amd64_edac.c 73.1 KB
Newer Older
1
#include "amd64_edac.h"
2
#include <asm/amd_nb.h>
3 4 5 6 7 8 9 10 11 12 13 14 15

static struct edac_pci_ctl_info *amd64_ctl_pci;

static int report_gart_errors;
module_param(report_gart_errors, int, 0644);

/*
 * Set by command line parameter. If BIOS has enabled the ECC, this override is
 * cleared to prevent re-enabling the hardware by this driver.
 */
static int ecc_enable_override;
module_param(ecc_enable_override, int, 0644);

16
static struct msr __percpu *msrs;
17

18 19 20 21 22
/*
 * count successfully initialized driver instances for setup_pci_device()
 */
static atomic_t drv_instances = ATOMIC_INIT(0);

23 24
/* Per-node driver instances */
static struct mem_ctl_info **mcis;
25
static struct ecc_settings **ecc_stngs;
26

27 28 29 30 31 32 33
/*
 * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
 * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
 * or higher value'.
 *
 *FIXME: Produce a better mapping/linearisation.
 */
34 35 36 37
struct scrubrate {
       u32 scrubval;           /* bit pattern for scrub rate */
       u32 bandwidth;          /* bandwidth consumed (bytes/sec) */
} scrubrates[] = {
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
	{ 0x01, 1600000000UL},
	{ 0x02, 800000000UL},
	{ 0x03, 400000000UL},
	{ 0x04, 200000000UL},
	{ 0x05, 100000000UL},
	{ 0x06, 50000000UL},
	{ 0x07, 25000000UL},
	{ 0x08, 12284069UL},
	{ 0x09, 6274509UL},
	{ 0x0A, 3121951UL},
	{ 0x0B, 1560975UL},
	{ 0x0C, 781440UL},
	{ 0x0D, 390720UL},
	{ 0x0E, 195300UL},
	{ 0x0F, 97650UL},
	{ 0x10, 48854UL},
	{ 0x11, 24427UL},
	{ 0x12, 12213UL},
	{ 0x13, 6101UL},
	{ 0x14, 3051UL},
	{ 0x15, 1523UL},
	{ 0x16, 761UL},
	{ 0x00, 0UL},        /* scrubbing off */
};

63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
static int __amd64_read_pci_cfg_dword(struct pci_dev *pdev, int offset,
				      u32 *val, const char *func)
{
	int err = 0;

	err = pci_read_config_dword(pdev, offset, val);
	if (err)
		amd64_warn("%s: error reading F%dx%03x.\n",
			   func, PCI_FUNC(pdev->devfn), offset);

	return err;
}

int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset,
				u32 val, const char *func)
{
	int err = 0;

	err = pci_write_config_dword(pdev, offset, val);
	if (err)
		amd64_warn("%s: error writing to F%dx%03x.\n",
			   func, PCI_FUNC(pdev->devfn), offset);

	return err;
}

/*
 *
 * Depending on the family, F2 DCT reads need special handling:
 *
 * K8: has a single DCT only
 *
 * F10h: each DCT has its own set of regs
 *	DCT0 -> F2x040..
 *	DCT1 -> F2x140..
 *
 * F15h: we select which DCT we access using F1x10C[DctCfgSel]
 *
 */
static int k8_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
			       const char *func)
{
	if (addr >= 0x100)
		return -EINVAL;

	return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
}

static int f10_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
				 const char *func)
{
	return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
}

117 118 119 120 121 122 123 124 125 126 127 128 129
/*
 * Select DCT to which PCI cfg accesses are routed
 */
static void f15h_select_dct(struct amd64_pvt *pvt, u8 dct)
{
	u32 reg = 0;

	amd64_read_pci_cfg(pvt->F1, DCT_CFG_SEL, &reg);
	reg &= 0xfffffffe;
	reg |= dct;
	amd64_write_pci_cfg(pvt->F1, DCT_CFG_SEL, reg);
}

130 131 132 133 134 135 136 137 138 139
static int f15_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
				 const char *func)
{
	u8 dct  = 0;

	if (addr >= 0x140 && addr <= 0x1a0) {
		dct   = 1;
		addr -= 0x100;
	}

140
	f15h_select_dct(pvt, dct);
141 142 143 144

	return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
}

145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
/*
 * Memory scrubber control interface. For K8, memory scrubbing is handled by
 * hardware and can involve L2 cache, dcache as well as the main memory. With
 * F10, this is extended to L3 cache scrubbing on CPU models sporting that
 * functionality.
 *
 * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
 * (dram) over to cache lines. This is nasty, so we will use bandwidth in
 * bytes/sec for the setting.
 *
 * Currently, we only do dram scrubbing. If the scrubbing is done in software on
 * other archs, we might not have access to the caches directly.
 */

/*
 * scan the scrub rate mapping table for a close or matching bandwidth value to
 * issue. If requested is too big, then use last maximum value found.
 */
163
static int __amd64_set_scrub_rate(struct pci_dev *ctl, u32 new_bw, u32 min_rate)
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
{
	u32 scrubval;
	int i;

	/*
	 * map the configured rate (new_bw) to a value specific to the AMD64
	 * memory controller and apply to register. Search for the first
	 * bandwidth entry that is greater or equal than the setting requested
	 * and program that. If at last entry, turn off DRAM scrubbing.
	 */
	for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
		/*
		 * skip scrub rates which aren't recommended
		 * (see F10 BKDG, F3x58)
		 */
179
		if (scrubrates[i].scrubval < min_rate)
180 181 182 183 184 185 186 187 188 189 190 191 192 193
			continue;

		if (scrubrates[i].bandwidth <= new_bw)
			break;

		/*
		 * if no suitable bandwidth found, turn off DRAM scrubbing
		 * entirely by falling back to the last element in the
		 * scrubrates array.
		 */
	}

	scrubval = scrubrates[i].scrubval;

194
	pci_write_bits32(ctl, SCRCTRL, scrubval, 0x001F);
195

196 197 198
	if (scrubval)
		return scrubrates[i].bandwidth;

199 200 201
	return 0;
}

202
static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 bw)
203 204
{
	struct amd64_pvt *pvt = mci->pvt_info;
205
	u32 min_scrubrate = 0x5;
206

207 208 209
	if (boot_cpu_data.x86 == 0xf)
		min_scrubrate = 0x0;

210 211 212 213
	/* F15h Erratum #505 */
	if (boot_cpu_data.x86 == 0x15)
		f15h_select_dct(pvt, 0);

214
	return __amd64_set_scrub_rate(pvt->F3, bw, min_scrubrate);
215 216
}

217
static int amd64_get_scrub_rate(struct mem_ctl_info *mci)
218 219 220
{
	struct amd64_pvt *pvt = mci->pvt_info;
	u32 scrubval = 0;
221
	int i, retval = -EINVAL;
222

223 224 225 226
	/* F15h Erratum #505 */
	if (boot_cpu_data.x86 == 0x15)
		f15h_select_dct(pvt, 0);

227
	amd64_read_pci_cfg(pvt->F3, SCRCTRL, &scrubval);
228 229 230

	scrubval = scrubval & 0x001F;

231
	for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
232
		if (scrubrates[i].scrubval == scrubval) {
233
			retval = scrubrates[i].bandwidth;
234 235 236
			break;
		}
	}
237
	return retval;
238 239
}

240
/*
241 242
 * returns true if the SysAddr given by sys_addr matches the
 * DRAM base/limit associated with node_id
243
 */
244 245
static bool amd64_base_limit_match(struct amd64_pvt *pvt, u64 sys_addr,
				   unsigned nid)
246
{
247
	u64 addr;
248 249 250 251 252 253 254 255 256

	/* The K8 treats this as a 40-bit value.  However, bits 63-40 will be
	 * all ones if the most significant implemented address bit is 1.
	 * Here we discard bits 63-40.  See section 3.4.2 of AMD publication
	 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
	 * Application Programming.
	 */
	addr = sys_addr & 0x000000ffffffffffull;

257 258
	return ((addr >= get_dram_base(pvt, nid)) &&
		(addr <= get_dram_limit(pvt, nid)));
259 260 261 262 263 264 265 266 267 268 269 270
}

/*
 * Attempt to map a SysAddr to a node. On success, return a pointer to the
 * mem_ctl_info structure for the node that the SysAddr maps to.
 *
 * On failure, return NULL.
 */
static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
						u64 sys_addr)
{
	struct amd64_pvt *pvt;
271
	unsigned node_id;
272 273 274 275 276 277 278 279 280 281 282 283 284
	u32 intlv_en, bits;

	/*
	 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
	 * 3.4.4.2) registers to map the SysAddr to a node ID.
	 */
	pvt = mci->pvt_info;

	/*
	 * The value of this field should be the same for all DRAM Base
	 * registers.  Therefore we arbitrarily choose to read it from the
	 * register for node 0.
	 */
285
	intlv_en = dram_intlv_en(pvt, 0);
286 287

	if (intlv_en == 0) {
288
		for (node_id = 0; node_id < DRAM_RANGES; node_id++) {
289
			if (amd64_base_limit_match(pvt, sys_addr, node_id))
290
				goto found;
291
		}
292
		goto err_no_match;
293 294
	}

295 296 297
	if (unlikely((intlv_en != 0x01) &&
		     (intlv_en != 0x03) &&
		     (intlv_en != 0x07))) {
298
		amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en);
299 300 301 302 303 304
		return NULL;
	}

	bits = (((u32) sys_addr) >> 12) & intlv_en;

	for (node_id = 0; ; ) {
305
		if ((dram_intlv_sel(pvt, node_id) & intlv_en) == bits)
306 307
			break;	/* intlv_sel field matches */

308
		if (++node_id >= DRAM_RANGES)
309 310 311 312 313
			goto err_no_match;
	}

	/* sanity test for sys_addr */
	if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) {
314 315 316
		amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address"
			   "range for node %d with node interleaving enabled.\n",
			   __func__, sys_addr, node_id);
317 318 319 320
		return NULL;
	}

found:
321
	return edac_mc_find((int)node_id);
322 323 324 325 326 327 328

err_no_match:
	debugf2("sys_addr 0x%lx doesn't match any node\n",
		(unsigned long)sys_addr);

	return NULL;
}
329 330

/*
331 332
 * compute the CS base address of the @csrow on the DRAM controller @dct.
 * For details see F2x[5C:40] in the processor's BKDG
333
 */
334 335
static void get_cs_base_and_mask(struct amd64_pvt *pvt, int csrow, u8 dct,
				 u64 *base, u64 *mask)
336
{
337 338
	u64 csbase, csmask, base_bits, mask_bits;
	u8 addr_shift;
339

340 341 342 343 344 345 346 347 348 349
	if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
		csbase		= pvt->csels[dct].csbases[csrow];
		csmask		= pvt->csels[dct].csmasks[csrow];
		base_bits	= GENMASK(21, 31) | GENMASK(9, 15);
		mask_bits	= GENMASK(21, 29) | GENMASK(9, 15);
		addr_shift	= 4;
	} else {
		csbase		= pvt->csels[dct].csbases[csrow];
		csmask		= pvt->csels[dct].csmasks[csrow >> 1];
		addr_shift	= 8;
350

351 352 353 354 355
		if (boot_cpu_data.x86 == 0x15)
			base_bits = mask_bits = GENMASK(19,30) | GENMASK(5,13);
		else
			base_bits = mask_bits = GENMASK(19,28) | GENMASK(5,13);
	}
356

357
	*base  = (csbase & base_bits) << addr_shift;
358

359 360 361 362 363
	*mask  = ~0ULL;
	/* poke holes for the csmask */
	*mask &= ~(mask_bits << addr_shift);
	/* OR them in */
	*mask |= (csmask & mask_bits) << addr_shift;
364 365
}

366 367 368
#define for_each_chip_select(i, dct, pvt) \
	for (i = 0; i < pvt->csels[dct].b_cnt; i++)

369 370 371
#define chip_select_base(i, dct, pvt) \
	pvt->csels[dct].csbases[i]

372 373 374
#define for_each_chip_select_mask(i, dct, pvt) \
	for (i = 0; i < pvt->csels[dct].m_cnt; i++)

375 376 377 378 379 380 381 382 383 384 385 386
/*
 * @input_addr is an InputAddr associated with the node given by mci. Return the
 * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
 */
static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
{
	struct amd64_pvt *pvt;
	int csrow;
	u64 base, mask;

	pvt = mci->pvt_info;

387 388
	for_each_chip_select(csrow, 0, pvt) {
		if (!csrow_enabled(csrow, 0, pvt))
389 390
			continue;

391 392 393
		get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);

		mask = ~mask;
394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431

		if ((input_addr & mask) == (base & mask)) {
			debugf2("InputAddr 0x%lx matches csrow %d (node %d)\n",
				(unsigned long)input_addr, csrow,
				pvt->mc_node_id);

			return csrow;
		}
	}
	debugf2("no matching csrow for InputAddr 0x%lx (MC node %d)\n",
		(unsigned long)input_addr, pvt->mc_node_id);

	return -1;
}

/*
 * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
 * for the node represented by mci. Info is passed back in *hole_base,
 * *hole_offset, and *hole_size.  Function returns 0 if info is valid or 1 if
 * info is invalid. Info may be invalid for either of the following reasons:
 *
 * - The revision of the node is not E or greater.  In this case, the DRAM Hole
 *   Address Register does not exist.
 *
 * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
 *   indicating that its contents are not valid.
 *
 * The values passed back in *hole_base, *hole_offset, and *hole_size are
 * complete 32-bit values despite the fact that the bitfields in the DHAR
 * only represent bits 31-24 of the base and offset values.
 */
int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
			     u64 *hole_offset, u64 *hole_size)
{
	struct amd64_pvt *pvt = mci->pvt_info;
	u64 base;

	/* only revE and later have the DRAM Hole Address Register */
432
	if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_E) {
433 434 435 436 437
		debugf1("  revision %d for node %d does not support DHAR\n",
			pvt->ext_model, pvt->mc_node_id);
		return 1;
	}

438
	/* valid for Fam10h and above */
439
	if (boot_cpu_data.x86 >= 0x10 && !dhar_mem_hoist_valid(pvt)) {
440 441 442 443
		debugf1("  Dram Memory Hoisting is DISABLED on this system\n");
		return 1;
	}

444
	if (!dhar_valid(pvt)) {
445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
		debugf1("  Dram Memory Hoisting is DISABLED on this node %d\n",
			pvt->mc_node_id);
		return 1;
	}

	/* This node has Memory Hoisting */

	/* +------------------+--------------------+--------------------+-----
	 * | memory           | DRAM hole          | relocated          |
	 * | [0, (x - 1)]     | [x, 0xffffffff]    | addresses from     |
	 * |                  |                    | DRAM hole          |
	 * |                  |                    | [0x100000000,      |
	 * |                  |                    |  (0x100000000+     |
	 * |                  |                    |   (0xffffffff-x))] |
	 * +------------------+--------------------+--------------------+-----
	 *
	 * Above is a diagram of physical memory showing the DRAM hole and the
	 * relocated addresses from the DRAM hole.  As shown, the DRAM hole
	 * starts at address x (the base address) and extends through address
	 * 0xffffffff.  The DRAM Hole Address Register (DHAR) relocates the
	 * addresses in the hole so that they start at 0x100000000.
	 */

468
	base = dhar_base(pvt);
469 470 471 472 473

	*hole_base = base;
	*hole_size = (0x1ull << 32) - base;

	if (boot_cpu_data.x86 > 0xf)
474
		*hole_offset = f10_dhar_offset(pvt);
475
	else
476
		*hole_offset = k8_dhar_offset(pvt);
477 478 479 480 481 482 483 484 485

	debugf1("  DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
		pvt->mc_node_id, (unsigned long)*hole_base,
		(unsigned long)*hole_offset, (unsigned long)*hole_size);

	return 0;
}
EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);

486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
/*
 * Return the DramAddr that the SysAddr given by @sys_addr maps to.  It is
 * assumed that sys_addr maps to the node given by mci.
 *
 * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
 * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
 * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
 * then it is also involved in translating a SysAddr to a DramAddr. Sections
 * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
 * These parts of the documentation are unclear. I interpret them as follows:
 *
 * When node n receives a SysAddr, it processes the SysAddr as follows:
 *
 * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
 *    Limit registers for node n. If the SysAddr is not within the range
 *    specified by the base and limit values, then node n ignores the Sysaddr
 *    (since it does not map to node n). Otherwise continue to step 2 below.
 *
 * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
 *    disabled so skip to step 3 below. Otherwise see if the SysAddr is within
 *    the range of relocated addresses (starting at 0x100000000) from the DRAM
 *    hole. If not, skip to step 3 below. Else get the value of the
 *    DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
 *    offset defined by this value from the SysAddr.
 *
 * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
 *    Base register for node n. To obtain the DramAddr, subtract the base
 *    address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
 */
static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
{
517
	struct amd64_pvt *pvt = mci->pvt_info;
518 519 520
	u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
	int ret = 0;

521
	dram_base = get_dram_base(pvt, pvt->mc_node_id);
522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548

	ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
				      &hole_size);
	if (!ret) {
		if ((sys_addr >= (1ull << 32)) &&
		    (sys_addr < ((1ull << 32) + hole_size))) {
			/* use DHAR to translate SysAddr to DramAddr */
			dram_addr = sys_addr - hole_offset;

			debugf2("using DHAR to translate SysAddr 0x%lx to "
				"DramAddr 0x%lx\n",
				(unsigned long)sys_addr,
				(unsigned long)dram_addr);

			return dram_addr;
		}
	}

	/*
	 * Translate the SysAddr to a DramAddr as shown near the start of
	 * section 3.4.4 (p. 70).  Although sys_addr is a 64-bit value, the k8
	 * only deals with 40-bit values.  Therefore we discard bits 63-40 of
	 * sys_addr below.  If bit 39 of sys_addr is 1 then the bits we
	 * discard are all 1s.  Otherwise the bits we discard are all 0s.  See
	 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
	 * Programmer's Manual Volume 1 Application Programming.
	 */
549
	dram_addr = (sys_addr & GENMASK(0, 39)) - dram_base;
550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584

	debugf2("using DRAM Base register to translate SysAddr 0x%lx to "
		"DramAddr 0x%lx\n", (unsigned long)sys_addr,
		(unsigned long)dram_addr);
	return dram_addr;
}

/*
 * @intlv_en is the value of the IntlvEn field from a DRAM Base register
 * (section 3.4.4.1).  Return the number of bits from a SysAddr that are used
 * for node interleaving.
 */
static int num_node_interleave_bits(unsigned intlv_en)
{
	static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
	int n;

	BUG_ON(intlv_en > 7);
	n = intlv_shift_table[intlv_en];
	return n;
}

/* Translate the DramAddr given by @dram_addr to an InputAddr. */
static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
{
	struct amd64_pvt *pvt;
	int intlv_shift;
	u64 input_addr;

	pvt = mci->pvt_info;

	/*
	 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
	 * concerning translating a DramAddr to an InputAddr.
	 */
585
	intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
586 587
	input_addr = ((dram_addr >> intlv_shift) & GENMASK(12, 35)) +
		      (dram_addr & 0xfff);
588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620

	debugf2("  Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
		intlv_shift, (unsigned long)dram_addr,
		(unsigned long)input_addr);

	return input_addr;
}

/*
 * Translate the SysAddr represented by @sys_addr to an InputAddr.  It is
 * assumed that @sys_addr maps to the node given by mci.
 */
static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
{
	u64 input_addr;

	input_addr =
	    dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));

	debugf2("SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
		(unsigned long)sys_addr, (unsigned long)input_addr);

	return input_addr;
}


/*
 * @input_addr is an InputAddr associated with the node represented by mci.
 * Translate @input_addr to a DramAddr and return the result.
 */
static u64 input_addr_to_dram_addr(struct mem_ctl_info *mci, u64 input_addr)
{
	struct amd64_pvt *pvt;
621
	unsigned node_id, intlv_shift;
622 623 624 625 626 627 628 629 630 631 632 633 634
	u64 bits, dram_addr;
	u32 intlv_sel;

	/*
	 * Near the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
	 * shows how to translate a DramAddr to an InputAddr. Here we reverse
	 * this procedure. When translating from a DramAddr to an InputAddr, the
	 * bits used for node interleaving are discarded.  Here we recover these
	 * bits from the IntlvSel field of the DRAM Limit register (section
	 * 3.4.4.2) for the node that input_addr is associated with.
	 */
	pvt = mci->pvt_info;
	node_id = pvt->mc_node_id;
635 636

	BUG_ON(node_id > 7);
637

638
	intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
639 640 641 642 643 644 645
	if (intlv_shift == 0) {
		debugf1("    InputAddr 0x%lx translates to DramAddr of "
			"same value\n",	(unsigned long)input_addr);

		return input_addr;
	}

646 647
	bits = ((input_addr & GENMASK(12, 35)) << intlv_shift) +
		(input_addr & 0xfff);
648

649
	intlv_sel = dram_intlv_sel(pvt, node_id) & ((1 << intlv_shift) - 1);
650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665
	dram_addr = bits + (intlv_sel << 12);

	debugf1("InputAddr 0x%lx translates to DramAddr 0x%lx "
		"(%d node interleave bits)\n", (unsigned long)input_addr,
		(unsigned long)dram_addr, intlv_shift);

	return dram_addr;
}

/*
 * @dram_addr is a DramAddr that maps to the node represented by mci. Convert
 * @dram_addr to a SysAddr.
 */
static u64 dram_addr_to_sys_addr(struct mem_ctl_info *mci, u64 dram_addr)
{
	struct amd64_pvt *pvt = mci->pvt_info;
666
	u64 hole_base, hole_offset, hole_size, base, sys_addr;
667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683
	int ret = 0;

	ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
				      &hole_size);
	if (!ret) {
		if ((dram_addr >= hole_base) &&
		    (dram_addr < (hole_base + hole_size))) {
			sys_addr = dram_addr + hole_offset;

			debugf1("using DHAR to translate DramAddr 0x%lx to "
				"SysAddr 0x%lx\n", (unsigned long)dram_addr,
				(unsigned long)sys_addr);

			return sys_addr;
		}
	}

684
	base     = get_dram_base(pvt, pvt->mc_node_id);
685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740
	sys_addr = dram_addr + base;

	/*
	 * The sys_addr we have computed up to this point is a 40-bit value
	 * because the k8 deals with 40-bit values.  However, the value we are
	 * supposed to return is a full 64-bit physical address.  The AMD
	 * x86-64 architecture specifies that the most significant implemented
	 * address bit through bit 63 of a physical address must be either all
	 * 0s or all 1s.  Therefore we sign-extend the 40-bit sys_addr to a
	 * 64-bit value below.  See section 3.4.2 of AMD publication 24592:
	 * AMD x86-64 Architecture Programmer's Manual Volume 1 Application
	 * Programming.
	 */
	sys_addr |= ~((sys_addr & (1ull << 39)) - 1);

	debugf1("    Node %d, DramAddr 0x%lx to SysAddr 0x%lx\n",
		pvt->mc_node_id, (unsigned long)dram_addr,
		(unsigned long)sys_addr);

	return sys_addr;
}

/*
 * @input_addr is an InputAddr associated with the node given by mci. Translate
 * @input_addr to a SysAddr.
 */
static inline u64 input_addr_to_sys_addr(struct mem_ctl_info *mci,
					 u64 input_addr)
{
	return dram_addr_to_sys_addr(mci,
				     input_addr_to_dram_addr(mci, input_addr));
}

/* Map the Error address to a PAGE and PAGE OFFSET. */
static inline void error_address_to_page_and_offset(u64 error_address,
						    u32 *page, u32 *offset)
{
	*page = (u32) (error_address >> PAGE_SHIFT);
	*offset = ((u32) error_address) & ~PAGE_MASK;
}

/*
 * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
 * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
 * of a node that detected an ECC memory error.  mci represents the node that
 * the error address maps to (possibly different from the node that detected
 * the error).  Return the number of the csrow that sys_addr maps to, or -1 on
 * error.
 */
static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
{
	int csrow;

	csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));

	if (csrow == -1)
741 742
		amd64_mc_err(mci, "Failed to translate InputAddr to csrow for "
				  "address 0x%lx\n", (unsigned long)sys_addr);
743 744
	return csrow;
}
745

746
static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
747 748 749 750 751

/*
 * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
 * are ECC capable.
 */
752
static unsigned long amd64_determine_edac_cap(struct amd64_pvt *pvt)
753
{
754
	u8 bit;
755
	unsigned long edac_cap = EDAC_FLAG_NONE;
756

757
	bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= K8_REV_F)
758 759 760
		? 19
		: 17;

761
	if (pvt->dclr0 & BIT(bit))
762 763 764 765 766
		edac_cap = EDAC_FLAG_SECDED;

	return edac_cap;
}

767
static void amd64_debug_display_dimm_sizes(struct amd64_pvt *, u8);
768

769 770 771 772 773 774 775 776 777 778 779
static void amd64_dump_dramcfg_low(u32 dclr, int chan)
{
	debugf1("F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);

	debugf1("  DIMM type: %sbuffered; all DIMMs support ECC: %s\n",
		(dclr & BIT(16)) ?  "un" : "",
		(dclr & BIT(19)) ? "yes" : "no");

	debugf1("  PAR/ERR parity: %s\n",
		(dclr & BIT(8)) ?  "enabled" : "disabled");

780 781 782
	if (boot_cpu_data.x86 == 0x10)
		debugf1("  DCT 128bit mode width: %s\n",
			(dclr & BIT(11)) ?  "128b" : "64b");
783 784 785 786 787 788 789 790

	debugf1("  x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
		(dclr & BIT(12)) ?  "yes" : "no",
		(dclr & BIT(13)) ?  "yes" : "no",
		(dclr & BIT(14)) ?  "yes" : "no",
		(dclr & BIT(15)) ?  "yes" : "no");
}

791
/* Display and decode various NB registers for debug purposes. */
792
static void dump_misc_regs(struct amd64_pvt *pvt)
793
{
794 795 796
	debugf1("F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);

	debugf1("  NB two channel DRAM capable: %s\n",
797
		(pvt->nbcap & NBCAP_DCT_DUAL) ? "yes" : "no");
798

799
	debugf1("  ECC capable: %s, ChipKill ECC capable: %s\n",
800 801
		(pvt->nbcap & NBCAP_SECDED) ? "yes" : "no",
		(pvt->nbcap & NBCAP_CHIPKILL) ? "yes" : "no");
802 803

	amd64_dump_dramcfg_low(pvt->dclr0, 0);
804

805
	debugf1("F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
806

807 808
	debugf1("F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, "
			"offset: 0x%08x\n",
809 810 811
			pvt->dhar, dhar_base(pvt),
			(boot_cpu_data.x86 == 0xf) ? k8_dhar_offset(pvt)
						   : f10_dhar_offset(pvt));
812

813
	debugf1("  DramHoleValid: %s\n", dhar_valid(pvt) ? "yes" : "no");
814

815
	amd64_debug_display_dimm_sizes(pvt, 0);
816

817
	/* everything below this point is Fam10h and above */
818
	if (boot_cpu_data.x86 == 0xf)
819
		return;
820

821
	amd64_debug_display_dimm_sizes(pvt, 1);
822

823
	amd64_info("using %s syndromes.\n", ((pvt->ecc_sym_sz == 8) ? "x8" : "x4"));
824

825
	/* Only if NOT ganged does dclr1 have valid info */
826 827
	if (!dct_ganging_enabled(pvt))
		amd64_dump_dramcfg_low(pvt->dclr1, 1);
828 829
}

830
/*
831
 * see BKDG, F2x[1,0][5C:40], F2[1,0][6C:60]
832
 */
833
static void prep_chip_selects(struct amd64_pvt *pvt)
834
{
835
	if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
836 837
		pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
		pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 8;
838
	} else {
839 840
		pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
		pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 4;
841 842 843 844
	}
}

/*
845
 * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask registers
846
 */
847
static void read_dct_base_mask(struct amd64_pvt *pvt)
848
{
849
	int cs;
850

851
	prep_chip_selects(pvt);
852

853
	for_each_chip_select(cs, 0, pvt) {
854 855
		int reg0   = DCSB0 + (cs * 4);
		int reg1   = DCSB1 + (cs * 4);
856 857
		u32 *base0 = &pvt->csels[0].csbases[cs];
		u32 *base1 = &pvt->csels[1].csbases[cs];
858

859
		if (!amd64_read_dct_pci_cfg(pvt, reg0, base0))
860
			debugf0("  DCSB0[%d]=0x%08x reg: F2x%x\n",
861
				cs, *base0, reg0);
862

863 864
		if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt))
			continue;
865

866 867 868
		if (!amd64_read_dct_pci_cfg(pvt, reg1, base1))
			debugf0("  DCSB1[%d]=0x%08x reg: F2x%x\n",
				cs, *base1, reg1);
869 870
	}

871
	for_each_chip_select_mask(cs, 0, pvt) {
872 873
		int reg0   = DCSM0 + (cs * 4);
		int reg1   = DCSM1 + (cs * 4);
874 875
		u32 *mask0 = &pvt->csels[0].csmasks[cs];
		u32 *mask1 = &pvt->csels[1].csmasks[cs];
876

877
		if (!amd64_read_dct_pci_cfg(pvt, reg0, mask0))
878
			debugf0("    DCSM0[%d]=0x%08x reg: F2x%x\n",
879
				cs, *mask0, reg0);
880

881 882
		if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt))
			continue;
883

884 885 886
		if (!amd64_read_dct_pci_cfg(pvt, reg1, mask1))
			debugf0("    DCSM1[%d]=0x%08x reg: F2x%x\n",
				cs, *mask1, reg1);
887 888 889
	}
}

890
static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt, int cs)
891 892 893
{
	enum mem_type type;

894 895 896 897
	/* F15h supports only DDR3 */
	if (boot_cpu_data.x86 >= 0x15)
		type = (pvt->dclr0 & BIT(16)) ?	MEM_DDR3 : MEM_RDDR3;
	else if (boot_cpu_data.x86 == 0x10 || pvt->ext_model >= K8_REV_F) {
898 899 900 901
		if (pvt->dchr0 & DDR3_MODE)
			type = (pvt->dclr0 & BIT(16)) ?	MEM_DDR3 : MEM_RDDR3;
		else
			type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
902 903 904 905
	} else {
		type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
	}

906
	amd64_info("CS%d: %s\n", cs, edac_mem_types[type]);
907 908 909 910

	return type;
}

911
/* Get the number of DCT channels the memory controller is using. */
912 913
static int k8_early_channel_count(struct amd64_pvt *pvt)
{
914
	int flag;
915

916
	if (pvt->ext_model >= K8_REV_F)
917
		/* RevF (NPT) and later */
918
		flag = pvt->dclr0 & WIDTH_128;
919
	else
920 921 922 923 924 925 926 927 928
		/* RevE and earlier */
		flag = pvt->dclr0 & REVE_WIDTH_128;

	/* not used */
	pvt->dclr1 = 0;

	return (flag) ? 2 : 1;
}

929 930
/* On F10h and later ErrAddr is MC4_ADDR[47:1] */
static u64 get_error_address(struct mce *m)
931
{
932 933
	struct cpuinfo_x86 *c = &boot_cpu_data;
	u64 addr;
934 935 936
	u8 start_bit = 1;
	u8 end_bit   = 47;

937
	if (c->x86 == 0xf) {
938 939 940 941
		start_bit = 3;
		end_bit   = 39;
	}

942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988
	addr = m->addr & GENMASK(start_bit, end_bit);

	/*
	 * Erratum 637 workaround
	 */
	if (c->x86 == 0x15) {
		struct amd64_pvt *pvt;
		u64 cc6_base, tmp_addr;
		u32 tmp;
		u8 mce_nid, intlv_en;

		if ((addr & GENMASK(24, 47)) >> 24 != 0x00fdf7)
			return addr;

		mce_nid	= amd_get_nb_id(m->extcpu);
		pvt	= mcis[mce_nid]->pvt_info;

		amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_LIM, &tmp);
		intlv_en = tmp >> 21 & 0x7;

		/* add [47:27] + 3 trailing bits */
		cc6_base  = (tmp & GENMASK(0, 20)) << 3;

		/* reverse and add DramIntlvEn */
		cc6_base |= intlv_en ^ 0x7;

		/* pin at [47:24] */
		cc6_base <<= 24;

		if (!intlv_en)
			return cc6_base | (addr & GENMASK(0, 23));

		amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_BASE, &tmp);

							/* faster log2 */
		tmp_addr  = (addr & GENMASK(12, 23)) << __fls(intlv_en + 1);

		/* OR DramIntlvSel into bits [14:12] */
		tmp_addr |= (tmp & GENMASK(21, 23)) >> 9;

		/* add remaining [11:0] bits from original MC4_ADDR */
		tmp_addr |= addr & GENMASK(0, 11);

		return cc6_base | tmp_addr;
	}

	return addr;
989 990
}

991
static void read_dram_base_limit_regs(struct amd64_pvt *pvt, unsigned range)
992
{
993
	struct cpuinfo_x86 *c = &boot_cpu_data;
994
	int off = range << 3;
995

996 997
	amd64_read_pci_cfg(pvt->F1, DRAM_BASE_LO + off,  &pvt->ranges[range].base.lo);
	amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_LO + off, &pvt->ranges[range].lim.lo);
998

999
	if (c->x86 == 0xf)
1000
		return;
1001

1002 1003
	if (!dram_rw(pvt, range))
		return;
1004

1005 1006
	amd64_read_pci_cfg(pvt->F1, DRAM_BASE_HI + off,  &pvt->ranges[range].base.hi);
	amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_HI + off, &pvt->ranges[range].lim.hi);
1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031

	/* Factor in CC6 save area by reading dst node's limit reg */
	if (c->x86 == 0x15) {
		struct pci_dev *f1 = NULL;
		u8 nid = dram_dst_node(pvt, range);
		u32 llim;

		f1 = pci_get_domain_bus_and_slot(0, 0, PCI_DEVFN(0x18 + nid, 1));
		if (WARN_ON(!f1))
			return;

		amd64_read_pci_cfg(f1, DRAM_LOCAL_NODE_LIM, &llim);

		pvt->ranges[range].lim.lo &= GENMASK(0, 15);

					    /* {[39:27],111b} */
		pvt->ranges[range].lim.lo |= ((llim & 0x1fff) << 3 | 0x7) << 16;

		pvt->ranges[range].lim.hi &= GENMASK(0, 7);

					    /* [47:40] */
		pvt->ranges[range].lim.hi |= llim >> 13;

		pci_dev_put(f1);
	}
1032 1033
}

1034 1035
static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
				    u16 syndrome)
1036 1037
{
	struct mem_ctl_info *src_mci;
1038
	struct amd64_pvt *pvt = mci->pvt_info;
1039 1040 1041
	int channel, csrow;
	u32 page, offset;

1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
	error_address_to_page_and_offset(sys_addr, &page, &offset);

	/*
	 * Find out which node the error address belongs to. This may be
	 * different from the node that detected the error.
	 */
	src_mci = find_mc_by_sys_addr(mci, sys_addr);
	if (!src_mci) {
		amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n",
			     (unsigned long)sys_addr);
		edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci,
				     page, offset, syndrome,
				     -1, -1, -1,
				     EDAC_MOD_STR,
				     "failed to map error addr to a node",
				     NULL);
		return;
	}

	/* Now map the sys_addr to a CSROW */
	csrow = sys_addr_to_csrow(src_mci, sys_addr);
	if (csrow < 0) {
		edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci,
				     page, offset, syndrome,
				     -1, -1, -1,
				     EDAC_MOD_STR,
				     "failed to map error addr to a csrow",
				     NULL);
		return;
	}

1073
	/* CHIPKILL enabled */
1074
	if (pvt->nbcfg & NBCFG_CHIPKILL) {
1075
		channel = get_channel_from_ecc_syndrome(mci, syndrome);
1076 1077 1078 1079 1080 1081
		if (channel < 0) {
			/*
			 * Syndrome didn't map, so we don't know which of the
			 * 2 DIMMs is in error. So we need to ID 'both' of them
			 * as suspect.
			 */
1082 1083 1084 1085 1086 1087 1088 1089 1090
			amd64_mc_warn(src_mci, "unknown syndrome 0x%04x - "
				      "possible error reporting race\n",
				      syndrome);
			edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci,
					     page, offset, syndrome,
					     csrow, -1, -1,
					     EDAC_MOD_STR,
					     "unknown syndrome - possible error reporting race",
					     NULL);
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
			return;
		}
	} else {
		/*
		 * non-chipkill ecc mode
		 *
		 * The k8 documentation is unclear about how to determine the
		 * channel number when using non-chipkill memory.  This method
		 * was obtained from email communication with someone at AMD.
		 * (Wish the email was placed in this comment - norsk)
		 */
1102
		channel = ((sys_addr & BIT(3)) != 0);
1103 1104
	}

1105 1106 1107 1108
	edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, src_mci,
			     page, offset, syndrome,
			     csrow, channel, -1,
			     EDAC_MOD_STR, "", NULL);
1109 1110
}

1111
static int ddr2_cs_size(unsigned i, bool dct_width)
1112
{
1113
	unsigned shift = 0;
1114

1115 1116 1117 1118
	if (i <= 2)
		shift = i;
	else if (!(i & 0x1))
		shift = i >> 1;
1119
	else
1120
		shift = (i + 1) >> 1;
1121

1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
	return 128 << (shift + !!dct_width);
}

static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
				  unsigned cs_mode)
{
	u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;

	if (pvt->ext_model >= K8_REV_F) {
		WARN_ON(cs_mode > 11);
		return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
	}
	else if (pvt->ext_model >= K8_REV_D) {
1135
		unsigned diff;
1136 1137
		WARN_ON(cs_mode > 10);

1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
		/*
		 * the below calculation, besides trying to win an obfuscated C
		 * contest, maps cs_mode values to DIMM chip select sizes. The
		 * mappings are:
		 *
		 * cs_mode	CS size (mb)
		 * =======	============
		 * 0		32
		 * 1		64
		 * 2		128
		 * 3		128
		 * 4		256
		 * 5		512
		 * 6		256
		 * 7		512
		 * 8		1024
		 * 9		1024
		 * 10		2048
		 *
		 * Basically, it calculates a value with which to shift the
		 * smallest CS size of 32MB.
		 *
		 * ddr[23]_cs_size have a similar purpose.
		 */
		diff = cs_mode/3 + (unsigned)(cs_mode > 5);

		return 32 << (cs_mode - diff);
1165 1166 1167 1168 1169
	}
	else {
		WARN_ON(cs_mode > 6);
		return 32 << cs_mode;
	}
1170 1171
}

1172 1173 1174 1175 1176 1177 1178 1179
/*
 * Get the number of DCT channels in use.
 *
 * Return:
 *	number of Memory Channels in operation
 * Pass back:
 *	contents of the DCL0_LOW register
 */
1180
static int f1x_early_channel_count(struct amd64_pvt *pvt)
1181
{
1182
	int i, j, channels = 0;
1183

1184
	/* On F10h, if we are in 128 bit mode, then we are using 2 channels */
1185
	if (boot_cpu_data.x86 == 0x10 && (pvt->dclr0 & WIDTH_128))
1186
		return 2;
1187 1188

	/*
1189 1190 1191
	 * Need to check if in unganged mode: In such, there are 2 channels,
	 * but they are not in 128 bit mode and thus the above 'dclr0' status
	 * bit will be OFF.
1192 1193 1194 1195
	 *
	 * Need to check DCT0[0] and DCT1[0] to see if only one of them has
	 * their CSEnable bit on. If so, then SINGLE DIMM case.
	 */
1196
	debugf0("Data width is not 128 bits - need more decoding\n");
1197

1198 1199 1200 1201 1202
	/*
	 * Check DRAM Bank Address Mapping values for each DIMM to see if there
	 * is more than just one DIMM present in unganged mode. Need to check
	 * both controllers since DIMMs can be placed in either one.
	 */
1203 1204
	for (i = 0; i < 2; i++) {
		u32 dbam = (i ? pvt->dbam1 : pvt->dbam0);
1205

1206 1207 1208 1209 1210 1211
		for (j = 0; j < 4; j++) {
			if (DBAM_DIMM(j, dbam) > 0) {
				channels++;
				break;
			}
		}
1212 1213
	}

1214 1215 1216
	if (channels > 2)
		channels = 2;

1217
	amd64_info("MCT channel count: %d\n", channels);
1218 1219 1220 1221

	return channels;
}

1222
static int ddr3_cs_size(unsigned i, bool dct_width)
1223
{
1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
	unsigned shift = 0;
	int cs_size = 0;

	if (i == 0 || i == 3 || i == 4)
		cs_size = -1;
	else if (i <= 2)
		shift = i;
	else if (i == 12)
		shift = 7;
	else if (!(i & 0x1))
		shift = i >> 1;
	else
		shift = (i + 1) >> 1;

	if (cs_size != -1)
		cs_size = (128 * (1 << !!dct_width)) << shift;

	return cs_size;
}

static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
				   unsigned cs_mode)
{
	u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;

	WARN_ON(cs_mode > 11);
1250 1251

	if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
1252
		return ddr3_cs_size(cs_mode, dclr & WIDTH_128);
1253
	else
1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
		return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
}

/*
 * F15h supports only 64bit DCT interfaces
 */
static int f15_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
				   unsigned cs_mode)
{
	WARN_ON(cs_mode > 12);
1264

1265
	return ddr3_cs_size(cs_mode, false);
1266 1267
}

1268
static void read_dram_ctl_register(struct amd64_pvt *pvt)
1269 1270
{

1271 1272 1273
	if (boot_cpu_data.x86 == 0xf)
		return;

1274 1275 1276
	if (!amd64_read_dct_pci_cfg(pvt, DCT_SEL_LO, &pvt->dct_sel_lo)) {
		debugf0("F2x110 (DCTSelLow): 0x%08x, High range addrs at: 0x%x\n",
			pvt->dct_sel_lo, dct_sel_baseaddr(pvt));
1277

1278 1279
		debugf0("  DCTs operate in %s mode.\n",
			(dct_ganging_enabled(pvt) ? "ganged" : "unganged"));
1280 1281 1282 1283 1284

		if (!dct_ganging_enabled(pvt))
			debugf0("  Address range split per DCT: %s\n",
				(dct_high_range_enabled(pvt) ? "yes" : "no"));

1285
		debugf0("  data interleave for ECC: %s, "
1286 1287 1288 1289
			"DRAM cleared since last warm reset: %s\n",
			(dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
			(dct_memory_cleared(pvt) ? "yes" : "no"));

1290 1291
		debugf0("  channel interleave: %s, "
			"interleave bits selector: 0x%x\n",
1292
			(dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
1293 1294 1295
			dct_sel_interleave_addr(pvt));
	}

1296
	amd64_read_dct_pci_cfg(pvt, DCT_SEL_HI, &pvt->dct_sel_hi);
1297 1298
}

1299
/*
1300
 * Determine channel (DCT) based on the interleaving mode: F10h BKDG, 2.8.9 Memory
1301 1302
 * Interleaving Modes.
 */
1303
static u8 f1x_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
1304
				bool hi_range_sel, u8 intlv_en)
1305
{
1306
	u8 dct_sel_high = (pvt->dct_sel_lo >> 1) & 1;
1307 1308

	if (dct_ganging_enabled(pvt))
1309
		return 0;
1310

1311 1312
	if (hi_range_sel)
		return dct_sel_high;
1313

1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335
	/*
	 * see F2x110[DctSelIntLvAddr] - channel interleave mode
	 */
	if (dct_interleave_enabled(pvt)) {
		u8 intlv_addr = dct_sel_interleave_addr(pvt);

		/* return DCT select function: 0=DCT0, 1=DCT1 */
		if (!intlv_addr)
			return sys_addr >> 6 & 1;

		if (intlv_addr & 0x2) {
			u8 shift = intlv_addr & 0x1 ? 9 : 6;
			u32 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;

			return ((sys_addr >> shift) & 1) ^ temp;
		}

		return (sys_addr >> (12 + hweight8(intlv_en))) & 1;
	}

	if (dct_high_range_enabled(pvt))
		return ~dct_sel_high & 1;
1336 1337 1338 1339

	return 0;
}

1340
/* Convert the sys_addr to the normalized DCT address */
1341
static u64 f1x_get_norm_dct_addr(struct amd64_pvt *pvt, unsigned range,
1342 1343
				 u64 sys_addr, bool hi_rng,
				 u32 dct_sel_base_addr)
1344 1345
{
	u64 chan_off;
1346 1347 1348
	u64 dram_base		= get_dram_base(pvt, range);
	u64 hole_off		= f10_dhar_offset(pvt);
	u64 dct_sel_base_off	= (pvt->dct_sel_hi & 0xFFFFFC00) << 16;
1349

1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363
	if (hi_rng) {
		/*
		 * if
		 * base address of high range is below 4Gb
		 * (bits [47:27] at [31:11])
		 * DRAM address space on this DCT is hoisted above 4Gb	&&
		 * sys_addr > 4Gb
		 *
		 *	remove hole offset from sys_addr
		 * else
		 *	remove high range offset from sys_addr
		 */
		if ((!(dct_sel_base_addr >> 16) ||
		     dct_sel_base_addr < dhar_base(pvt)) &&
1364
		    dhar_valid(pvt) &&
1365
		    (sys_addr >= BIT_64(32)))
1366
			chan_off = hole_off;
1367 1368 1369
		else
			chan_off = dct_sel_base_off;
	} else {
1370 1371 1372 1373 1374 1375 1376 1377 1378
		/*
		 * if
		 * we have a valid hole		&&
		 * sys_addr > 4Gb
		 *
		 *	remove hole
		 * else
		 *	remove dram base to normalize to DCT address
		 */
1379
		if (dhar_valid(pvt) && (sys_addr >= BIT_64(32)))
1380
			chan_off = hole_off;
1381
		else
1382
			chan_off = dram_base;
1383 1384
	}

1385
	return (sys_addr & GENMASK(6,47)) - (chan_off & GENMASK(23,47));
1386 1387 1388 1389 1390 1391
}

/*
 * checks if the csrow passed in is marked as SPARED, if so returns the new
 * spare row
 */
1392
static int f10_process_possible_spare(struct amd64_pvt *pvt, u8 dct, int csrow)
1393
{
1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404
	int tmp_cs;

	if (online_spare_swap_done(pvt, dct) &&
	    csrow == online_spare_bad_dramcs(pvt, dct)) {

		for_each_chip_select(tmp_cs, dct, pvt) {
			if (chip_select_base(tmp_cs, dct, pvt) & 0x2) {
				csrow = tmp_cs;
				break;
			}
		}
1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416
	}
	return csrow;
}

/*
 * Iterate over the DRAM DCT "base" and "mask" registers looking for a
 * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
 *
 * Return:
 *	-EINVAL:  NOT FOUND
 *	0..csrow = Chip-Select Row
 */
1417
static int f1x_lookup_addr_in_dct(u64 in_addr, u32 nid, u8 dct)
1418 1419 1420
{
	struct mem_ctl_info *mci;
	struct amd64_pvt *pvt;
1421
	u64 cs_base, cs_mask;
1422 1423 1424
	int cs_found = -EINVAL;
	int csrow;

1425
	mci = mcis[nid];
1426 1427 1428 1429 1430
	if (!mci)
		return cs_found;

	pvt = mci->pvt_info;

1431
	debugf1("input addr: 0x%llx, DCT: %d\n", in_addr, dct);
1432

1433 1434
	for_each_chip_select(csrow, dct, pvt) {
		if (!csrow_enabled(csrow, dct, pvt))
1435 1436
			continue;

1437
		get_cs_base_and_mask(pvt, csrow, dct, &cs_base, &cs_mask);
1438

1439 1440
		debugf1("    CSROW=%d CSBase=0x%llx CSMask=0x%llx\n",
			csrow, cs_base, cs_mask);
1441

1442
		cs_mask = ~cs_mask;
1443

1444 1445 1446
		debugf1("    (InputAddr & ~CSMask)=0x%llx "
			"(CSBase & ~CSMask)=0x%llx\n",
			(in_addr & cs_mask), (cs_base & cs_mask));
1447

1448 1449
		if ((in_addr & cs_mask) == (cs_base & cs_mask)) {
			cs_found = f10_process_possible_spare(pvt, dct, csrow);
1450 1451 1452 1453 1454 1455 1456 1457

			debugf1(" MATCH csrow=%d\n", cs_found);
			break;
		}
	}
	return cs_found;
}

1458 1459 1460 1461 1462
/*
 * See F2x10C. Non-interleaved graphics framebuffer memory under the 16G is
 * swapped with a region located at the bottom of memory so that the GPU can use
 * the interleaved region and thus two channels.
 */
1463
static u64 f1x_swap_interleaved_region(struct amd64_pvt *pvt, u64 sys_addr)
1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493
{
	u32 swap_reg, swap_base, swap_limit, rgn_size, tmp_addr;

	if (boot_cpu_data.x86 == 0x10) {
		/* only revC3 and revE have that feature */
		if (boot_cpu_data.x86_model < 4 ||
		    (boot_cpu_data.x86_model < 0xa &&
		     boot_cpu_data.x86_mask < 3))
			return sys_addr;
	}

	amd64_read_dct_pci_cfg(pvt, SWAP_INTLV_REG, &swap_reg);

	if (!(swap_reg & 0x1))
		return sys_addr;

	swap_base	= (swap_reg >> 3) & 0x7f;
	swap_limit	= (swap_reg >> 11) & 0x7f;
	rgn_size	= (swap_reg >> 20) & 0x7f;
	tmp_addr	= sys_addr >> 27;

	if (!(sys_addr >> 34) &&
	    (((tmp_addr >= swap_base) &&
	     (tmp_addr <= swap_limit)) ||
	     (tmp_addr < rgn_size)))
		return sys_addr ^ (u64)swap_base << 27;

	return sys_addr;
}

1494
/* For a given @dram_range, check if @sys_addr falls within it. */
1495
static int f1x_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
1496 1497
				  u64 sys_addr, int *nid, int *chan_sel)
{
1498
	int cs_found = -EINVAL;
1499
	u64 chan_addr;
1500
	u32 dct_sel_base;
1501
	u8 channel;
1502
	bool high_range = false;
1503

1504
	u8 node_id    = dram_dst_node(pvt, range);
1505
	u8 intlv_en   = dram_intlv_en(pvt, range);
1506
	u32 intlv_sel = dram_intlv_sel(pvt, range);
1507

1508 1509
	debugf1("(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
		range, sys_addr, get_dram_limit(pvt, range));
1510

1511 1512 1513 1514 1515 1516 1517 1518
	if (dhar_valid(pvt) &&
	    dhar_base(pvt) <= sys_addr &&
	    sys_addr < BIT_64(32)) {
		amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
			    sys_addr);
		return -EINVAL;
	}

1519
	if (intlv_en && (intlv_sel != ((sys_addr >> 12) & intlv_en)))
1520 1521
		return -EINVAL;

1522
	sys_addr = f1x_swap_interleaved_region(pvt, sys_addr);
1523

1524 1525 1526 1527 1528 1529 1530 1531 1532
	dct_sel_base = dct_sel_baseaddr(pvt);

	/*
	 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
	 * select between DCT0 and DCT1.
	 */
	if (dct_high_range_enabled(pvt) &&
	   !dct_ganging_enabled(pvt) &&
	   ((sys_addr >> 27) >= (dct_sel_base >> 11)))
1533
		high_range = true;
1534

1535
	channel = f1x_determine_channel(pvt, sys_addr, high_range, intlv_en);
1536

1537
	chan_addr = f1x_get_norm_dct_addr(pvt, range, sys_addr,
1538
					  high_range, dct_sel_base);
1539

1540 1541 1542 1543
	/* Remove node interleaving, see F1x120 */
	if (intlv_en)
		chan_addr = ((chan_addr >> (12 + hweight8(intlv_en))) << 12) |
			    (chan_addr & 0xfff);
1544

1545
	/* remove channel interleave */
1546 1547 1548
	if (dct_interleave_enabled(pvt) &&
	   !dct_high_range_enabled(pvt) &&
	   !dct_ganging_enabled(pvt)) {
1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562

		if (dct_sel_interleave_addr(pvt) != 1) {
			if (dct_sel_interleave_addr(pvt) == 0x3)
				/* hash 9 */
				chan_addr = ((chan_addr >> 10) << 9) |
					     (chan_addr & 0x1ff);
			else
				/* A[6] or hash 6 */
				chan_addr = ((chan_addr >> 7) << 6) |
					     (chan_addr & 0x3f);
		} else
			/* A[12] */
			chan_addr = ((chan_addr >> 13) << 12) |
				     (chan_addr & 0xfff);
1563 1564
	}

1565
	debugf1("   Normalized DCT addr: 0x%llx\n", chan_addr);
1566

1567
	cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, channel);
1568 1569 1570 1571 1572 1573 1574 1575

	if (cs_found >= 0) {
		*nid = node_id;
		*chan_sel = channel;
	}
	return cs_found;
}

1576
static int f1x_translate_sysaddr_to_cs(struct amd64_pvt *pvt, u64 sys_addr,
1577 1578
				       int *node, int *chan_sel)
{
1579 1580
	int cs_found = -EINVAL;
	unsigned range;
1581

1582
	for (range = 0; range < DRAM_RANGES; range++) {
1583

1584
		if (!dram_rw(pvt, range))
1585 1586
			continue;

1587 1588
		if ((get_dram_base(pvt, range)  <= sys_addr) &&
		    (get_dram_limit(pvt, range) >= sys_addr)) {
1589

1590
			cs_found = f1x_match_to_this_node(pvt, range,
1591 1592 1593 1594 1595 1596 1597 1598 1599 1600
							  sys_addr, node,
							  chan_sel);
			if (cs_found >= 0)
				break;
		}
	}
	return cs_found;
}

/*
1601 1602
 * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
 * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
1603
 *
1604 1605
 * The @sys_addr is usually an error address received from the hardware
 * (MCX_ADDR).
1606
 */
1607
static void f1x_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
1608
				     u16 syndrome)
1609 1610 1611 1612 1613
{
	struct amd64_pvt *pvt = mci->pvt_info;
	u32 page, offset;
	int nid, csrow, chan = 0;

1614 1615
	error_address_to_page_and_offset(sys_addr, &page, &offset);

1616
	csrow = f1x_translate_sysaddr_to_cs(pvt, sys_addr, &nid, &chan);
1617

1618
	if (csrow < 0) {
1619 1620 1621 1622 1623 1624
		edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci,
				     page, offset, syndrome,
				     -1, -1, -1,
				     EDAC_MOD_STR,
				     "failed to map error addr to a csrow",
				     NULL);
1625 1626 1627 1628 1629 1630 1631 1632
		return;
	}

	/*
	 * We need the syndromes for channel detection only when we're
	 * ganged. Otherwise @chan should already contain the channel at
	 * this point.
	 */
1633
	if (dct_ganging_enabled(pvt))
1634
		chan = get_channel_from_ecc_syndrome(mci, syndrome);
1635

1636 1637 1638 1639
	edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci,
			     page, offset, syndrome,
			     csrow, chan, -1,
			     EDAC_MOD_STR, "", NULL);
1640 1641 1642
}

/*
1643
 * debug routine to display the memory sizes of all logical DIMMs and its
1644
 * CSROWs
1645
 */
1646
static void amd64_debug_display_dimm_sizes(struct amd64_pvt *pvt, u8 ctrl)
1647
{
1648
	int dimm, size0, size1, factor = 0;
1649 1650
	u32 *dcsb = ctrl ? pvt->csels[1].csbases : pvt->csels[0].csbases;
	u32 dbam  = ctrl ? pvt->dbam1 : pvt->dbam0;
1651

1652
	if (boot_cpu_data.x86 == 0xf) {
1653
		if (pvt->dclr0 & WIDTH_128)
1654 1655
			factor = 1;

1656
		/* K8 families < revF not supported yet */
1657
	       if (pvt->ext_model < K8_REV_F)
1658 1659 1660 1661 1662
			return;
	       else
		       WARN_ON(ctrl != 0);
	}

1663
	dbam = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->dbam1 : pvt->dbam0;
1664 1665
	dcsb = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->csels[1].csbases
						   : pvt->csels[0].csbases;
1666

1667
	debugf1("F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n", ctrl, dbam);
1668

1669 1670
	edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);

1671 1672 1673 1674
	/* Dump memory sizes for DIMM and its CSROWs */
	for (dimm = 0; dimm < 4; dimm++) {

		size0 = 0;
1675
		if (dcsb[dimm*2] & DCSB_CS_ENABLE)
1676 1677
			size0 = pvt->ops->dbam_to_cs(pvt, ctrl,
						     DBAM_DIMM(dimm, dbam));
1678 1679

		size1 = 0;
1680
		if (dcsb[dimm*2 + 1] & DCSB_CS_ENABLE)
1681 1682
			size1 = pvt->ops->dbam_to_cs(pvt, ctrl,
						     DBAM_DIMM(dimm, dbam));
1683

1684 1685 1686
		amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
				dimm * 2,     size0 << factor,
				dimm * 2 + 1, size1 << factor);
1687 1688 1689
	}
}

1690 1691
static struct amd64_family_type amd64_family_types[] = {
	[K8_CPUS] = {
1692
		.ctl_name = "K8",
1693 1694
		.f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
		.f3_id = PCI_DEVICE_ID_AMD_K8_NB_MISC,
1695
		.ops = {
1696 1697 1698
			.early_channel_count	= k8_early_channel_count,
			.map_sysaddr_to_csrow	= k8_map_sysaddr_to_csrow,
			.dbam_to_cs		= k8_dbam_to_chip_select,
1699
			.read_dct_pci_cfg	= k8_read_dct_pci_cfg,
1700 1701 1702
		}
	},
	[F10_CPUS] = {
1703
		.ctl_name = "F10h",
1704 1705
		.f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP,
		.f3_id = PCI_DEVICE_ID_AMD_10H_NB_MISC,
1706
		.ops = {
1707
			.early_channel_count	= f1x_early_channel_count,
1708
			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
1709
			.dbam_to_cs		= f10_dbam_to_chip_select,
1710 1711 1712 1713 1714
			.read_dct_pci_cfg	= f10_read_dct_pci_cfg,
		}
	},
	[F15_CPUS] = {
		.ctl_name = "F15h",
1715 1716
		.f1_id = PCI_DEVICE_ID_AMD_15H_NB_F1,
		.f3_id = PCI_DEVICE_ID_AMD_15H_NB_F3,
1717
		.ops = {
1718
			.early_channel_count	= f1x_early_channel_count,
1719
			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
1720
			.dbam_to_cs		= f15_dbam_to_chip_select,
1721
			.read_dct_pci_cfg	= f15_read_dct_pci_cfg,
1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742
		}
	},
};

static struct pci_dev *pci_get_related_function(unsigned int vendor,
						unsigned int device,
						struct pci_dev *related)
{
	struct pci_dev *dev = NULL;

	dev = pci_get_device(vendor, device, dev);
	while (dev) {
		if ((dev->bus->number == related->bus->number) &&
		    (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
			break;
		dev = pci_get_device(vendor, device, dev);
	}

	return dev;
}

1743
/*
1744 1745 1746
 * These are tables of eigenvectors (one per line) which can be used for the
 * construction of the syndrome tables. The modified syndrome search algorithm
 * uses those to find the symbol in error and thus the DIMM.
1747
 *
1748
 * Algorithm courtesy of Ross LaFetra from AMD.
1749
 */
1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786
static u16 x4_vectors[] = {
	0x2f57, 0x1afe, 0x66cc, 0xdd88,
	0x11eb, 0x3396, 0x7f4c, 0xeac8,
	0x0001, 0x0002, 0x0004, 0x0008,
	0x1013, 0x3032, 0x4044, 0x8088,
	0x106b, 0x30d6, 0x70fc, 0xe0a8,
	0x4857, 0xc4fe, 0x13cc, 0x3288,
	0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
	0x1f39, 0x251e, 0xbd6c, 0x6bd8,
	0x15c1, 0x2a42, 0x89ac, 0x4758,
	0x2b03, 0x1602, 0x4f0c, 0xca08,
	0x1f07, 0x3a0e, 0x6b04, 0xbd08,
	0x8ba7, 0x465e, 0x244c, 0x1cc8,
	0x2b87, 0x164e, 0x642c, 0xdc18,
	0x40b9, 0x80de, 0x1094, 0x20e8,
	0x27db, 0x1eb6, 0x9dac, 0x7b58,
	0x11c1, 0x2242, 0x84ac, 0x4c58,
	0x1be5, 0x2d7a, 0x5e34, 0xa718,
	0x4b39, 0x8d1e, 0x14b4, 0x28d8,
	0x4c97, 0xc87e, 0x11fc, 0x33a8,
	0x8e97, 0x497e, 0x2ffc, 0x1aa8,
	0x16b3, 0x3d62, 0x4f34, 0x8518,
	0x1e2f, 0x391a, 0x5cac, 0xf858,
	0x1d9f, 0x3b7a, 0x572c, 0xfe18,
	0x15f5, 0x2a5a, 0x5264, 0xa3b8,
	0x1dbb, 0x3b66, 0x715c, 0xe3f8,
	0x4397, 0xc27e, 0x17fc, 0x3ea8,
	0x1617, 0x3d3e, 0x6464, 0xb8b8,
	0x23ff, 0x12aa, 0xab6c, 0x56d8,
	0x2dfb, 0x1ba6, 0x913c, 0x7328,
	0x185d, 0x2ca6, 0x7914, 0x9e28,
	0x171b, 0x3e36, 0x7d7c, 0xebe8,
	0x4199, 0x82ee, 0x19f4, 0x2e58,
	0x4807, 0xc40e, 0x130c, 0x3208,
	0x1905, 0x2e0a, 0x5804, 0xac08,
	0x213f, 0x132a, 0xadfc, 0x5ba8,
	0x19a9, 0x2efe, 0xb5cc, 0x6f88,
1787 1788
};

1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810
static u16 x8_vectors[] = {
	0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
	0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
	0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
	0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
	0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
	0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
	0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
	0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
	0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
	0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
	0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
	0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
	0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
	0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
	0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
	0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
	0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
	0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
	0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
};

1811 1812
static int decode_syndrome(u16 syndrome, u16 *vectors, unsigned num_vecs,
			   unsigned v_dim)
1813
{
1814 1815 1816 1817
	unsigned int i, err_sym;

	for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
		u16 s = syndrome;
1818 1819
		unsigned v_idx =  err_sym * v_dim;
		unsigned v_end = (err_sym + 1) * v_dim;
1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831

		/* walk over all 16 bits of the syndrome */
		for (i = 1; i < (1U << 16); i <<= 1) {

			/* if bit is set in that eigenvector... */
			if (v_idx < v_end && vectors[v_idx] & i) {
				u16 ev_comp = vectors[v_idx++];

				/* ... and bit set in the modified syndrome, */
				if (s & i) {
					/* remove it. */
					s ^= ev_comp;
1832

1833 1834 1835
					if (!s)
						return err_sym;
				}
1836

1837 1838 1839 1840
			} else if (s & i)
				/* can't get to zero, move to next symbol */
				break;
		}
1841 1842 1843 1844 1845
	}

	debugf0("syndrome(%x) not found\n", syndrome);
	return -1;
}
1846

1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888
static int map_err_sym_to_channel(int err_sym, int sym_size)
{
	if (sym_size == 4)
		switch (err_sym) {
		case 0x20:
		case 0x21:
			return 0;
			break;
		case 0x22:
		case 0x23:
			return 1;
			break;
		default:
			return err_sym >> 4;
			break;
		}
	/* x8 symbols */
	else
		switch (err_sym) {
		/* imaginary bits not in a DIMM */
		case 0x10:
			WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
					  err_sym);
			return -1;
			break;

		case 0x11:
			return 0;
			break;
		case 0x12:
			return 1;
			break;
		default:
			return err_sym >> 3;
			break;
		}
	return -1;
}

static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
{
	struct amd64_pvt *pvt = mci->pvt_info;
1889 1890
	int err_sym = -1;

1891
	if (pvt->ecc_sym_sz == 8)
1892 1893
		err_sym = decode_syndrome(syndrome, x8_vectors,
					  ARRAY_SIZE(x8_vectors),
1894 1895
					  pvt->ecc_sym_sz);
	else if (pvt->ecc_sym_sz == 4)
1896 1897
		err_sym = decode_syndrome(syndrome, x4_vectors,
					  ARRAY_SIZE(x4_vectors),
1898
					  pvt->ecc_sym_sz);
1899
	else {
1900
		amd64_warn("Illegal syndrome type: %u\n", pvt->ecc_sym_sz);
1901
		return err_sym;
1902
	}
1903

1904
	return map_err_sym_to_channel(err_sym, pvt->ecc_sym_sz);
1905 1906
}

1907 1908 1909 1910
/*
 * Handle any Correctable Errors (CEs) that have occurred. Check for valid ERROR
 * ADDRESS and process.
 */
1911
static void amd64_handle_ce(struct mem_ctl_info *mci, struct mce *m)
1912 1913
{
	struct amd64_pvt *pvt = mci->pvt_info;
1914
	u64 sys_addr;
1915
	u16 syndrome;
1916 1917

	/* Ensure that the Error Address is VALID */
1918
	if (!(m->status & MCI_STATUS_ADDRV)) {
1919
		amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n");
1920 1921 1922 1923 1924 1925
		edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci,
				     0, 0, 0,
				     -1, -1, -1,
				     EDAC_MOD_STR,
				     "HW has no ERROR_ADDRESS available",
				     NULL);
1926 1927 1928
		return;
	}

1929
	sys_addr = get_error_address(m);
1930
	syndrome = extract_syndrome(m->status);
1931

1932
	amd64_mc_err(mci, "CE ERROR_ADDRESS= 0x%llx\n", sys_addr);
1933

1934
	pvt->ops->map_sysaddr_to_csrow(mci, sys_addr, syndrome);
1935 1936 1937
}

/* Handle any Un-correctable Errors (UEs) */
1938
static void amd64_handle_ue(struct mem_ctl_info *mci, struct mce *m)
1939
{
1940
	struct mem_ctl_info *log_mci, *src_mci = NULL;
1941
	int csrow;
1942
	u64 sys_addr;
1943 1944 1945 1946
	u32 page, offset;

	log_mci = mci;

1947
	if (!(m->status & MCI_STATUS_ADDRV)) {
1948
		amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n");
1949 1950 1951 1952 1953 1954
		edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci,
				     0, 0, 0,
				     -1, -1, -1,
				     EDAC_MOD_STR,
				     "HW has no ERROR_ADDRESS available",
				     NULL);
1955 1956 1957
		return;
	}

1958
	sys_addr = get_error_address(m);
1959
	error_address_to_page_and_offset(sys_addr, &page, &offset);
1960 1961 1962 1963 1964

	/*
	 * Find out which node the error address belongs to. This may be
	 * different from the node that detected the error.
	 */
1965
	src_mci = find_mc_by_sys_addr(mci, sys_addr);
1966
	if (!src_mci) {
1967 1968
		amd64_mc_err(mci, "ERROR ADDRESS (0x%lx) NOT mapped to a MC\n",
				  (unsigned long)sys_addr);
1969 1970 1971 1972 1973
		edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci,
				     page, offset, 0,
				     -1, -1, -1,
				     EDAC_MOD_STR,
				     "ERROR ADDRESS NOT mapped to a MC", NULL);
1974 1975 1976 1977 1978
		return;
	}

	log_mci = src_mci;

1979
	csrow = sys_addr_to_csrow(log_mci, sys_addr);
1980
	if (csrow < 0) {
1981 1982
		amd64_mc_err(mci, "ERROR_ADDRESS (0x%lx) NOT mapped to CS\n",
				  (unsigned long)sys_addr);
1983 1984 1985 1986 1987 1988
		edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci,
				     page, offset, 0,
				     -1, -1, -1,
				     EDAC_MOD_STR,
				     "ERROR ADDRESS NOT mapped to CS",
				     NULL);
1989
	} else {
1990 1991 1992 1993
		edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci,
				     page, offset, 0,
				     csrow, -1, -1,
				     EDAC_MOD_STR, "", NULL);
1994 1995 1996
	}
}

1997
static inline void __amd64_decode_bus_error(struct mem_ctl_info *mci,
1998
					    struct mce *m)
1999
{
2000 2001 2002
	u16 ec = EC(m->status);
	u8 xec = XEC(m->status, 0x1f);
	u8 ecc_type = (m->status >> 45) & 0x3;
2003

2004
	/* Bail early out if this was an 'observed' error */
2005
	if (PP(ec) == NBSL_PP_OBS)
2006
		return;
2007

2008 2009
	/* Do only ECC errors */
	if (xec && xec != F10_NBSL_EXT_ERR_ECC)
2010 2011
		return;

2012
	if (ecc_type == 2)
2013
		amd64_handle_ce(mci, m);
2014
	else if (ecc_type == 1)
2015
		amd64_handle_ue(mci, m);
2016 2017
}

2018
void amd64_decode_bus_error(int node_id, struct mce *m)
2019
{
2020
	__amd64_decode_bus_error(mcis[node_id], m);
2021 2022
}

2023
/*
2024
 * Use pvt->F2 which contains the F2 CPU PCI device to get the related
2025
 * F1 (AddrMap) and F3 (Misc) devices. Return negative value on error.
2026
 */
2027
static int reserve_mc_sibling_devs(struct amd64_pvt *pvt, u16 f1_id, u16 f3_id)
2028 2029
{
	/* Reserve the ADDRESS MAP Device */
2030 2031
	pvt->F1 = pci_get_related_function(pvt->F2->vendor, f1_id, pvt->F2);
	if (!pvt->F1) {
2032 2033 2034
		amd64_err("error address map device not found: "
			  "vendor %x device 0x%x (broken BIOS?)\n",
			  PCI_VENDOR_ID_AMD, f1_id);
2035
		return -ENODEV;
2036 2037 2038
	}

	/* Reserve the MISC Device */
2039 2040 2041 2042
	pvt->F3 = pci_get_related_function(pvt->F2->vendor, f3_id, pvt->F2);
	if (!pvt->F3) {
		pci_dev_put(pvt->F1);
		pvt->F1 = NULL;
2043

2044 2045 2046
		amd64_err("error F3 device not found: "
			  "vendor %x device 0x%x (broken BIOS?)\n",
			  PCI_VENDOR_ID_AMD, f3_id);
2047

2048
		return -ENODEV;
2049
	}
2050 2051 2052
	debugf1("F1: %s\n", pci_name(pvt->F1));
	debugf1("F2: %s\n", pci_name(pvt->F2));
	debugf1("F3: %s\n", pci_name(pvt->F3));
2053 2054 2055 2056

	return 0;
}

2057
static void free_mc_sibling_devs(struct amd64_pvt *pvt)
2058
{
2059 2060
	pci_dev_put(pvt->F1);
	pci_dev_put(pvt->F3);
2061 2062 2063 2064 2065 2066
}

/*
 * Retrieve the hardware registers of the memory controller (this includes the
 * 'Address Map' and 'Misc' device regs)
 */
2067
static void read_mc_regs(struct amd64_pvt *pvt)
2068
{
2069
	struct cpuinfo_x86 *c = &boot_cpu_data;
2070
	u64 msr_val;
2071
	u32 tmp;
2072
	unsigned range;
2073 2074 2075 2076 2077

	/*
	 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
	 * those are Read-As-Zero
	 */
2078 2079
	rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
	debugf0("  TOP_MEM:  0x%016llx\n", pvt->top_mem);
2080 2081 2082 2083

	/* check first whether TOP_MEM2 is enabled */
	rdmsrl(MSR_K8_SYSCFG, msr_val);
	if (msr_val & (1U << 21)) {
2084 2085
		rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
		debugf0("  TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
2086 2087 2088
	} else
		debugf0("  TOP_MEM2 disabled.\n");

2089
	amd64_read_pci_cfg(pvt->F3, NBCAP, &pvt->nbcap);
2090

2091
	read_dram_ctl_register(pvt);
2092

2093 2094
	for (range = 0; range < DRAM_RANGES; range++) {
		u8 rw;
2095

2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113
		/* read settings for this DRAM range */
		read_dram_base_limit_regs(pvt, range);

		rw = dram_rw(pvt, range);
		if (!rw)
			continue;

		debugf1("  DRAM range[%d], base: 0x%016llx; limit: 0x%016llx\n",
			range,
			get_dram_base(pvt, range),
			get_dram_limit(pvt, range));

		debugf1("   IntlvEn=%s; Range access: %s%s IntlvSel=%d DstNode=%d\n",
			dram_intlv_en(pvt, range) ? "Enabled" : "Disabled",
			(rw & 0x1) ? "R" : "-",
			(rw & 0x2) ? "W" : "-",
			dram_intlv_sel(pvt, range),
			dram_dst_node(pvt, range));
2114 2115
	}

2116
	read_dct_base_mask(pvt);
2117

2118
	amd64_read_pci_cfg(pvt->F1, DHAR, &pvt->dhar);
2119
	amd64_read_dct_pci_cfg(pvt, DBAM0, &pvt->dbam0);
2120

2121
	amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare);
2122

2123 2124
	amd64_read_dct_pci_cfg(pvt, DCLR0, &pvt->dclr0);
	amd64_read_dct_pci_cfg(pvt, DCHR0, &pvt->dchr0);
2125

2126
	if (!dct_ganging_enabled(pvt)) {
2127 2128
		amd64_read_dct_pci_cfg(pvt, DCLR1, &pvt->dclr1);
		amd64_read_dct_pci_cfg(pvt, DCHR1, &pvt->dchr1);
2129
	}
2130

2131 2132 2133
	pvt->ecc_sym_sz = 4;

	if (c->x86 >= 0x10) {
2134
		amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp);
2135
		amd64_read_dct_pci_cfg(pvt, DBAM1, &pvt->dbam1);
2136

2137 2138 2139 2140
		/* F10h, revD and later can do x8 ECC too */
		if ((c->x86 > 0x10 || c->x86_model > 7) && tmp & BIT(25))
			pvt->ecc_sym_sz = 8;
	}
2141
	dump_misc_regs(pvt);
2142 2143 2144 2145 2146 2147
}

/*
 * NOTE: CPU Revision Dependent code
 *
 * Input:
2148
 *	@csrow_nr ChipSelect Row Number (0..NUM_CHIPSELECTS-1)
2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177
 *	k8 private pointer to -->
 *			DRAM Bank Address mapping register
 *			node_id
 *			DCL register where dual_channel_active is
 *
 * The DBAM register consists of 4 sets of 4 bits each definitions:
 *
 * Bits:	CSROWs
 * 0-3		CSROWs 0 and 1
 * 4-7		CSROWs 2 and 3
 * 8-11		CSROWs 4 and 5
 * 12-15	CSROWs 6 and 7
 *
 * Values range from: 0 to 15
 * The meaning of the values depends on CPU revision and dual-channel state,
 * see relevant BKDG more info.
 *
 * The memory controller provides for total of only 8 CSROWs in its current
 * architecture. Each "pair" of CSROWs normally represents just one DIMM in
 * single channel or two (2) DIMMs in dual channel mode.
 *
 * The following code logic collapses the various tables for CSROW based on CPU
 * revision.
 *
 * Returns:
 *	The number of PAGE_SIZE pages on the specified CSROW number it
 *	encompasses
 *
 */
2178
static u32 amd64_csrow_nr_pages(struct amd64_pvt *pvt, u8 dct, int csrow_nr)
2179
{
2180
	u32 cs_mode, nr_pages;
2181
	u32 dbam = dct ? pvt->dbam1 : pvt->dbam0;
2182 2183 2184 2185 2186 2187 2188 2189

	/*
	 * The math on this doesn't look right on the surface because x/2*4 can
	 * be simplified to x*2 but this expression makes use of the fact that
	 * it is integral math where 1/2=0. This intermediate value becomes the
	 * number of bits to shift the DBAM register to extract the proper CSROW
	 * field.
	 */
2190
	cs_mode =  (dbam >> ((csrow_nr / 2) * 4)) & 0xF;
2191

2192
	nr_pages = pvt->ops->dbam_to_cs(pvt, dct, cs_mode) << (20 - PAGE_SHIFT);
2193

2194
	debugf0("  (csrow=%d) DBAM map index= %d\n", csrow_nr, cs_mode);
2195
	debugf0("    nr_pages/channel= %u  channel-count = %d\n",
2196 2197 2198 2199 2200 2201 2202 2203 2204
		nr_pages, pvt->channel_count);

	return nr_pages;
}

/*
 * Initialize the array of csrow attribute instances, based on the values
 * from pci config hardware registers.
 */
2205
static int init_csrows(struct mem_ctl_info *mci)
2206 2207
{
	struct csrow_info *csrow;
2208
	struct dimm_info *dimm;
2209
	struct amd64_pvt *pvt = mci->pvt_info;
2210
	u64 base, mask;
2211
	u32 val;
2212 2213 2214
	int i, j, empty = 1;
	enum mem_type mtype;
	enum edac_type edac_mode;
2215
	int nr_pages = 0;
2216

2217
	amd64_read_pci_cfg(pvt->F3, NBCFG, &val);
2218

2219
	pvt->nbcfg = val;
2220

2221 2222
	debugf0("node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
		pvt->mc_node_id, val,
2223
		!!(val & NBCFG_CHIPKILL), !!(val & NBCFG_ECC_ENABLE));
2224

2225
	for_each_chip_select(i, 0, pvt) {
2226
		csrow = mci->csrows[i];
2227

2228
		if (!csrow_enabled(i, 0, pvt) && !csrow_enabled(i, 1, pvt)) {
2229 2230 2231 2232 2233 2234 2235 2236 2237
			debugf1("----CSROW %d EMPTY for node %d\n", i,
				pvt->mc_node_id);
			continue;
		}

		debugf1("----CSROW %d VALID for MC node %d\n",
			i, pvt->mc_node_id);

		empty = 0;
2238
		if (csrow_enabled(i, 0, pvt))
2239
			nr_pages = amd64_csrow_nr_pages(pvt, 0, i);
2240
		if (csrow_enabled(i, 1, pvt))
2241
			nr_pages += amd64_csrow_nr_pages(pvt, 1, i);
2242 2243

		get_cs_base_and_mask(pvt, i, 0, &base, &mask);
2244 2245
		/* 8 bytes of resolution */

2246
		mtype = amd64_determine_memory_type(pvt, i);
2247 2248

		debugf1("  for MC node %d csrow %d:\n", pvt->mc_node_id, i);
2249
		debugf1("    nr_pages: %u\n", nr_pages * pvt->channel_count);
2250 2251 2252 2253

		/*
		 * determine whether CHIPKILL or JUST ECC or NO ECC is operating
		 */
2254
		if (pvt->nbcfg & NBCFG_ECC_ENABLE)
2255 2256
			edac_mode = (pvt->nbcfg & NBCFG_CHIPKILL) ?
				    EDAC_S4ECD4ED : EDAC_SECDED;
2257
		else
2258 2259 2260
			edac_mode = EDAC_NONE;

		for (j = 0; j < pvt->channel_count; j++) {
2261 2262 2263 2264
			dimm = csrow->channels[j]->dimm;
			dimm->mtype = mtype;
			dimm->edac_mode = edac_mode;
			dimm->nr_pages = nr_pages;
2265
		}
2266 2267 2268 2269
	}

	return empty;
}
2270

2271
/* get all cores on this DCT */
2272
static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, unsigned nid)
2273 2274 2275 2276 2277 2278 2279 2280 2281
{
	int cpu;

	for_each_online_cpu(cpu)
		if (amd_get_nb_id(cpu) == nid)
			cpumask_set_cpu(cpu, mask);
}

/* check MCG_CTL on all the cpus on this node */
2282
static bool amd64_nb_mce_bank_enabled_on_node(unsigned nid)
2283 2284
{
	cpumask_var_t mask;
2285
	int cpu, nbe;
2286 2287 2288
	bool ret = false;

	if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
2289
		amd64_warn("%s: Error allocating mask\n", __func__);
2290 2291 2292 2293 2294 2295 2296 2297
		return false;
	}

	get_cpus_on_this_dct_cpumask(mask, nid);

	rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);

	for_each_cpu(cpu, mask) {
2298
		struct msr *reg = per_cpu_ptr(msrs, cpu);
2299
		nbe = reg->l & MSR_MCGCTL_NBE;
2300 2301

		debugf0("core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
2302
			cpu, reg->q,
2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314
			(nbe ? "enabled" : "disabled"));

		if (!nbe)
			goto out;
	}
	ret = true;

out:
	free_cpumask_var(mask);
	return ret;
}

2315
static int toggle_ecc_err_reporting(struct ecc_settings *s, u8 nid, bool on)
2316 2317
{
	cpumask_var_t cmask;
2318
	int cpu;
2319 2320

	if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
2321
		amd64_warn("%s: error allocating mask\n", __func__);
2322 2323 2324
		return false;
	}

2325
	get_cpus_on_this_dct_cpumask(cmask, nid);
2326 2327 2328 2329 2330

	rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);

	for_each_cpu(cpu, cmask) {

2331 2332
		struct msr *reg = per_cpu_ptr(msrs, cpu);

2333
		if (on) {
2334
			if (reg->l & MSR_MCGCTL_NBE)
2335
				s->flags.nb_mce_enable = 1;
2336

2337
			reg->l |= MSR_MCGCTL_NBE;
2338 2339
		} else {
			/*
2340
			 * Turn off NB MCE reporting only when it was off before
2341
			 */
2342
			if (!s->flags.nb_mce_enable)
2343
				reg->l &= ~MSR_MCGCTL_NBE;
2344 2345 2346 2347 2348 2349 2350 2351 2352
		}
	}
	wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);

	free_cpumask_var(cmask);

	return 0;
}

2353 2354
static bool enable_ecc_error_reporting(struct ecc_settings *s, u8 nid,
				       struct pci_dev *F3)
2355
{
2356
	bool ret = true;
B
Borislav Petkov 已提交
2357
	u32 value, mask = 0x3;		/* UECC/CECC enable */
2358

2359 2360 2361 2362 2363
	if (toggle_ecc_err_reporting(s, nid, ON)) {
		amd64_warn("Error enabling ECC reporting over MCGCTL!\n");
		return false;
	}

B
Borislav Petkov 已提交
2364
	amd64_read_pci_cfg(F3, NBCTL, &value);
2365

2366 2367
	s->old_nbctl   = value & mask;
	s->nbctl_valid = true;
2368 2369

	value |= mask;
B
Borislav Petkov 已提交
2370
	amd64_write_pci_cfg(F3, NBCTL, value);
2371

2372
	amd64_read_pci_cfg(F3, NBCFG, &value);
2373

2374 2375
	debugf0("1: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
		nid, value, !!(value & NBCFG_ECC_ENABLE));
2376

2377
	if (!(value & NBCFG_ECC_ENABLE)) {
2378
		amd64_warn("DRAM ECC disabled on this node, enabling...\n");
2379

2380
		s->flags.nb_ecc_prev = 0;
2381

2382
		/* Attempt to turn on DRAM ECC Enable */
2383 2384
		value |= NBCFG_ECC_ENABLE;
		amd64_write_pci_cfg(F3, NBCFG, value);
2385

2386
		amd64_read_pci_cfg(F3, NBCFG, &value);
2387

2388
		if (!(value & NBCFG_ECC_ENABLE)) {
2389 2390
			amd64_warn("Hardware rejected DRAM ECC enable,"
				   "check memory DIMM configuration.\n");
2391
			ret = false;
2392
		} else {
2393
			amd64_info("Hardware accepted DRAM ECC Enable\n");
2394
		}
2395
	} else {
2396
		s->flags.nb_ecc_prev = 1;
2397
	}
2398

2399 2400
	debugf0("2: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
		nid, value, !!(value & NBCFG_ECC_ENABLE));
2401

2402
	return ret;
2403 2404
}

2405 2406
static void restore_ecc_error_reporting(struct ecc_settings *s, u8 nid,
					struct pci_dev *F3)
2407
{
B
Borislav Petkov 已提交
2408 2409
	u32 value, mask = 0x3;		/* UECC/CECC enable */

2410

2411
	if (!s->nbctl_valid)
2412 2413
		return;

B
Borislav Petkov 已提交
2414
	amd64_read_pci_cfg(F3, NBCTL, &value);
2415
	value &= ~mask;
2416
	value |= s->old_nbctl;
2417

B
Borislav Petkov 已提交
2418
	amd64_write_pci_cfg(F3, NBCTL, value);
2419

2420 2421
	/* restore previous BIOS DRAM ECC "off" setting we force-enabled */
	if (!s->flags.nb_ecc_prev) {
2422 2423 2424
		amd64_read_pci_cfg(F3, NBCFG, &value);
		value &= ~NBCFG_ECC_ENABLE;
		amd64_write_pci_cfg(F3, NBCFG, value);
2425 2426 2427
	}

	/* restore the NB Enable MCGCTL bit */
2428
	if (toggle_ecc_err_reporting(s, nid, OFF))
2429
		amd64_warn("Error restoring NB MCGCTL settings!\n");
2430 2431 2432
}

/*
2433 2434 2435 2436
 * EDAC requires that the BIOS have ECC enabled before
 * taking over the processing of ECC errors. A command line
 * option allows to force-enable hardware ECC later in
 * enable_ecc_error_reporting().
2437
 */
2438 2439 2440 2441 2442
static const char *ecc_msg =
	"ECC disabled in the BIOS or no ECC capability, module will not load.\n"
	" Either enable ECC checking or force module loading by setting "
	"'ecc_enable_override'.\n"
	" (Note that use of the override may cause unknown side effects.)\n";
2443

2444
static bool ecc_enabled(struct pci_dev *F3, u8 nid)
2445 2446
{
	u32 value;
2447
	u8 ecc_en = 0;
2448
	bool nb_mce_en = false;
2449

2450
	amd64_read_pci_cfg(F3, NBCFG, &value);
2451

2452
	ecc_en = !!(value & NBCFG_ECC_ENABLE);
2453
	amd64_info("DRAM ECC %s.\n", (ecc_en ? "enabled" : "disabled"));
2454

2455
	nb_mce_en = amd64_nb_mce_bank_enabled_on_node(nid);
2456
	if (!nb_mce_en)
2457 2458 2459
		amd64_notice("NB MCE bank disabled, set MSR "
			     "0x%08x[4] on node %d to enable.\n",
			     MSR_IA32_MCG_CTL, nid);
2460

2461 2462 2463 2464 2465
	if (!ecc_en || !nb_mce_en) {
		amd64_notice("%s", ecc_msg);
		return false;
	}
	return true;
2466 2467
}

2468
static int set_mc_sysfs_attrs(struct mem_ctl_info *mci)
2469
{
2470
	int rc;
2471

2472 2473 2474
	rc = amd64_create_sysfs_dbg_files(mci);
	if (rc < 0)
		return rc;
2475

2476 2477 2478 2479 2480 2481 2482 2483
	if (boot_cpu_data.x86 >= 0x10) {
		rc = amd64_create_sysfs_inject_files(mci);
		if (rc < 0)
			return rc;
	}

	return 0;
}
2484

2485 2486 2487
static void del_mc_sysfs_attrs(struct mem_ctl_info *mci)
{
	amd64_remove_sysfs_dbg_files(mci);
2488

2489 2490
	if (boot_cpu_data.x86 >= 0x10)
		amd64_remove_sysfs_inject_files(mci);
2491 2492
}

2493 2494
static void setup_mci_misc_attrs(struct mem_ctl_info *mci,
				 struct amd64_family_type *fam)
2495 2496 2497 2498 2499 2500
{
	struct amd64_pvt *pvt = mci->pvt_info;

	mci->mtype_cap		= MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
	mci->edac_ctl_cap	= EDAC_FLAG_NONE;

2501
	if (pvt->nbcap & NBCAP_SECDED)
2502 2503
		mci->edac_ctl_cap |= EDAC_FLAG_SECDED;

2504
	if (pvt->nbcap & NBCAP_CHIPKILL)
2505 2506 2507 2508 2509
		mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;

	mci->edac_cap		= amd64_determine_edac_cap(pvt);
	mci->mod_name		= EDAC_MOD_STR;
	mci->mod_ver		= EDAC_AMD64_VERSION;
2510
	mci->ctl_name		= fam->ctl_name;
2511
	mci->dev_name		= pci_name(pvt->F2);
2512 2513 2514 2515 2516 2517 2518
	mci->ctl_page_to_phys	= NULL;

	/* memory scrubber interface */
	mci->set_sdram_scrub_rate = amd64_set_scrub_rate;
	mci->get_sdram_scrub_rate = amd64_get_scrub_rate;
}

2519 2520 2521 2522
/*
 * returns a pointer to the family descriptor on success, NULL otherwise.
 */
static struct amd64_family_type *amd64_per_family_init(struct amd64_pvt *pvt)
2523
{
2524 2525 2526 2527
	u8 fam = boot_cpu_data.x86;
	struct amd64_family_type *fam_type = NULL;

	switch (fam) {
2528
	case 0xf:
2529
		fam_type		= &amd64_family_types[K8_CPUS];
2530
		pvt->ops		= &amd64_family_types[K8_CPUS].ops;
2531
		break;
2532

2533
	case 0x10:
2534
		fam_type		= &amd64_family_types[F10_CPUS];
2535
		pvt->ops		= &amd64_family_types[F10_CPUS].ops;
2536 2537 2538 2539 2540
		break;

	case 0x15:
		fam_type		= &amd64_family_types[F15_CPUS];
		pvt->ops		= &amd64_family_types[F15_CPUS].ops;
2541 2542 2543
		break;

	default:
2544
		amd64_err("Unsupported family!\n");
2545
		return NULL;
2546
	}
2547

2548 2549
	pvt->ext_model = boot_cpu_data.x86_model >> 4;

2550
	amd64_info("%s %sdetected (node %d).\n", fam_type->ctl_name,
2551
		     (fam == 0xf ?
2552 2553 2554
				(pvt->ext_model >= K8_REV_F  ? "revF or later "
							     : "revE or earlier ")
				 : ""), pvt->mc_node_id);
2555
	return fam_type;
2556 2557
}

2558
static int amd64_init_one_instance(struct pci_dev *F2)
2559 2560
{
	struct amd64_pvt *pvt = NULL;
2561
	struct amd64_family_type *fam_type = NULL;
2562
	struct mem_ctl_info *mci = NULL;
2563
	struct edac_mc_layer layers[2];
2564
	int err = 0, ret;
2565
	u8 nid = get_node_id(F2);
2566 2567 2568 2569

	ret = -ENOMEM;
	pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
	if (!pvt)
2570
		goto err_ret;
2571

2572
	pvt->mc_node_id	= nid;
2573
	pvt->F2 = F2;
2574

2575
	ret = -EINVAL;
2576 2577
	fam_type = amd64_per_family_init(pvt);
	if (!fam_type)
2578 2579
		goto err_free;

2580
	ret = -ENODEV;
2581
	err = reserve_mc_sibling_devs(pvt, fam_type->f1_id, fam_type->f3_id);
2582 2583 2584
	if (err)
		goto err_free;

2585
	read_mc_regs(pvt);
2586 2587 2588 2589

	/*
	 * We need to determine how many memory channels there are. Then use
	 * that information for calculating the size of the dynamic instance
2590
	 * tables in the 'mci' structure.
2591
	 */
2592
	ret = -EINVAL;
2593 2594
	pvt->channel_count = pvt->ops->early_channel_count(pvt);
	if (pvt->channel_count < 0)
2595
		goto err_siblings;
2596 2597

	ret = -ENOMEM;
2598 2599 2600 2601 2602 2603
	layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
	layers[0].size = pvt->csels[0].b_cnt;
	layers[0].is_virt_csrow = true;
	layers[1].type = EDAC_MC_LAYER_CHANNEL;
	layers[1].size = pvt->channel_count;
	layers[1].is_virt_csrow = false;
2604
	mci = edac_mc_alloc(nid, ARRAY_SIZE(layers), layers, 0);
2605
	if (!mci)
2606
		goto err_siblings;
2607 2608

	mci->pvt_info = pvt;
2609
	mci->pdev = &pvt->F2->dev;
2610

2611
	setup_mci_misc_attrs(mci, fam_type);
2612 2613

	if (init_csrows(mci))
2614 2615 2616 2617 2618 2619 2620
		mci->edac_cap = EDAC_FLAG_NONE;

	ret = -ENODEV;
	if (edac_mc_add_mc(mci)) {
		debugf1("failed edac_mc_add_mc()\n");
		goto err_add_mc;
	}
2621 2622 2623 2624
	if (set_mc_sysfs_attrs(mci)) {
		debugf1("failed edac_mc_add_mc()\n");
		goto err_add_sysfs;
	}
2625

2626 2627 2628 2629 2630 2631
	/* register stuff with EDAC MCE */
	if (report_gart_errors)
		amd_report_gart_errors(true);

	amd_register_ecc_decoder(amd64_decode_bus_error);

2632 2633 2634 2635
	mcis[nid] = mci;

	atomic_inc(&drv_instances);

2636 2637
	return 0;

2638 2639
err_add_sysfs:
	edac_mc_del_mc(mci->pdev);
2640 2641 2642
err_add_mc:
	edac_mc_free(mci);

2643 2644
err_siblings:
	free_mc_sibling_devs(pvt);
2645

2646 2647
err_free:
	kfree(pvt);
2648

2649
err_ret:
2650 2651 2652
	return ret;
}

2653
static int __devinit amd64_probe_one_instance(struct pci_dev *pdev,
2654
					     const struct pci_device_id *mc_type)
2655
{
2656
	u8 nid = get_node_id(pdev);
2657
	struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
2658
	struct ecc_settings *s;
2659
	int ret = 0;
2660 2661

	ret = pci_enable_device(pdev);
2662 2663 2664 2665
	if (ret < 0) {
		debugf0("ret=%d\n", ret);
		return -EIO;
	}
2666

2667 2668 2669
	ret = -ENOMEM;
	s = kzalloc(sizeof(struct ecc_settings), GFP_KERNEL);
	if (!s)
2670
		goto err_out;
2671 2672 2673

	ecc_stngs[nid] = s;

2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686
	if (!ecc_enabled(F3, nid)) {
		ret = -ENODEV;

		if (!ecc_enable_override)
			goto err_enable;

		amd64_warn("Forcing ECC on!\n");

		if (!enable_ecc_error_reporting(s, nid, F3))
			goto err_enable;
	}

	ret = amd64_init_one_instance(pdev);
2687
	if (ret < 0) {
2688
		amd64_err("Error probing instance: %d\n", nid);
2689 2690
		restore_ecc_error_reporting(s, nid, F3);
	}
2691 2692

	return ret;
2693 2694 2695 2696 2697 2698 2699

err_enable:
	kfree(s);
	ecc_stngs[nid] = NULL;

err_out:
	return ret;
2700 2701 2702 2703 2704 2705
}

static void __devexit amd64_remove_one_instance(struct pci_dev *pdev)
{
	struct mem_ctl_info *mci;
	struct amd64_pvt *pvt;
2706 2707 2708
	u8 nid = get_node_id(pdev);
	struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
	struct ecc_settings *s = ecc_stngs[nid];
2709

2710 2711
	mci = find_mci_by_dev(&pdev->dev);
	del_mc_sysfs_attrs(mci);
2712 2713 2714 2715 2716 2717 2718
	/* Remove from EDAC CORE tracking list */
	mci = edac_mc_del_mc(&pdev->dev);
	if (!mci)
		return;

	pvt = mci->pvt_info;

2719
	restore_ecc_error_reporting(s, nid, F3);
2720

2721
	free_mc_sibling_devs(pvt);
2722

2723 2724 2725 2726
	/* unregister from EDAC MCE */
	amd_report_gart_errors(false);
	amd_unregister_ecc_decoder(amd64_decode_bus_error);

2727 2728
	kfree(ecc_stngs[nid]);
	ecc_stngs[nid] = NULL;
2729

2730
	/* Free the EDAC CORE resources */
2731
	mci->pvt_info = NULL;
2732
	mcis[nid] = NULL;
2733 2734

	kfree(pvt);
2735 2736 2737 2738 2739 2740 2741 2742
	edac_mc_free(mci);
}

/*
 * This table is part of the interface for loading drivers for PCI devices. The
 * PCI core identifies what devices are on a system during boot, and then
 * inquiry this table to see if this driver is for a given device found.
 */
2743
static DEFINE_PCI_DEVICE_TABLE(amd64_pci_table) = {
2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759
	{
		.vendor		= PCI_VENDOR_ID_AMD,
		.device		= PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
		.subvendor	= PCI_ANY_ID,
		.subdevice	= PCI_ANY_ID,
		.class		= 0,
		.class_mask	= 0,
	},
	{
		.vendor		= PCI_VENDOR_ID_AMD,
		.device		= PCI_DEVICE_ID_AMD_10H_NB_DRAM,
		.subvendor	= PCI_ANY_ID,
		.subdevice	= PCI_ANY_ID,
		.class		= 0,
		.class_mask	= 0,
	},
2760 2761 2762 2763 2764 2765 2766 2767 2768
	{
		.vendor		= PCI_VENDOR_ID_AMD,
		.device		= PCI_DEVICE_ID_AMD_15H_NB_F2,
		.subvendor	= PCI_ANY_ID,
		.subdevice	= PCI_ANY_ID,
		.class		= 0,
		.class_mask	= 0,
	},

2769 2770 2771 2772 2773 2774
	{0, }
};
MODULE_DEVICE_TABLE(pci, amd64_pci_table);

static struct pci_driver amd64_pci_driver = {
	.name		= EDAC_MOD_STR,
2775
	.probe		= amd64_probe_one_instance,
2776 2777 2778 2779
	.remove		= __devexit_p(amd64_remove_one_instance),
	.id_table	= amd64_pci_table,
};

2780
static void setup_pci_device(void)
2781 2782 2783 2784 2785 2786 2787
{
	struct mem_ctl_info *mci;
	struct amd64_pvt *pvt;

	if (amd64_ctl_pci)
		return;

2788
	mci = mcis[0];
2789 2790 2791 2792
	if (mci) {

		pvt = mci->pvt_info;
		amd64_ctl_pci =
2793
			edac_pci_create_generic_ctl(&pvt->F2->dev, EDAC_MOD_STR);
2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806

		if (!amd64_ctl_pci) {
			pr_warning("%s(): Unable to create PCI control\n",
				   __func__);

			pr_warning("%s(): PCI error report via EDAC not set\n",
				   __func__);
			}
	}
}

static int __init amd64_edac_init(void)
{
2807
	int err = -ENODEV;
2808

2809
	printk(KERN_INFO "AMD64 EDAC driver v%s\n", EDAC_AMD64_VERSION);
2810 2811 2812

	opstate_init();

2813
	if (amd_cache_northbridges() < 0)
2814
		goto err_ret;
2815

2816
	err = -ENOMEM;
2817 2818
	mcis	  = kzalloc(amd_nb_num() * sizeof(mcis[0]), GFP_KERNEL);
	ecc_stngs = kzalloc(amd_nb_num() * sizeof(ecc_stngs[0]), GFP_KERNEL);
2819
	if (!(mcis && ecc_stngs))
2820
		goto err_free;
2821

2822
	msrs = msrs_alloc();
2823
	if (!msrs)
2824
		goto err_free;
2825

2826 2827
	err = pci_register_driver(&amd64_pci_driver);
	if (err)
2828
		goto err_pci;
2829

2830
	err = -ENODEV;
2831 2832
	if (!atomic_read(&drv_instances))
		goto err_no_instances;
2833

2834 2835
	setup_pci_device();
	return 0;
2836

2837
err_no_instances:
2838
	pci_unregister_driver(&amd64_pci_driver);
2839

2840 2841 2842
err_pci:
	msrs_free(msrs);
	msrs = NULL;
2843

2844 2845 2846 2847 2848 2849 2850
err_free:
	kfree(mcis);
	mcis = NULL;

	kfree(ecc_stngs);
	ecc_stngs = NULL;

2851
err_ret:
2852 2853 2854 2855 2856 2857 2858 2859 2860
	return err;
}

static void __exit amd64_edac_exit(void)
{
	if (amd64_ctl_pci)
		edac_pci_release_generic_ctl(amd64_ctl_pci);

	pci_unregister_driver(&amd64_pci_driver);
2861

2862 2863 2864
	kfree(ecc_stngs);
	ecc_stngs = NULL;

2865 2866 2867
	kfree(mcis);
	mcis = NULL;

2868 2869
	msrs_free(msrs);
	msrs = NULL;
2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882
}

module_init(amd64_edac_init);
module_exit(amd64_edac_exit);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
		"Dave Peterson, Thayne Harbaugh");
MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
		EDAC_AMD64_VERSION);

module_param(edac_op_state, int, 0444);
MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");