lock_irqsave(&ha->hardware_lock, flags);
	gpio_data = RD_REG_DWORD(&reg->gpiod);

	/* Enable the gpio_data reg for update. */
	gpio_data |= GPDX_LED_UPDATE_MASK;

	WRT_REG_DWORD(&reg->gpiod, gpio_data);
	gpio_data = RD_REG_DWORD(&reg->gpiod);

	/* Set the color bits. */
	qla24xx_flip_colors(ha, &led_color);

	/* Clear out any previously set LED color. */
	gpio_data &= ~GPDX_LED_COLOR_MASK;

	/* Set the new input LED color to GPIOD. */
	gpio_data |= led_color;

	/* Set the modified gpio_data values. */
	WRT_REG_DWORD(&reg->gpiod, gpio_data);
	gpio_data = RD_REG_DWORD(&reg->gpiod);
	spin_unlock_irqrestore(&ha->hardware_lock, flags);
}

int
1446
qla24xx_beacon_on(struct scsi_qla_host *vha)
1447 1448 1449
{
	uint32_t gpio_data;
	unsigned long flags;
1450
	struct qla_hw_data *ha = vha->hw;
1451 1452 1453 1454 1455 1456
	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;

	if (ha->beacon_blink_led == 0) {
		/* Enable firmware for update */
		ha->fw_options[1] |= ADD_FO1_DISABLE_GPIO_LED_CTRL;

1457
		if (qla2x00_set_fw_options(vha, ha->fw_options) != QLA_SUCCESS)
1458 1459
			return QLA_FUNCTION_FAILED;

1460
		if (qla2x00_get_fw_options(vha, ha->fw_options) !=
1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
		    QLA_SUCCESS) {
			qla_printk(KERN_WARNING, ha,
			    "Unable to update fw options (beacon on).\n");
			return QLA_FUNCTION_FAILED;
		}

		spin_lock_irqsave(&ha->hardware_lock, flags);
		gpio_data = RD_REG_DWORD(&reg->gpiod);

		/* Enable the gpio_data reg for update. */
		gpio_data |= GPDX_LED_UPDATE_MASK;
		WRT_REG_DWORD(&reg->gpiod, gpio_data);
		RD_REG_DWORD(&reg->gpiod);

		spin_unlock_irqrestore(&ha->hardware_lock, flags);
	}

	/* So all colors blink together. */
	ha->beacon_color_state = 0;

	/* Let the per HBA timer kick off the blinking process. */
	ha->beacon_blink_led = 1;

	return QLA_SUCCESS;
}

int
1488
qla24xx_beacon_off(struct scsi_qla_host *vha)
1489 1490 1491
{
	uint32_t gpio_data;
	unsigned long flags;
1492
	struct qla_hw_data *ha = vha->hw;
1493 1494 1495 1496 1497
	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;

	ha->beacon_blink_led = 0;
	ha->beacon_color_state = QLA_LED_ALL_ON;

1498
	ha->isp_ops->beacon_blink(vha);	/* Will flip to all off. */
1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511

	/* Give control back to firmware. */
	spin_lock_irqsave(&ha->hardware_lock, flags);
	gpio_data = RD_REG_DWORD(&reg->gpiod);

	/* Disable the gpio_data reg for update. */
	gpio_data &= ~GPDX_LED_UPDATE_MASK;
	WRT_REG_DWORD(&reg->gpiod, gpio_data);
	RD_REG_DWORD(&reg->gpiod);
	spin_unlock_irqrestore(&ha->hardware_lock, flags);

	ha->fw_options[1] &= ~ADD_FO1_DISABLE_GPIO_LED_CTRL;

1512
	if (qla2x00_set_fw_options(vha, ha->fw_options) != QLA_SUCCESS) {
1513 1514 1515 1516 1517
		qla_printk(KERN_WARNING, ha,
		    "Unable to update fw options (beacon off).\n");
		return QLA_FUNCTION_FAILED;
	}

1518
	if (qla2x00_get_fw_options(vha, ha->fw_options) != QLA_SUCCESS) {
1519 1520 1521 1522 1523 1524 1525
		qla_printk(KERN_WARNING, ha,
		    "Unable to get fw options (beacon off).\n");
		return QLA_FUNCTION_FAILED;
	}

	return QLA_SUCCESS;
}
1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536


/*
 * Flash support routines
 */

/**
 * qla2x00_flash_enable() - Setup flash for reading and writing.
 * @ha: HA context
 */
static void
1537
qla2x00_flash_enable(struct qla_hw_data *ha)
1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552
{
	uint16_t data;
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;

	data = RD_REG_WORD(&reg->ctrl_status);
	data |= CSR_FLASH_ENABLE;
	WRT_REG_WORD(&reg->ctrl_status, data);
	RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
}

/**
 * qla2x00_flash_disable() - Disable flash and allow RISC to run.
 * @ha: HA context
 */
static void
1553
qla2x00_flash_disable(struct qla_hw_data *ha)
1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573
{
	uint16_t data;
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;

	data = RD_REG_WORD(&reg->ctrl_status);
	data &= ~(CSR_FLASH_ENABLE);
	WRT_REG_WORD(&reg->ctrl_status, data);
	RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
}

/**
 * qla2x00_read_flash_byte() - Reads a byte from flash
 * @ha: HA context
 * @addr: Address in flash to read
 *
 * A word is read from the chip, but, only the lower byte is valid.
 *
 * Returns the byte read from flash @addr.
 */
static uint8_t
1574
qla2x00_read_flash_byte(struct qla_hw_data *ha, uint32_t addr)
1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612
{
	uint16_t data;
	uint16_t bank_select;
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;

	bank_select = RD_REG_WORD(&reg->ctrl_status);

	if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
		/* Specify 64K address range: */
		/*  clear out Module Select and Flash Address bits [19:16]. */
		bank_select &= ~0xf8;
		bank_select |= addr >> 12 & 0xf0;
		bank_select |= CSR_FLASH_64K_BANK;
		WRT_REG_WORD(&reg->ctrl_status, bank_select);
		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */

		WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
		data = RD_REG_WORD(&reg->flash_data);

		return (uint8_t)data;
	}

	/* Setup bit 16 of flash address. */
	if ((addr & BIT_16) && ((bank_select & CSR_FLASH_64K_BANK) == 0)) {
		bank_select |= CSR_FLASH_64K_BANK;
		WRT_REG_WORD(&reg->ctrl_status, bank_select);
		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */
	} else if (((addr & BIT_16) == 0) &&
	    (bank_select & CSR_FLASH_64K_BANK)) {
		bank_select &= ~(CSR_FLASH_64K_BANK);
		WRT_REG_WORD(&reg->ctrl_status, bank_select);
		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */
	}

	/* Always perform IO mapped accesses to the FLASH registers. */
	if (ha->pio_address) {
		uint16_t data2;

1613
		WRT_REG_WORD_PIO(PIO_REG(ha, flash_address), (uint16_t)addr);
1614
		do {
1615
			data = RD_REG_WORD_PIO(PIO_REG(ha, flash_data));
1616 1617
			barrier();
			cpu_relax();
1618
			data2 = RD_REG_WORD_PIO(PIO_REG(ha, flash_data));
1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634
		} while (data != data2);
	} else {
		WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
		data = qla2x00_debounce_register(&reg->flash_data);
	}

	return (uint8_t)data;
}

/**
 * qla2x00_write_flash_byte() - Write a byte to flash
 * @ha: HA context
 * @addr: Address in flash to write
 * @data: Data to write
 */
static void
1635
qla2x00_write_flash_byte(struct qla_hw_data *ha, uint32_t addr, uint8_t data)
1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671
{
	uint16_t bank_select;
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;

	bank_select = RD_REG_WORD(&reg->ctrl_status);
	if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
		/* Specify 64K address range: */
		/*  clear out Module Select and Flash Address bits [19:16]. */
		bank_select &= ~0xf8;
		bank_select |= addr >> 12 & 0xf0;
		bank_select |= CSR_FLASH_64K_BANK;
		WRT_REG_WORD(&reg->ctrl_status, bank_select);
		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */

		WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
		RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
		WRT_REG_WORD(&reg->flash_data, (uint16_t)data);
		RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */

		return;
	}

	/* Setup bit 16 of flash address. */
	if ((addr & BIT_16) && ((bank_select & CSR_FLASH_64K_BANK) == 0)) {
		bank_select |= CSR_FLASH_64K_BANK;
		WRT_REG_WORD(&reg->ctrl_status, bank_select);
		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */
	} else if (((addr & BIT_16) == 0) &&
	    (bank_select & CSR_FLASH_64K_BANK)) {
		bank_select &= ~(CSR_FLASH_64K_BANK);
		WRT_REG_WORD(&reg->ctrl_status, bank_select);
		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */
	}

	/* Always perform IO mapped accesses to the FLASH registers. */
	if (ha->pio_address) {
1672 1673
		WRT_REG_WORD_PIO(PIO_REG(ha, flash_address), (uint16_t)addr);
		WRT_REG_WORD_PIO(PIO_REG(ha, flash_data), (uint16_t)data);
1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697
	} else {
		WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
		RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
		WRT_REG_WORD(&reg->flash_data, (uint16_t)data);
		RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
	}
}

/**
 * qla2x00_poll_flash() - Polls flash for completion.
 * @ha: HA context
 * @addr: Address in flash to poll
 * @poll_data: Data to be polled
 * @man_id: Flash manufacturer ID
 * @flash_id: Flash ID
 *
 * This function polls the device until bit 7 of what is read matches data
 * bit 7 or until data bit 5 becomes a 1.  If that hapens, the flash ROM timed
 * out (a fatal error).  The flash book recommeds reading bit 7 again after
 * reading bit 5 as a 1.
 *
 * Returns 0 on success, else non-zero.
 */
static int
1698
qla2x00_poll_flash(struct qla_hw_data *ha, uint32_t addr, uint8_t poll_data,
1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721
    uint8_t man_id, uint8_t flash_id)
{
	int status;
	uint8_t flash_data;
	uint32_t cnt;

	status = 1;

	/* Wait for 30 seconds for command to finish. */
	poll_data &= BIT_7;
	for (cnt = 3000000; cnt; cnt--) {
		flash_data = qla2x00_read_flash_byte(ha, addr);
		if ((flash_data & BIT_7) == poll_data) {
			status = 0;
			break;
		}

		if (man_id != 0x40 && man_id != 0xda) {
			if ((flash_data & BIT_5) && cnt > 2)
				cnt = 2;
		}
		udelay(10);
		barrier();
1722
		cond_resched();
1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737
	}
	return status;
}

/**
 * qla2x00_program_flash_address() - Programs a flash address
 * @ha: HA context
 * @addr: Address in flash to program
 * @data: Data to be written in flash
 * @man_id: Flash manufacturer ID
 * @flash_id: Flash ID
 *
 * Returns 0 on success, else non-zero.
 */
static int
1738 1739
qla2x00_program_flash_address(struct qla_hw_data *ha, uint32_t addr,
    uint8_t data, uint8_t man_id, uint8_t flash_id)
1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774
{
	/* Write Program Command Sequence. */
	if (IS_OEM_001(ha)) {
		qla2x00_write_flash_byte(ha, 0xaaa, 0xaa);
		qla2x00_write_flash_byte(ha, 0x555, 0x55);
		qla2x00_write_flash_byte(ha, 0xaaa, 0xa0);
		qla2x00_write_flash_byte(ha, addr, data);
	} else {
		if (man_id == 0xda && flash_id == 0xc1) {
			qla2x00_write_flash_byte(ha, addr, data);
			if (addr & 0x7e)
				return 0;
		} else {
			qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
			qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
			qla2x00_write_flash_byte(ha, 0x5555, 0xa0);
			qla2x00_write_flash_byte(ha, addr, data);
		}
	}

	udelay(150);

	/* Wait for write to complete. */
	return qla2x00_poll_flash(ha, addr, data, man_id, flash_id);
}

/**
 * qla2x00_erase_flash() - Erase the flash.
 * @ha: HA context
 * @man_id: Flash manufacturer ID
 * @flash_id: Flash ID
 *
 * Returns 0 on success, else non-zero.
 */
static int
1775
qla2x00_erase_flash(struct qla_hw_data *ha, uint8_t man_id, uint8_t flash_id)
1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810
{
	/* Individual Sector Erase Command Sequence */
	if (IS_OEM_001(ha)) {
		qla2x00_write_flash_byte(ha, 0xaaa, 0xaa);
		qla2x00_write_flash_byte(ha, 0x555, 0x55);
		qla2x00_write_flash_byte(ha, 0xaaa, 0x80);
		qla2x00_write_flash_byte(ha, 0xaaa, 0xaa);
		qla2x00_write_flash_byte(ha, 0x555, 0x55);
		qla2x00_write_flash_byte(ha, 0xaaa, 0x10);
	} else {
		qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
		qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
		qla2x00_write_flash_byte(ha, 0x5555, 0x80);
		qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
		qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
		qla2x00_write_flash_byte(ha, 0x5555, 0x10);
	}

	udelay(150);

	/* Wait for erase to complete. */
	return qla2x00_poll_flash(ha, 0x00, 0x80, man_id, flash_id);
}

/**
 * qla2x00_erase_flash_sector() - Erase a flash sector.
 * @ha: HA context
 * @addr: Flash sector to erase
 * @sec_mask: Sector address mask
 * @man_id: Flash manufacturer ID
 * @flash_id: Flash ID
 *
 * Returns 0 on success, else non-zero.
 */
static int
1811
qla2x00_erase_flash_sector(struct qla_hw_data *ha, uint32_t addr,
1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836
    uint32_t sec_mask, uint8_t man_id, uint8_t flash_id)
{
	/* Individual Sector Erase Command Sequence */
	qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
	qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
	qla2x00_write_flash_byte(ha, 0x5555, 0x80);
	qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
	qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
	if (man_id == 0x1f && flash_id == 0x13)
		qla2x00_write_flash_byte(ha, addr & sec_mask, 0x10);
	else
		qla2x00_write_flash_byte(ha, addr & sec_mask, 0x30);

	udelay(150);

	/* Wait for erase to complete. */
	return qla2x00_poll_flash(ha, addr, 0x80, man_id, flash_id);
}

/**
 * qla2x00_get_flash_manufacturer() - Read manufacturer ID from flash chip.
 * @man_id: Flash manufacturer ID
 * @flash_id: Flash ID
 */
static void
1837
qla2x00_get_flash_manufacturer(struct qla_hw_data *ha, uint8_t *man_id,
1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849
    uint8_t *flash_id)
{
	qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
	qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
	qla2x00_write_flash_byte(ha, 0x5555, 0x90);
	*man_id = qla2x00_read_flash_byte(ha, 0x0000);
	*flash_id = qla2x00_read_flash_byte(ha, 0x0001);
	qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
	qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
	qla2x00_write_flash_byte(ha, 0x5555, 0xf0);
}

1850
static void
1851 1852
qla2x00_read_flash_data(struct qla_hw_data *ha, uint8_t *tmp_buf,
	uint32_t saddr, uint32_t length)
1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870
{
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
	uint32_t midpoint, ilength;
	uint8_t data;

	midpoint = length / 2;

	WRT_REG_WORD(&reg->nvram, 0);
	RD_REG_WORD(&reg->nvram);
	for (ilength = 0; ilength < length; saddr++, ilength++, tmp_buf++) {
		if (ilength == midpoint) {
			WRT_REG_WORD(&reg->nvram, NVR_SELECT);
			RD_REG_WORD(&reg->nvram);
		}
		data = qla2x00_read_flash_byte(ha, saddr);
		if (saddr % 100)
			udelay(10);
		*tmp_buf = data;
1871
		cond_resched();
1872 1873
	}
}
1874 1875

static inline void
1876
qla2x00_suspend_hba(struct scsi_qla_host *vha)
1877 1878 1879
{
	int cnt;
	unsigned long flags;
1880
	struct qla_hw_data *ha = vha->hw;
1881 1882 1883
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;

	/* Suspend HBA. */
1884
	scsi_block_requests(vha->host);
1885
	ha->isp_ops->disable_intrs(ha);
1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904
	set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);

	/* Pause RISC. */
	spin_lock_irqsave(&ha->hardware_lock, flags);
	WRT_REG_WORD(&reg->hccr, HCCR_PAUSE_RISC);
	RD_REG_WORD(&reg->hccr);
	if (IS_QLA2100(ha) || IS_QLA2200(ha) || IS_QLA2300(ha)) {
		for (cnt = 0; cnt < 30000; cnt++) {
			if ((RD_REG_WORD(&reg->hccr) & HCCR_RISC_PAUSE) != 0)
				break;
			udelay(100);
		}
	} else {
		udelay(10);
	}
	spin_unlock_irqrestore(&ha->hardware_lock, flags);
}

static inline void
1905
qla2x00_resume_hba(struct scsi_qla_host *vha)
1906
{
1907 1908
	struct qla_hw_data *ha = vha->hw;

1909 1910
	/* Resume HBA. */
	clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
1911 1912 1913 1914
	set_bit(ISP_ABORT_NEEDED, &vha->dpc_flags);
	qla2xxx_wake_dpc(vha);
	qla2x00_wait_for_hba_online(vha);
	scsi_unblock_requests(vha->host);
1915 1916 1917
}

uint8_t *
1918
qla2x00_read_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
1919 1920 1921 1922
    uint32_t offset, uint32_t length)
{
	uint32_t addr, midpoint;
	uint8_t *data;
1923
	struct qla_hw_data *ha = vha->hw;
1924 1925 1926
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;

	/* Suspend HBA. */
1927
	qla2x00_suspend_hba(vha);
1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945

	/* Go with read. */
	midpoint = ha->optrom_size / 2;

	qla2x00_flash_enable(ha);
	WRT_REG_WORD(&reg->nvram, 0);
	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
	for (addr = offset, data = buf; addr < length; addr++, data++) {
		if (addr == midpoint) {
			WRT_REG_WORD(&reg->nvram, NVR_SELECT);
			RD_REG_WORD(&reg->nvram);	/* PCI Posting. */
		}

		*data = qla2x00_read_flash_byte(ha, addr);
	}
	qla2x00_flash_disable(ha);

	/* Resume HBA. */
1946
	qla2x00_resume_hba(vha);
1947 1948 1949 1950 1951

	return buf;
}

int
1952
qla2x00_write_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
1953 1954 1955 1956 1957 1958 1959
    uint32_t offset, uint32_t length)
{

	int rval;
	uint8_t man_id, flash_id, sec_number, data;
	uint16_t wd;
	uint32_t addr, liter, sec_mask, rest_addr;
1960
	struct qla_hw_data *ha = vha->hw;
1961 1962 1963
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;

	/* Suspend HBA. */
1964
	qla2x00_suspend_hba(vha);
1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157

	rval = QLA_SUCCESS;
	sec_number = 0;

	/* Reset ISP chip. */
	WRT_REG_WORD(&reg->ctrl_status, CSR_ISP_SOFT_RESET);
	pci_read_config_word(ha->pdev, PCI_COMMAND, &wd);

	/* Go with write. */
	qla2x00_flash_enable(ha);
	do {	/* Loop once to provide quick error exit */
		/* Structure of flash memory based on manufacturer */
		if (IS_OEM_001(ha)) {
			/* OEM variant with special flash part. */
			man_id = flash_id = 0;
			rest_addr = 0xffff;
			sec_mask   = 0x10000;
			goto update_flash;
		}
		qla2x00_get_flash_manufacturer(ha, &man_id, &flash_id);
		switch (man_id) {
		case 0x20: /* ST flash. */
			if (flash_id == 0xd2 || flash_id == 0xe3) {
				/*
				 * ST m29w008at part - 64kb sector size with
				 * 32kb,8kb,8kb,16kb sectors at memory address
				 * 0xf0000.
				 */
				rest_addr = 0xffff;
				sec_mask = 0x10000;
				break;   
			}
			/*
			 * ST m29w010b part - 16kb sector size
			 * Default to 16kb sectors
			 */
			rest_addr = 0x3fff;
			sec_mask = 0x1c000;
			break;
		case 0x40: /* Mostel flash. */
			/* Mostel v29c51001 part - 512 byte sector size. */
			rest_addr = 0x1ff;
			sec_mask = 0x1fe00;
			break;
		case 0xbf: /* SST flash. */
			/* SST39sf10 part - 4kb sector size. */
			rest_addr = 0xfff;
			sec_mask = 0x1f000;
			break;
		case 0xda: /* Winbond flash. */
			/* Winbond W29EE011 part - 256 byte sector size. */
			rest_addr = 0x7f;
			sec_mask = 0x1ff80;
			break;
		case 0xc2: /* Macronix flash. */
			/* 64k sector size. */
			if (flash_id == 0x38 || flash_id == 0x4f) {
				rest_addr = 0xffff;
				sec_mask = 0x10000;
				break;
			}
			/* Fall through... */

		case 0x1f: /* Atmel flash. */
			/* 512k sector size. */
			if (flash_id == 0x13) {
				rest_addr = 0x7fffffff;
				sec_mask =   0x80000000;
				break;
			}
			/* Fall through... */

		case 0x01: /* AMD flash. */
			if (flash_id == 0x38 || flash_id == 0x40 ||
			    flash_id == 0x4f) {
				/* Am29LV081 part - 64kb sector size. */
				/* Am29LV002BT part - 64kb sector size. */
				rest_addr = 0xffff;
				sec_mask = 0x10000;
				break;
			} else if (flash_id == 0x3e) {
				/*
				 * Am29LV008b part - 64kb sector size with
				 * 32kb,8kb,8kb,16kb sector at memory address
				 * h0xf0000.
				 */
				rest_addr = 0xffff;
				sec_mask = 0x10000;
				break;
			} else if (flash_id == 0x20 || flash_id == 0x6e) {
				/*
				 * Am29LV010 part or AM29f010 - 16kb sector
				 * size.
				 */
				rest_addr = 0x3fff;
				sec_mask = 0x1c000;
				break;
			} else if (flash_id == 0x6d) {
				/* Am29LV001 part - 8kb sector size. */
				rest_addr = 0x1fff;
				sec_mask = 0x1e000;
				break;
			}
		default:
			/* Default to 16 kb sector size. */
			rest_addr = 0x3fff;
			sec_mask = 0x1c000;
			break;
		}

update_flash:
		if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
			if (qla2x00_erase_flash(ha, man_id, flash_id)) {
				rval = QLA_FUNCTION_FAILED;
				break;
			}
		}

		for (addr = offset, liter = 0; liter < length; liter++,
		    addr++) {
			data = buf[liter];
			/* Are we at the beginning of a sector? */
			if ((addr & rest_addr) == 0) {
				if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
					if (addr >= 0x10000UL) {
						if (((addr >> 12) & 0xf0) &&
						    ((man_id == 0x01 &&
							flash_id == 0x3e) ||
						     (man_id == 0x20 &&
							 flash_id == 0xd2))) {
							sec_number++;
							if (sec_number == 1) {
								rest_addr =
								    0x7fff;
								sec_mask =
								    0x18000;
							} else if (
							    sec_number == 2 ||
							    sec_number == 3) {
								rest_addr =
								    0x1fff;
								sec_mask =
								    0x1e000;
							} else if (
							    sec_number == 4) {
								rest_addr =
								    0x3fff;
								sec_mask =
								    0x1c000;
							}
						}
					}
				} else if (addr == ha->optrom_size / 2) {
					WRT_REG_WORD(&reg->nvram, NVR_SELECT);
					RD_REG_WORD(&reg->nvram);
				}

				if (flash_id == 0xda && man_id == 0xc1) {
					qla2x00_write_flash_byte(ha, 0x5555,
					    0xaa);
					qla2x00_write_flash_byte(ha, 0x2aaa,
					    0x55);
					qla2x00_write_flash_byte(ha, 0x5555,
					    0xa0);
				} else if (!IS_QLA2322(ha) && !IS_QLA6322(ha)) {
					/* Then erase it */
					if (qla2x00_erase_flash_sector(ha,
					    addr, sec_mask, man_id,
					    flash_id)) {
						rval = QLA_FUNCTION_FAILED;
						break;
					}
					if (man_id == 0x01 && flash_id == 0x6d)
						sec_number++;
				}
			}

			if (man_id == 0x01 && flash_id == 0x6d) {
				if (sec_number == 1 &&
				    addr == (rest_addr - 1)) {
					rest_addr = 0x0fff;
					sec_mask   = 0x1f000;
				} else if (sec_number == 3 && (addr & 0x7ffe)) {
					rest_addr = 0x3fff;
					sec_mask   = 0x1c000;
				}
			}

			if (qla2x00_program_flash_address(ha, addr, data,
			    man_id, flash_id)) {
				rval = QLA_FUNCTION_FAILED;
				break;
			}
2158
			cond_resched();
2159 2160 2161 2162 2163
		}
	} while (0);
	qla2x00_flash_disable(ha);

	/* Resume HBA. */
2164
	qla2x00_resume_hba(vha);
2165 2166 2167 2168 2169

	return rval;
}

uint8_t *
2170
qla24xx_read_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
2171 2172
    uint32_t offset, uint32_t length)
{
2173 2174
	struct qla_hw_data *ha = vha->hw;

2175
	/* Suspend HBA. */
2176
	scsi_block_requests(vha->host);
2177 2178 2179
	set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);

	/* Go with read. */
2180
	qla24xx_read_flash_data(vha, (uint32_t *)buf, offset >> 2, length >> 2);
2181 2182 2183

	/* Resume HBA. */
	clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2184
	scsi_unblock_requests(vha->host);
2185 2186 2187 2188 2189

	return buf;
}

int
2190
qla24xx_write_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
2191 2192 2193
    uint32_t offset, uint32_t length)
{
	int rval;
2194
	struct qla_hw_data *ha = vha->hw;
2195 2196

	/* Suspend HBA. */
2197
	scsi_block_requests(vha->host);
2198 2199 2200
	set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);

	/* Go with write. */
2201
	rval = qla24xx_write_flash_data(vha, (uint32_t *)buf, offset >> 2,
2202 2203 2204 2205
	    length >> 2);

	/* Resume HBA -- RISC reset needed. */
	clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2206 2207 2208 2209
	set_bit(ISP_ABORT_NEEDED, &vha->dpc_flags);
	qla2xxx_wake_dpc(vha);
	qla2x00_wait_for_hba_online(vha);
	scsi_unblock_requests(vha->host);
2210 2211 2212

	return rval;
}
2213

2214
uint8_t *
2215
qla25xx_read_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
2216 2217 2218 2219 2220 2221 2222
    uint32_t offset, uint32_t length)
{
	int rval;
	dma_addr_t optrom_dma;
	void *optrom;
	uint8_t *pbuf;
	uint32_t faddr, left, burst;
2223
	struct qla_hw_data *ha = vha->hw;
2224

2225
	if (offset & 0xfff)
2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247
		goto slow_read;
	if (length < OPTROM_BURST_SIZE)
		goto slow_read;

	optrom = dma_alloc_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE,
	    &optrom_dma, GFP_KERNEL);
	if (!optrom) {
		qla_printk(KERN_DEBUG, ha,
		    "Unable to allocate memory for optrom burst read "
		    "(%x KB).\n", OPTROM_BURST_SIZE / 1024);

		goto slow_read;
	}

	pbuf = buf;
	faddr = offset >> 2;
	left = length >> 2;
	burst = OPTROM_BURST_DWORDS;
	while (left != 0) {
		if (burst > left)
			burst = left;

2248
		rval = qla2x00_dump_ram(vha, optrom_dma,
2249 2250 2251 2252 2253
		    flash_data_to_access_addr(faddr), burst);
		if (rval) {
			qla_printk(KERN_WARNING, ha,
			    "Unable to burst-read optrom segment "
			    "(%x/%x/%llx).\n", rval,
A
Andrew Morton 已提交
2254 2255
			    flash_data_to_access_addr(faddr),
			    (unsigned long long)optrom_dma);
2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276
			qla_printk(KERN_WARNING, ha,
			    "Reverting to slow-read.\n");

			dma_free_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE,
			    optrom, optrom_dma);
			goto slow_read;
		}

		memcpy(pbuf, optrom, burst * 4);

		left -= burst;
		faddr += burst;
		pbuf += burst * 4;
	}

	dma_free_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE, optrom,
	    optrom_dma);

	return buf;

slow_read:
2277
    return qla24xx_read_optrom_data(vha, buf, offset, length);
2278 2279
}

2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298
/**
 * qla2x00_get_fcode_version() - Determine an FCODE image's version.
 * @ha: HA context
 * @pcids: Pointer to the FCODE PCI data structure
 *
 * The process of retrieving the FCODE version information is at best
 * described as interesting.
 *
 * Within the first 100h bytes of the image an ASCII string is present
 * which contains several pieces of information including the FCODE
 * version.  Unfortunately it seems the only reliable way to retrieve
 * the version is by scanning for another sentinel within the string,
 * the FCODE build date:
 *
 *	... 2.00.02 10/17/02 ...
 *
 * Returns QLA_SUCCESS on successful retrieval of version.
 */
static void
2299
qla2x00_get_fcode_version(struct qla_hw_data *ha, uint32_t pcids)
2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372
{
	int ret = QLA_FUNCTION_FAILED;
	uint32_t istart, iend, iter, vend;
	uint8_t do_next, rbyte, *vbyte;

	memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));

	/* Skip the PCI data structure. */
	istart = pcids +
	    ((qla2x00_read_flash_byte(ha, pcids + 0x0B) << 8) |
		qla2x00_read_flash_byte(ha, pcids + 0x0A));
	iend = istart + 0x100;
	do {
		/* Scan for the sentinel date string...eeewww. */
		do_next = 0;
		iter = istart;
		while ((iter < iend) && !do_next) {
			iter++;
			if (qla2x00_read_flash_byte(ha, iter) == '/') {
				if (qla2x00_read_flash_byte(ha, iter + 2) ==
				    '/')
					do_next++;
				else if (qla2x00_read_flash_byte(ha,
				    iter + 3) == '/')
					do_next++;
			}
		}
		if (!do_next)
			break;

		/* Backtrack to previous ' ' (space). */
		do_next = 0;
		while ((iter > istart) && !do_next) {
			iter--;
			if (qla2x00_read_flash_byte(ha, iter) == ' ')
				do_next++;
		}
		if (!do_next)
			break;

		/*
		 * Mark end of version tag, and find previous ' ' (space) or
		 * string length (recent FCODE images -- major hack ahead!!!).
		 */
		vend = iter - 1;
		do_next = 0;
		while ((iter > istart) && !do_next) {
			iter--;
			rbyte = qla2x00_read_flash_byte(ha, iter);
			if (rbyte == ' ' || rbyte == 0xd || rbyte == 0x10)
				do_next++;
		}
		if (!do_next)
			break;

		/* Mark beginning of version tag, and copy data. */
		iter++;
		if ((vend - iter) &&
		    ((vend - iter) < sizeof(ha->fcode_revision))) {
			vbyte = ha->fcode_revision;
			while (iter <= vend) {
				*vbyte++ = qla2x00_read_flash_byte(ha, iter);
				iter++;
			}
			ret = QLA_SUCCESS;
		}
	} while (0);

	if (ret != QLA_SUCCESS)
		memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
}

int
2373
qla2x00_get_flash_version(scsi_qla_host_t *vha, void *mbuf)
2374 2375 2376 2377 2378 2379
{
	int ret = QLA_SUCCESS;
	uint8_t code_type, last_image;
	uint32_t pcihdr, pcids;
	uint8_t *dbyte;
	uint16_t *dcode;
2380
	struct qla_hw_data *ha = vha->hw;
2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399

	if (!ha->pio_address || !mbuf)
		return QLA_FUNCTION_FAILED;

	memset(ha->bios_revision, 0, sizeof(ha->bios_revision));
	memset(ha->efi_revision, 0, sizeof(ha->efi_revision));
	memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
	memset(ha->fw_revision, 0, sizeof(ha->fw_revision));

	qla2x00_flash_enable(ha);

	/* Begin with first PCI expansion ROM header. */
	pcihdr = 0;
	last_image = 1;
	do {
		/* Verify PCI expansion ROM header. */
		if (qla2x00_read_flash_byte(ha, pcihdr) != 0x55 ||
		    qla2x00_read_flash_byte(ha, pcihdr + 0x01) != 0xaa) {
			/* No signature */
2400 2401
			DEBUG2(qla_printk(KERN_DEBUG, ha, "No matching ROM "
			    "signature.\n"));
2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416
			ret = QLA_FUNCTION_FAILED;
			break;
		}

		/* Locate PCI data structure. */
		pcids = pcihdr +
		    ((qla2x00_read_flash_byte(ha, pcihdr + 0x19) << 8) |
			qla2x00_read_flash_byte(ha, pcihdr + 0x18));

		/* Validate signature of PCI data structure. */
		if (qla2x00_read_flash_byte(ha, pcids) != 'P' ||
		    qla2x00_read_flash_byte(ha, pcids + 0x1) != 'C' ||
		    qla2x00_read_flash_byte(ha, pcids + 0x2) != 'I' ||
		    qla2x00_read_flash_byte(ha, pcids + 0x3) != 'R') {
			/* Incorrect header. */
2417 2418
			DEBUG2(qla_printk(KERN_INFO, ha, "PCI data struct not "
			    "found pcir_adr=%x.\n", pcids));
2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431
			ret = QLA_FUNCTION_FAILED;
			break;
		}

		/* Read version */
		code_type = qla2x00_read_flash_byte(ha, pcids + 0x14);
		switch (code_type) {
		case ROM_CODE_TYPE_BIOS:
			/* Intel x86, PC-AT compatible. */
			ha->bios_revision[0] =
			    qla2x00_read_flash_byte(ha, pcids + 0x12);
			ha->bios_revision[1] =
			    qla2x00_read_flash_byte(ha, pcids + 0x13);
2432
			DEBUG3(qla_printk(KERN_DEBUG, ha, "read BIOS %d.%d.\n",
2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445
			    ha->bios_revision[1], ha->bios_revision[0]));
			break;
		case ROM_CODE_TYPE_FCODE:
			/* Open Firmware standard for PCI (FCode). */
			/* Eeeewww... */
			qla2x00_get_fcode_version(ha, pcids);
			break;
		case ROM_CODE_TYPE_EFI:
			/* Extensible Firmware Interface (EFI). */
			ha->efi_revision[0] =
			    qla2x00_read_flash_byte(ha, pcids + 0x12);
			ha->efi_revision[1] =
			    qla2x00_read_flash_byte(ha, pcids + 0x13);
2446
			DEBUG3(qla_printk(KERN_DEBUG, ha, "read EFI %d.%d.\n",
2447 2448 2449
			    ha->efi_revision[1], ha->efi_revision[0]));
			break;
		default:
2450 2451
			DEBUG2(qla_printk(KERN_INFO, ha, "Unrecognized code "
			    "type %x at pcids %x.\n", code_type, pcids));
2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468
			break;
		}

		last_image = qla2x00_read_flash_byte(ha, pcids + 0x15) & BIT_7;

		/* Locate next PCI expansion ROM. */
		pcihdr += ((qla2x00_read_flash_byte(ha, pcids + 0x11) << 8) |
		    qla2x00_read_flash_byte(ha, pcids + 0x10)) * 512;
	} while (!last_image);

	if (IS_QLA2322(ha)) {
		/* Read firmware image information. */
		memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
		dbyte = mbuf;
		memset(dbyte, 0, 8);
		dcode = (uint16_t *)dbyte;

2469
		qla2x00_read_flash_data(ha, dbyte, ha->flt_region_fw * 4 + 10,
2470
		    8);
2471 2472
		DEBUG3(qla_printk(KERN_DEBUG, ha, "dumping fw ver from "
		    "flash:\n"));
2473 2474 2475 2476 2477 2478
		DEBUG3(qla2x00_dump_buffer((uint8_t *)dbyte, 8));

		if ((dcode[0] == 0xffff && dcode[1] == 0xffff &&
		    dcode[2] == 0xffff && dcode[3] == 0xffff) ||
		    (dcode[0] == 0 && dcode[1] == 0 && dcode[2] == 0 &&
		    dcode[3] == 0)) {
2479 2480
			DEBUG2(qla_printk(KERN_INFO, ha, "Unrecognized fw "
			    "revision at %x.\n", ha->flt_region_fw * 4));
2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494
		} else {
			/* values are in big endian */
			ha->fw_revision[0] = dbyte[0] << 16 | dbyte[1];
			ha->fw_revision[1] = dbyte[2] << 16 | dbyte[3];
			ha->fw_revision[2] = dbyte[4] << 16 | dbyte[5];
		}
	}

	qla2x00_flash_disable(ha);

	return ret;
}

int
2495
qla24xx_get_flash_version(scsi_qla_host_t *vha, void *mbuf)
2496 2497 2498 2499 2500 2501 2502
{
	int ret = QLA_SUCCESS;
	uint32_t pcihdr, pcids;
	uint32_t *dcode;
	uint8_t *bcode;
	uint8_t code_type, last_image;
	int i;
2503
	struct qla_hw_data *ha = vha->hw;
2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515

	if (!mbuf)
		return QLA_FUNCTION_FAILED;

	memset(ha->bios_revision, 0, sizeof(ha->bios_revision));
	memset(ha->efi_revision, 0, sizeof(ha->efi_revision));
	memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
	memset(ha->fw_revision, 0, sizeof(ha->fw_revision));

	dcode = mbuf;

	/* Begin with first PCI expansion ROM header. */
2516
	pcihdr = ha->flt_region_boot;
2517 2518 2519
	last_image = 1;
	do {
		/* Verify PCI expansion ROM header. */
2520
		qla24xx_read_flash_data(vha, dcode, pcihdr >> 2, 0x20);
2521 2522 2523
		bcode = mbuf + (pcihdr % 4);
		if (bcode[0x0] != 0x55 || bcode[0x1] != 0xaa) {
			/* No signature */
2524 2525
			DEBUG2(qla_printk(KERN_DEBUG, ha, "No matching ROM "
			    "signature.\n"));
2526 2527 2528 2529 2530 2531 2532
			ret = QLA_FUNCTION_FAILED;
			break;
		}

		/* Locate PCI data structure. */
		pcids = pcihdr + ((bcode[0x19] << 8) | bcode[0x18]);

2533
		qla24xx_read_flash_data(vha, dcode, pcids >> 2, 0x20);
2534 2535 2536 2537 2538 2539
		bcode = mbuf + (pcihdr % 4);

		/* Validate signature of PCI data structure. */
		if (bcode[0x0] != 'P' || bcode[0x1] != 'C' ||
		    bcode[0x2] != 'I' || bcode[0x3] != 'R') {
			/* Incorrect header. */
2540 2541
			DEBUG2(qla_printk(KERN_INFO, ha, "PCI data struct not "
			    "found pcir_adr=%x.\n", pcids));
2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552
			ret = QLA_FUNCTION_FAILED;
			break;
		}

		/* Read version */
		code_type = bcode[0x14];
		switch (code_type) {
		case ROM_CODE_TYPE_BIOS:
			/* Intel x86, PC-AT compatible. */
			ha->bios_revision[0] = bcode[0x12];
			ha->bios_revision[1] = bcode[0x13];
2553
			DEBUG3(qla_printk(KERN_DEBUG, ha, "read BIOS %d.%d.\n",
2554 2555 2556 2557 2558 2559
			    ha->bios_revision[1], ha->bios_revision[0]));
			break;
		case ROM_CODE_TYPE_FCODE:
			/* Open Firmware standard for PCI (FCode). */
			ha->fcode_revision[0] = bcode[0x12];
			ha->fcode_revision[1] = bcode[0x13];
2560
			DEBUG3(qla_printk(KERN_DEBUG, ha, "read FCODE %d.%d.\n",
2561 2562 2563 2564 2565 2566
			    ha->fcode_revision[1], ha->fcode_revision[0]));
			break;
		case ROM_CODE_TYPE_EFI:
			/* Extensible Firmware Interface (EFI). */
			ha->efi_revision[0] = bcode[0x12];
			ha->efi_revision[1] = bcode[0x13];
2567
			DEBUG3(qla_printk(KERN_DEBUG, ha, "read EFI %d.%d.\n",
2568 2569 2570
			    ha->efi_revision[1], ha->efi_revision[0]));
			break;
		default:
2571 2572
			DEBUG2(qla_printk(KERN_INFO, ha, "Unrecognized code "
			    "type %x at pcids %x.\n", code_type, pcids));
2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585
			break;
		}

		last_image = bcode[0x15] & BIT_7;

		/* Locate next PCI expansion ROM. */
		pcihdr += ((bcode[0x11] << 8) | bcode[0x10]) * 512;
	} while (!last_image);

	/* Read firmware image information. */
	memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
	dcode = mbuf;

2586
	qla24xx_read_flash_data(vha, dcode, ha->flt_region_fw + 4, 4);
2587 2588 2589 2590 2591 2592 2593
	for (i = 0; i < 4; i++)
		dcode[i] = be32_to_cpu(dcode[i]);

	if ((dcode[0] == 0xffffffff && dcode[1] == 0xffffffff &&
	    dcode[2] == 0xffffffff && dcode[3] == 0xffffffff) ||
	    (dcode[0] == 0 && dcode[1] == 0 && dcode[2] == 0 &&
	    dcode[3] == 0)) {
2594 2595
		DEBUG2(qla_printk(KERN_INFO, ha, "Unrecognized fw "
		    "revision at %x.\n", ha->flt_region_fw * 4));
2596 2597 2598 2599 2600 2601 2602 2603 2604
	} else {
		ha->fw_revision[0] = dcode[0];
		ha->fw_revision[1] = dcode[1];
		ha->fw_revision[2] = dcode[2];
		ha->fw_revision[3] = dcode[3];
	}

	return ret;
}
2605

2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623
static int
qla2xxx_is_vpd_valid(uint8_t *pos, uint8_t *end)
{
	if (pos >= end || *pos != 0x82)
		return 0;

	pos += 3 + pos[1];
	if (pos >= end || *pos != 0x90)
		return 0;

	pos += 3 + pos[1];
	if (pos >= end || *pos != 0x78)
		return 0;

	return 1;
}

int
2624
qla2xxx_get_vpd_field(scsi_qla_host_t *vha, char *key, char *str, size_t size)
2625
{
2626
	struct qla_hw_data *ha = vha->hw;
2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651
	uint8_t *pos = ha->vpd;
	uint8_t *end = pos + ha->vpd_size;
	int len = 0;

	if (!IS_FWI2_CAPABLE(ha) || !qla2xxx_is_vpd_valid(pos, end))
		return 0;

	while (pos < end && *pos != 0x78) {
		len = (*pos == 0x82) ? pos[1] : pos[2];

		if (!strncmp(pos, key, strlen(key)))
			break;

		if (*pos != 0x90 && *pos != 0x91)
			pos += len;

		pos += 3;
	}

	if (pos < end - len && *pos != 0x78)
		return snprintf(str, size, "%.*s", len, pos + 3);

	return 0;
}

2652
static int
2653
qla2xxx_hw_event_store(scsi_qla_host_t *vha, uint32_t *fdata)
2654 2655
{
	uint32_t d[2], faddr;
2656
	struct qla_hw_data *ha = vha->hw;
2657 2658 2659 2660

	/* Locate first empty entry. */
	for (;;) {
		if (ha->hw_event_ptr >=
2661
		    ha->flt_region_hw_event + FA_HW_EVENT_SIZE) {
2662 2663 2664 2665 2666
			DEBUG2(qla_printk(KERN_WARNING, ha,
			    "HW event -- Log Full!\n"));
			return QLA_MEMORY_ALLOC_FAILED;
		}

2667
		qla24xx_read_flash_data(vha, d, ha->hw_event_ptr, 2);
2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687
		faddr = flash_data_to_access_addr(ha->hw_event_ptr);
		ha->hw_event_ptr += FA_HW_EVENT_ENTRY_SIZE;
		if (d[0] == __constant_cpu_to_le32(0xffffffff) &&
		    d[1] == __constant_cpu_to_le32(0xffffffff)) {
			qla24xx_unprotect_flash(ha);

			qla24xx_write_flash_dword(ha, faddr++,
			    cpu_to_le32(jiffies));
			qla24xx_write_flash_dword(ha, faddr++, 0);
			qla24xx_write_flash_dword(ha, faddr++, *fdata++);
			qla24xx_write_flash_dword(ha, faddr++, *fdata);

			qla24xx_protect_flash(ha);
			break;
		}
	}
	return QLA_SUCCESS;
}

int
2688
qla2xxx_hw_event_log(scsi_qla_host_t *vha, uint16_t code, uint16_t d1,
2689 2690 2691 2692
    uint16_t d2, uint16_t d3)
{
#define QMARK(a, b, c, d) \
    cpu_to_le32(LSB(a) << 24 | LSB(b) << 16 | LSB(c) << 8 | LSB(d))
2693
	struct qla_hw_data *ha = vha->hw;
2694 2695 2696
	int rval;
	uint32_t marker[2], fdata[4];

2697
	if (ha->flt_region_hw_event == 0)
2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711
		return QLA_FUNCTION_FAILED;

	DEBUG2(qla_printk(KERN_WARNING, ha,
	    "HW event -- code=%x, d1=%x, d2=%x, d3=%x.\n", code, d1, d2, d3));

	/* If marker not already found, locate or write.  */
	if (!ha->flags.hw_event_marker_found) {
		/* Create marker. */
		marker[0] = QMARK('L', ha->fw_major_version,
		    ha->fw_minor_version, ha->fw_subminor_version);
		marker[1] = QMARK(QLA_DRIVER_MAJOR_VER, QLA_DRIVER_MINOR_VER,
		    QLA_DRIVER_PATCH_VER, QLA_DRIVER_BETA_VER);

		/* Locate marker. */
2712
		ha->hw_event_ptr = ha->flt_region_hw_event;
2713
		for (;;) {
2714
			qla24xx_read_flash_data(vha, fdata, ha->hw_event_ptr,
2715 2716 2717 2718 2719 2720
			    4);
			if (fdata[0] == __constant_cpu_to_le32(0xffffffff) &&
			    fdata[1] == __constant_cpu_to_le32(0xffffffff))
				break;
			ha->hw_event_ptr += FA_HW_EVENT_ENTRY_SIZE;
			if (ha->hw_event_ptr >=
2721
			    ha->flt_region_hw_event + FA_HW_EVENT_SIZE) {
2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732
				DEBUG2(qla_printk(KERN_WARNING, ha,
				    "HW event -- Log Full!\n"));
				return QLA_MEMORY_ALLOC_FAILED;
			}
			if (fdata[2] == marker[0] && fdata[3] == marker[1]) {
				ha->flags.hw_event_marker_found = 1;
				break;
			}
		}
		/* No marker, write it. */
		if (!ha->flags.hw_event_marker_found) {
2733
			rval = qla2xxx_hw_event_store(vha, marker);
2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746
			if (rval != QLA_SUCCESS) {
				DEBUG2(qla_printk(KERN_WARNING, ha,
				    "HW event -- Failed marker write=%x.!\n",
				    rval));
				return rval;
			}
			ha->flags.hw_event_marker_found = 1;
		}
	}

	/* Store error.  */
	fdata[0] = cpu_to_le32(code << 16 | d1);
	fdata[1] = cpu_to_le32(d2 << 16 | d3);
2747
	rval = qla2xxx_hw_event_store(vha, fdata);
2748 2749 2750 2751 2752 2753 2754 2755
	if (rval != QLA_SUCCESS) {
		DEBUG2(qla_printk(KERN_WARNING, ha,
		    "HW event -- Failed error write=%x.!\n",
		    rval));
	}

	return rval;
}