amd64_edac.c 69.6 KB
Newer Older
1
#include "amd64_edac.h"
2
#include <asm/amd_nb.h>
3 4 5 6 7 8 9 10 11 12 13 14 15

static struct edac_pci_ctl_info *amd64_ctl_pci;

static int report_gart_errors;
module_param(report_gart_errors, int, 0644);

/*
 * Set by command line parameter. If BIOS has enabled the ECC, this override is
 * cleared to prevent re-enabling the hardware by this driver.
 */
static int ecc_enable_override;
module_param(ecc_enable_override, int, 0644);

16
static struct msr __percpu *msrs;
17

18 19 20 21 22
/*
 * count successfully initialized driver instances for setup_pci_device()
 */
static atomic_t drv_instances = ATOMIC_INIT(0);

23 24
/* Per-node driver instances */
static struct mem_ctl_info **mcis;
25
static struct ecc_settings **ecc_stngs;
26

27
/*
28 29
 * Address to DRAM bank mapping: see F2x80 for K8 and F2x[1,0]80 for Fam10 and
 * later.
30
 */
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
static int ddr2_dbam_revCG[] = {
			   [0]		= 32,
			   [1]		= 64,
			   [2]		= 128,
			   [3]		= 256,
			   [4]		= 512,
			   [5]		= 1024,
			   [6]		= 2048,
};

static int ddr2_dbam_revD[] = {
			   [0]		= 32,
			   [1]		= 64,
			   [2 ... 3]	= 128,
			   [4]		= 256,
			   [5]		= 512,
			   [6]		= 256,
			   [7]		= 512,
			   [8 ... 9]	= 1024,
			   [10]		= 2048,
};

static int ddr2_dbam[] = { [0]		= 128,
			   [1]		= 256,
			   [2 ... 4]	= 512,
			   [5 ... 6]	= 1024,
			   [7 ... 8]	= 2048,
			   [9 ... 10]	= 4096,
			   [11]		= 8192,
};

static int ddr3_dbam[] = { [0]		= -1,
			   [1]		= 256,
			   [2]		= 512,
			   [3 ... 4]	= -1,
			   [5 ... 6]	= 1024,
			   [7 ... 8]	= 2048,
			   [9 ... 10]	= 4096,
69
			   [11]		= 8192,
70 71 72 73 74 75 76 77 78 79
};

/*
 * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
 * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
 * or higher value'.
 *
 *FIXME: Produce a better mapping/linearisation.
 */

80 81 82 83 84

struct scrubrate {
       u32 scrubval;           /* bit pattern for scrub rate */
       u32 bandwidth;          /* bandwidth consumed (bytes/sec) */
} scrubrates[] = {
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
	{ 0x01, 1600000000UL},
	{ 0x02, 800000000UL},
	{ 0x03, 400000000UL},
	{ 0x04, 200000000UL},
	{ 0x05, 100000000UL},
	{ 0x06, 50000000UL},
	{ 0x07, 25000000UL},
	{ 0x08, 12284069UL},
	{ 0x09, 6274509UL},
	{ 0x0A, 3121951UL},
	{ 0x0B, 1560975UL},
	{ 0x0C, 781440UL},
	{ 0x0D, 390720UL},
	{ 0x0E, 195300UL},
	{ 0x0F, 97650UL},
	{ 0x10, 48854UL},
	{ 0x11, 24427UL},
	{ 0x12, 12213UL},
	{ 0x13, 6101UL},
	{ 0x14, 3051UL},
	{ 0x15, 1523UL},
	{ 0x16, 761UL},
	{ 0x00, 0UL},        /* scrubbing off */
};

110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
static int __amd64_read_pci_cfg_dword(struct pci_dev *pdev, int offset,
				      u32 *val, const char *func)
{
	int err = 0;

	err = pci_read_config_dword(pdev, offset, val);
	if (err)
		amd64_warn("%s: error reading F%dx%03x.\n",
			   func, PCI_FUNC(pdev->devfn), offset);

	return err;
}

int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset,
				u32 val, const char *func)
{
	int err = 0;

	err = pci_write_config_dword(pdev, offset, val);
	if (err)
		amd64_warn("%s: error writing to F%dx%03x.\n",
			   func, PCI_FUNC(pdev->devfn), offset);

	return err;
}

/*
 *
 * Depending on the family, F2 DCT reads need special handling:
 *
 * K8: has a single DCT only
 *
 * F10h: each DCT has its own set of regs
 *	DCT0 -> F2x040..
 *	DCT1 -> F2x140..
 *
 * F15h: we select which DCT we access using F1x10C[DctCfgSel]
 *
 */
static int k8_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
			       const char *func)
{
	if (addr >= 0x100)
		return -EINVAL;

	return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
}

static int f10_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
				 const char *func)
{
	return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
}

static int f15_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
				 const char *func)
{
	u32 reg = 0;
	u8 dct  = 0;

	if (addr >= 0x140 && addr <= 0x1a0) {
		dct   = 1;
		addr -= 0x100;
	}

	amd64_read_pci_cfg(pvt->F1, DCT_CFG_SEL, &reg);
	reg &= 0xfffffffe;
	reg |= dct;
	amd64_write_pci_cfg(pvt->F1, DCT_CFG_SEL, reg);

	return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
}

183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
/*
 * Memory scrubber control interface. For K8, memory scrubbing is handled by
 * hardware and can involve L2 cache, dcache as well as the main memory. With
 * F10, this is extended to L3 cache scrubbing on CPU models sporting that
 * functionality.
 *
 * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
 * (dram) over to cache lines. This is nasty, so we will use bandwidth in
 * bytes/sec for the setting.
 *
 * Currently, we only do dram scrubbing. If the scrubbing is done in software on
 * other archs, we might not have access to the caches directly.
 */

/*
 * scan the scrub rate mapping table for a close or matching bandwidth value to
 * issue. If requested is too big, then use last maximum value found.
 */
201
static int __amd64_set_scrub_rate(struct pci_dev *ctl, u32 new_bw, u32 min_rate)
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
{
	u32 scrubval;
	int i;

	/*
	 * map the configured rate (new_bw) to a value specific to the AMD64
	 * memory controller and apply to register. Search for the first
	 * bandwidth entry that is greater or equal than the setting requested
	 * and program that. If at last entry, turn off DRAM scrubbing.
	 */
	for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
		/*
		 * skip scrub rates which aren't recommended
		 * (see F10 BKDG, F3x58)
		 */
217
		if (scrubrates[i].scrubval < min_rate)
218 219 220 221 222 223 224 225 226 227 228 229 230 231
			continue;

		if (scrubrates[i].bandwidth <= new_bw)
			break;

		/*
		 * if no suitable bandwidth found, turn off DRAM scrubbing
		 * entirely by falling back to the last element in the
		 * scrubrates array.
		 */
	}

	scrubval = scrubrates[i].scrubval;

232
	pci_write_bits32(ctl, SCRCTRL, scrubval, 0x001F);
233

234 235 236
	if (scrubval)
		return scrubrates[i].bandwidth;

237 238 239
	return 0;
}

240
static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 bw)
241 242 243
{
	struct amd64_pvt *pvt = mci->pvt_info;

244
	return __amd64_set_scrub_rate(pvt->F3, bw, pvt->min_scrubrate);
245 246
}

247
static int amd64_get_scrub_rate(struct mem_ctl_info *mci)
248 249 250
{
	struct amd64_pvt *pvt = mci->pvt_info;
	u32 scrubval = 0;
251
	int i, retval = -EINVAL;
252

253
	amd64_read_pci_cfg(pvt->F3, SCRCTRL, &scrubval);
254 255 256

	scrubval = scrubval & 0x001F;

257
	amd64_debug("pci-read, sdram scrub control value: %d\n", scrubval);
258

259
	for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
260
		if (scrubrates[i].scrubval == scrubval) {
261
			retval = scrubrates[i].bandwidth;
262 263 264
			break;
		}
	}
265
	return retval;
266 267
}

268
/*
269 270
 * returns true if the SysAddr given by sys_addr matches the
 * DRAM base/limit associated with node_id
271
 */
272
static bool amd64_base_limit_match(struct amd64_pvt *pvt, u64 sys_addr, int nid)
273
{
274
	u64 addr;
275 276 277 278 279 280 281 282 283

	/* The K8 treats this as a 40-bit value.  However, bits 63-40 will be
	 * all ones if the most significant implemented address bit is 1.
	 * Here we discard bits 63-40.  See section 3.4.2 of AMD publication
	 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
	 * Application Programming.
	 */
	addr = sys_addr & 0x000000ffffffffffull;

284 285
	return ((addr >= get_dram_base(pvt, nid)) &&
		(addr <= get_dram_limit(pvt, nid)));
286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
}

/*
 * Attempt to map a SysAddr to a node. On success, return a pointer to the
 * mem_ctl_info structure for the node that the SysAddr maps to.
 *
 * On failure, return NULL.
 */
static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
						u64 sys_addr)
{
	struct amd64_pvt *pvt;
	int node_id;
	u32 intlv_en, bits;

	/*
	 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
	 * 3.4.4.2) registers to map the SysAddr to a node ID.
	 */
	pvt = mci->pvt_info;

	/*
	 * The value of this field should be the same for all DRAM Base
	 * registers.  Therefore we arbitrarily choose to read it from the
	 * register for node 0.
	 */
312
	intlv_en = dram_intlv_en(pvt, 0);
313 314

	if (intlv_en == 0) {
315
		for (node_id = 0; node_id < DRAM_RANGES; node_id++) {
316
			if (amd64_base_limit_match(pvt, sys_addr, node_id))
317
				goto found;
318
		}
319
		goto err_no_match;
320 321
	}

322 323 324
	if (unlikely((intlv_en != 0x01) &&
		     (intlv_en != 0x03) &&
		     (intlv_en != 0x07))) {
325
		amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en);
326 327 328 329 330 331
		return NULL;
	}

	bits = (((u32) sys_addr) >> 12) & intlv_en;

	for (node_id = 0; ; ) {
332
		if ((dram_intlv_sel(pvt, node_id) & intlv_en) == bits)
333 334
			break;	/* intlv_sel field matches */

335
		if (++node_id >= DRAM_RANGES)
336 337 338 339 340
			goto err_no_match;
	}

	/* sanity test for sys_addr */
	if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) {
341 342 343
		amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address"
			   "range for node %d with node interleaving enabled.\n",
			   __func__, sys_addr, node_id);
344 345 346 347 348 349 350 351 352 353 354 355
		return NULL;
	}

found:
	return edac_mc_find(node_id);

err_no_match:
	debugf2("sys_addr 0x%lx doesn't match any node\n",
		(unsigned long)sys_addr);

	return NULL;
}
356 357

/*
358 359
 * compute the CS base address of the @csrow on the DRAM controller @dct.
 * For details see F2x[5C:40] in the processor's BKDG
360
 */
361 362
static void get_cs_base_and_mask(struct amd64_pvt *pvt, int csrow, u8 dct,
				 u64 *base, u64 *mask)
363
{
364 365
	u64 csbase, csmask, base_bits, mask_bits;
	u8 addr_shift;
366

367 368 369 370 371 372 373 374 375 376
	if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
		csbase		= pvt->csels[dct].csbases[csrow];
		csmask		= pvt->csels[dct].csmasks[csrow];
		base_bits	= GENMASK(21, 31) | GENMASK(9, 15);
		mask_bits	= GENMASK(21, 29) | GENMASK(9, 15);
		addr_shift	= 4;
	} else {
		csbase		= pvt->csels[dct].csbases[csrow];
		csmask		= pvt->csels[dct].csmasks[csrow >> 1];
		addr_shift	= 8;
377

378 379 380 381 382
		if (boot_cpu_data.x86 == 0x15)
			base_bits = mask_bits = GENMASK(19,30) | GENMASK(5,13);
		else
			base_bits = mask_bits = GENMASK(19,28) | GENMASK(5,13);
	}
383

384
	*base  = (csbase & base_bits) << addr_shift;
385

386 387 388 389 390
	*mask  = ~0ULL;
	/* poke holes for the csmask */
	*mask &= ~(mask_bits << addr_shift);
	/* OR them in */
	*mask |= (csmask & mask_bits) << addr_shift;
391 392
}

393 394 395
#define for_each_chip_select(i, dct, pvt) \
	for (i = 0; i < pvt->csels[dct].b_cnt; i++)

396 397 398
#define chip_select_base(i, dct, pvt) \
	pvt->csels[dct].csbases[i]

399 400 401
#define for_each_chip_select_mask(i, dct, pvt) \
	for (i = 0; i < pvt->csels[dct].m_cnt; i++)

402 403 404 405 406 407 408 409 410 411 412 413
/*
 * @input_addr is an InputAddr associated with the node given by mci. Return the
 * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
 */
static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
{
	struct amd64_pvt *pvt;
	int csrow;
	u64 base, mask;

	pvt = mci->pvt_info;

414 415
	for_each_chip_select(csrow, 0, pvt) {
		if (!csrow_enabled(csrow, 0, pvt))
416 417
			continue;

418 419 420
		get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);

		mask = ~mask;
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458

		if ((input_addr & mask) == (base & mask)) {
			debugf2("InputAddr 0x%lx matches csrow %d (node %d)\n",
				(unsigned long)input_addr, csrow,
				pvt->mc_node_id);

			return csrow;
		}
	}
	debugf2("no matching csrow for InputAddr 0x%lx (MC node %d)\n",
		(unsigned long)input_addr, pvt->mc_node_id);

	return -1;
}

/*
 * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
 * for the node represented by mci. Info is passed back in *hole_base,
 * *hole_offset, and *hole_size.  Function returns 0 if info is valid or 1 if
 * info is invalid. Info may be invalid for either of the following reasons:
 *
 * - The revision of the node is not E or greater.  In this case, the DRAM Hole
 *   Address Register does not exist.
 *
 * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
 *   indicating that its contents are not valid.
 *
 * The values passed back in *hole_base, *hole_offset, and *hole_size are
 * complete 32-bit values despite the fact that the bitfields in the DHAR
 * only represent bits 31-24 of the base and offset values.
 */
int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
			     u64 *hole_offset, u64 *hole_size)
{
	struct amd64_pvt *pvt = mci->pvt_info;
	u64 base;

	/* only revE and later have the DRAM Hole Address Register */
459
	if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_E) {
460 461 462 463 464
		debugf1("  revision %d for node %d does not support DHAR\n",
			pvt->ext_model, pvt->mc_node_id);
		return 1;
	}

465
	/* valid for Fam10h and above */
466
	if (boot_cpu_data.x86 >= 0x10 && !dhar_mem_hoist_valid(pvt)) {
467 468 469 470
		debugf1("  Dram Memory Hoisting is DISABLED on this system\n");
		return 1;
	}

471
	if (!dhar_valid(pvt)) {
472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
		debugf1("  Dram Memory Hoisting is DISABLED on this node %d\n",
			pvt->mc_node_id);
		return 1;
	}

	/* This node has Memory Hoisting */

	/* +------------------+--------------------+--------------------+-----
	 * | memory           | DRAM hole          | relocated          |
	 * | [0, (x - 1)]     | [x, 0xffffffff]    | addresses from     |
	 * |                  |                    | DRAM hole          |
	 * |                  |                    | [0x100000000,      |
	 * |                  |                    |  (0x100000000+     |
	 * |                  |                    |   (0xffffffff-x))] |
	 * +------------------+--------------------+--------------------+-----
	 *
	 * Above is a diagram of physical memory showing the DRAM hole and the
	 * relocated addresses from the DRAM hole.  As shown, the DRAM hole
	 * starts at address x (the base address) and extends through address
	 * 0xffffffff.  The DRAM Hole Address Register (DHAR) relocates the
	 * addresses in the hole so that they start at 0x100000000.
	 */

495
	base = dhar_base(pvt);
496 497 498 499 500

	*hole_base = base;
	*hole_size = (0x1ull << 32) - base;

	if (boot_cpu_data.x86 > 0xf)
501
		*hole_offset = f10_dhar_offset(pvt);
502
	else
503
		*hole_offset = k8_dhar_offset(pvt);
504 505 506 507 508 509 510 511 512

	debugf1("  DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
		pvt->mc_node_id, (unsigned long)*hole_base,
		(unsigned long)*hole_offset, (unsigned long)*hole_size);

	return 0;
}
EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);

513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543
/*
 * Return the DramAddr that the SysAddr given by @sys_addr maps to.  It is
 * assumed that sys_addr maps to the node given by mci.
 *
 * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
 * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
 * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
 * then it is also involved in translating a SysAddr to a DramAddr. Sections
 * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
 * These parts of the documentation are unclear. I interpret them as follows:
 *
 * When node n receives a SysAddr, it processes the SysAddr as follows:
 *
 * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
 *    Limit registers for node n. If the SysAddr is not within the range
 *    specified by the base and limit values, then node n ignores the Sysaddr
 *    (since it does not map to node n). Otherwise continue to step 2 below.
 *
 * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
 *    disabled so skip to step 3 below. Otherwise see if the SysAddr is within
 *    the range of relocated addresses (starting at 0x100000000) from the DRAM
 *    hole. If not, skip to step 3 below. Else get the value of the
 *    DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
 *    offset defined by this value from the SysAddr.
 *
 * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
 *    Base register for node n. To obtain the DramAddr, subtract the base
 *    address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
 */
static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
{
544
	struct amd64_pvt *pvt = mci->pvt_info;
545 546 547
	u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
	int ret = 0;

548
	dram_base = get_dram_base(pvt, pvt->mc_node_id);
549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575

	ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
				      &hole_size);
	if (!ret) {
		if ((sys_addr >= (1ull << 32)) &&
		    (sys_addr < ((1ull << 32) + hole_size))) {
			/* use DHAR to translate SysAddr to DramAddr */
			dram_addr = sys_addr - hole_offset;

			debugf2("using DHAR to translate SysAddr 0x%lx to "
				"DramAddr 0x%lx\n",
				(unsigned long)sys_addr,
				(unsigned long)dram_addr);

			return dram_addr;
		}
	}

	/*
	 * Translate the SysAddr to a DramAddr as shown near the start of
	 * section 3.4.4 (p. 70).  Although sys_addr is a 64-bit value, the k8
	 * only deals with 40-bit values.  Therefore we discard bits 63-40 of
	 * sys_addr below.  If bit 39 of sys_addr is 1 then the bits we
	 * discard are all 1s.  Otherwise the bits we discard are all 0s.  See
	 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
	 * Programmer's Manual Volume 1 Application Programming.
	 */
576
	dram_addr = (sys_addr & GENMASK(0, 39)) - dram_base;
577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611

	debugf2("using DRAM Base register to translate SysAddr 0x%lx to "
		"DramAddr 0x%lx\n", (unsigned long)sys_addr,
		(unsigned long)dram_addr);
	return dram_addr;
}

/*
 * @intlv_en is the value of the IntlvEn field from a DRAM Base register
 * (section 3.4.4.1).  Return the number of bits from a SysAddr that are used
 * for node interleaving.
 */
static int num_node_interleave_bits(unsigned intlv_en)
{
	static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
	int n;

	BUG_ON(intlv_en > 7);
	n = intlv_shift_table[intlv_en];
	return n;
}

/* Translate the DramAddr given by @dram_addr to an InputAddr. */
static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
{
	struct amd64_pvt *pvt;
	int intlv_shift;
	u64 input_addr;

	pvt = mci->pvt_info;

	/*
	 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
	 * concerning translating a DramAddr to an InputAddr.
	 */
612
	intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
613 614
	input_addr = ((dram_addr >> intlv_shift) & GENMASK(12, 35)) +
		      (dram_addr & 0xfff);
615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663

	debugf2("  Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
		intlv_shift, (unsigned long)dram_addr,
		(unsigned long)input_addr);

	return input_addr;
}

/*
 * Translate the SysAddr represented by @sys_addr to an InputAddr.  It is
 * assumed that @sys_addr maps to the node given by mci.
 */
static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
{
	u64 input_addr;

	input_addr =
	    dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));

	debugf2("SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
		(unsigned long)sys_addr, (unsigned long)input_addr);

	return input_addr;
}


/*
 * @input_addr is an InputAddr associated with the node represented by mci.
 * Translate @input_addr to a DramAddr and return the result.
 */
static u64 input_addr_to_dram_addr(struct mem_ctl_info *mci, u64 input_addr)
{
	struct amd64_pvt *pvt;
	int node_id, intlv_shift;
	u64 bits, dram_addr;
	u32 intlv_sel;

	/*
	 * Near the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
	 * shows how to translate a DramAddr to an InputAddr. Here we reverse
	 * this procedure. When translating from a DramAddr to an InputAddr, the
	 * bits used for node interleaving are discarded.  Here we recover these
	 * bits from the IntlvSel field of the DRAM Limit register (section
	 * 3.4.4.2) for the node that input_addr is associated with.
	 */
	pvt = mci->pvt_info;
	node_id = pvt->mc_node_id;
	BUG_ON((node_id < 0) || (node_id > 7));

664
	intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
665 666 667 668 669 670 671 672

	if (intlv_shift == 0) {
		debugf1("    InputAddr 0x%lx translates to DramAddr of "
			"same value\n",	(unsigned long)input_addr);

		return input_addr;
	}

673 674
	bits = ((input_addr & GENMASK(12, 35)) << intlv_shift) +
		(input_addr & 0xfff);
675

676
	intlv_sel = dram_intlv_sel(pvt, node_id) & ((1 << intlv_shift) - 1);
677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692
	dram_addr = bits + (intlv_sel << 12);

	debugf1("InputAddr 0x%lx translates to DramAddr 0x%lx "
		"(%d node interleave bits)\n", (unsigned long)input_addr,
		(unsigned long)dram_addr, intlv_shift);

	return dram_addr;
}

/*
 * @dram_addr is a DramAddr that maps to the node represented by mci. Convert
 * @dram_addr to a SysAddr.
 */
static u64 dram_addr_to_sys_addr(struct mem_ctl_info *mci, u64 dram_addr)
{
	struct amd64_pvt *pvt = mci->pvt_info;
693
	u64 hole_base, hole_offset, hole_size, base, sys_addr;
694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710
	int ret = 0;

	ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
				      &hole_size);
	if (!ret) {
		if ((dram_addr >= hole_base) &&
		    (dram_addr < (hole_base + hole_size))) {
			sys_addr = dram_addr + hole_offset;

			debugf1("using DHAR to translate DramAddr 0x%lx to "
				"SysAddr 0x%lx\n", (unsigned long)dram_addr,
				(unsigned long)sys_addr);

			return sys_addr;
		}
	}

711
	base     = get_dram_base(pvt, pvt->mc_node_id);
712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755
	sys_addr = dram_addr + base;

	/*
	 * The sys_addr we have computed up to this point is a 40-bit value
	 * because the k8 deals with 40-bit values.  However, the value we are
	 * supposed to return is a full 64-bit physical address.  The AMD
	 * x86-64 architecture specifies that the most significant implemented
	 * address bit through bit 63 of a physical address must be either all
	 * 0s or all 1s.  Therefore we sign-extend the 40-bit sys_addr to a
	 * 64-bit value below.  See section 3.4.2 of AMD publication 24592:
	 * AMD x86-64 Architecture Programmer's Manual Volume 1 Application
	 * Programming.
	 */
	sys_addr |= ~((sys_addr & (1ull << 39)) - 1);

	debugf1("    Node %d, DramAddr 0x%lx to SysAddr 0x%lx\n",
		pvt->mc_node_id, (unsigned long)dram_addr,
		(unsigned long)sys_addr);

	return sys_addr;
}

/*
 * @input_addr is an InputAddr associated with the node given by mci. Translate
 * @input_addr to a SysAddr.
 */
static inline u64 input_addr_to_sys_addr(struct mem_ctl_info *mci,
					 u64 input_addr)
{
	return dram_addr_to_sys_addr(mci,
				     input_addr_to_dram_addr(mci, input_addr));
}

/*
 * Find the minimum and maximum InputAddr values that map to the given @csrow.
 * Pass back these values in *input_addr_min and *input_addr_max.
 */
static void find_csrow_limits(struct mem_ctl_info *mci, int csrow,
			      u64 *input_addr_min, u64 *input_addr_max)
{
	struct amd64_pvt *pvt;
	u64 base, mask;

	pvt = mci->pvt_info;
756
	BUG_ON((csrow < 0) || (csrow >= pvt->csels[0].b_cnt));
757

758
	get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);
759 760

	*input_addr_min = base & ~mask;
761
	*input_addr_max = base | mask;
762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786
}

/* Map the Error address to a PAGE and PAGE OFFSET. */
static inline void error_address_to_page_and_offset(u64 error_address,
						    u32 *page, u32 *offset)
{
	*page = (u32) (error_address >> PAGE_SHIFT);
	*offset = ((u32) error_address) & ~PAGE_MASK;
}

/*
 * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
 * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
 * of a node that detected an ECC memory error.  mci represents the node that
 * the error address maps to (possibly different from the node that detected
 * the error).  Return the number of the csrow that sys_addr maps to, or -1 on
 * error.
 */
static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
{
	int csrow;

	csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));

	if (csrow == -1)
787 788
		amd64_mc_err(mci, "Failed to translate InputAddr to csrow for "
				  "address 0x%lx\n", (unsigned long)sys_addr);
789 790
	return csrow;
}
791

792
static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
793 794 795 796 797 798 799

/*
 * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
 * are ECC capable.
 */
static enum edac_type amd64_determine_edac_cap(struct amd64_pvt *pvt)
{
800
	u8 bit;
801
	enum dev_type edac_cap = EDAC_FLAG_NONE;
802

803
	bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= K8_REV_F)
804 805 806
		? 19
		: 17;

807
	if (pvt->dclr0 & BIT(bit))
808 809 810 811 812 813
		edac_cap = EDAC_FLAG_SECDED;

	return edac_cap;
}


814
static void amd64_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt);
815

816 817 818 819 820 821 822 823 824 825 826
static void amd64_dump_dramcfg_low(u32 dclr, int chan)
{
	debugf1("F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);

	debugf1("  DIMM type: %sbuffered; all DIMMs support ECC: %s\n",
		(dclr & BIT(16)) ?  "un" : "",
		(dclr & BIT(19)) ? "yes" : "no");

	debugf1("  PAR/ERR parity: %s\n",
		(dclr & BIT(8)) ?  "enabled" : "disabled");

827 828 829
	if (boot_cpu_data.x86 == 0x10)
		debugf1("  DCT 128bit mode width: %s\n",
			(dclr & BIT(11)) ?  "128b" : "64b");
830 831 832 833 834 835 836 837

	debugf1("  x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
		(dclr & BIT(12)) ?  "yes" : "no",
		(dclr & BIT(13)) ?  "yes" : "no",
		(dclr & BIT(14)) ?  "yes" : "no",
		(dclr & BIT(15)) ?  "yes" : "no");
}

838
/* Display and decode various NB registers for debug purposes. */
839
static void dump_misc_regs(struct amd64_pvt *pvt)
840
{
841 842 843
	debugf1("F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);

	debugf1("  NB two channel DRAM capable: %s\n",
844
		(pvt->nbcap & NBCAP_DCT_DUAL) ? "yes" : "no");
845

846
	debugf1("  ECC capable: %s, ChipKill ECC capable: %s\n",
847 848
		(pvt->nbcap & NBCAP_SECDED) ? "yes" : "no",
		(pvt->nbcap & NBCAP_CHIPKILL) ? "yes" : "no");
849 850

	amd64_dump_dramcfg_low(pvt->dclr0, 0);
851

852
	debugf1("F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
853

854 855
	debugf1("F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, "
			"offset: 0x%08x\n",
856 857 858
			pvt->dhar, dhar_base(pvt),
			(boot_cpu_data.x86 == 0xf) ? k8_dhar_offset(pvt)
						   : f10_dhar_offset(pvt));
859

860
	debugf1("  DramHoleValid: %s\n", dhar_valid(pvt) ? "yes" : "no");
861

862 863
	amd64_debug_display_dimm_sizes(0, pvt);

864
	/* everything below this point is Fam10h and above */
865
	if (boot_cpu_data.x86 == 0xf)
866
		return;
867 868

	amd64_debug_display_dimm_sizes(1, pvt);
869

870
	amd64_info("using %s syndromes.\n", ((pvt->syn_type == 8) ? "x8" : "x4"));
871

872
	/* Only if NOT ganged does dclr1 have valid info */
873 874
	if (!dct_ganging_enabled(pvt))
		amd64_dump_dramcfg_low(pvt->dclr1, 1);
875 876
}

877
/*
878
 * see BKDG, F2x[1,0][5C:40], F2[1,0][6C:60]
879
 */
880
static void prep_chip_selects(struct amd64_pvt *pvt)
881
{
882
	if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
883 884
		pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
		pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 8;
885
	} else {
886 887
		pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
		pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 4;
888 889 890 891
	}
}

/*
892
 * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask registers
893
 */
894
static void read_dct_base_mask(struct amd64_pvt *pvt)
895
{
896
	int cs;
897

898
	prep_chip_selects(pvt);
899

900 901 902 903 904
	for_each_chip_select(cs, 0, pvt) {
		u32 reg0   = DCSB0 + (cs * 4);
		u32 reg1   = DCSB1 + (cs * 4);
		u32 *base0 = &pvt->csels[0].csbases[cs];
		u32 *base1 = &pvt->csels[1].csbases[cs];
905

906
		if (!amd64_read_dct_pci_cfg(pvt, reg0, base0))
907
			debugf0("  DCSB0[%d]=0x%08x reg: F2x%x\n",
908
				cs, *base0, reg0);
909

910 911
		if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt))
			continue;
912

913 914 915
		if (!amd64_read_dct_pci_cfg(pvt, reg1, base1))
			debugf0("  DCSB1[%d]=0x%08x reg: F2x%x\n",
				cs, *base1, reg1);
916 917
	}

918 919 920 921 922
	for_each_chip_select_mask(cs, 0, pvt) {
		u32 reg0   = DCSM0 + (cs * 4);
		u32 reg1   = DCSM1 + (cs * 4);
		u32 *mask0 = &pvt->csels[0].csmasks[cs];
		u32 *mask1 = &pvt->csels[1].csmasks[cs];
923

924
		if (!amd64_read_dct_pci_cfg(pvt, reg0, mask0))
925
			debugf0("    DCSM0[%d]=0x%08x reg: F2x%x\n",
926
				cs, *mask0, reg0);
927

928 929
		if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt))
			continue;
930

931 932 933
		if (!amd64_read_dct_pci_cfg(pvt, reg1, mask1))
			debugf0("    DCSM1[%d]=0x%08x reg: F2x%x\n",
				cs, *mask1, reg1);
934 935 936
	}
}

937
static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt, int cs)
938 939 940
{
	enum mem_type type;

941 942 943 944
	/* F15h supports only DDR3 */
	if (boot_cpu_data.x86 >= 0x15)
		type = (pvt->dclr0 & BIT(16)) ?	MEM_DDR3 : MEM_RDDR3;
	else if (boot_cpu_data.x86 == 0x10 || pvt->ext_model >= K8_REV_F) {
945 946 947 948
		if (pvt->dchr0 & DDR3_MODE)
			type = (pvt->dclr0 & BIT(16)) ?	MEM_DDR3 : MEM_RDDR3;
		else
			type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
949 950 951 952
	} else {
		type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
	}

953
	amd64_info("CS%d: %s\n", cs, edac_mem_types[type]);
954 955 956 957

	return type;
}

958
/* Get the number of DCT channels the memory controller is using. */
959 960
static int k8_early_channel_count(struct amd64_pvt *pvt)
{
961
	int flag;
962

963
	if (pvt->ext_model >= K8_REV_F)
964 965
		/* RevF (NPT) and later */
		flag = pvt->dclr0 & F10_WIDTH_128;
966
	else
967 968 969 970 971 972 973 974 975
		/* RevE and earlier */
		flag = pvt->dclr0 & REVE_WIDTH_128;

	/* not used */
	pvt->dclr1 = 0;

	return (flag) ? 2 : 1;
}

976 977
/* On F10h and later ErrAddr is MC4_ADDR[47:1] */
static u64 get_error_address(struct mce *m)
978
{
979 980 981 982 983 984 985 986 987
	u8 start_bit = 1;
	u8 end_bit   = 47;

	if (boot_cpu_data.x86 == 0xf) {
		start_bit = 3;
		end_bit   = 39;
	}

	return m->addr & GENMASK(start_bit, end_bit);
988 989
}

990
static void read_dram_base_limit_regs(struct amd64_pvt *pvt, unsigned range)
991
{
992
	u32 off = range << 3;
993

994 995
	amd64_read_pci_cfg(pvt->F1, DRAM_BASE_LO + off,  &pvt->ranges[range].base.lo);
	amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_LO + off, &pvt->ranges[range].lim.lo);
996

997 998
	if (boot_cpu_data.x86 == 0xf)
		return;
999

1000 1001
	if (!dram_rw(pvt, range))
		return;
1002

1003 1004
	amd64_read_pci_cfg(pvt->F1, DRAM_BASE_HI + off,  &pvt->ranges[range].base.hi);
	amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_HI + off, &pvt->ranges[range].lim.hi);
1005 1006
}

1007 1008
static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
				    u16 syndrome)
1009 1010
{
	struct mem_ctl_info *src_mci;
1011
	struct amd64_pvt *pvt = mci->pvt_info;
1012 1013 1014 1015
	int channel, csrow;
	u32 page, offset;

	/* CHIPKILL enabled */
1016
	if (pvt->nbcfg & NBCFG_CHIPKILL) {
1017
		channel = get_channel_from_ecc_syndrome(mci, syndrome);
1018 1019 1020 1021 1022 1023
		if (channel < 0) {
			/*
			 * Syndrome didn't map, so we don't know which of the
			 * 2 DIMMs is in error. So we need to ID 'both' of them
			 * as suspect.
			 */
1024 1025
			amd64_mc_warn(mci, "unknown syndrome 0x%04x - possible "
					   "error reporting race\n", syndrome);
1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
			edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
			return;
		}
	} else {
		/*
		 * non-chipkill ecc mode
		 *
		 * The k8 documentation is unclear about how to determine the
		 * channel number when using non-chipkill memory.  This method
		 * was obtained from email communication with someone at AMD.
		 * (Wish the email was placed in this comment - norsk)
		 */
1038
		channel = ((sys_addr & BIT(3)) != 0);
1039 1040 1041 1042 1043 1044
	}

	/*
	 * Find out which node the error address belongs to. This may be
	 * different from the node that detected the error.
	 */
1045
	src_mci = find_mc_by_sys_addr(mci, sys_addr);
1046
	if (!src_mci) {
1047
		amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n",
1048
			     (unsigned long)sys_addr);
1049 1050 1051 1052
		edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
		return;
	}

1053 1054
	/* Now map the sys_addr to a CSROW */
	csrow = sys_addr_to_csrow(src_mci, sys_addr);
1055 1056 1057
	if (csrow < 0) {
		edac_mc_handle_ce_no_info(src_mci, EDAC_MOD_STR);
	} else {
1058
		error_address_to_page_and_offset(sys_addr, &page, &offset);
1059 1060 1061 1062 1063 1064

		edac_mc_handle_ce(src_mci, page, offset, syndrome, csrow,
				  channel, EDAC_MOD_STR);
	}
}

1065
static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, int cs_mode)
1066
{
1067
	int *dbam_map;
1068

1069 1070 1071 1072 1073 1074
	if (pvt->ext_model >= K8_REV_F)
		dbam_map = ddr2_dbam;
	else if (pvt->ext_model >= K8_REV_D)
		dbam_map = ddr2_dbam_revD;
	else
		dbam_map = ddr2_dbam_revCG;
1075

1076
	return dbam_map[cs_mode];
1077 1078
}

1079 1080 1081 1082 1083 1084 1085 1086
/*
 * Get the number of DCT channels in use.
 *
 * Return:
 *	number of Memory Channels in operation
 * Pass back:
 *	contents of the DCL0_LOW register
 */
1087
static int f1x_early_channel_count(struct amd64_pvt *pvt)
1088
{
1089
	int i, j, channels = 0;
1090

1091 1092 1093
	/* On F10h, if we are in 128 bit mode, then we are using 2 channels */
	if (boot_cpu_data.x86 == 0x10 && (pvt->dclr0 & F10_WIDTH_128))
		return 2;
1094 1095

	/*
1096 1097 1098
	 * Need to check if in unganged mode: In such, there are 2 channels,
	 * but they are not in 128 bit mode and thus the above 'dclr0' status
	 * bit will be OFF.
1099 1100 1101 1102
	 *
	 * Need to check DCT0[0] and DCT1[0] to see if only one of them has
	 * their CSEnable bit on. If so, then SINGLE DIMM case.
	 */
1103
	debugf0("Data width is not 128 bits - need more decoding\n");
1104

1105 1106 1107 1108 1109
	/*
	 * Check DRAM Bank Address Mapping values for each DIMM to see if there
	 * is more than just one DIMM present in unganged mode. Need to check
	 * both controllers since DIMMs can be placed in either one.
	 */
1110 1111
	for (i = 0; i < 2; i++) {
		u32 dbam = (i ? pvt->dbam1 : pvt->dbam0);
1112

1113 1114 1115 1116 1117 1118
		for (j = 0; j < 4; j++) {
			if (DBAM_DIMM(j, dbam) > 0) {
				channels++;
				break;
			}
		}
1119 1120
	}

1121 1122 1123
	if (channels > 2)
		channels = 2;

1124
	amd64_info("MCT channel count: %d\n", channels);
1125 1126 1127 1128

	return channels;
}

1129
static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, int cs_mode)
1130
{
1131 1132 1133 1134 1135 1136 1137 1138
	int *dbam_map;

	if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
		dbam_map = ddr3_dbam;
	else
		dbam_map = ddr2_dbam;

	return dbam_map[cs_mode];
1139 1140
}

1141 1142 1143
static void f10_read_dram_ctl_register(struct amd64_pvt *pvt)
{

1144 1145 1146
	if (!amd64_read_dct_pci_cfg(pvt, DCT_SEL_LO, &pvt->dct_sel_lo)) {
		debugf0("F2x110 (DCTSelLow): 0x%08x, High range addrs at: 0x%x\n",
			pvt->dct_sel_lo, dct_sel_baseaddr(pvt));
1147

1148
		debugf0("  mode: %s, All DCTs on: %s\n",
1149 1150 1151 1152 1153 1154 1155
			(dct_ganging_enabled(pvt) ? "ganged" : "unganged"),
			(dct_dram_enabled(pvt) ? "yes"   : "no"));

		if (!dct_ganging_enabled(pvt))
			debugf0("  Address range split per DCT: %s\n",
				(dct_high_range_enabled(pvt) ? "yes" : "no"));

1156
		debugf0("  data interleave for ECC: %s, "
1157 1158 1159 1160
			"DRAM cleared since last warm reset: %s\n",
			(dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
			(dct_memory_cleared(pvt) ? "yes" : "no"));

1161 1162
		debugf0("  channel interleave: %s, "
			"interleave bits selector: 0x%x\n",
1163
			(dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
1164 1165 1166
			dct_sel_interleave_addr(pvt));
	}

1167
	amd64_read_dct_pci_cfg(pvt, DCT_SEL_HI, &pvt->dct_sel_hi);
1168 1169
}

1170
/*
1171
 * Determine channel (DCT) based on the interleaving mode: F10h BKDG, 2.8.9 Memory
1172 1173
 * Interleaving Modes.
 */
1174
static u8 f10_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
1175
				bool hi_range_sel, u8 intlv_en)
1176
{
1177
	u32 dct_sel_high = (pvt->dct_sel_lo >> 1) & 1;
1178 1179

	if (dct_ganging_enabled(pvt))
1180
		return 0;
1181

1182 1183
	if (hi_range_sel)
		return dct_sel_high;
1184

1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
	/*
	 * see F2x110[DctSelIntLvAddr] - channel interleave mode
	 */
	if (dct_interleave_enabled(pvt)) {
		u8 intlv_addr = dct_sel_interleave_addr(pvt);

		/* return DCT select function: 0=DCT0, 1=DCT1 */
		if (!intlv_addr)
			return sys_addr >> 6 & 1;

		if (intlv_addr & 0x2) {
			u8 shift = intlv_addr & 0x1 ? 9 : 6;
			u32 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;

			return ((sys_addr >> shift) & 1) ^ temp;
		}

		return (sys_addr >> (12 + hweight8(intlv_en))) & 1;
	}

	if (dct_high_range_enabled(pvt))
		return ~dct_sel_high & 1;
1207 1208 1209 1210

	return 0;
}

1211 1212 1213 1214
/* Convert the sys_addr to the normalized DCT address */
static u64 f10_get_norm_dct_addr(struct amd64_pvt *pvt, int range,
				 u64 sys_addr, bool hi_rng,
				 u32 dct_sel_base_addr)
1215 1216
{
	u64 chan_off;
1217 1218 1219 1220
	u64 dram_base		= get_dram_base(pvt, range);
	u64 hole_off		= f10_dhar_offset(pvt);
	u32 hole_valid		= dhar_valid(pvt);
	u64 dct_sel_base_off	= (pvt->dct_sel_hi & 0xFFFFFC00) << 16;
1221

1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
	if (hi_rng) {
		/*
		 * if
		 * base address of high range is below 4Gb
		 * (bits [47:27] at [31:11])
		 * DRAM address space on this DCT is hoisted above 4Gb	&&
		 * sys_addr > 4Gb
		 *
		 *	remove hole offset from sys_addr
		 * else
		 *	remove high range offset from sys_addr
		 */
		if ((!(dct_sel_base_addr >> 16) ||
		     dct_sel_base_addr < dhar_base(pvt)) &&
		    hole_valid &&
		    (sys_addr >= BIT_64(32)))
1238
			chan_off = hole_off;
1239 1240 1241
		else
			chan_off = dct_sel_base_off;
	} else {
1242 1243 1244 1245 1246 1247 1248 1249 1250 1251
		/*
		 * if
		 * we have a valid hole		&&
		 * sys_addr > 4Gb
		 *
		 *	remove hole
		 * else
		 *	remove dram base to normalize to DCT address
		 */
		if (hole_valid && (sys_addr >= BIT_64(32)))
1252
			chan_off = hole_off;
1253
		else
1254
			chan_off = dram_base;
1255 1256
	}

1257
	return (sys_addr & GENMASK(6,47)) - (chan_off & GENMASK(23,47));
1258 1259 1260 1261 1262 1263
}

/*
 * checks if the csrow passed in is marked as SPARED, if so returns the new
 * spare row
 */
1264
static int f10_process_possible_spare(struct amd64_pvt *pvt, u8 dct, int csrow)
1265
{
1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276
	int tmp_cs;

	if (online_spare_swap_done(pvt, dct) &&
	    csrow == online_spare_bad_dramcs(pvt, dct)) {

		for_each_chip_select(tmp_cs, dct, pvt) {
			if (chip_select_base(tmp_cs, dct, pvt) & 0x2) {
				csrow = tmp_cs;
				break;
			}
		}
1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288
	}
	return csrow;
}

/*
 * Iterate over the DRAM DCT "base" and "mask" registers looking for a
 * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
 *
 * Return:
 *	-EINVAL:  NOT FOUND
 *	0..csrow = Chip-Select Row
 */
1289
static int f10_lookup_addr_in_dct(u64 in_addr, u32 nid, u8 dct)
1290 1291 1292
{
	struct mem_ctl_info *mci;
	struct amd64_pvt *pvt;
1293
	u64 cs_base, cs_mask;
1294 1295 1296
	int cs_found = -EINVAL;
	int csrow;

1297
	mci = mcis[nid];
1298 1299 1300 1301 1302
	if (!mci)
		return cs_found;

	pvt = mci->pvt_info;

1303
	debugf1("input addr: 0x%llx, DCT: %d\n", in_addr, dct);
1304

1305 1306
	for_each_chip_select(csrow, dct, pvt) {
		if (!csrow_enabled(csrow, dct, pvt))
1307 1308
			continue;

1309
		get_cs_base_and_mask(pvt, csrow, dct, &cs_base, &cs_mask);
1310

1311 1312
		debugf1("    CSROW=%d CSBase=0x%llx CSMask=0x%llx\n",
			csrow, cs_base, cs_mask);
1313

1314
		cs_mask = ~cs_mask;
1315

1316 1317 1318
		debugf1("    (InputAddr & ~CSMask)=0x%llx "
			"(CSBase & ~CSMask)=0x%llx\n",
			(in_addr & cs_mask), (cs_base & cs_mask));
1319

1320 1321
		if ((in_addr & cs_mask) == (cs_base & cs_mask)) {
			cs_found = f10_process_possible_spare(pvt, dct, csrow);
1322 1323 1324 1325 1326 1327 1328 1329

			debugf1(" MATCH csrow=%d\n", cs_found);
			break;
		}
	}
	return cs_found;
}

1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
/*
 * See F2x10C. Non-interleaved graphics framebuffer memory under the 16G is
 * swapped with a region located at the bottom of memory so that the GPU can use
 * the interleaved region and thus two channels.
 */
static u64 f10_swap_interleaved_region(struct amd64_pvt *pvt, u64 sys_addr)
{
	u32 swap_reg, swap_base, swap_limit, rgn_size, tmp_addr;

	if (boot_cpu_data.x86 == 0x10) {
		/* only revC3 and revE have that feature */
		if (boot_cpu_data.x86_model < 4 ||
		    (boot_cpu_data.x86_model < 0xa &&
		     boot_cpu_data.x86_mask < 3))
			return sys_addr;
	}

	amd64_read_dct_pci_cfg(pvt, SWAP_INTLV_REG, &swap_reg);

	if (!(swap_reg & 0x1))
		return sys_addr;

	swap_base	= (swap_reg >> 3) & 0x7f;
	swap_limit	= (swap_reg >> 11) & 0x7f;
	rgn_size	= (swap_reg >> 20) & 0x7f;
	tmp_addr	= sys_addr >> 27;

	if (!(sys_addr >> 34) &&
	    (((tmp_addr >= swap_base) &&
	     (tmp_addr <= swap_limit)) ||
	     (tmp_addr < rgn_size)))
		return sys_addr ^ (u64)swap_base << 27;

	return sys_addr;
}

1366
/* For a given @dram_range, check if @sys_addr falls within it. */
1367
static int f10_match_to_this_node(struct amd64_pvt *pvt, int range,
1368 1369
				  u64 sys_addr, int *nid, int *chan_sel)
{
1370
	int cs_found = -EINVAL;
1371
	u64 chan_addr;
1372
	u32 dct_sel_base;
1373
	u8 channel;
1374
	bool high_range = false;
1375

1376
	u8 node_id    = dram_dst_node(pvt, range);
1377
	u8 intlv_en   = dram_intlv_en(pvt, range);
1378
	u32 intlv_sel = dram_intlv_sel(pvt, range);
1379

1380 1381
	debugf1("(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
		range, sys_addr, get_dram_limit(pvt, range));
1382

1383
	if (intlv_en &&
1384 1385 1386
	    (intlv_sel != ((sys_addr >> 12) & intlv_en)))
		return -EINVAL;

1387 1388
	sys_addr = f10_swap_interleaved_region(pvt, sys_addr);

1389 1390 1391 1392 1393 1394 1395 1396 1397
	dct_sel_base = dct_sel_baseaddr(pvt);

	/*
	 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
	 * select between DCT0 and DCT1.
	 */
	if (dct_high_range_enabled(pvt) &&
	   !dct_ganging_enabled(pvt) &&
	   ((sys_addr >> 27) >= (dct_sel_base >> 11)))
1398
		high_range = true;
1399 1400 1401

	channel = f10_determine_channel(pvt, sys_addr, high_range, intlv_en);

1402 1403
	chan_addr = f10_get_norm_dct_addr(pvt, range, sys_addr,
					  high_range, dct_sel_base);
1404

1405 1406 1407 1408
	/* Remove node interleaving, see F1x120 */
	if (intlv_en)
		chan_addr = ((chan_addr >> (12 + hweight8(intlv_en))) << 12) |
			    (chan_addr & 0xfff);
1409

1410
	/* remove channel interleave */
1411 1412 1413
	if (dct_interleave_enabled(pvt) &&
	   !dct_high_range_enabled(pvt) &&
	   !dct_ganging_enabled(pvt)) {
1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427

		if (dct_sel_interleave_addr(pvt) != 1) {
			if (dct_sel_interleave_addr(pvt) == 0x3)
				/* hash 9 */
				chan_addr = ((chan_addr >> 10) << 9) |
					     (chan_addr & 0x1ff);
			else
				/* A[6] or hash 6 */
				chan_addr = ((chan_addr >> 7) << 6) |
					     (chan_addr & 0x3f);
		} else
			/* A[12] */
			chan_addr = ((chan_addr >> 13) << 12) |
				     (chan_addr & 0xfff);
1428 1429
	}

1430
	debugf1("   Normalized DCT addr: 0x%llx\n", chan_addr);
1431

1432
	cs_found = f10_lookup_addr_in_dct(chan_addr, node_id, channel);
1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443

	if (cs_found >= 0) {
		*nid = node_id;
		*chan_sel = channel;
	}
	return cs_found;
}

static int f10_translate_sysaddr_to_cs(struct amd64_pvt *pvt, u64 sys_addr,
				       int *node, int *chan_sel)
{
1444
	int range, cs_found = -EINVAL;
1445

1446
	for (range = 0; range < DRAM_RANGES; range++) {
1447

1448
		if (!dram_rw(pvt, range))
1449 1450
			continue;

1451 1452
		if ((get_dram_base(pvt, range)  <= sys_addr) &&
		    (get_dram_limit(pvt, range) >= sys_addr)) {
1453

1454
			cs_found = f10_match_to_this_node(pvt, range,
1455 1456 1457 1458 1459 1460 1461 1462 1463 1464
							  sys_addr, node,
							  chan_sel);
			if (cs_found >= 0)
				break;
		}
	}
	return cs_found;
}

/*
1465 1466
 * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
 * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
1467
 *
1468 1469
 * The @sys_addr is usually an error address received from the hardware
 * (MCX_ADDR).
1470
 */
1471 1472
static void f10_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
				     u16 syndrome)
1473 1474 1475 1476 1477 1478 1479
{
	struct amd64_pvt *pvt = mci->pvt_info;
	u32 page, offset;
	int nid, csrow, chan = 0;

	csrow = f10_translate_sysaddr_to_cs(pvt, sys_addr, &nid, &chan);

1480 1481 1482 1483 1484 1485
	if (csrow < 0) {
		edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
		return;
	}

	error_address_to_page_and_offset(sys_addr, &page, &offset);
1486

1487 1488 1489 1490 1491
	/*
	 * We need the syndromes for channel detection only when we're
	 * ganged. Otherwise @chan should already contain the channel at
	 * this point.
	 */
1492
	if (dct_ganging_enabled(pvt))
1493
		chan = get_channel_from_ecc_syndrome(mci, syndrome);
1494

1495 1496 1497 1498
	if (chan >= 0)
		edac_mc_handle_ce(mci, page, offset, syndrome, csrow, chan,
				  EDAC_MOD_STR);
	else
1499
		/*
1500
		 * Channel unknown, report all channels on this CSROW as failed.
1501
		 */
1502
		for (chan = 0; chan < mci->csrows[csrow].nr_channels; chan++)
1503
			edac_mc_handle_ce(mci, page, offset, syndrome,
1504
					  csrow, chan, EDAC_MOD_STR);
1505 1506 1507
}

/*
1508
 * debug routine to display the memory sizes of all logical DIMMs and its
1509
 * CSROWs
1510
 */
1511
static void amd64_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt)
1512
{
1513
	int dimm, size0, size1, factor = 0;
1514 1515
	u32 *dcsb = ctrl ? pvt->csels[1].csbases : pvt->csels[0].csbases;
	u32 dbam  = ctrl ? pvt->dbam1 : pvt->dbam0;
1516

1517
	if (boot_cpu_data.x86 == 0xf) {
1518 1519 1520
		if (pvt->dclr0 & F10_WIDTH_128)
			factor = 1;

1521
		/* K8 families < revF not supported yet */
1522
	       if (pvt->ext_model < K8_REV_F)
1523 1524 1525 1526 1527
			return;
	       else
		       WARN_ON(ctrl != 0);
	}

1528
	dbam = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->dbam1 : pvt->dbam0;
1529 1530
	dcsb = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->csels[1].csbases
						   : pvt->csels[0].csbases;
1531

1532
	debugf1("F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n", ctrl, dbam);
1533

1534 1535
	edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);

1536 1537 1538 1539
	/* Dump memory sizes for DIMM and its CSROWs */
	for (dimm = 0; dimm < 4; dimm++) {

		size0 = 0;
1540
		if (dcsb[dimm*2] & DCSB_CS_ENABLE)
1541
			size0 = pvt->ops->dbam_to_cs(pvt, DBAM_DIMM(dimm, dbam));
1542 1543

		size1 = 0;
1544
		if (dcsb[dimm*2 + 1] & DCSB_CS_ENABLE)
1545
			size1 = pvt->ops->dbam_to_cs(pvt, DBAM_DIMM(dimm, dbam));
1546

1547 1548 1549
		amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
				dimm * 2,     size0 << factor,
				dimm * 2 + 1, size1 << factor);
1550 1551 1552
	}
}

1553 1554
static struct amd64_family_type amd64_family_types[] = {
	[K8_CPUS] = {
1555
		.ctl_name = "K8",
1556 1557
		.f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
		.f3_id = PCI_DEVICE_ID_AMD_K8_NB_MISC,
1558
		.ops = {
1559 1560 1561
			.early_channel_count	= k8_early_channel_count,
			.map_sysaddr_to_csrow	= k8_map_sysaddr_to_csrow,
			.dbam_to_cs		= k8_dbam_to_chip_select,
1562
			.read_dct_pci_cfg	= k8_read_dct_pci_cfg,
1563 1564 1565
		}
	},
	[F10_CPUS] = {
1566
		.ctl_name = "F10h",
1567 1568
		.f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP,
		.f3_id = PCI_DEVICE_ID_AMD_10H_NB_MISC,
1569
		.ops = {
1570
			.early_channel_count	= f1x_early_channel_count,
1571 1572 1573
			.read_dram_ctl_register	= f10_read_dram_ctl_register,
			.map_sysaddr_to_csrow	= f10_map_sysaddr_to_csrow,
			.dbam_to_cs		= f10_dbam_to_chip_select,
1574 1575 1576 1577 1578 1579
			.read_dct_pci_cfg	= f10_read_dct_pci_cfg,
		}
	},
	[F15_CPUS] = {
		.ctl_name = "F15h",
		.ops = {
1580
			.early_channel_count	= f1x_early_channel_count,
1581
			.read_dct_pci_cfg	= f15_read_dct_pci_cfg,
1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602
		}
	},
};

static struct pci_dev *pci_get_related_function(unsigned int vendor,
						unsigned int device,
						struct pci_dev *related)
{
	struct pci_dev *dev = NULL;

	dev = pci_get_device(vendor, device, dev);
	while (dev) {
		if ((dev->bus->number == related->bus->number) &&
		    (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
			break;
		dev = pci_get_device(vendor, device, dev);
	}

	return dev;
}

1603
/*
1604 1605 1606
 * These are tables of eigenvectors (one per line) which can be used for the
 * construction of the syndrome tables. The modified syndrome search algorithm
 * uses those to find the symbol in error and thus the DIMM.
1607
 *
1608
 * Algorithm courtesy of Ross LaFetra from AMD.
1609
 */
1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646
static u16 x4_vectors[] = {
	0x2f57, 0x1afe, 0x66cc, 0xdd88,
	0x11eb, 0x3396, 0x7f4c, 0xeac8,
	0x0001, 0x0002, 0x0004, 0x0008,
	0x1013, 0x3032, 0x4044, 0x8088,
	0x106b, 0x30d6, 0x70fc, 0xe0a8,
	0x4857, 0xc4fe, 0x13cc, 0x3288,
	0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
	0x1f39, 0x251e, 0xbd6c, 0x6bd8,
	0x15c1, 0x2a42, 0x89ac, 0x4758,
	0x2b03, 0x1602, 0x4f0c, 0xca08,
	0x1f07, 0x3a0e, 0x6b04, 0xbd08,
	0x8ba7, 0x465e, 0x244c, 0x1cc8,
	0x2b87, 0x164e, 0x642c, 0xdc18,
	0x40b9, 0x80de, 0x1094, 0x20e8,
	0x27db, 0x1eb6, 0x9dac, 0x7b58,
	0x11c1, 0x2242, 0x84ac, 0x4c58,
	0x1be5, 0x2d7a, 0x5e34, 0xa718,
	0x4b39, 0x8d1e, 0x14b4, 0x28d8,
	0x4c97, 0xc87e, 0x11fc, 0x33a8,
	0x8e97, 0x497e, 0x2ffc, 0x1aa8,
	0x16b3, 0x3d62, 0x4f34, 0x8518,
	0x1e2f, 0x391a, 0x5cac, 0xf858,
	0x1d9f, 0x3b7a, 0x572c, 0xfe18,
	0x15f5, 0x2a5a, 0x5264, 0xa3b8,
	0x1dbb, 0x3b66, 0x715c, 0xe3f8,
	0x4397, 0xc27e, 0x17fc, 0x3ea8,
	0x1617, 0x3d3e, 0x6464, 0xb8b8,
	0x23ff, 0x12aa, 0xab6c, 0x56d8,
	0x2dfb, 0x1ba6, 0x913c, 0x7328,
	0x185d, 0x2ca6, 0x7914, 0x9e28,
	0x171b, 0x3e36, 0x7d7c, 0xebe8,
	0x4199, 0x82ee, 0x19f4, 0x2e58,
	0x4807, 0xc40e, 0x130c, 0x3208,
	0x1905, 0x2e0a, 0x5804, 0xac08,
	0x213f, 0x132a, 0xadfc, 0x5ba8,
	0x19a9, 0x2efe, 0xb5cc, 0x6f88,
1647 1648
};

1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671
static u16 x8_vectors[] = {
	0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
	0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
	0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
	0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
	0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
	0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
	0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
	0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
	0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
	0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
	0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
	0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
	0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
	0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
	0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
	0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
	0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
	0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
	0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
};

static int decode_syndrome(u16 syndrome, u16 *vectors, int num_vecs,
1672
			   int v_dim)
1673
{
1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691
	unsigned int i, err_sym;

	for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
		u16 s = syndrome;
		int v_idx =  err_sym * v_dim;
		int v_end = (err_sym + 1) * v_dim;

		/* walk over all 16 bits of the syndrome */
		for (i = 1; i < (1U << 16); i <<= 1) {

			/* if bit is set in that eigenvector... */
			if (v_idx < v_end && vectors[v_idx] & i) {
				u16 ev_comp = vectors[v_idx++];

				/* ... and bit set in the modified syndrome, */
				if (s & i) {
					/* remove it. */
					s ^= ev_comp;
1692

1693 1694 1695
					if (!s)
						return err_sym;
				}
1696

1697 1698 1699 1700
			} else if (s & i)
				/* can't get to zero, move to next symbol */
				break;
		}
1701 1702 1703 1704 1705
	}

	debugf0("syndrome(%x) not found\n", syndrome);
	return -1;
}
1706

1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748
static int map_err_sym_to_channel(int err_sym, int sym_size)
{
	if (sym_size == 4)
		switch (err_sym) {
		case 0x20:
		case 0x21:
			return 0;
			break;
		case 0x22:
		case 0x23:
			return 1;
			break;
		default:
			return err_sym >> 4;
			break;
		}
	/* x8 symbols */
	else
		switch (err_sym) {
		/* imaginary bits not in a DIMM */
		case 0x10:
			WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
					  err_sym);
			return -1;
			break;

		case 0x11:
			return 0;
			break;
		case 0x12:
			return 1;
			break;
		default:
			return err_sym >> 3;
			break;
		}
	return -1;
}

static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
{
	struct amd64_pvt *pvt = mci->pvt_info;
1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759
	int err_sym = -1;

	if (pvt->syn_type == 8)
		err_sym = decode_syndrome(syndrome, x8_vectors,
					  ARRAY_SIZE(x8_vectors),
					  pvt->syn_type);
	else if (pvt->syn_type == 4)
		err_sym = decode_syndrome(syndrome, x4_vectors,
					  ARRAY_SIZE(x4_vectors),
					  pvt->syn_type);
	else {
1760
		amd64_warn("Illegal syndrome type: %u\n", pvt->syn_type);
1761
		return err_sym;
1762
	}
1763 1764

	return map_err_sym_to_channel(err_sym, pvt->syn_type);
1765 1766
}

1767 1768 1769 1770
/*
 * Handle any Correctable Errors (CEs) that have occurred. Check for valid ERROR
 * ADDRESS and process.
 */
1771
static void amd64_handle_ce(struct mem_ctl_info *mci, struct mce *m)
1772 1773
{
	struct amd64_pvt *pvt = mci->pvt_info;
1774
	u64 sys_addr;
1775
	u16 syndrome;
1776 1777

	/* Ensure that the Error Address is VALID */
1778
	if (!(m->status & MCI_STATUS_ADDRV)) {
1779
		amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n");
1780 1781 1782 1783
		edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
		return;
	}

1784
	sys_addr = get_error_address(m);
1785
	syndrome = extract_syndrome(m->status);
1786

1787
	amd64_mc_err(mci, "CE ERROR_ADDRESS= 0x%llx\n", sys_addr);
1788

1789
	pvt->ops->map_sysaddr_to_csrow(mci, sys_addr, syndrome);
1790 1791 1792
}

/* Handle any Un-correctable Errors (UEs) */
1793
static void amd64_handle_ue(struct mem_ctl_info *mci, struct mce *m)
1794
{
1795
	struct mem_ctl_info *log_mci, *src_mci = NULL;
1796
	int csrow;
1797
	u64 sys_addr;
1798 1799 1800 1801
	u32 page, offset;

	log_mci = mci;

1802
	if (!(m->status & MCI_STATUS_ADDRV)) {
1803
		amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n");
1804 1805 1806 1807
		edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
		return;
	}

1808
	sys_addr = get_error_address(m);
1809 1810 1811 1812 1813

	/*
	 * Find out which node the error address belongs to. This may be
	 * different from the node that detected the error.
	 */
1814
	src_mci = find_mc_by_sys_addr(mci, sys_addr);
1815
	if (!src_mci) {
1816 1817
		amd64_mc_err(mci, "ERROR ADDRESS (0x%lx) NOT mapped to a MC\n",
				  (unsigned long)sys_addr);
1818 1819 1820 1821 1822 1823
		edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
		return;
	}

	log_mci = src_mci;

1824
	csrow = sys_addr_to_csrow(log_mci, sys_addr);
1825
	if (csrow < 0) {
1826 1827
		amd64_mc_err(mci, "ERROR_ADDRESS (0x%lx) NOT mapped to CS\n",
				  (unsigned long)sys_addr);
1828 1829
		edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
	} else {
1830
		error_address_to_page_and_offset(sys_addr, &page, &offset);
1831 1832 1833 1834
		edac_mc_handle_ue(log_mci, page, offset, csrow, EDAC_MOD_STR);
	}
}

1835
static inline void __amd64_decode_bus_error(struct mem_ctl_info *mci,
1836
					    struct mce *m)
1837
{
1838 1839 1840
	u16 ec = EC(m->status);
	u8 xec = XEC(m->status, 0x1f);
	u8 ecc_type = (m->status >> 45) & 0x3;
1841

1842
	/* Bail early out if this was an 'observed' error */
1843
	if (PP(ec) == NBSL_PP_OBS)
1844
		return;
1845

1846 1847
	/* Do only ECC errors */
	if (xec && xec != F10_NBSL_EXT_ERR_ECC)
1848 1849
		return;

1850
	if (ecc_type == 2)
1851
		amd64_handle_ce(mci, m);
1852
	else if (ecc_type == 1)
1853
		amd64_handle_ue(mci, m);
1854 1855
}

1856
void amd64_decode_bus_error(int node_id, struct mce *m, u32 nbcfg)
1857
{
1858
	struct mem_ctl_info *mci = mcis[node_id];
1859

1860
	__amd64_decode_bus_error(mci, m);
1861 1862
}

1863
/*
1864
 * Use pvt->F2 which contains the F2 CPU PCI device to get the related
1865
 * F1 (AddrMap) and F3 (Misc) devices. Return negative value on error.
1866
 */
1867
static int reserve_mc_sibling_devs(struct amd64_pvt *pvt, u16 f1_id, u16 f3_id)
1868 1869
{
	/* Reserve the ADDRESS MAP Device */
1870 1871
	pvt->F1 = pci_get_related_function(pvt->F2->vendor, f1_id, pvt->F2);
	if (!pvt->F1) {
1872 1873 1874
		amd64_err("error address map device not found: "
			  "vendor %x device 0x%x (broken BIOS?)\n",
			  PCI_VENDOR_ID_AMD, f1_id);
1875
		return -ENODEV;
1876 1877 1878
	}

	/* Reserve the MISC Device */
1879 1880 1881 1882
	pvt->F3 = pci_get_related_function(pvt->F2->vendor, f3_id, pvt->F2);
	if (!pvt->F3) {
		pci_dev_put(pvt->F1);
		pvt->F1 = NULL;
1883

1884 1885 1886
		amd64_err("error F3 device not found: "
			  "vendor %x device 0x%x (broken BIOS?)\n",
			  PCI_VENDOR_ID_AMD, f3_id);
1887

1888
		return -ENODEV;
1889
	}
1890 1891 1892
	debugf1("F1: %s\n", pci_name(pvt->F1));
	debugf1("F2: %s\n", pci_name(pvt->F2));
	debugf1("F3: %s\n", pci_name(pvt->F3));
1893 1894 1895 1896

	return 0;
}

1897
static void free_mc_sibling_devs(struct amd64_pvt *pvt)
1898
{
1899 1900
	pci_dev_put(pvt->F1);
	pci_dev_put(pvt->F3);
1901 1902 1903 1904 1905 1906
}

/*
 * Retrieve the hardware registers of the memory controller (this includes the
 * 'Address Map' and 'Misc' device regs)
 */
1907
static void read_mc_regs(struct amd64_pvt *pvt)
1908 1909
{
	u64 msr_val;
1910
	u32 tmp;
1911
	int range;
1912 1913 1914 1915 1916

	/*
	 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
	 * those are Read-As-Zero
	 */
1917 1918
	rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
	debugf0("  TOP_MEM:  0x%016llx\n", pvt->top_mem);
1919 1920 1921 1922

	/* check first whether TOP_MEM2 is enabled */
	rdmsrl(MSR_K8_SYSCFG, msr_val);
	if (msr_val & (1U << 21)) {
1923 1924
		rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
		debugf0("  TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
1925 1926 1927
	} else
		debugf0("  TOP_MEM2 disabled.\n");

1928
	amd64_read_pci_cfg(pvt->F3, NBCAP, &pvt->nbcap);
1929 1930 1931 1932

	if (pvt->ops->read_dram_ctl_register)
		pvt->ops->read_dram_ctl_register(pvt);

1933 1934
	for (range = 0; range < DRAM_RANGES; range++) {
		u8 rw;
1935

1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953
		/* read settings for this DRAM range */
		read_dram_base_limit_regs(pvt, range);

		rw = dram_rw(pvt, range);
		if (!rw)
			continue;

		debugf1("  DRAM range[%d], base: 0x%016llx; limit: 0x%016llx\n",
			range,
			get_dram_base(pvt, range),
			get_dram_limit(pvt, range));

		debugf1("   IntlvEn=%s; Range access: %s%s IntlvSel=%d DstNode=%d\n",
			dram_intlv_en(pvt, range) ? "Enabled" : "Disabled",
			(rw & 0x1) ? "R" : "-",
			(rw & 0x2) ? "W" : "-",
			dram_intlv_sel(pvt, range),
			dram_dst_node(pvt, range));
1954 1955
	}

1956
	read_dct_base_mask(pvt);
1957

1958
	amd64_read_pci_cfg(pvt->F1, DHAR, &pvt->dhar);
1959
	amd64_read_dct_pci_cfg(pvt, DBAM0, &pvt->dbam0);
1960

1961
	amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare);
1962

1963 1964
	amd64_read_dct_pci_cfg(pvt, DCLR0, &pvt->dclr0);
	amd64_read_dct_pci_cfg(pvt, DCHR0, &pvt->dchr0);
1965

1966
	if (!dct_ganging_enabled(pvt)) {
1967 1968
		amd64_read_dct_pci_cfg(pvt, DCLR1, &pvt->dclr1);
		amd64_read_dct_pci_cfg(pvt, DCHR1, &pvt->dchr1);
1969
	}
1970

1971
	if (boot_cpu_data.x86 >= 0x10) {
1972
		amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp);
1973 1974
		amd64_read_dct_pci_cfg(pvt, DBAM1, &pvt->dbam1);
	}
1975

1976 1977 1978 1979 1980 1981 1982 1983
	if (boot_cpu_data.x86 == 0x10 &&
	    boot_cpu_data.x86_model > 7 &&
	    /* F3x180[EccSymbolSize]=1 => x8 symbols */
	    tmp & BIT(25))
		pvt->syn_type = 8;
	else
		pvt->syn_type = 4;

1984
	dump_misc_regs(pvt);
1985 1986 1987 1988 1989 1990
}

/*
 * NOTE: CPU Revision Dependent code
 *
 * Input:
1991
 *	@csrow_nr ChipSelect Row Number (0..NUM_CHIPSELECTS-1)
1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
 *	k8 private pointer to -->
 *			DRAM Bank Address mapping register
 *			node_id
 *			DCL register where dual_channel_active is
 *
 * The DBAM register consists of 4 sets of 4 bits each definitions:
 *
 * Bits:	CSROWs
 * 0-3		CSROWs 0 and 1
 * 4-7		CSROWs 2 and 3
 * 8-11		CSROWs 4 and 5
 * 12-15	CSROWs 6 and 7
 *
 * Values range from: 0 to 15
 * The meaning of the values depends on CPU revision and dual-channel state,
 * see relevant BKDG more info.
 *
 * The memory controller provides for total of only 8 CSROWs in its current
 * architecture. Each "pair" of CSROWs normally represents just one DIMM in
 * single channel or two (2) DIMMs in dual channel mode.
 *
 * The following code logic collapses the various tables for CSROW based on CPU
 * revision.
 *
 * Returns:
 *	The number of PAGE_SIZE pages on the specified CSROW number it
 *	encompasses
 *
 */
static u32 amd64_csrow_nr_pages(int csrow_nr, struct amd64_pvt *pvt)
{
2023
	u32 cs_mode, nr_pages;
2024 2025 2026 2027 2028 2029 2030 2031

	/*
	 * The math on this doesn't look right on the surface because x/2*4 can
	 * be simplified to x*2 but this expression makes use of the fact that
	 * it is integral math where 1/2=0. This intermediate value becomes the
	 * number of bits to shift the DBAM register to extract the proper CSROW
	 * field.
	 */
2032
	cs_mode = (pvt->dbam0 >> ((csrow_nr / 2) * 4)) & 0xF;
2033

2034
	nr_pages = pvt->ops->dbam_to_cs(pvt, cs_mode) << (20 - PAGE_SHIFT);
2035 2036 2037 2038 2039 2040 2041

	/*
	 * If dual channel then double the memory size of single channel.
	 * Channel count is 1 or 2
	 */
	nr_pages <<= (pvt->channel_count - 1);

2042
	debugf0("  (csrow=%d) DBAM map index= %d\n", csrow_nr, cs_mode);
2043 2044 2045 2046 2047 2048 2049 2050 2051 2052
	debugf0("    nr_pages= %u  channel-count = %d\n",
		nr_pages, pvt->channel_count);

	return nr_pages;
}

/*
 * Initialize the array of csrow attribute instances, based on the values
 * from pci config hardware registers.
 */
2053
static int init_csrows(struct mem_ctl_info *mci)
2054 2055
{
	struct csrow_info *csrow;
2056
	struct amd64_pvt *pvt = mci->pvt_info;
2057
	u64 input_addr_min, input_addr_max, sys_addr, base, mask;
2058
	u32 val;
2059
	int i, empty = 1;
2060

2061
	amd64_read_pci_cfg(pvt->F3, NBCFG, &val);
2062

2063
	pvt->nbcfg = val;
2064

2065 2066
	debugf0("node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
		pvt->mc_node_id, val,
2067
		!!(val & NBCFG_CHIPKILL), !!(val & NBCFG_ECC_ENABLE));
2068

2069
	for_each_chip_select(i, 0, pvt) {
2070 2071
		csrow = &mci->csrows[i];

2072
		if (!csrow_enabled(i, 0, pvt)) {
2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087
			debugf1("----CSROW %d EMPTY for node %d\n", i,
				pvt->mc_node_id);
			continue;
		}

		debugf1("----CSROW %d VALID for MC node %d\n",
			i, pvt->mc_node_id);

		empty = 0;
		csrow->nr_pages = amd64_csrow_nr_pages(i, pvt);
		find_csrow_limits(mci, i, &input_addr_min, &input_addr_max);
		sys_addr = input_addr_to_sys_addr(mci, input_addr_min);
		csrow->first_page = (u32) (sys_addr >> PAGE_SHIFT);
		sys_addr = input_addr_to_sys_addr(mci, input_addr_max);
		csrow->last_page = (u32) (sys_addr >> PAGE_SHIFT);
2088 2089 2090

		get_cs_base_and_mask(pvt, i, 0, &base, &mask);
		csrow->page_mask = ~mask;
2091 2092
		/* 8 bytes of resolution */

2093
		csrow->mtype = amd64_determine_memory_type(pvt, i);
2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108

		debugf1("  for MC node %d csrow %d:\n", pvt->mc_node_id, i);
		debugf1("    input_addr_min: 0x%lx input_addr_max: 0x%lx\n",
			(unsigned long)input_addr_min,
			(unsigned long)input_addr_max);
		debugf1("    sys_addr: 0x%lx  page_mask: 0x%lx\n",
			(unsigned long)sys_addr, csrow->page_mask);
		debugf1("    nr_pages: %u  first_page: 0x%lx "
			"last_page: 0x%lx\n",
			(unsigned)csrow->nr_pages,
			csrow->first_page, csrow->last_page);

		/*
		 * determine whether CHIPKILL or JUST ECC or NO ECC is operating
		 */
2109
		if (pvt->nbcfg & NBCFG_ECC_ENABLE)
2110
			csrow->edac_mode =
2111
			    (pvt->nbcfg & NBCFG_CHIPKILL) ?
2112 2113 2114 2115 2116 2117 2118
			    EDAC_S4ECD4ED : EDAC_SECDED;
		else
			csrow->edac_mode = EDAC_NONE;
	}

	return empty;
}
2119

2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133
/* get all cores on this DCT */
static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, int nid)
{
	int cpu;

	for_each_online_cpu(cpu)
		if (amd_get_nb_id(cpu) == nid)
			cpumask_set_cpu(cpu, mask);
}

/* check MCG_CTL on all the cpus on this node */
static bool amd64_nb_mce_bank_enabled_on_node(int nid)
{
	cpumask_var_t mask;
2134
	int cpu, nbe;
2135 2136 2137
	bool ret = false;

	if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
2138
		amd64_warn("%s: Error allocating mask\n", __func__);
2139 2140 2141 2142 2143 2144 2145 2146
		return false;
	}

	get_cpus_on_this_dct_cpumask(mask, nid);

	rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);

	for_each_cpu(cpu, mask) {
2147
		struct msr *reg = per_cpu_ptr(msrs, cpu);
2148
		nbe = reg->l & MSR_MCGCTL_NBE;
2149 2150

		debugf0("core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
2151
			cpu, reg->q,
2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163
			(nbe ? "enabled" : "disabled"));

		if (!nbe)
			goto out;
	}
	ret = true;

out:
	free_cpumask_var(mask);
	return ret;
}

2164
static int toggle_ecc_err_reporting(struct ecc_settings *s, u8 nid, bool on)
2165 2166
{
	cpumask_var_t cmask;
2167
	int cpu;
2168 2169

	if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
2170
		amd64_warn("%s: error allocating mask\n", __func__);
2171 2172 2173
		return false;
	}

2174
	get_cpus_on_this_dct_cpumask(cmask, nid);
2175 2176 2177 2178 2179

	rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);

	for_each_cpu(cpu, cmask) {

2180 2181
		struct msr *reg = per_cpu_ptr(msrs, cpu);

2182
		if (on) {
2183
			if (reg->l & MSR_MCGCTL_NBE)
2184
				s->flags.nb_mce_enable = 1;
2185

2186
			reg->l |= MSR_MCGCTL_NBE;
2187 2188
		} else {
			/*
2189
			 * Turn off NB MCE reporting only when it was off before
2190
			 */
2191
			if (!s->flags.nb_mce_enable)
2192
				reg->l &= ~MSR_MCGCTL_NBE;
2193 2194 2195 2196 2197 2198 2199 2200 2201
		}
	}
	wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);

	free_cpumask_var(cmask);

	return 0;
}

2202 2203
static bool enable_ecc_error_reporting(struct ecc_settings *s, u8 nid,
				       struct pci_dev *F3)
2204
{
2205
	bool ret = true;
B
Borislav Petkov 已提交
2206
	u32 value, mask = 0x3;		/* UECC/CECC enable */
2207

2208 2209 2210 2211 2212
	if (toggle_ecc_err_reporting(s, nid, ON)) {
		amd64_warn("Error enabling ECC reporting over MCGCTL!\n");
		return false;
	}

B
Borislav Petkov 已提交
2213
	amd64_read_pci_cfg(F3, NBCTL, &value);
2214

2215 2216
	s->old_nbctl   = value & mask;
	s->nbctl_valid = true;
2217 2218

	value |= mask;
B
Borislav Petkov 已提交
2219
	amd64_write_pci_cfg(F3, NBCTL, value);
2220

2221
	amd64_read_pci_cfg(F3, NBCFG, &value);
2222

2223 2224
	debugf0("1: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
		nid, value, !!(value & NBCFG_ECC_ENABLE));
2225

2226
	if (!(value & NBCFG_ECC_ENABLE)) {
2227
		amd64_warn("DRAM ECC disabled on this node, enabling...\n");
2228

2229
		s->flags.nb_ecc_prev = 0;
2230

2231
		/* Attempt to turn on DRAM ECC Enable */
2232 2233
		value |= NBCFG_ECC_ENABLE;
		amd64_write_pci_cfg(F3, NBCFG, value);
2234

2235
		amd64_read_pci_cfg(F3, NBCFG, &value);
2236

2237
		if (!(value & NBCFG_ECC_ENABLE)) {
2238 2239
			amd64_warn("Hardware rejected DRAM ECC enable,"
				   "check memory DIMM configuration.\n");
2240
			ret = false;
2241
		} else {
2242
			amd64_info("Hardware accepted DRAM ECC Enable\n");
2243
		}
2244
	} else {
2245
		s->flags.nb_ecc_prev = 1;
2246
	}
2247

2248 2249
	debugf0("2: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
		nid, value, !!(value & NBCFG_ECC_ENABLE));
2250

2251
	return ret;
2252 2253
}

2254 2255
static void restore_ecc_error_reporting(struct ecc_settings *s, u8 nid,
					struct pci_dev *F3)
2256
{
B
Borislav Petkov 已提交
2257 2258
	u32 value, mask = 0x3;		/* UECC/CECC enable */

2259

2260
	if (!s->nbctl_valid)
2261 2262
		return;

B
Borislav Petkov 已提交
2263
	amd64_read_pci_cfg(F3, NBCTL, &value);
2264
	value &= ~mask;
2265
	value |= s->old_nbctl;
2266

B
Borislav Petkov 已提交
2267
	amd64_write_pci_cfg(F3, NBCTL, value);
2268

2269 2270
	/* restore previous BIOS DRAM ECC "off" setting we force-enabled */
	if (!s->flags.nb_ecc_prev) {
2271 2272 2273
		amd64_read_pci_cfg(F3, NBCFG, &value);
		value &= ~NBCFG_ECC_ENABLE;
		amd64_write_pci_cfg(F3, NBCFG, value);
2274 2275 2276
	}

	/* restore the NB Enable MCGCTL bit */
2277
	if (toggle_ecc_err_reporting(s, nid, OFF))
2278
		amd64_warn("Error restoring NB MCGCTL settings!\n");
2279 2280 2281
}

/*
2282 2283 2284 2285
 * EDAC requires that the BIOS have ECC enabled before
 * taking over the processing of ECC errors. A command line
 * option allows to force-enable hardware ECC later in
 * enable_ecc_error_reporting().
2286
 */
2287 2288 2289 2290 2291
static const char *ecc_msg =
	"ECC disabled in the BIOS or no ECC capability, module will not load.\n"
	" Either enable ECC checking or force module loading by setting "
	"'ecc_enable_override'.\n"
	" (Note that use of the override may cause unknown side effects.)\n";
2292

2293
static bool ecc_enabled(struct pci_dev *F3, u8 nid)
2294 2295
{
	u32 value;
2296
	u8 ecc_en = 0;
2297
	bool nb_mce_en = false;
2298

2299
	amd64_read_pci_cfg(F3, NBCFG, &value);
2300

2301
	ecc_en = !!(value & NBCFG_ECC_ENABLE);
2302
	amd64_info("DRAM ECC %s.\n", (ecc_en ? "enabled" : "disabled"));
2303

2304
	nb_mce_en = amd64_nb_mce_bank_enabled_on_node(nid);
2305
	if (!nb_mce_en)
2306 2307 2308
		amd64_notice("NB MCE bank disabled, set MSR "
			     "0x%08x[4] on node %d to enable.\n",
			     MSR_IA32_MCG_CTL, nid);
2309

2310 2311 2312 2313 2314
	if (!ecc_en || !nb_mce_en) {
		amd64_notice("%s", ecc_msg);
		return false;
	}
	return true;
2315 2316
}

2317 2318 2319 2320 2321 2322
struct mcidev_sysfs_attribute sysfs_attrs[ARRAY_SIZE(amd64_dbg_attrs) +
					  ARRAY_SIZE(amd64_inj_attrs) +
					  1];

struct mcidev_sysfs_attribute terminator = { .attr = { .name = NULL } };

2323
static void set_mc_sysfs_attrs(struct mem_ctl_info *mci)
2324 2325 2326 2327 2328 2329
{
	unsigned int i = 0, j = 0;

	for (; i < ARRAY_SIZE(amd64_dbg_attrs); i++)
		sysfs_attrs[i] = amd64_dbg_attrs[i];

2330 2331 2332
	if (boot_cpu_data.x86 >= 0x10)
		for (j = 0; j < ARRAY_SIZE(amd64_inj_attrs); j++, i++)
			sysfs_attrs[i] = amd64_inj_attrs[j];
2333 2334 2335 2336 2337 2338

	sysfs_attrs[i] = terminator;

	mci->mc_driver_sysfs_attributes = sysfs_attrs;
}

2339
static void setup_mci_misc_attrs(struct mem_ctl_info *mci)
2340 2341 2342 2343 2344 2345
{
	struct amd64_pvt *pvt = mci->pvt_info;

	mci->mtype_cap		= MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
	mci->edac_ctl_cap	= EDAC_FLAG_NONE;

2346
	if (pvt->nbcap & NBCAP_SECDED)
2347 2348
		mci->edac_ctl_cap |= EDAC_FLAG_SECDED;

2349
	if (pvt->nbcap & NBCAP_CHIPKILL)
2350 2351 2352 2353 2354
		mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;

	mci->edac_cap		= amd64_determine_edac_cap(pvt);
	mci->mod_name		= EDAC_MOD_STR;
	mci->mod_ver		= EDAC_AMD64_VERSION;
2355
	mci->ctl_name		= pvt->ctl_name;
2356
	mci->dev_name		= pci_name(pvt->F2);
2357 2358 2359 2360 2361 2362 2363
	mci->ctl_page_to_phys	= NULL;

	/* memory scrubber interface */
	mci->set_sdram_scrub_rate = amd64_set_scrub_rate;
	mci->get_sdram_scrub_rate = amd64_get_scrub_rate;
}

2364 2365 2366 2367
/*
 * returns a pointer to the family descriptor on success, NULL otherwise.
 */
static struct amd64_family_type *amd64_per_family_init(struct amd64_pvt *pvt)
2368
{
2369 2370 2371 2372
	u8 fam = boot_cpu_data.x86;
	struct amd64_family_type *fam_type = NULL;

	switch (fam) {
2373
	case 0xf:
2374
		fam_type		= &amd64_family_types[K8_CPUS];
2375
		pvt->ops		= &amd64_family_types[K8_CPUS].ops;
2376 2377
		pvt->ctl_name		= fam_type->ctl_name;
		pvt->min_scrubrate	= K8_MIN_SCRUB_RATE_BITS;
2378 2379
		break;
	case 0x10:
2380
		fam_type		= &amd64_family_types[F10_CPUS];
2381
		pvt->ops		= &amd64_family_types[F10_CPUS].ops;
2382 2383
		pvt->ctl_name		= fam_type->ctl_name;
		pvt->min_scrubrate	= F10_MIN_SCRUB_RATE_BITS;
2384 2385 2386
		break;

	default:
2387
		amd64_err("Unsupported family!\n");
2388
		return NULL;
2389
	}
2390

2391 2392
	pvt->ext_model = boot_cpu_data.x86_model >> 4;

2393
	amd64_info("%s %sdetected (node %d).\n", pvt->ctl_name,
2394
		     (fam == 0xf ?
2395 2396 2397
				(pvt->ext_model >= K8_REV_F  ? "revF or later "
							     : "revE or earlier ")
				 : ""), pvt->mc_node_id);
2398
	return fam_type;
2399 2400
}

2401
static int amd64_init_one_instance(struct pci_dev *F2)
2402 2403
{
	struct amd64_pvt *pvt = NULL;
2404
	struct amd64_family_type *fam_type = NULL;
2405
	struct mem_ctl_info *mci = NULL;
2406
	int err = 0, ret;
2407
	u8 nid = get_node_id(F2);
2408 2409 2410 2411

	ret = -ENOMEM;
	pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
	if (!pvt)
2412
		goto err_ret;
2413

2414
	pvt->mc_node_id	= nid;
2415
	pvt->F2 = F2;
2416

2417
	ret = -EINVAL;
2418 2419
	fam_type = amd64_per_family_init(pvt);
	if (!fam_type)
2420 2421
		goto err_free;

2422
	ret = -ENODEV;
2423
	err = reserve_mc_sibling_devs(pvt, fam_type->f1_id, fam_type->f3_id);
2424 2425 2426
	if (err)
		goto err_free;

2427
	read_mc_regs(pvt);
2428 2429 2430 2431

	/*
	 * We need to determine how many memory channels there are. Then use
	 * that information for calculating the size of the dynamic instance
2432
	 * tables in the 'mci' structure.
2433
	 */
2434
	ret = -EINVAL;
2435 2436
	pvt->channel_count = pvt->ops->early_channel_count(pvt);
	if (pvt->channel_count < 0)
2437
		goto err_siblings;
2438 2439

	ret = -ENOMEM;
2440
	mci = edac_mc_alloc(0, pvt->csels[0].b_cnt, pvt->channel_count, nid);
2441
	if (!mci)
2442
		goto err_siblings;
2443 2444

	mci->pvt_info = pvt;
2445
	mci->dev = &pvt->F2->dev;
2446

2447 2448 2449
	setup_mci_misc_attrs(mci);

	if (init_csrows(mci))
2450 2451
		mci->edac_cap = EDAC_FLAG_NONE;

2452
	set_mc_sysfs_attrs(mci);
2453 2454 2455 2456 2457 2458 2459

	ret = -ENODEV;
	if (edac_mc_add_mc(mci)) {
		debugf1("failed edac_mc_add_mc()\n");
		goto err_add_mc;
	}

2460 2461 2462 2463 2464 2465
	/* register stuff with EDAC MCE */
	if (report_gart_errors)
		amd_report_gart_errors(true);

	amd_register_ecc_decoder(amd64_decode_bus_error);

2466 2467 2468 2469
	mcis[nid] = mci;

	atomic_inc(&drv_instances);

2470 2471 2472 2473 2474
	return 0;

err_add_mc:
	edac_mc_free(mci);

2475 2476
err_siblings:
	free_mc_sibling_devs(pvt);
2477

2478 2479
err_free:
	kfree(pvt);
2480

2481
err_ret:
2482 2483 2484
	return ret;
}

2485
static int __devinit amd64_probe_one_instance(struct pci_dev *pdev,
2486
					     const struct pci_device_id *mc_type)
2487
{
2488
	u8 nid = get_node_id(pdev);
2489
	struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
2490
	struct ecc_settings *s;
2491
	int ret = 0;
2492 2493

	ret = pci_enable_device(pdev);
2494 2495 2496 2497
	if (ret < 0) {
		debugf0("ret=%d\n", ret);
		return -EIO;
	}
2498

2499 2500 2501
	ret = -ENOMEM;
	s = kzalloc(sizeof(struct ecc_settings), GFP_KERNEL);
	if (!s)
2502
		goto err_out;
2503 2504 2505

	ecc_stngs[nid] = s;

2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518
	if (!ecc_enabled(F3, nid)) {
		ret = -ENODEV;

		if (!ecc_enable_override)
			goto err_enable;

		amd64_warn("Forcing ECC on!\n");

		if (!enable_ecc_error_reporting(s, nid, F3))
			goto err_enable;
	}

	ret = amd64_init_one_instance(pdev);
2519
	if (ret < 0) {
2520
		amd64_err("Error probing instance: %d\n", nid);
2521 2522
		restore_ecc_error_reporting(s, nid, F3);
	}
2523 2524

	return ret;
2525 2526 2527 2528 2529 2530 2531

err_enable:
	kfree(s);
	ecc_stngs[nid] = NULL;

err_out:
	return ret;
2532 2533 2534 2535 2536 2537
}

static void __devexit amd64_remove_one_instance(struct pci_dev *pdev)
{
	struct mem_ctl_info *mci;
	struct amd64_pvt *pvt;
2538 2539 2540
	u8 nid = get_node_id(pdev);
	struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
	struct ecc_settings *s = ecc_stngs[nid];
2541 2542 2543 2544 2545 2546 2547 2548

	/* Remove from EDAC CORE tracking list */
	mci = edac_mc_del_mc(&pdev->dev);
	if (!mci)
		return;

	pvt = mci->pvt_info;

2549
	restore_ecc_error_reporting(s, nid, F3);
2550

2551
	free_mc_sibling_devs(pvt);
2552

2553 2554 2555 2556
	/* unregister from EDAC MCE */
	amd_report_gart_errors(false);
	amd_unregister_ecc_decoder(amd64_decode_bus_error);

2557 2558
	kfree(ecc_stngs[nid]);
	ecc_stngs[nid] = NULL;
2559

2560
	/* Free the EDAC CORE resources */
2561
	mci->pvt_info = NULL;
2562
	mcis[nid] = NULL;
2563 2564

	kfree(pvt);
2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595
	edac_mc_free(mci);
}

/*
 * This table is part of the interface for loading drivers for PCI devices. The
 * PCI core identifies what devices are on a system during boot, and then
 * inquiry this table to see if this driver is for a given device found.
 */
static const struct pci_device_id amd64_pci_table[] __devinitdata = {
	{
		.vendor		= PCI_VENDOR_ID_AMD,
		.device		= PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
		.subvendor	= PCI_ANY_ID,
		.subdevice	= PCI_ANY_ID,
		.class		= 0,
		.class_mask	= 0,
	},
	{
		.vendor		= PCI_VENDOR_ID_AMD,
		.device		= PCI_DEVICE_ID_AMD_10H_NB_DRAM,
		.subvendor	= PCI_ANY_ID,
		.subdevice	= PCI_ANY_ID,
		.class		= 0,
		.class_mask	= 0,
	},
	{0, }
};
MODULE_DEVICE_TABLE(pci, amd64_pci_table);

static struct pci_driver amd64_pci_driver = {
	.name		= EDAC_MOD_STR,
2596
	.probe		= amd64_probe_one_instance,
2597 2598 2599 2600
	.remove		= __devexit_p(amd64_remove_one_instance),
	.id_table	= amd64_pci_table,
};

2601
static void setup_pci_device(void)
2602 2603 2604 2605 2606 2607 2608
{
	struct mem_ctl_info *mci;
	struct amd64_pvt *pvt;

	if (amd64_ctl_pci)
		return;

2609
	mci = mcis[0];
2610 2611 2612 2613
	if (mci) {

		pvt = mci->pvt_info;
		amd64_ctl_pci =
2614
			edac_pci_create_generic_ctl(&pvt->F2->dev, EDAC_MOD_STR);
2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627

		if (!amd64_ctl_pci) {
			pr_warning("%s(): Unable to create PCI control\n",
				   __func__);

			pr_warning("%s(): PCI error report via EDAC not set\n",
				   __func__);
			}
	}
}

static int __init amd64_edac_init(void)
{
2628
	int err = -ENODEV;
2629 2630 2631 2632 2633

	edac_printk(KERN_INFO, EDAC_MOD_STR, EDAC_AMD64_VERSION "\n");

	opstate_init();

2634
	if (amd_cache_northbridges() < 0)
2635
		goto err_ret;
2636

2637
	err = -ENOMEM;
2638 2639
	mcis	  = kzalloc(amd_nb_num() * sizeof(mcis[0]), GFP_KERNEL);
	ecc_stngs = kzalloc(amd_nb_num() * sizeof(ecc_stngs[0]), GFP_KERNEL);
2640
	if (!(mcis && ecc_stngs))
2641 2642
		goto err_ret;

2643
	msrs = msrs_alloc();
2644
	if (!msrs)
2645
		goto err_free;
2646

2647 2648
	err = pci_register_driver(&amd64_pci_driver);
	if (err)
2649
		goto err_pci;
2650

2651
	err = -ENODEV;
2652 2653
	if (!atomic_read(&drv_instances))
		goto err_no_instances;
2654

2655 2656
	setup_pci_device();
	return 0;
2657

2658
err_no_instances:
2659
	pci_unregister_driver(&amd64_pci_driver);
2660

2661 2662 2663
err_pci:
	msrs_free(msrs);
	msrs = NULL;
2664

2665 2666 2667 2668 2669 2670 2671
err_free:
	kfree(mcis);
	mcis = NULL;

	kfree(ecc_stngs);
	ecc_stngs = NULL;

2672
err_ret:
2673 2674 2675 2676 2677 2678 2679 2680 2681
	return err;
}

static void __exit amd64_edac_exit(void)
{
	if (amd64_ctl_pci)
		edac_pci_release_generic_ctl(amd64_ctl_pci);

	pci_unregister_driver(&amd64_pci_driver);
2682

2683 2684 2685
	kfree(ecc_stngs);
	ecc_stngs = NULL;

2686 2687 2688
	kfree(mcis);
	mcis = NULL;

2689 2690
	msrs_free(msrs);
	msrs = NULL;
2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703
}

module_init(amd64_edac_init);
module_exit(amd64_edac_exit);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
		"Dave Peterson, Thayne Harbaugh");
MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
		EDAC_AMD64_VERSION);

module_param(edac_op_state, int, 0444);
MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");