amd64_edac.c 76.4 KB
Newer Older
1
#include "amd64_edac.h"
2
#include <asm/amd_nb.h>
3 4 5 6 7 8 9 10 11 12 13 14 15

static struct edac_pci_ctl_info *amd64_ctl_pci;

static int report_gart_errors;
module_param(report_gart_errors, int, 0644);

/*
 * Set by command line parameter. If BIOS has enabled the ECC, this override is
 * cleared to prevent re-enabling the hardware by this driver.
 */
static int ecc_enable_override;
module_param(ecc_enable_override, int, 0644);

16
static struct msr __percpu *msrs;
17

18 19 20
/* Per-node driver instances */
static struct mem_ctl_info **mcis;
static struct amd64_pvt **pvts;
21
static struct ecc_settings **ecc_stngs;
22

23
/*
24 25
 * Address to DRAM bank mapping: see F2x80 for K8 and F2x[1,0]80 for Fam10 and
 * later.
26
 */
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
static int ddr2_dbam_revCG[] = {
			   [0]		= 32,
			   [1]		= 64,
			   [2]		= 128,
			   [3]		= 256,
			   [4]		= 512,
			   [5]		= 1024,
			   [6]		= 2048,
};

static int ddr2_dbam_revD[] = {
			   [0]		= 32,
			   [1]		= 64,
			   [2 ... 3]	= 128,
			   [4]		= 256,
			   [5]		= 512,
			   [6]		= 256,
			   [7]		= 512,
			   [8 ... 9]	= 1024,
			   [10]		= 2048,
};

static int ddr2_dbam[] = { [0]		= 128,
			   [1]		= 256,
			   [2 ... 4]	= 512,
			   [5 ... 6]	= 1024,
			   [7 ... 8]	= 2048,
			   [9 ... 10]	= 4096,
			   [11]		= 8192,
};

static int ddr3_dbam[] = { [0]		= -1,
			   [1]		= 256,
			   [2]		= 512,
			   [3 ... 4]	= -1,
			   [5 ... 6]	= 1024,
			   [7 ... 8]	= 2048,
			   [9 ... 10]	= 4096,
65
			   [11]		= 8192,
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
};

/*
 * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
 * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
 * or higher value'.
 *
 *FIXME: Produce a better mapping/linearisation.
 */

struct scrubrate scrubrates[] = {
	{ 0x01, 1600000000UL},
	{ 0x02, 800000000UL},
	{ 0x03, 400000000UL},
	{ 0x04, 200000000UL},
	{ 0x05, 100000000UL},
	{ 0x06, 50000000UL},
	{ 0x07, 25000000UL},
	{ 0x08, 12284069UL},
	{ 0x09, 6274509UL},
	{ 0x0A, 3121951UL},
	{ 0x0B, 1560975UL},
	{ 0x0C, 781440UL},
	{ 0x0D, 390720UL},
	{ 0x0E, 195300UL},
	{ 0x0F, 97650UL},
	{ 0x10, 48854UL},
	{ 0x11, 24427UL},
	{ 0x12, 12213UL},
	{ 0x13, 6101UL},
	{ 0x14, 3051UL},
	{ 0x15, 1523UL},
	{ 0x16, 761UL},
	{ 0x00, 0UL},        /* scrubbing off */
};

102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
/*
 * Memory scrubber control interface. For K8, memory scrubbing is handled by
 * hardware and can involve L2 cache, dcache as well as the main memory. With
 * F10, this is extended to L3 cache scrubbing on CPU models sporting that
 * functionality.
 *
 * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
 * (dram) over to cache lines. This is nasty, so we will use bandwidth in
 * bytes/sec for the setting.
 *
 * Currently, we only do dram scrubbing. If the scrubbing is done in software on
 * other archs, we might not have access to the caches directly.
 */

/*
 * scan the scrub rate mapping table for a close or matching bandwidth value to
 * issue. If requested is too big, then use last maximum value found.
 */
120
static int __amd64_set_scrub_rate(struct pci_dev *ctl, u32 new_bw, u32 min_rate)
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
{
	u32 scrubval;
	int i;

	/*
	 * map the configured rate (new_bw) to a value specific to the AMD64
	 * memory controller and apply to register. Search for the first
	 * bandwidth entry that is greater or equal than the setting requested
	 * and program that. If at last entry, turn off DRAM scrubbing.
	 */
	for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
		/*
		 * skip scrub rates which aren't recommended
		 * (see F10 BKDG, F3x58)
		 */
136
		if (scrubrates[i].scrubval < min_rate)
137 138 139 140 141 142 143 144 145 146 147 148 149 150
			continue;

		if (scrubrates[i].bandwidth <= new_bw)
			break;

		/*
		 * if no suitable bandwidth found, turn off DRAM scrubbing
		 * entirely by falling back to the last element in the
		 * scrubrates array.
		 */
	}

	scrubval = scrubrates[i].scrubval;
	if (scrubval)
151 152
		amd64_info("Setting scrub rate bandwidth: %u\n",
			   scrubrates[i].bandwidth);
153
	else
154
		amd64_info("Turning scrubbing off.\n");
155 156 157 158 159 160

	pci_write_bits32(ctl, K8_SCRCTRL, scrubval, 0x001F);

	return 0;
}

161
static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 bw)
162 163 164
{
	struct amd64_pvt *pvt = mci->pvt_info;

165
	return __amd64_set_scrub_rate(pvt->F3, bw, pvt->min_scrubrate);
166 167 168 169 170 171
}

static int amd64_get_scrub_rate(struct mem_ctl_info *mci, u32 *bw)
{
	struct amd64_pvt *pvt = mci->pvt_info;
	u32 scrubval = 0;
172
	int status = -1, i;
173

174
	amd64_read_pci_cfg(pvt->F3, K8_SCRCTRL, &scrubval);
175 176 177

	scrubval = scrubval & 0x001F;

178
	amd64_debug("pci-read, sdram scrub control value: %d\n", scrubval);
179

180
	for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
181 182 183 184 185 186 187 188 189 190
		if (scrubrates[i].scrubval == scrubval) {
			*bw = scrubrates[i].bandwidth;
			status = 0;
			break;
		}
	}

	return status;
}

191 192 193
/* Map from a CSROW entry to the mask entry that operates on it */
static inline u32 amd64_map_to_dcs_mask(struct amd64_pvt *pvt, int csrow)
{
194
	if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F)
195 196 197
		return csrow;
	else
		return csrow >> 1;
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
}

/* return the 'base' address the i'th CS entry of the 'dct' DRAM controller */
static u32 amd64_get_dct_base(struct amd64_pvt *pvt, int dct, int csrow)
{
	if (dct == 0)
		return pvt->dcsb0[csrow];
	else
		return pvt->dcsb1[csrow];
}

/*
 * Return the 'mask' address the i'th CS entry. This function is needed because
 * there number of DCSM registers on Rev E and prior vs Rev F and later is
 * different.
 */
static u32 amd64_get_dct_mask(struct amd64_pvt *pvt, int dct, int csrow)
{
	if (dct == 0)
		return pvt->dcsm0[amd64_map_to_dcs_mask(pvt, csrow)];
	else
		return pvt->dcsm1[amd64_map_to_dcs_mask(pvt, csrow)];
}


/*
 * In *base and *limit, pass back the full 40-bit base and limit physical
 * addresses for the node given by node_id.  This information is obtained from
 * DRAM Base (section 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers. The
 * base and limit addresses are of type SysAddr, as defined at the start of
 * section 3.4.4 (p. 70).  They are the lowest and highest physical addresses
 * in the address range they represent.
 */
static void amd64_get_base_and_limit(struct amd64_pvt *pvt, int node_id,
			       u64 *base, u64 *limit)
{
	*base = pvt->dram_base[node_id];
	*limit = pvt->dram_limit[node_id];
}

/*
 * Return 1 if the SysAddr given by sys_addr matches the base/limit associated
 * with node_id
 */
static int amd64_base_limit_match(struct amd64_pvt *pvt,
					u64 sys_addr, int node_id)
{
	u64 base, limit, addr;

	amd64_get_base_and_limit(pvt, node_id, &base, &limit);

	/* The K8 treats this as a 40-bit value.  However, bits 63-40 will be
	 * all ones if the most significant implemented address bit is 1.
	 * Here we discard bits 63-40.  See section 3.4.2 of AMD publication
	 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
	 * Application Programming.
	 */
	addr = sys_addr & 0x000000ffffffffffull;

	return (addr >= base) && (addr <= limit);
}

/*
 * Attempt to map a SysAddr to a node. On success, return a pointer to the
 * mem_ctl_info structure for the node that the SysAddr maps to.
 *
 * On failure, return NULL.
 */
static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
						u64 sys_addr)
{
	struct amd64_pvt *pvt;
	int node_id;
	u32 intlv_en, bits;

	/*
	 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
	 * 3.4.4.2) registers to map the SysAddr to a node ID.
	 */
	pvt = mci->pvt_info;

	/*
	 * The value of this field should be the same for all DRAM Base
	 * registers.  Therefore we arbitrarily choose to read it from the
	 * register for node 0.
	 */
	intlv_en = pvt->dram_IntlvEn[0];

	if (intlv_en == 0) {
287
		for (node_id = 0; node_id < DRAM_REG_COUNT; node_id++) {
288
			if (amd64_base_limit_match(pvt, sys_addr, node_id))
289
				goto found;
290
		}
291
		goto err_no_match;
292 293
	}

294 295 296
	if (unlikely((intlv_en != 0x01) &&
		     (intlv_en != 0x03) &&
		     (intlv_en != 0x07))) {
297
		amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en);
298 299 300 301 302 303
		return NULL;
	}

	bits = (((u32) sys_addr) >> 12) & intlv_en;

	for (node_id = 0; ; ) {
304
		if ((pvt->dram_IntlvSel[node_id] & intlv_en) == bits)
305 306 307 308 309 310 311 312
			break;	/* intlv_sel field matches */

		if (++node_id >= DRAM_REG_COUNT)
			goto err_no_match;
	}

	/* sanity test for sys_addr */
	if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) {
313 314 315
		amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address"
			   "range for node %d with node interleaving enabled.\n",
			   __func__, sys_addr, node_id);
316 317 318 319 320 321 322 323 324 325 326 327
		return NULL;
	}

found:
	return edac_mc_find(node_id);

err_no_match:
	debugf2("sys_addr 0x%lx doesn't match any node\n",
		(unsigned long)sys_addr);

	return NULL;
}
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377

/*
 * Extract the DRAM CS base address from selected csrow register.
 */
static u64 base_from_dct_base(struct amd64_pvt *pvt, int csrow)
{
	return ((u64) (amd64_get_dct_base(pvt, 0, csrow) & pvt->dcsb_base)) <<
				pvt->dcs_shift;
}

/*
 * Extract the mask from the dcsb0[csrow] entry in a CPU revision-specific way.
 */
static u64 mask_from_dct_mask(struct amd64_pvt *pvt, int csrow)
{
	u64 dcsm_bits, other_bits;
	u64 mask;

	/* Extract bits from DRAM CS Mask. */
	dcsm_bits = amd64_get_dct_mask(pvt, 0, csrow) & pvt->dcsm_mask;

	other_bits = pvt->dcsm_mask;
	other_bits = ~(other_bits << pvt->dcs_shift);

	/*
	 * The extracted bits from DCSM belong in the spaces represented by
	 * the cleared bits in other_bits.
	 */
	mask = (dcsm_bits << pvt->dcs_shift) | other_bits;

	return mask;
}

/*
 * @input_addr is an InputAddr associated with the node given by mci. Return the
 * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
 */
static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
{
	struct amd64_pvt *pvt;
	int csrow;
	u64 base, mask;

	pvt = mci->pvt_info;

	/*
	 * Here we use the DRAM CS Base and DRAM CS Mask registers. For each CS
	 * base/mask register pair, test the condition shown near the start of
	 * section 3.5.4 (p. 84, BKDG #26094, K8, revA-E).
	 */
378
	for (csrow = 0; csrow < pvt->cs_count; csrow++) {
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437

		/* This DRAM chip select is disabled on this node */
		if ((pvt->dcsb0[csrow] & K8_DCSB_CS_ENABLE) == 0)
			continue;

		base = base_from_dct_base(pvt, csrow);
		mask = ~mask_from_dct_mask(pvt, csrow);

		if ((input_addr & mask) == (base & mask)) {
			debugf2("InputAddr 0x%lx matches csrow %d (node %d)\n",
				(unsigned long)input_addr, csrow,
				pvt->mc_node_id);

			return csrow;
		}
	}

	debugf2("no matching csrow for InputAddr 0x%lx (MC node %d)\n",
		(unsigned long)input_addr, pvt->mc_node_id);

	return -1;
}

/*
 * Return the base value defined by the DRAM Base register for the node
 * represented by mci.  This function returns the full 40-bit value despite the
 * fact that the register only stores bits 39-24 of the value. See section
 * 3.4.4.1 (BKDG #26094, K8, revA-E)
 */
static inline u64 get_dram_base(struct mem_ctl_info *mci)
{
	struct amd64_pvt *pvt = mci->pvt_info;

	return pvt->dram_base[pvt->mc_node_id];
}

/*
 * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
 * for the node represented by mci. Info is passed back in *hole_base,
 * *hole_offset, and *hole_size.  Function returns 0 if info is valid or 1 if
 * info is invalid. Info may be invalid for either of the following reasons:
 *
 * - The revision of the node is not E or greater.  In this case, the DRAM Hole
 *   Address Register does not exist.
 *
 * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
 *   indicating that its contents are not valid.
 *
 * The values passed back in *hole_base, *hole_offset, and *hole_size are
 * complete 32-bit values despite the fact that the bitfields in the DHAR
 * only represent bits 31-24 of the base and offset values.
 */
int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
			     u64 *hole_offset, u64 *hole_size)
{
	struct amd64_pvt *pvt = mci->pvt_info;
	u64 base;

	/* only revE and later have the DRAM Hole Address Register */
438
	if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_E) {
439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
		debugf1("  revision %d for node %d does not support DHAR\n",
			pvt->ext_model, pvt->mc_node_id);
		return 1;
	}

	/* only valid for Fam10h */
	if (boot_cpu_data.x86 == 0x10 &&
	    (pvt->dhar & F10_DRAM_MEM_HOIST_VALID) == 0) {
		debugf1("  Dram Memory Hoisting is DISABLED on this system\n");
		return 1;
	}

	if ((pvt->dhar & DHAR_VALID) == 0) {
		debugf1("  Dram Memory Hoisting is DISABLED on this node %d\n",
			pvt->mc_node_id);
		return 1;
	}

	/* This node has Memory Hoisting */

	/* +------------------+--------------------+--------------------+-----
	 * | memory           | DRAM hole          | relocated          |
	 * | [0, (x - 1)]     | [x, 0xffffffff]    | addresses from     |
	 * |                  |                    | DRAM hole          |
	 * |                  |                    | [0x100000000,      |
	 * |                  |                    |  (0x100000000+     |
	 * |                  |                    |   (0xffffffff-x))] |
	 * +------------------+--------------------+--------------------+-----
	 *
	 * Above is a diagram of physical memory showing the DRAM hole and the
	 * relocated addresses from the DRAM hole.  As shown, the DRAM hole
	 * starts at address x (the base address) and extends through address
	 * 0xffffffff.  The DRAM Hole Address Register (DHAR) relocates the
	 * addresses in the hole so that they start at 0x100000000.
	 */

	base = dhar_base(pvt->dhar);

	*hole_base = base;
	*hole_size = (0x1ull << 32) - base;

	if (boot_cpu_data.x86 > 0xf)
		*hole_offset = f10_dhar_offset(pvt->dhar);
	else
		*hole_offset = k8_dhar_offset(pvt->dhar);

	debugf1("  DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
		pvt->mc_node_id, (unsigned long)*hole_base,
		(unsigned long)*hole_offset, (unsigned long)*hole_size);

	return 0;
}
EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);

493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734
/*
 * Return the DramAddr that the SysAddr given by @sys_addr maps to.  It is
 * assumed that sys_addr maps to the node given by mci.
 *
 * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
 * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
 * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
 * then it is also involved in translating a SysAddr to a DramAddr. Sections
 * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
 * These parts of the documentation are unclear. I interpret them as follows:
 *
 * When node n receives a SysAddr, it processes the SysAddr as follows:
 *
 * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
 *    Limit registers for node n. If the SysAddr is not within the range
 *    specified by the base and limit values, then node n ignores the Sysaddr
 *    (since it does not map to node n). Otherwise continue to step 2 below.
 *
 * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
 *    disabled so skip to step 3 below. Otherwise see if the SysAddr is within
 *    the range of relocated addresses (starting at 0x100000000) from the DRAM
 *    hole. If not, skip to step 3 below. Else get the value of the
 *    DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
 *    offset defined by this value from the SysAddr.
 *
 * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
 *    Base register for node n. To obtain the DramAddr, subtract the base
 *    address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
 */
static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
{
	u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
	int ret = 0;

	dram_base = get_dram_base(mci);

	ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
				      &hole_size);
	if (!ret) {
		if ((sys_addr >= (1ull << 32)) &&
		    (sys_addr < ((1ull << 32) + hole_size))) {
			/* use DHAR to translate SysAddr to DramAddr */
			dram_addr = sys_addr - hole_offset;

			debugf2("using DHAR to translate SysAddr 0x%lx to "
				"DramAddr 0x%lx\n",
				(unsigned long)sys_addr,
				(unsigned long)dram_addr);

			return dram_addr;
		}
	}

	/*
	 * Translate the SysAddr to a DramAddr as shown near the start of
	 * section 3.4.4 (p. 70).  Although sys_addr is a 64-bit value, the k8
	 * only deals with 40-bit values.  Therefore we discard bits 63-40 of
	 * sys_addr below.  If bit 39 of sys_addr is 1 then the bits we
	 * discard are all 1s.  Otherwise the bits we discard are all 0s.  See
	 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
	 * Programmer's Manual Volume 1 Application Programming.
	 */
	dram_addr = (sys_addr & 0xffffffffffull) - dram_base;

	debugf2("using DRAM Base register to translate SysAddr 0x%lx to "
		"DramAddr 0x%lx\n", (unsigned long)sys_addr,
		(unsigned long)dram_addr);
	return dram_addr;
}

/*
 * @intlv_en is the value of the IntlvEn field from a DRAM Base register
 * (section 3.4.4.1).  Return the number of bits from a SysAddr that are used
 * for node interleaving.
 */
static int num_node_interleave_bits(unsigned intlv_en)
{
	static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
	int n;

	BUG_ON(intlv_en > 7);
	n = intlv_shift_table[intlv_en];
	return n;
}

/* Translate the DramAddr given by @dram_addr to an InputAddr. */
static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
{
	struct amd64_pvt *pvt;
	int intlv_shift;
	u64 input_addr;

	pvt = mci->pvt_info;

	/*
	 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
	 * concerning translating a DramAddr to an InputAddr.
	 */
	intlv_shift = num_node_interleave_bits(pvt->dram_IntlvEn[0]);
	input_addr = ((dram_addr >> intlv_shift) & 0xffffff000ull) +
	    (dram_addr & 0xfff);

	debugf2("  Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
		intlv_shift, (unsigned long)dram_addr,
		(unsigned long)input_addr);

	return input_addr;
}

/*
 * Translate the SysAddr represented by @sys_addr to an InputAddr.  It is
 * assumed that @sys_addr maps to the node given by mci.
 */
static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
{
	u64 input_addr;

	input_addr =
	    dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));

	debugf2("SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
		(unsigned long)sys_addr, (unsigned long)input_addr);

	return input_addr;
}


/*
 * @input_addr is an InputAddr associated with the node represented by mci.
 * Translate @input_addr to a DramAddr and return the result.
 */
static u64 input_addr_to_dram_addr(struct mem_ctl_info *mci, u64 input_addr)
{
	struct amd64_pvt *pvt;
	int node_id, intlv_shift;
	u64 bits, dram_addr;
	u32 intlv_sel;

	/*
	 * Near the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
	 * shows how to translate a DramAddr to an InputAddr. Here we reverse
	 * this procedure. When translating from a DramAddr to an InputAddr, the
	 * bits used for node interleaving are discarded.  Here we recover these
	 * bits from the IntlvSel field of the DRAM Limit register (section
	 * 3.4.4.2) for the node that input_addr is associated with.
	 */
	pvt = mci->pvt_info;
	node_id = pvt->mc_node_id;
	BUG_ON((node_id < 0) || (node_id > 7));

	intlv_shift = num_node_interleave_bits(pvt->dram_IntlvEn[0]);

	if (intlv_shift == 0) {
		debugf1("    InputAddr 0x%lx translates to DramAddr of "
			"same value\n",	(unsigned long)input_addr);

		return input_addr;
	}

	bits = ((input_addr & 0xffffff000ull) << intlv_shift) +
	    (input_addr & 0xfff);

	intlv_sel = pvt->dram_IntlvSel[node_id] & ((1 << intlv_shift) - 1);
	dram_addr = bits + (intlv_sel << 12);

	debugf1("InputAddr 0x%lx translates to DramAddr 0x%lx "
		"(%d node interleave bits)\n", (unsigned long)input_addr,
		(unsigned long)dram_addr, intlv_shift);

	return dram_addr;
}

/*
 * @dram_addr is a DramAddr that maps to the node represented by mci. Convert
 * @dram_addr to a SysAddr.
 */
static u64 dram_addr_to_sys_addr(struct mem_ctl_info *mci, u64 dram_addr)
{
	struct amd64_pvt *pvt = mci->pvt_info;
	u64 hole_base, hole_offset, hole_size, base, limit, sys_addr;
	int ret = 0;

	ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
				      &hole_size);
	if (!ret) {
		if ((dram_addr >= hole_base) &&
		    (dram_addr < (hole_base + hole_size))) {
			sys_addr = dram_addr + hole_offset;

			debugf1("using DHAR to translate DramAddr 0x%lx to "
				"SysAddr 0x%lx\n", (unsigned long)dram_addr,
				(unsigned long)sys_addr);

			return sys_addr;
		}
	}

	amd64_get_base_and_limit(pvt, pvt->mc_node_id, &base, &limit);
	sys_addr = dram_addr + base;

	/*
	 * The sys_addr we have computed up to this point is a 40-bit value
	 * because the k8 deals with 40-bit values.  However, the value we are
	 * supposed to return is a full 64-bit physical address.  The AMD
	 * x86-64 architecture specifies that the most significant implemented
	 * address bit through bit 63 of a physical address must be either all
	 * 0s or all 1s.  Therefore we sign-extend the 40-bit sys_addr to a
	 * 64-bit value below.  See section 3.4.2 of AMD publication 24592:
	 * AMD x86-64 Architecture Programmer's Manual Volume 1 Application
	 * Programming.
	 */
	sys_addr |= ~((sys_addr & (1ull << 39)) - 1);

	debugf1("    Node %d, DramAddr 0x%lx to SysAddr 0x%lx\n",
		pvt->mc_node_id, (unsigned long)dram_addr,
		(unsigned long)sys_addr);

	return sys_addr;
}

/*
 * @input_addr is an InputAddr associated with the node given by mci. Translate
 * @input_addr to a SysAddr.
 */
static inline u64 input_addr_to_sys_addr(struct mem_ctl_info *mci,
					 u64 input_addr)
{
	return dram_addr_to_sys_addr(mci,
				     input_addr_to_dram_addr(mci, input_addr));
}

/*
 * Find the minimum and maximum InputAddr values that map to the given @csrow.
 * Pass back these values in *input_addr_min and *input_addr_max.
 */
static void find_csrow_limits(struct mem_ctl_info *mci, int csrow,
			      u64 *input_addr_min, u64 *input_addr_max)
{
	struct amd64_pvt *pvt;
	u64 base, mask;

	pvt = mci->pvt_info;
735
	BUG_ON((csrow < 0) || (csrow >= pvt->cs_count));
736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766

	base = base_from_dct_base(pvt, csrow);
	mask = mask_from_dct_mask(pvt, csrow);

	*input_addr_min = base & ~mask;
	*input_addr_max = base | mask | pvt->dcs_mask_notused;
}

/* Map the Error address to a PAGE and PAGE OFFSET. */
static inline void error_address_to_page_and_offset(u64 error_address,
						    u32 *page, u32 *offset)
{
	*page = (u32) (error_address >> PAGE_SHIFT);
	*offset = ((u32) error_address) & ~PAGE_MASK;
}

/*
 * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
 * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
 * of a node that detected an ECC memory error.  mci represents the node that
 * the error address maps to (possibly different from the node that detected
 * the error).  Return the number of the csrow that sys_addr maps to, or -1 on
 * error.
 */
static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
{
	int csrow;

	csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));

	if (csrow == -1)
767 768
		amd64_mc_err(mci, "Failed to translate InputAddr to csrow for "
				  "address 0x%lx\n", (unsigned long)sys_addr);
769 770
	return csrow;
}
771

772
static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
773

774 775 776 777 778
static u16 extract_syndrome(struct err_regs *err)
{
	return ((err->nbsh >> 15) & 0xff) | ((err->nbsl >> 16) & 0xff00);
}

779 780 781 782 783 784 785
/*
 * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
 * are ECC capable.
 */
static enum edac_type amd64_determine_edac_cap(struct amd64_pvt *pvt)
{
	int bit;
786
	enum dev_type edac_cap = EDAC_FLAG_NONE;
787

788
	bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= K8_REV_F)
789 790 791
		? 19
		: 17;

792
	if (pvt->dclr0 & BIT(bit))
793 794 795 796 797 798
		edac_cap = EDAC_FLAG_SECDED;

	return edac_cap;
}


799
static void amd64_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt);
800

801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821
static void amd64_dump_dramcfg_low(u32 dclr, int chan)
{
	debugf1("F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);

	debugf1("  DIMM type: %sbuffered; all DIMMs support ECC: %s\n",
		(dclr & BIT(16)) ?  "un" : "",
		(dclr & BIT(19)) ? "yes" : "no");

	debugf1("  PAR/ERR parity: %s\n",
		(dclr & BIT(8)) ?  "enabled" : "disabled");

	debugf1("  DCT 128bit mode width: %s\n",
		(dclr & BIT(11)) ?  "128b" : "64b");

	debugf1("  x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
		(dclr & BIT(12)) ?  "yes" : "no",
		(dclr & BIT(13)) ?  "yes" : "no",
		(dclr & BIT(14)) ?  "yes" : "no",
		(dclr & BIT(15)) ?  "yes" : "no");
}

822 823 824 825 826
/* Display and decode various NB registers for debug purposes. */
static void amd64_dump_misc_regs(struct amd64_pvt *pvt)
{
	int ganged;

827 828 829 830
	debugf1("F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);

	debugf1("  NB two channel DRAM capable: %s\n",
		(pvt->nbcap & K8_NBCAP_DCT_DUAL) ? "yes" : "no");
831

832 833 834 835 836
	debugf1("  ECC capable: %s, ChipKill ECC capable: %s\n",
		(pvt->nbcap & K8_NBCAP_SECDED) ? "yes" : "no",
		(pvt->nbcap & K8_NBCAP_CHIPKILL) ? "yes" : "no");

	amd64_dump_dramcfg_low(pvt->dclr0, 0);
837

838
	debugf1("F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
839

840 841 842 843 844 845
	debugf1("F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, "
			"offset: 0x%08x\n",
			pvt->dhar,
			dhar_base(pvt->dhar),
			(boot_cpu_data.x86 == 0xf) ? k8_dhar_offset(pvt->dhar)
						   : f10_dhar_offset(pvt->dhar));
846

847 848
	debugf1("  DramHoleValid: %s\n",
		(pvt->dhar & DHAR_VALID) ? "yes" : "no");
849

850
	/* everything below this point is Fam10h and above */
851 852
	if (boot_cpu_data.x86 == 0xf) {
		amd64_debug_display_dimm_sizes(0, pvt);
853
		return;
854
	}
855

856
	amd64_info("using %s syndromes.\n", ((pvt->syn_type == 8) ? "x8" : "x4"));
857

858
	/* Only if NOT ganged does dclr1 have valid info */
859 860
	if (!dct_ganging_enabled(pvt))
		amd64_dump_dramcfg_low(pvt->dclr1, 1);
861 862 863 864 865 866 867

	/*
	 * Determine if ganged and then dump memory sizes for first controller,
	 * and if NOT ganged dump info for 2nd controller.
	 */
	ganged = dct_ganging_enabled(pvt);

868
	amd64_debug_display_dimm_sizes(0, pvt);
869 870

	if (!ganged)
871
		amd64_debug_display_dimm_sizes(1, pvt);
872 873 874 875 876
}

/* Read in both of DBAM registers */
static void amd64_read_dbam_reg(struct amd64_pvt *pvt)
{
877
	amd64_read_pci_cfg(pvt->F2, DBAM0, &pvt->dbam0);
878

879
	if (boot_cpu_data.x86 >= 0x10)
880
		amd64_read_pci_cfg(pvt->F2, DBAM1, &pvt->dbam1);
881 882
}

883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913
/*
 * NOTE: CPU Revision Dependent code: Rev E and Rev F
 *
 * Set the DCSB and DCSM mask values depending on the CPU revision value. Also
 * set the shift factor for the DCSB and DCSM values.
 *
 * ->dcs_mask_notused, RevE:
 *
 * To find the max InputAddr for the csrow, start with the base address and set
 * all bits that are "don't care" bits in the test at the start of section
 * 3.5.4 (p. 84).
 *
 * The "don't care" bits are all set bits in the mask and all bits in the gaps
 * between bit ranges [35:25] and [19:13]. The value REV_E_DCS_NOTUSED_BITS
 * represents bits [24:20] and [12:0], which are all bits in the above-mentioned
 * gaps.
 *
 * ->dcs_mask_notused, RevF and later:
 *
 * To find the max InputAddr for the csrow, start with the base address and set
 * all bits that are "don't care" bits in the test at the start of NPT section
 * 4.5.4 (p. 87).
 *
 * The "don't care" bits are all set bits in the mask and all bits in the gaps
 * between bit ranges [36:27] and [21:13].
 *
 * The value REV_F_F1Xh_DCS_NOTUSED_BITS represents bits [26:22] and [12:0],
 * which are all bits in the above-mentioned gaps.
 */
static void amd64_set_dct_base_and_mask(struct amd64_pvt *pvt)
{
914

915
	if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
916 917 918 919 920 921 922
		pvt->dcsb_base		= REV_E_DCSB_BASE_BITS;
		pvt->dcsm_mask		= REV_E_DCSM_MASK_BITS;
		pvt->dcs_mask_notused	= REV_E_DCS_NOTUSED_BITS;
		pvt->dcs_shift		= REV_E_DCS_SHIFT;
		pvt->cs_count		= 8;
		pvt->num_dcsm		= 8;
	} else {
923 924 925 926
		pvt->dcsb_base		= REV_F_F1Xh_DCSB_BASE_BITS;
		pvt->dcsm_mask		= REV_F_F1Xh_DCSM_MASK_BITS;
		pvt->dcs_mask_notused	= REV_F_F1Xh_DCS_NOTUSED_BITS;
		pvt->dcs_shift		= REV_F_F1Xh_DCS_SHIFT;
927 928
		pvt->cs_count		= 8;
		pvt->num_dcsm		= 4;
929 930 931 932 933 934 935 936
	}
}

/*
 * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask hw registers
 */
static void amd64_read_dct_base_mask(struct amd64_pvt *pvt)
{
937
	int cs, reg;
938 939 940

	amd64_set_dct_base_and_mask(pvt);

941
	for (cs = 0; cs < pvt->cs_count; cs++) {
942
		reg = K8_DCSB0 + (cs * 4);
943
		if (!amd64_read_pci_cfg(pvt->F2, reg, &pvt->dcsb0[cs]))
944 945 946 947 948 949
			debugf0("  DCSB0[%d]=0x%08x reg: F2x%x\n",
				cs, pvt->dcsb0[cs], reg);

		/* If DCT are NOT ganged, then read in DCT1's base */
		if (boot_cpu_data.x86 >= 0x10 && !dct_ganging_enabled(pvt)) {
			reg = F10_DCSB1 + (cs * 4);
950
			if (!amd64_read_pci_cfg(pvt->F2, reg,
951
						&pvt->dcsb1[cs]))
952 953 954 955 956 957 958 959
				debugf0("  DCSB1[%d]=0x%08x reg: F2x%x\n",
					cs, pvt->dcsb1[cs], reg);
		} else {
			pvt->dcsb1[cs] = 0;
		}
	}

	for (cs = 0; cs < pvt->num_dcsm; cs++) {
960
		reg = K8_DCSM0 + (cs * 4);
961
		if (!amd64_read_pci_cfg(pvt->F2, reg, &pvt->dcsm0[cs]))
962 963 964 965 966 967
			debugf0("    DCSM0[%d]=0x%08x reg: F2x%x\n",
				cs, pvt->dcsm0[cs], reg);

		/* If DCT are NOT ganged, then read in DCT1's mask */
		if (boot_cpu_data.x86 >= 0x10 && !dct_ganging_enabled(pvt)) {
			reg = F10_DCSM1 + (cs * 4);
968
			if (!amd64_read_pci_cfg(pvt->F2, reg,
969
						&pvt->dcsm1[cs]))
970 971
				debugf0("    DCSM1[%d]=0x%08x reg: F2x%x\n",
					cs, pvt->dcsm1[cs], reg);
972
		} else {
973
			pvt->dcsm1[cs] = 0;
974
		}
975 976 977
	}
}

978
static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt, int cs)
979 980 981
{
	enum mem_type type;

982
	if (boot_cpu_data.x86 >= 0x10 || pvt->ext_model >= K8_REV_F) {
983 984 985 986
		if (pvt->dchr0 & DDR3_MODE)
			type = (pvt->dclr0 & BIT(16)) ?	MEM_DDR3 : MEM_RDDR3;
		else
			type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
987 988 989 990
	} else {
		type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
	}

991
	amd64_info("CS%d: %s\n", cs, edac_mem_types[type]);
992 993 994 995

	return type;
}

996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008
/*
 * Read the DRAM Configuration Low register. It differs between CG, D & E revs
 * and the later RevF memory controllers (DDR vs DDR2)
 *
 * Return:
 *      number of memory channels in operation
 * Pass back:
 *      contents of the DCL0_LOW register
 */
static int k8_early_channel_count(struct amd64_pvt *pvt)
{
	int flag, err = 0;

1009
	err = amd64_read_pci_cfg(pvt->F2, F10_DCLR_0, &pvt->dclr0);
1010 1011 1012
	if (err)
		return err;

1013
	if (pvt->ext_model >= K8_REV_F)
1014 1015
		/* RevF (NPT) and later */
		flag = pvt->dclr0 & F10_WIDTH_128;
1016
	else
1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
		/* RevE and earlier */
		flag = pvt->dclr0 & REVE_WIDTH_128;

	/* not used */
	pvt->dclr1 = 0;

	return (flag) ? 2 : 1;
}

/* extract the ERROR ADDRESS for the K8 CPUs */
static u64 k8_get_error_address(struct mem_ctl_info *mci,
1028
				struct err_regs *info)
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
{
	return (((u64) (info->nbeah & 0xff)) << 32) +
			(info->nbeal & ~0x03);
}

/*
 * Read the Base and Limit registers for K8 based Memory controllers; extract
 * fields from the 'raw' reg into separate data fields
 *
 * Isolates: BASE, LIMIT, IntlvEn, IntlvSel, RW_EN
 */
static void k8_read_dram_base_limit(struct amd64_pvt *pvt, int dram)
{
	u32 low;
	u32 off = dram << 3;	/* 8 bytes between DRAM entries */

1045
	amd64_read_pci_cfg(pvt->F1, K8_DRAM_BASE_LOW + off, &low);
1046 1047

	/* Extract parts into separate data entries */
1048
	pvt->dram_base[dram] = ((u64) low & 0xFFFF0000) << 8;
1049 1050 1051
	pvt->dram_IntlvEn[dram] = (low >> 8) & 0x7;
	pvt->dram_rw_en[dram] = (low & 0x3);

1052
	amd64_read_pci_cfg(pvt->F1, K8_DRAM_LIMIT_LOW + off, &low);
1053 1054 1055 1056 1057

	/*
	 * Extract parts into separate data entries. Limit is the HIGHEST memory
	 * location of the region, so lower 24 bits need to be all ones
	 */
1058
	pvt->dram_limit[dram] = (((u64) low & 0xFFFF0000) << 8) | 0x00FFFFFF;
1059 1060 1061 1062 1063
	pvt->dram_IntlvSel[dram] = (low >> 8) & 0x7;
	pvt->dram_DstNode[dram] = (low & 0x7);
}

static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
1064
				    struct err_regs *err_info, u64 sys_addr)
1065 1066 1067 1068
{
	struct mem_ctl_info *src_mci;
	int channel, csrow;
	u32 page, offset;
1069
	u16 syndrome;
1070

1071
	syndrome = extract_syndrome(err_info);
1072 1073

	/* CHIPKILL enabled */
1074
	if (err_info->nbcfg & K8_NBCFG_CHIPKILL) {
1075
		channel = get_channel_from_ecc_syndrome(mci, syndrome);
1076 1077 1078 1079 1080 1081
		if (channel < 0) {
			/*
			 * Syndrome didn't map, so we don't know which of the
			 * 2 DIMMs is in error. So we need to ID 'both' of them
			 * as suspect.
			 */
1082 1083
			amd64_mc_warn(mci, "unknown syndrome 0x%04x - possible "
					   "error reporting race\n", syndrome);
1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095
			edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
			return;
		}
	} else {
		/*
		 * non-chipkill ecc mode
		 *
		 * The k8 documentation is unclear about how to determine the
		 * channel number when using non-chipkill memory.  This method
		 * was obtained from email communication with someone at AMD.
		 * (Wish the email was placed in this comment - norsk)
		 */
1096
		channel = ((sys_addr & BIT(3)) != 0);
1097 1098 1099 1100 1101 1102
	}

	/*
	 * Find out which node the error address belongs to. This may be
	 * different from the node that detected the error.
	 */
1103
	src_mci = find_mc_by_sys_addr(mci, sys_addr);
1104
	if (!src_mci) {
1105
		amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n",
1106
			     (unsigned long)sys_addr);
1107 1108 1109 1110
		edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
		return;
	}

1111 1112
	/* Now map the sys_addr to a CSROW */
	csrow = sys_addr_to_csrow(src_mci, sys_addr);
1113 1114 1115
	if (csrow < 0) {
		edac_mc_handle_ce_no_info(src_mci, EDAC_MOD_STR);
	} else {
1116
		error_address_to_page_and_offset(sys_addr, &page, &offset);
1117 1118 1119 1120 1121 1122

		edac_mc_handle_ce(src_mci, page, offset, syndrome, csrow,
				  channel, EDAC_MOD_STR);
	}
}

1123
static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, int cs_mode)
1124
{
1125
	int *dbam_map;
1126

1127 1128 1129 1130 1131 1132
	if (pvt->ext_model >= K8_REV_F)
		dbam_map = ddr2_dbam;
	else if (pvt->ext_model >= K8_REV_D)
		dbam_map = ddr2_dbam_revD;
	else
		dbam_map = ddr2_dbam_revCG;
1133

1134
	return dbam_map[cs_mode];
1135 1136
}

1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
/*
 * Get the number of DCT channels in use.
 *
 * Return:
 *	number of Memory Channels in operation
 * Pass back:
 *	contents of the DCL0_LOW register
 */
static int f10_early_channel_count(struct amd64_pvt *pvt)
{
1147
	int dbams[] = { DBAM0, DBAM1 };
1148
	int i, j, channels = 0;
1149 1150 1151 1152 1153 1154 1155 1156 1157
	u32 dbam;

	/* If we are in 128 bit mode, then we are using 2 channels */
	if (pvt->dclr0 & F10_WIDTH_128) {
		channels = 2;
		return channels;
	}

	/*
1158 1159 1160
	 * Need to check if in unganged mode: In such, there are 2 channels,
	 * but they are not in 128 bit mode and thus the above 'dclr0' status
	 * bit will be OFF.
1161 1162 1163 1164
	 *
	 * Need to check DCT0[0] and DCT1[0] to see if only one of them has
	 * their CSEnable bit on. If so, then SINGLE DIMM case.
	 */
1165
	debugf0("Data width is not 128 bits - need more decoding\n");
1166

1167 1168 1169 1170 1171
	/*
	 * Check DRAM Bank Address Mapping values for each DIMM to see if there
	 * is more than just one DIMM present in unganged mode. Need to check
	 * both controllers since DIMMs can be placed in either one.
	 */
1172
	for (i = 0; i < ARRAY_SIZE(dbams); i++) {
1173
		if (amd64_read_pci_cfg(pvt->F2, dbams[i], &dbam))
1174 1175
			goto err_reg;

1176 1177 1178 1179 1180 1181
		for (j = 0; j < 4; j++) {
			if (DBAM_DIMM(j, dbam) > 0) {
				channels++;
				break;
			}
		}
1182 1183
	}

1184 1185 1186
	if (channels > 2)
		channels = 2;

1187
	amd64_info("MCT channel count: %d\n", channels);
1188 1189 1190 1191 1192 1193 1194 1195

	return channels;

err_reg:
	return -1;

}

1196
static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, int cs_mode)
1197
{
1198 1199 1200 1201 1202 1203 1204 1205
	int *dbam_map;

	if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
		dbam_map = ddr3_dbam;
	else
		dbam_map = ddr2_dbam;

	return dbam_map[cs_mode];
1206 1207 1208
}

static u64 f10_get_error_address(struct mem_ctl_info *mci,
1209
			struct err_regs *info)
1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
{
	return (((u64) (info->nbeah & 0xffff)) << 32) +
			(info->nbeal & ~0x01);
}

/*
 * Read the Base and Limit registers for F10 based Memory controllers. Extract
 * fields from the 'raw' reg into separate data fields.
 *
 * Isolates: BASE, LIMIT, IntlvEn, IntlvSel, RW_EN.
 */
static void f10_read_dram_base_limit(struct amd64_pvt *pvt, int dram)
{
	u32 high_offset, low_offset, high_base, low_base, high_limit, low_limit;

	low_offset = K8_DRAM_BASE_LOW + (dram << 3);
	high_offset = F10_DRAM_BASE_HIGH + (dram << 3);

	/* read the 'raw' DRAM BASE Address register */
1229 1230
	amd64_read_pci_cfg(pvt->F1, low_offset, &low_base);
	amd64_read_pci_cfg(pvt->F1, high_offset, &high_base);
1231 1232 1233 1234 1235 1236 1237 1238 1239

	/* Extract parts into separate data entries */
	pvt->dram_rw_en[dram] = (low_base & 0x3);

	if (pvt->dram_rw_en[dram] == 0)
		return;

	pvt->dram_IntlvEn[dram] = (low_base >> 8) & 0x7;

1240
	pvt->dram_base[dram] = (((u64)high_base & 0x000000FF) << 40) |
1241
			       (((u64)low_base  & 0xFFFF0000) << 8);
1242 1243 1244 1245 1246

	low_offset = K8_DRAM_LIMIT_LOW + (dram << 3);
	high_offset = F10_DRAM_LIMIT_HIGH + (dram << 3);

	/* read the 'raw' LIMIT registers */
1247 1248
	amd64_read_pci_cfg(pvt->F1, low_offset, &low_limit);
	amd64_read_pci_cfg(pvt->F1, high_offset, &high_limit);
1249 1250 1251 1252 1253 1254 1255 1256

	pvt->dram_DstNode[dram] = (low_limit & 0x7);
	pvt->dram_IntlvSel[dram] = (low_limit >> 8) & 0x7;

	/*
	 * Extract address values and form a LIMIT address. Limit is the HIGHEST
	 * memory location of the region, so low 24 bits need to be all ones.
	 */
1257
	pvt->dram_limit[dram] = (((u64)high_limit & 0x000000FF) << 40) |
1258
				(((u64) low_limit & 0xFFFF0000) << 8) |
1259
				0x00FFFFFF;
1260
}
1261 1262 1263 1264

static void f10_read_dram_ctl_register(struct amd64_pvt *pvt)
{

1265
	if (!amd64_read_pci_cfg(pvt->F2, F10_DCTL_SEL_LOW,
1266
				&pvt->dram_ctl_select_low)) {
1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287
		debugf0("F2x110 (DCTL Sel. Low): 0x%08x, "
			"High range addresses at: 0x%x\n",
			pvt->dram_ctl_select_low,
			dct_sel_baseaddr(pvt));

		debugf0("  DCT mode: %s, All DCTs on: %s\n",
			(dct_ganging_enabled(pvt) ? "ganged" : "unganged"),
			(dct_dram_enabled(pvt) ? "yes"   : "no"));

		if (!dct_ganging_enabled(pvt))
			debugf0("  Address range split per DCT: %s\n",
				(dct_high_range_enabled(pvt) ? "yes" : "no"));

		debugf0("  DCT data interleave for ECC: %s, "
			"DRAM cleared since last warm reset: %s\n",
			(dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
			(dct_memory_cleared(pvt) ? "yes" : "no"));

		debugf0("  DCT channel interleave: %s, "
			"DCT interleave bits selector: 0x%x\n",
			(dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
1288 1289 1290
			dct_sel_interleave_addr(pvt));
	}

1291
	amd64_read_pci_cfg(pvt->F2, F10_DCTL_SEL_HIGH,
1292
			   &pvt->dram_ctl_select_high);
1293 1294
}

1295 1296 1297 1298
/*
 * determine channel based on the interleaving mode: F10h BKDG, 2.8.9 Memory
 * Interleaving Modes.
 */
1299 1300 1301 1302 1303 1304 1305 1306 1307 1308
static u32 f10_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
				int hi_range_sel, u32 intlv_en)
{
	u32 cs, temp, dct_sel_high = (pvt->dram_ctl_select_low >> 1) & 1;

	if (dct_ganging_enabled(pvt))
		cs = 0;
	else if (hi_range_sel)
		cs = dct_sel_high;
	else if (dct_interleave_enabled(pvt)) {
1309 1310 1311
		/*
		 * see F2x110[DctSelIntLvAddr] - channel interleave mode
		 */
1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348
		if (dct_sel_interleave_addr(pvt) == 0)
			cs = sys_addr >> 6 & 1;
		else if ((dct_sel_interleave_addr(pvt) >> 1) & 1) {
			temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;

			if (dct_sel_interleave_addr(pvt) & 1)
				cs = (sys_addr >> 9 & 1) ^ temp;
			else
				cs = (sys_addr >> 6 & 1) ^ temp;
		} else if (intlv_en & 4)
			cs = sys_addr >> 15 & 1;
		else if (intlv_en & 2)
			cs = sys_addr >> 14 & 1;
		else if (intlv_en & 1)
			cs = sys_addr >> 13 & 1;
		else
			cs = sys_addr >> 12 & 1;
	} else if (dct_high_range_enabled(pvt) && !dct_ganging_enabled(pvt))
		cs = ~dct_sel_high & 1;
	else
		cs = 0;

	return cs;
}

static inline u32 f10_map_intlv_en_to_shift(u32 intlv_en)
{
	if (intlv_en == 1)
		return 1;
	else if (intlv_en == 3)
		return 2;
	else if (intlv_en == 7)
		return 3;

	return 0;
}

1349 1350
/* See F10h BKDG, 2.8.10.2 DctSelBaseOffset Programming */
static inline u64 f10_get_base_addr_offset(u64 sys_addr, int hi_range_sel,
1351 1352
						 u32 dct_sel_base_addr,
						 u64 dct_sel_base_off,
1353
						 u32 hole_valid, u32 hole_off,
1354 1355 1356 1357 1358
						 u64 dram_base)
{
	u64 chan_off;

	if (hi_range_sel) {
1359
		if (!(dct_sel_base_addr & 0xFFFF0000) &&
1360
		   hole_valid && (sys_addr >= 0x100000000ULL))
1361 1362 1363 1364
			chan_off = hole_off << 16;
		else
			chan_off = dct_sel_base_off;
	} else {
1365
		if (hole_valid && (sys_addr >= 0x100000000ULL))
1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419
			chan_off = hole_off << 16;
		else
			chan_off = dram_base & 0xFFFFF8000000ULL;
	}

	return (sys_addr & 0x0000FFFFFFFFFFC0ULL) -
			(chan_off & 0x0000FFFFFF800000ULL);
}

/* Hack for the time being - Can we get this from BIOS?? */
#define	CH0SPARE_RANK	0
#define	CH1SPARE_RANK	1

/*
 * checks if the csrow passed in is marked as SPARED, if so returns the new
 * spare row
 */
static inline int f10_process_possible_spare(int csrow,
				u32 cs, struct amd64_pvt *pvt)
{
	u32 swap_done;
	u32 bad_dram_cs;

	/* Depending on channel, isolate respective SPARING info */
	if (cs) {
		swap_done = F10_ONLINE_SPARE_SWAPDONE1(pvt->online_spare);
		bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS1(pvt->online_spare);
		if (swap_done && (csrow == bad_dram_cs))
			csrow = CH1SPARE_RANK;
	} else {
		swap_done = F10_ONLINE_SPARE_SWAPDONE0(pvt->online_spare);
		bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS0(pvt->online_spare);
		if (swap_done && (csrow == bad_dram_cs))
			csrow = CH0SPARE_RANK;
	}
	return csrow;
}

/*
 * Iterate over the DRAM DCT "base" and "mask" registers looking for a
 * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
 *
 * Return:
 *	-EINVAL:  NOT FOUND
 *	0..csrow = Chip-Select Row
 */
static int f10_lookup_addr_in_dct(u32 in_addr, u32 nid, u32 cs)
{
	struct mem_ctl_info *mci;
	struct amd64_pvt *pvt;
	u32 cs_base, cs_mask;
	int cs_found = -EINVAL;
	int csrow;

1420
	mci = mcis[nid];
1421 1422 1423 1424 1425 1426 1427
	if (!mci)
		return cs_found;

	pvt = mci->pvt_info;

	debugf1("InputAddr=0x%x  channelselect=%d\n", in_addr, cs);

1428
	for (csrow = 0; csrow < pvt->cs_count; csrow++) {
1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466

		cs_base = amd64_get_dct_base(pvt, cs, csrow);
		if (!(cs_base & K8_DCSB_CS_ENABLE))
			continue;

		/*
		 * We have an ENABLED CSROW, Isolate just the MASK bits of the
		 * target: [28:19] and [13:5], which map to [36:27] and [21:13]
		 * of the actual address.
		 */
		cs_base &= REV_F_F1Xh_DCSB_BASE_BITS;

		/*
		 * Get the DCT Mask, and ENABLE the reserved bits: [18:16] and
		 * [4:0] to become ON. Then mask off bits [28:0] ([36:8])
		 */
		cs_mask = amd64_get_dct_mask(pvt, cs, csrow);

		debugf1("    CSROW=%d CSBase=0x%x RAW CSMask=0x%x\n",
				csrow, cs_base, cs_mask);

		cs_mask = (cs_mask | 0x0007C01F) & 0x1FFFFFFF;

		debugf1("              Final CSMask=0x%x\n", cs_mask);
		debugf1("    (InputAddr & ~CSMask)=0x%x "
				"(CSBase & ~CSMask)=0x%x\n",
				(in_addr & ~cs_mask), (cs_base & ~cs_mask));

		if ((in_addr & ~cs_mask) == (cs_base & ~cs_mask)) {
			cs_found = f10_process_possible_spare(csrow, cs, pvt);

			debugf1(" MATCH csrow=%d\n", cs_found);
			break;
		}
	}
	return cs_found;
}

1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495
/* For a given @dram_range, check if @sys_addr falls within it. */
static int f10_match_to_this_node(struct amd64_pvt *pvt, int dram_range,
				  u64 sys_addr, int *nid, int *chan_sel)
{
	int node_id, cs_found = -EINVAL, high_range = 0;
	u32 intlv_en, intlv_sel, intlv_shift, hole_off;
	u32 hole_valid, tmp, dct_sel_base, channel;
	u64 dram_base, chan_addr, dct_sel_base_off;

	dram_base = pvt->dram_base[dram_range];
	intlv_en = pvt->dram_IntlvEn[dram_range];

	node_id = pvt->dram_DstNode[dram_range];
	intlv_sel = pvt->dram_IntlvSel[dram_range];

	debugf1("(dram=%d) Base=0x%llx SystemAddr= 0x%llx Limit=0x%llx\n",
		dram_range, dram_base, sys_addr, pvt->dram_limit[dram_range]);

	/*
	 * This assumes that one node's DHAR is the same as all the other
	 * nodes' DHAR.
	 */
	hole_off = (pvt->dhar & 0x0000FF80);
	hole_valid = (pvt->dhar & 0x1);
	dct_sel_base_off = (pvt->dram_ctl_select_high & 0xFFFFFC00) << 16;

	debugf1("   HoleOffset=0x%x  HoleValid=0x%x IntlvSel=0x%x\n",
			hole_off, hole_valid, intlv_sel);

1496
	if (intlv_en &&
1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575
	    (intlv_sel != ((sys_addr >> 12) & intlv_en)))
		return -EINVAL;

	dct_sel_base = dct_sel_baseaddr(pvt);

	/*
	 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
	 * select between DCT0 and DCT1.
	 */
	if (dct_high_range_enabled(pvt) &&
	   !dct_ganging_enabled(pvt) &&
	   ((sys_addr >> 27) >= (dct_sel_base >> 11)))
		high_range = 1;

	channel = f10_determine_channel(pvt, sys_addr, high_range, intlv_en);

	chan_addr = f10_get_base_addr_offset(sys_addr, high_range, dct_sel_base,
					     dct_sel_base_off, hole_valid,
					     hole_off, dram_base);

	intlv_shift = f10_map_intlv_en_to_shift(intlv_en);

	/* remove Node ID (in case of memory interleaving) */
	tmp = chan_addr & 0xFC0;

	chan_addr = ((chan_addr >> intlv_shift) & 0xFFFFFFFFF000ULL) | tmp;

	/* remove channel interleave and hash */
	if (dct_interleave_enabled(pvt) &&
	   !dct_high_range_enabled(pvt) &&
	   !dct_ganging_enabled(pvt)) {
		if (dct_sel_interleave_addr(pvt) != 1)
			chan_addr = (chan_addr >> 1) & 0xFFFFFFFFFFFFFFC0ULL;
		else {
			tmp = chan_addr & 0xFC0;
			chan_addr = ((chan_addr & 0xFFFFFFFFFFFFC000ULL) >> 1)
					| tmp;
		}
	}

	debugf1("   (ChannelAddrLong=0x%llx) >> 8 becomes InputAddr=0x%x\n",
		chan_addr, (u32)(chan_addr >> 8));

	cs_found = f10_lookup_addr_in_dct(chan_addr >> 8, node_id, channel);

	if (cs_found >= 0) {
		*nid = node_id;
		*chan_sel = channel;
	}
	return cs_found;
}

static int f10_translate_sysaddr_to_cs(struct amd64_pvt *pvt, u64 sys_addr,
				       int *node, int *chan_sel)
{
	int dram_range, cs_found = -EINVAL;
	u64 dram_base, dram_limit;

	for (dram_range = 0; dram_range < DRAM_REG_COUNT; dram_range++) {

		if (!pvt->dram_rw_en[dram_range])
			continue;

		dram_base = pvt->dram_base[dram_range];
		dram_limit = pvt->dram_limit[dram_range];

		if ((dram_base <= sys_addr) && (sys_addr <= dram_limit)) {

			cs_found = f10_match_to_this_node(pvt, dram_range,
							  sys_addr, node,
							  chan_sel);
			if (cs_found >= 0)
				break;
		}
	}
	return cs_found;
}

/*
1576 1577
 * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
 * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
1578
 *
1579 1580
 * The @sys_addr is usually an error address received from the hardware
 * (MCX_ADDR).
1581 1582
 */
static void f10_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
1583
				     struct err_regs *err_info,
1584 1585 1586 1587 1588
				     u64 sys_addr)
{
	struct amd64_pvt *pvt = mci->pvt_info;
	u32 page, offset;
	int nid, csrow, chan = 0;
1589
	u16 syndrome;
1590 1591 1592

	csrow = f10_translate_sysaddr_to_cs(pvt, sys_addr, &nid, &chan);

1593 1594 1595 1596 1597 1598
	if (csrow < 0) {
		edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
		return;
	}

	error_address_to_page_and_offset(sys_addr, &page, &offset);
1599

1600
	syndrome = extract_syndrome(err_info);
1601 1602 1603 1604 1605 1606

	/*
	 * We need the syndromes for channel detection only when we're
	 * ganged. Otherwise @chan should already contain the channel at
	 * this point.
	 */
1607
	if (dct_ganging_enabled(pvt) && (pvt->nbcfg & K8_NBCFG_CHIPKILL))
1608
		chan = get_channel_from_ecc_syndrome(mci, syndrome);
1609

1610 1611 1612 1613
	if (chan >= 0)
		edac_mc_handle_ce(mci, page, offset, syndrome, csrow, chan,
				  EDAC_MOD_STR);
	else
1614
		/*
1615
		 * Channel unknown, report all channels on this CSROW as failed.
1616
		 */
1617
		for (chan = 0; chan < mci->csrows[csrow].nr_channels; chan++)
1618
			edac_mc_handle_ce(mci, page, offset, syndrome,
1619
					  csrow, chan, EDAC_MOD_STR);
1620 1621 1622
}

/*
1623
 * debug routine to display the memory sizes of all logical DIMMs and its
1624 1625
 * CSROWs as well
 */
1626
static void amd64_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt)
1627
{
1628
	int dimm, size0, size1, factor = 0;
1629 1630 1631
	u32 dbam;
	u32 *dcsb;

1632
	if (boot_cpu_data.x86 == 0xf) {
1633 1634 1635
		if (pvt->dclr0 & F10_WIDTH_128)
			factor = 1;

1636
		/* K8 families < revF not supported yet */
1637
	       if (pvt->ext_model < K8_REV_F)
1638 1639 1640 1641 1642 1643 1644
			return;
	       else
		       WARN_ON(ctrl != 0);
	}

	debugf1("F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n",
		ctrl, ctrl ? pvt->dbam1 : pvt->dbam0);
1645 1646 1647 1648

	dbam = ctrl ? pvt->dbam1 : pvt->dbam0;
	dcsb = ctrl ? pvt->dcsb1 : pvt->dcsb0;

1649 1650
	edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);

1651 1652 1653 1654 1655
	/* Dump memory sizes for DIMM and its CSROWs */
	for (dimm = 0; dimm < 4; dimm++) {

		size0 = 0;
		if (dcsb[dimm*2] & K8_DCSB_CS_ENABLE)
1656
			size0 = pvt->ops->dbam_to_cs(pvt, DBAM_DIMM(dimm, dbam));
1657 1658 1659

		size1 = 0;
		if (dcsb[dimm*2 + 1] & K8_DCSB_CS_ENABLE)
1660
			size1 = pvt->ops->dbam_to_cs(pvt, DBAM_DIMM(dimm, dbam));
1661

1662 1663 1664
		amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
				dimm * 2,     size0 << factor,
				dimm * 2 + 1, size1 << factor);
1665 1666 1667
	}
}

1668 1669
static struct amd64_family_type amd64_family_types[] = {
	[K8_CPUS] = {
1670
		.ctl_name = "K8",
1671 1672
		.f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
		.f3_id = PCI_DEVICE_ID_AMD_K8_NB_MISC,
1673
		.ops = {
1674 1675 1676 1677 1678
			.early_channel_count	= k8_early_channel_count,
			.get_error_address	= k8_get_error_address,
			.read_dram_base_limit	= k8_read_dram_base_limit,
			.map_sysaddr_to_csrow	= k8_map_sysaddr_to_csrow,
			.dbam_to_cs		= k8_dbam_to_chip_select,
1679 1680 1681
		}
	},
	[F10_CPUS] = {
1682
		.ctl_name = "F10h",
1683 1684
		.f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP,
		.f3_id = PCI_DEVICE_ID_AMD_10H_NB_MISC,
1685
		.ops = {
1686 1687 1688 1689 1690 1691
			.early_channel_count	= f10_early_channel_count,
			.get_error_address	= f10_get_error_address,
			.read_dram_base_limit	= f10_read_dram_base_limit,
			.read_dram_ctl_register	= f10_read_dram_ctl_register,
			.map_sysaddr_to_csrow	= f10_map_sysaddr_to_csrow,
			.dbam_to_cs		= f10_dbam_to_chip_select,
1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712
		}
	},
};

static struct pci_dev *pci_get_related_function(unsigned int vendor,
						unsigned int device,
						struct pci_dev *related)
{
	struct pci_dev *dev = NULL;

	dev = pci_get_device(vendor, device, dev);
	while (dev) {
		if ((dev->bus->number == related->bus->number) &&
		    (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
			break;
		dev = pci_get_device(vendor, device, dev);
	}

	return dev;
}

1713
/*
1714 1715 1716
 * These are tables of eigenvectors (one per line) which can be used for the
 * construction of the syndrome tables. The modified syndrome search algorithm
 * uses those to find the symbol in error and thus the DIMM.
1717
 *
1718
 * Algorithm courtesy of Ross LaFetra from AMD.
1719
 */
1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756
static u16 x4_vectors[] = {
	0x2f57, 0x1afe, 0x66cc, 0xdd88,
	0x11eb, 0x3396, 0x7f4c, 0xeac8,
	0x0001, 0x0002, 0x0004, 0x0008,
	0x1013, 0x3032, 0x4044, 0x8088,
	0x106b, 0x30d6, 0x70fc, 0xe0a8,
	0x4857, 0xc4fe, 0x13cc, 0x3288,
	0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
	0x1f39, 0x251e, 0xbd6c, 0x6bd8,
	0x15c1, 0x2a42, 0x89ac, 0x4758,
	0x2b03, 0x1602, 0x4f0c, 0xca08,
	0x1f07, 0x3a0e, 0x6b04, 0xbd08,
	0x8ba7, 0x465e, 0x244c, 0x1cc8,
	0x2b87, 0x164e, 0x642c, 0xdc18,
	0x40b9, 0x80de, 0x1094, 0x20e8,
	0x27db, 0x1eb6, 0x9dac, 0x7b58,
	0x11c1, 0x2242, 0x84ac, 0x4c58,
	0x1be5, 0x2d7a, 0x5e34, 0xa718,
	0x4b39, 0x8d1e, 0x14b4, 0x28d8,
	0x4c97, 0xc87e, 0x11fc, 0x33a8,
	0x8e97, 0x497e, 0x2ffc, 0x1aa8,
	0x16b3, 0x3d62, 0x4f34, 0x8518,
	0x1e2f, 0x391a, 0x5cac, 0xf858,
	0x1d9f, 0x3b7a, 0x572c, 0xfe18,
	0x15f5, 0x2a5a, 0x5264, 0xa3b8,
	0x1dbb, 0x3b66, 0x715c, 0xe3f8,
	0x4397, 0xc27e, 0x17fc, 0x3ea8,
	0x1617, 0x3d3e, 0x6464, 0xb8b8,
	0x23ff, 0x12aa, 0xab6c, 0x56d8,
	0x2dfb, 0x1ba6, 0x913c, 0x7328,
	0x185d, 0x2ca6, 0x7914, 0x9e28,
	0x171b, 0x3e36, 0x7d7c, 0xebe8,
	0x4199, 0x82ee, 0x19f4, 0x2e58,
	0x4807, 0xc40e, 0x130c, 0x3208,
	0x1905, 0x2e0a, 0x5804, 0xac08,
	0x213f, 0x132a, 0xadfc, 0x5ba8,
	0x19a9, 0x2efe, 0xb5cc, 0x6f88,
1757 1758
};

1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781
static u16 x8_vectors[] = {
	0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
	0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
	0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
	0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
	0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
	0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
	0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
	0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
	0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
	0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
	0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
	0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
	0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
	0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
	0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
	0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
	0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
	0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
	0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
};

static int decode_syndrome(u16 syndrome, u16 *vectors, int num_vecs,
1782
			   int v_dim)
1783
{
1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801
	unsigned int i, err_sym;

	for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
		u16 s = syndrome;
		int v_idx =  err_sym * v_dim;
		int v_end = (err_sym + 1) * v_dim;

		/* walk over all 16 bits of the syndrome */
		for (i = 1; i < (1U << 16); i <<= 1) {

			/* if bit is set in that eigenvector... */
			if (v_idx < v_end && vectors[v_idx] & i) {
				u16 ev_comp = vectors[v_idx++];

				/* ... and bit set in the modified syndrome, */
				if (s & i) {
					/* remove it. */
					s ^= ev_comp;
1802

1803 1804 1805
					if (!s)
						return err_sym;
				}
1806

1807 1808 1809 1810
			} else if (s & i)
				/* can't get to zero, move to next symbol */
				break;
		}
1811 1812 1813 1814 1815
	}

	debugf0("syndrome(%x) not found\n", syndrome);
	return -1;
}
1816

1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858
static int map_err_sym_to_channel(int err_sym, int sym_size)
{
	if (sym_size == 4)
		switch (err_sym) {
		case 0x20:
		case 0x21:
			return 0;
			break;
		case 0x22:
		case 0x23:
			return 1;
			break;
		default:
			return err_sym >> 4;
			break;
		}
	/* x8 symbols */
	else
		switch (err_sym) {
		/* imaginary bits not in a DIMM */
		case 0x10:
			WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
					  err_sym);
			return -1;
			break;

		case 0x11:
			return 0;
			break;
		case 0x12:
			return 1;
			break;
		default:
			return err_sym >> 3;
			break;
		}
	return -1;
}

static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
{
	struct amd64_pvt *pvt = mci->pvt_info;
1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869
	int err_sym = -1;

	if (pvt->syn_type == 8)
		err_sym = decode_syndrome(syndrome, x8_vectors,
					  ARRAY_SIZE(x8_vectors),
					  pvt->syn_type);
	else if (pvt->syn_type == 4)
		err_sym = decode_syndrome(syndrome, x4_vectors,
					  ARRAY_SIZE(x4_vectors),
					  pvt->syn_type);
	else {
1870
		amd64_warn("Illegal syndrome type: %u\n", pvt->syn_type);
1871
		return err_sym;
1872
	}
1873 1874

	return map_err_sym_to_channel(err_sym, pvt->syn_type);
1875 1876
}

1877 1878 1879 1880 1881
/*
 * Handle any Correctable Errors (CEs) that have occurred. Check for valid ERROR
 * ADDRESS and process.
 */
static void amd64_handle_ce(struct mem_ctl_info *mci,
1882
			    struct err_regs *info)
1883 1884
{
	struct amd64_pvt *pvt = mci->pvt_info;
1885
	u64 sys_addr;
1886 1887

	/* Ensure that the Error Address is VALID */
1888 1889
	if (!(info->nbsh & K8_NBSH_VALID_ERROR_ADDR)) {
		amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n");
1890 1891 1892 1893
		edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
		return;
	}

1894
	sys_addr = pvt->ops->get_error_address(mci, info);
1895

1896
	amd64_mc_err(mci, "CE ERROR_ADDRESS= 0x%llx\n", sys_addr);
1897

1898
	pvt->ops->map_sysaddr_to_csrow(mci, info, sys_addr);
1899 1900 1901 1902
}

/* Handle any Un-correctable Errors (UEs) */
static void amd64_handle_ue(struct mem_ctl_info *mci,
1903
			    struct err_regs *info)
1904
{
1905 1906
	struct amd64_pvt *pvt = mci->pvt_info;
	struct mem_ctl_info *log_mci, *src_mci = NULL;
1907
	int csrow;
1908
	u64 sys_addr;
1909 1910 1911 1912
	u32 page, offset;

	log_mci = mci;

1913 1914
	if (!(info->nbsh & K8_NBSH_VALID_ERROR_ADDR)) {
		amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n");
1915 1916 1917 1918
		edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
		return;
	}

1919
	sys_addr = pvt->ops->get_error_address(mci, info);
1920 1921 1922 1923 1924

	/*
	 * Find out which node the error address belongs to. This may be
	 * different from the node that detected the error.
	 */
1925
	src_mci = find_mc_by_sys_addr(mci, sys_addr);
1926
	if (!src_mci) {
1927 1928
		amd64_mc_err(mci, "ERROR ADDRESS (0x%lx) NOT mapped to a MC\n",
				  (unsigned long)sys_addr);
1929 1930 1931 1932 1933 1934
		edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
		return;
	}

	log_mci = src_mci;

1935
	csrow = sys_addr_to_csrow(log_mci, sys_addr);
1936
	if (csrow < 0) {
1937 1938
		amd64_mc_err(mci, "ERROR_ADDRESS (0x%lx) NOT mapped to CS\n",
				  (unsigned long)sys_addr);
1939 1940
		edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
	} else {
1941
		error_address_to_page_and_offset(sys_addr, &page, &offset);
1942 1943 1944 1945
		edac_mc_handle_ue(log_mci, page, offset, csrow, EDAC_MOD_STR);
	}
}

1946
static inline void __amd64_decode_bus_error(struct mem_ctl_info *mci,
1947
					    struct err_regs *info)
1948
{
1949 1950
	u32 ec  = ERROR_CODE(info->nbsl);
	u32 xec = EXT_ERROR_CODE(info->nbsl);
B
Borislav Petkov 已提交
1951
	int ecc_type = (info->nbsh >> 13) & 0x3;
1952

1953 1954 1955
	/* Bail early out if this was an 'observed' error */
	if (PP(ec) == K8_NBSL_PP_OBS)
		return;
1956

1957 1958
	/* Do only ECC errors */
	if (xec && xec != F10_NBSL_EXT_ERR_ECC)
1959 1960
		return;

1961
	if (ecc_type == 2)
1962
		amd64_handle_ce(mci, info);
1963
	else if (ecc_type == 1)
1964 1965 1966
		amd64_handle_ue(mci, info);
}

1967
void amd64_decode_bus_error(int node_id, struct mce *m, u32 nbcfg)
1968
{
1969
	struct mem_ctl_info *mci = mcis[node_id];
1970
	struct err_regs regs;
1971

1972 1973 1974 1975 1976 1977 1978
	regs.nbsl  = (u32) m->status;
	regs.nbsh  = (u32)(m->status >> 32);
	regs.nbeal = (u32) m->addr;
	regs.nbeah = (u32)(m->addr >> 32);
	regs.nbcfg = nbcfg;

	__amd64_decode_bus_error(mci, &regs);
1979 1980 1981 1982 1983

	/*
	 * Check the UE bit of the NB status high register, if set generate some
	 * logs. If NOT a GART error, then process the event as a NO-INFO event.
	 * If it was a GART error, skip that process.
1984 1985
	 *
	 * FIXME: this should go somewhere else, if at all.
1986
	 */
1987
	if (regs.nbsh & K8_NBSH_UC_ERR && !report_gart_errors)
1988
		edac_mc_handle_ue_no_info(mci, "UE bit is set");
1989

1990 1991
}

1992
/*
1993
 * Use pvt->F2 which contains the F2 CPU PCI device to get the related
1994
 * F1 (AddrMap) and F3 (Misc) devices. Return negative value on error.
1995
 */
1996 1997
static int amd64_reserve_mc_sibling_devices(struct amd64_pvt *pvt, u16 f1_id,
					    u16 f3_id)
1998 1999
{
	/* Reserve the ADDRESS MAP Device */
2000 2001
	pvt->F1 = pci_get_related_function(pvt->F2->vendor, f1_id, pvt->F2);
	if (!pvt->F1) {
2002 2003 2004
		amd64_err("error address map device not found: "
			  "vendor %x device 0x%x (broken BIOS?)\n",
			  PCI_VENDOR_ID_AMD, f1_id);
2005
		return -ENODEV;
2006 2007 2008
	}

	/* Reserve the MISC Device */
2009 2010 2011 2012
	pvt->F3 = pci_get_related_function(pvt->F2->vendor, f3_id, pvt->F2);
	if (!pvt->F3) {
		pci_dev_put(pvt->F1);
		pvt->F1 = NULL;
2013

2014 2015 2016
		amd64_err("error F3 device not found: "
			  "vendor %x device 0x%x (broken BIOS?)\n",
			  PCI_VENDOR_ID_AMD, f3_id);
2017

2018
		return -ENODEV;
2019
	}
2020 2021 2022
	debugf1("F1: %s\n", pci_name(pvt->F1));
	debugf1("F2: %s\n", pci_name(pvt->F2));
	debugf1("F3: %s\n", pci_name(pvt->F3));
2023 2024 2025 2026 2027 2028

	return 0;
}

static void amd64_free_mc_sibling_devices(struct amd64_pvt *pvt)
{
2029 2030
	pci_dev_put(pvt->F1);
	pci_dev_put(pvt->F3);
2031 2032 2033 2034 2035 2036 2037 2038 2039
}

/*
 * Retrieve the hardware registers of the memory controller (this includes the
 * 'Address Map' and 'Misc' device regs)
 */
static void amd64_read_mc_registers(struct amd64_pvt *pvt)
{
	u64 msr_val;
2040
	u32 tmp;
2041
	int dram;
2042 2043 2044 2045 2046

	/*
	 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
	 * those are Read-As-Zero
	 */
2047 2048
	rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
	debugf0("  TOP_MEM:  0x%016llx\n", pvt->top_mem);
2049 2050 2051 2052

	/* check first whether TOP_MEM2 is enabled */
	rdmsrl(MSR_K8_SYSCFG, msr_val);
	if (msr_val & (1U << 21)) {
2053 2054
		rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
		debugf0("  TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
2055 2056 2057
	} else
		debugf0("  TOP_MEM2 disabled.\n");

2058
	amd64_read_pci_cfg(pvt->F3, K8_NBCAP, &pvt->nbcap);
2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075

	if (pvt->ops->read_dram_ctl_register)
		pvt->ops->read_dram_ctl_register(pvt);

	for (dram = 0; dram < DRAM_REG_COUNT; dram++) {
		/*
		 * Call CPU specific READ function to get the DRAM Base and
		 * Limit values from the DCT.
		 */
		pvt->ops->read_dram_base_limit(pvt, dram);

		/*
		 * Only print out debug info on rows with both R and W Enabled.
		 * Normal processing, compiler should optimize this whole 'if'
		 * debug output block away.
		 */
		if (pvt->dram_rw_en[dram] != 0) {
2076 2077
			debugf1("  DRAM-BASE[%d]: 0x%016llx "
				"DRAM-LIMIT:  0x%016llx\n",
2078
				dram,
2079 2080 2081
				pvt->dram_base[dram],
				pvt->dram_limit[dram]);

2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094
			debugf1("        IntlvEn=%s %s %s "
				"IntlvSel=%d DstNode=%d\n",
				pvt->dram_IntlvEn[dram] ?
					"Enabled" : "Disabled",
				(pvt->dram_rw_en[dram] & 0x2) ? "W" : "!W",
				(pvt->dram_rw_en[dram] & 0x1) ? "R" : "!R",
				pvt->dram_IntlvSel[dram],
				pvt->dram_DstNode[dram]);
		}
	}

	amd64_read_dct_base_mask(pvt);

2095
	amd64_read_pci_cfg(pvt->F1, K8_DHAR, &pvt->dhar);
2096 2097
	amd64_read_dbam_reg(pvt);

2098
	amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare);
2099

2100 2101
	amd64_read_pci_cfg(pvt->F2, F10_DCLR_0, &pvt->dclr0);
	amd64_read_pci_cfg(pvt->F2, F10_DCHR_0, &pvt->dchr0);
2102

2103 2104
	if (boot_cpu_data.x86 >= 0x10) {
		if (!dct_ganging_enabled(pvt)) {
2105 2106
			amd64_read_pci_cfg(pvt->F2, F10_DCLR_1, &pvt->dclr1);
			amd64_read_pci_cfg(pvt->F2, F10_DCHR_1, &pvt->dchr1);
2107
		}
2108
		amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp);
2109
	}
2110 2111 2112 2113 2114 2115 2116 2117 2118

	if (boot_cpu_data.x86 == 0x10 &&
	    boot_cpu_data.x86_model > 7 &&
	    /* F3x180[EccSymbolSize]=1 => x8 symbols */
	    tmp & BIT(25))
		pvt->syn_type = 8;
	else
		pvt->syn_type = 4;

2119 2120 2121 2122 2123 2124 2125
	amd64_dump_misc_regs(pvt);
}

/*
 * NOTE: CPU Revision Dependent code
 *
 * Input:
2126
 *	@csrow_nr ChipSelect Row Number (0..pvt->cs_count-1)
2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157
 *	k8 private pointer to -->
 *			DRAM Bank Address mapping register
 *			node_id
 *			DCL register where dual_channel_active is
 *
 * The DBAM register consists of 4 sets of 4 bits each definitions:
 *
 * Bits:	CSROWs
 * 0-3		CSROWs 0 and 1
 * 4-7		CSROWs 2 and 3
 * 8-11		CSROWs 4 and 5
 * 12-15	CSROWs 6 and 7
 *
 * Values range from: 0 to 15
 * The meaning of the values depends on CPU revision and dual-channel state,
 * see relevant BKDG more info.
 *
 * The memory controller provides for total of only 8 CSROWs in its current
 * architecture. Each "pair" of CSROWs normally represents just one DIMM in
 * single channel or two (2) DIMMs in dual channel mode.
 *
 * The following code logic collapses the various tables for CSROW based on CPU
 * revision.
 *
 * Returns:
 *	The number of PAGE_SIZE pages on the specified CSROW number it
 *	encompasses
 *
 */
static u32 amd64_csrow_nr_pages(int csrow_nr, struct amd64_pvt *pvt)
{
2158
	u32 cs_mode, nr_pages;
2159 2160 2161 2162 2163 2164 2165 2166

	/*
	 * The math on this doesn't look right on the surface because x/2*4 can
	 * be simplified to x*2 but this expression makes use of the fact that
	 * it is integral math where 1/2=0. This intermediate value becomes the
	 * number of bits to shift the DBAM register to extract the proper CSROW
	 * field.
	 */
2167
	cs_mode = (pvt->dbam0 >> ((csrow_nr / 2) * 4)) & 0xF;
2168

2169
	nr_pages = pvt->ops->dbam_to_cs(pvt, cs_mode) << (20 - PAGE_SHIFT);
2170 2171 2172 2173 2174 2175 2176

	/*
	 * If dual channel then double the memory size of single channel.
	 * Channel count is 1 or 2
	 */
	nr_pages <<= (pvt->channel_count - 1);

2177
	debugf0("  (csrow=%d) DBAM map index= %d\n", csrow_nr, cs_mode);
2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192
	debugf0("    nr_pages= %u  channel-count = %d\n",
		nr_pages, pvt->channel_count);

	return nr_pages;
}

/*
 * Initialize the array of csrow attribute instances, based on the values
 * from pci config hardware registers.
 */
static int amd64_init_csrows(struct mem_ctl_info *mci)
{
	struct csrow_info *csrow;
	struct amd64_pvt *pvt;
	u64 input_addr_min, input_addr_max, sys_addr;
2193
	int i, empty = 1;
2194 2195 2196

	pvt = mci->pvt_info;

2197
	amd64_read_pci_cfg(pvt->F3, K8_NBCFG, &pvt->nbcfg);
2198 2199 2200 2201 2202 2203

	debugf0("NBCFG= 0x%x  CHIPKILL= %s DRAM ECC= %s\n", pvt->nbcfg,
		(pvt->nbcfg & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled",
		(pvt->nbcfg & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled"
		);

2204
	for (i = 0; i < pvt->cs_count; i++) {
2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225
		csrow = &mci->csrows[i];

		if ((pvt->dcsb0[i] & K8_DCSB_CS_ENABLE) == 0) {
			debugf1("----CSROW %d EMPTY for node %d\n", i,
				pvt->mc_node_id);
			continue;
		}

		debugf1("----CSROW %d VALID for MC node %d\n",
			i, pvt->mc_node_id);

		empty = 0;
		csrow->nr_pages = amd64_csrow_nr_pages(i, pvt);
		find_csrow_limits(mci, i, &input_addr_min, &input_addr_max);
		sys_addr = input_addr_to_sys_addr(mci, input_addr_min);
		csrow->first_page = (u32) (sys_addr >> PAGE_SHIFT);
		sys_addr = input_addr_to_sys_addr(mci, input_addr_max);
		csrow->last_page = (u32) (sys_addr >> PAGE_SHIFT);
		csrow->page_mask = ~mask_from_dct_mask(pvt, i);
		/* 8 bytes of resolution */

2226
		csrow->mtype = amd64_determine_memory_type(pvt, i);
2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251

		debugf1("  for MC node %d csrow %d:\n", pvt->mc_node_id, i);
		debugf1("    input_addr_min: 0x%lx input_addr_max: 0x%lx\n",
			(unsigned long)input_addr_min,
			(unsigned long)input_addr_max);
		debugf1("    sys_addr: 0x%lx  page_mask: 0x%lx\n",
			(unsigned long)sys_addr, csrow->page_mask);
		debugf1("    nr_pages: %u  first_page: 0x%lx "
			"last_page: 0x%lx\n",
			(unsigned)csrow->nr_pages,
			csrow->first_page, csrow->last_page);

		/*
		 * determine whether CHIPKILL or JUST ECC or NO ECC is operating
		 */
		if (pvt->nbcfg & K8_NBCFG_ECC_ENABLE)
			csrow->edac_mode =
			    (pvt->nbcfg & K8_NBCFG_CHIPKILL) ?
			    EDAC_S4ECD4ED : EDAC_SECDED;
		else
			csrow->edac_mode = EDAC_NONE;
	}

	return empty;
}
2252

2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266
/* get all cores on this DCT */
static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, int nid)
{
	int cpu;

	for_each_online_cpu(cpu)
		if (amd_get_nb_id(cpu) == nid)
			cpumask_set_cpu(cpu, mask);
}

/* check MCG_CTL on all the cpus on this node */
static bool amd64_nb_mce_bank_enabled_on_node(int nid)
{
	cpumask_var_t mask;
2267
	int cpu, nbe;
2268 2269 2270
	bool ret = false;

	if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
2271
		amd64_warn("%s: Error allocating mask\n", __func__);
2272 2273 2274 2275 2276 2277 2278 2279
		return false;
	}

	get_cpus_on_this_dct_cpumask(mask, nid);

	rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);

	for_each_cpu(cpu, mask) {
2280 2281
		struct msr *reg = per_cpu_ptr(msrs, cpu);
		nbe = reg->l & K8_MSR_MCGCTL_NBE;
2282 2283

		debugf0("core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
2284
			cpu, reg->q,
2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296
			(nbe ? "enabled" : "disabled"));

		if (!nbe)
			goto out;
	}
	ret = true;

out:
	free_cpumask_var(mask);
	return ret;
}

2297
static int amd64_toggle_ecc_err_reporting(struct ecc_settings *s, u8 nid, bool on)
2298 2299
{
	cpumask_var_t cmask;
2300
	int cpu;
2301 2302

	if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
2303
		amd64_warn("%s: error allocating mask\n", __func__);
2304 2305 2306
		return false;
	}

2307
	get_cpus_on_this_dct_cpumask(cmask, nid);
2308 2309 2310 2311 2312

	rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);

	for_each_cpu(cpu, cmask) {

2313 2314
		struct msr *reg = per_cpu_ptr(msrs, cpu);

2315
		if (on) {
2316
			if (reg->l & K8_MSR_MCGCTL_NBE)
2317
				s->flags.nb_mce_enable = 1;
2318

2319
			reg->l |= K8_MSR_MCGCTL_NBE;
2320 2321
		} else {
			/*
2322
			 * Turn off NB MCE reporting only when it was off before
2323
			 */
2324
			if (!s->flags.nb_mce_enable)
2325
				reg->l &= ~K8_MSR_MCGCTL_NBE;
2326 2327 2328 2329 2330 2331 2332 2333 2334
		}
	}
	wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);

	free_cpumask_var(cmask);

	return 0;
}

2335 2336 2337
static void amd64_enable_ecc_error_reporting(struct mem_ctl_info *mci)
{
	struct amd64_pvt *pvt = mci->pvt_info;
2338 2339
	u8 nid = pvt->mc_node_id;
	struct ecc_settings *s = ecc_stngs[nid];
2340
	u32 value, mask = K8_NBCTL_CECCEn | K8_NBCTL_UECCEn;
2341

2342
	amd64_read_pci_cfg(pvt->F3, K8_NBCTL, &value);
2343

2344 2345 2346
	/* turn on UECCEn and CECCEn bits */
	s->old_nbctl   = value & mask;
	s->nbctl_valid = true;
2347 2348

	value |= mask;
2349
	pci_write_config_dword(pvt->F3, K8_NBCTL, value);
2350

2351
	if (amd64_toggle_ecc_err_reporting(s, nid, ON))
2352
		amd64_warn("Error enabling ECC reporting over MCGCTL!\n");
2353

2354
	amd64_read_pci_cfg(pvt->F3, K8_NBCFG, &value);
2355 2356 2357 2358 2359 2360

	debugf0("NBCFG(1)= 0x%x  CHIPKILL= %s ECC_ENABLE= %s\n", value,
		(value & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled",
		(value & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled");

	if (!(value & K8_NBCFG_ECC_ENABLE)) {
2361
		amd64_warn("DRAM ECC disabled on this node, enabling...\n");
2362

2363
		s->flags.nb_ecc_prev = 0;
2364

2365 2366
		/* Attempt to turn on DRAM ECC Enable */
		value |= K8_NBCFG_ECC_ENABLE;
2367
		pci_write_config_dword(pvt->F3, K8_NBCFG, value);
2368

2369
		amd64_read_pci_cfg(pvt->F3, K8_NBCFG, &value);
2370 2371

		if (!(value & K8_NBCFG_ECC_ENABLE)) {
2372 2373
			amd64_warn("Hardware rejected DRAM ECC enable,"
				   "check memory DIMM configuration.\n");
2374
		} else {
2375
			amd64_info("Hardware accepted DRAM ECC Enable\n");
2376
		}
2377
	} else {
2378
		s->flags.nb_ecc_prev = 1;
2379
	}
2380

2381 2382 2383 2384 2385 2386 2387 2388 2389
	debugf0("NBCFG(2)= 0x%x  CHIPKILL= %s ECC_ENABLE= %s\n", value,
		(value & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled",
		(value & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled");

	pvt->ctl_error_info.nbcfg = value;
}

static void amd64_restore_ecc_error_reporting(struct amd64_pvt *pvt)
{
2390 2391
	u8 nid = pvt->mc_node_id;
	struct ecc_settings *s = ecc_stngs[nid];
2392
	u32 value, mask = K8_NBCTL_CECCEn | K8_NBCTL_UECCEn;
2393

2394
	if (!s->nbctl_valid)
2395 2396
		return;

2397
	amd64_read_pci_cfg(pvt->F3, K8_NBCTL, &value);
2398
	value &= ~mask;
2399
	value |= s->old_nbctl;
2400

2401
	pci_write_config_dword(pvt->F3, K8_NBCTL, value);
2402

2403 2404
	/* restore previous BIOS DRAM ECC "off" setting we force-enabled */
	if (!s->flags.nb_ecc_prev) {
2405
		amd64_read_pci_cfg(pvt->F3, K8_NBCFG, &value);
2406
		value &= ~K8_NBCFG_ECC_ENABLE;
2407
		pci_write_config_dword(pvt->F3, K8_NBCFG, value);
2408 2409 2410
	}

	/* restore the NB Enable MCGCTL bit */
2411
	if (amd64_toggle_ecc_err_reporting(s, nid, OFF))
2412
		amd64_warn("Error restoring NB MCGCTL settings!\n");
2413 2414 2415 2416 2417 2418 2419 2420
}

/*
 * EDAC requires that the BIOS have ECC enabled before taking over the
 * processing of ECC errors. This is because the BIOS can properly initialize
 * the memory system completely. A command line option allows to force-enable
 * hardware ECC later in amd64_enable_ecc_error_reporting().
 */
2421 2422 2423 2424 2425
static const char *ecc_msg =
	"ECC disabled in the BIOS or no ECC capability, module will not load.\n"
	" Either enable ECC checking or force module loading by setting "
	"'ecc_enable_override'.\n"
	" (Note that use of the override may cause unknown side effects.)\n";
2426

2427 2428 2429
static int amd64_check_ecc_enabled(struct amd64_pvt *pvt)
{
	u32 value;
2430 2431
	u8 ecc_enabled = 0;
	bool nb_mce_en = false;
2432

2433
	amd64_read_pci_cfg(pvt->F3, K8_NBCFG, &value);
2434 2435

	ecc_enabled = !!(value & K8_NBCFG_ECC_ENABLE);
2436
	amd64_info("DRAM ECC %s.\n", (ecc_enabled ? "enabled" : "disabled"));
2437

2438 2439
	nb_mce_en = amd64_nb_mce_bank_enabled_on_node(pvt->mc_node_id);
	if (!nb_mce_en)
2440 2441
		amd64_notice("NB MCE bank disabled, "
			     "set MSR 0x%08x[4] on node %d to enable.\n",
2442
			     MSR_IA32_MCG_CTL, pvt->mc_node_id);
2443

2444
	if (!ecc_enabled || !nb_mce_en) {
2445
		if (!ecc_enable_override) {
2446
			amd64_notice("%s", ecc_msg);
2447
			return -ENODEV;
2448
		} else {
2449
			amd64_warn("Forcing ECC on!\n");
2450
		}
2451
	}
2452

2453
	return 0;
2454 2455
}

2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492
struct mcidev_sysfs_attribute sysfs_attrs[ARRAY_SIZE(amd64_dbg_attrs) +
					  ARRAY_SIZE(amd64_inj_attrs) +
					  1];

struct mcidev_sysfs_attribute terminator = { .attr = { .name = NULL } };

static void amd64_set_mc_sysfs_attributes(struct mem_ctl_info *mci)
{
	unsigned int i = 0, j = 0;

	for (; i < ARRAY_SIZE(amd64_dbg_attrs); i++)
		sysfs_attrs[i] = amd64_dbg_attrs[i];

	for (j = 0; j < ARRAY_SIZE(amd64_inj_attrs); j++, i++)
		sysfs_attrs[i] = amd64_inj_attrs[j];

	sysfs_attrs[i] = terminator;

	mci->mc_driver_sysfs_attributes = sysfs_attrs;
}

static void amd64_setup_mci_misc_attributes(struct mem_ctl_info *mci)
{
	struct amd64_pvt *pvt = mci->pvt_info;

	mci->mtype_cap		= MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
	mci->edac_ctl_cap	= EDAC_FLAG_NONE;

	if (pvt->nbcap & K8_NBCAP_SECDED)
		mci->edac_ctl_cap |= EDAC_FLAG_SECDED;

	if (pvt->nbcap & K8_NBCAP_CHIPKILL)
		mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;

	mci->edac_cap		= amd64_determine_edac_cap(pvt);
	mci->mod_name		= EDAC_MOD_STR;
	mci->mod_ver		= EDAC_AMD64_VERSION;
2493
	mci->ctl_name		= pvt->ctl_name;
2494
	mci->dev_name		= pci_name(pvt->F2);
2495 2496 2497 2498 2499 2500 2501
	mci->ctl_page_to_phys	= NULL;

	/* memory scrubber interface */
	mci->set_sdram_scrub_rate = amd64_set_scrub_rate;
	mci->get_sdram_scrub_rate = amd64_get_scrub_rate;
}

2502 2503 2504 2505
/*
 * returns a pointer to the family descriptor on success, NULL otherwise.
 */
static struct amd64_family_type *amd64_per_family_init(struct amd64_pvt *pvt)
2506
{
2507 2508 2509 2510
	u8 fam = boot_cpu_data.x86;
	struct amd64_family_type *fam_type = NULL;

	switch (fam) {
2511
	case 0xf:
2512
		fam_type		= &amd64_family_types[K8_CPUS];
2513
		pvt->ops		= &amd64_family_types[K8_CPUS].ops;
2514 2515
		pvt->ctl_name		= fam_type->ctl_name;
		pvt->min_scrubrate	= K8_MIN_SCRUB_RATE_BITS;
2516 2517
		break;
	case 0x10:
2518
		fam_type		= &amd64_family_types[F10_CPUS];
2519
		pvt->ops		= &amd64_family_types[F10_CPUS].ops;
2520 2521
		pvt->ctl_name		= fam_type->ctl_name;
		pvt->min_scrubrate	= F10_MIN_SCRUB_RATE_BITS;
2522 2523 2524
		break;

	default:
2525
		amd64_err("Unsupported family!\n");
2526
		return NULL;
2527
	}
2528

2529 2530
	pvt->ext_model = boot_cpu_data.x86_model >> 4;

2531
	amd64_info("%s %sdetected (node %d).\n", pvt->ctl_name,
2532
		     (fam == 0xf ?
2533 2534 2535
				(pvt->ext_model >= K8_REV_F  ? "revF or later "
							     : "revE or earlier ")
				 : ""), pvt->mc_node_id);
2536
	return fam_type;
2537 2538
}

2539
static int amd64_probe_one_instance(struct pci_dev *F2)
2540 2541
{
	struct amd64_pvt *pvt = NULL;
2542
	struct amd64_family_type *fam_type = NULL;
2543 2544 2545 2546 2547 2548 2549
	int err = 0, ret;

	ret = -ENOMEM;
	pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
	if (!pvt)
		goto err_exit;

2550 2551
	pvt->mc_node_id	 = get_node_id(F2);
	pvt->F2 = F2;
2552

2553
	ret = -EINVAL;
2554 2555
	fam_type = amd64_per_family_init(pvt);
	if (!fam_type)
2556 2557
		goto err_free;

2558
	ret = -ENODEV;
2559 2560
	err = amd64_reserve_mc_sibling_devices(pvt, fam_type->f1_id,
						fam_type->f3_id);
2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572
	if (err)
		goto err_free;

	ret = -EINVAL;
	err = amd64_check_ecc_enabled(pvt);
	if (err)
		goto err_put;

	/*
	 * Save the pointer to the private data for use in 2nd initialization
	 * stage
	 */
2573
	pvts[pvt->mc_node_id] = pvt;
2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594

	return 0;

err_put:
	amd64_free_mc_sibling_devices(pvt);

err_free:
	kfree(pvt);

err_exit:
	return ret;
}

/*
 * This is the finishing stage of the init code. Needs to be performed after all
 * MCs' hardware have been prepped for accessing extended config space.
 */
static int amd64_init_2nd_stage(struct amd64_pvt *pvt)
{
	int node_id = pvt->mc_node_id;
	struct mem_ctl_info *mci;
2595
	int ret = -ENODEV;
2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608

	amd64_read_mc_registers(pvt);

	/*
	 * We need to determine how many memory channels there are. Then use
	 * that information for calculating the size of the dynamic instance
	 * tables in the 'mci' structure
	 */
	pvt->channel_count = pvt->ops->early_channel_count(pvt);
	if (pvt->channel_count < 0)
		goto err_exit;

	ret = -ENOMEM;
2609
	mci = edac_mc_alloc(0, pvt->cs_count, pvt->channel_count, node_id);
2610 2611 2612 2613 2614
	if (!mci)
		goto err_exit;

	mci->pvt_info = pvt;

2615
	mci->dev = &pvt->F2->dev;
2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629
	amd64_setup_mci_misc_attributes(mci);

	if (amd64_init_csrows(mci))
		mci->edac_cap = EDAC_FLAG_NONE;

	amd64_enable_ecc_error_reporting(mci);
	amd64_set_mc_sysfs_attributes(mci);

	ret = -ENODEV;
	if (edac_mc_add_mc(mci)) {
		debugf1("failed edac_mc_add_mc()\n");
		goto err_add_mc;
	}

2630 2631
	mcis[node_id] = mci;
	pvts[node_id] = NULL;
2632 2633 2634 2635 2636 2637 2638

	/* register stuff with EDAC MCE */
	if (report_gart_errors)
		amd_report_gart_errors(true);

	amd_register_ecc_decoder(amd64_decode_bus_error);

2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650
	return 0;

err_add_mc:
	edac_mc_free(mci);

err_exit:
	debugf0("failure to init 2nd stage: ret=%d\n", ret);

	amd64_restore_ecc_error_reporting(pvt);

	amd64_free_mc_sibling_devices(pvt);

2651 2652
	kfree(pvts[pvt->mc_node_id]);
	pvts[node_id] = NULL;
2653 2654 2655 2656 2657 2658

	return ret;
}


static int __devinit amd64_init_one_instance(struct pci_dev *pdev,
2659
					     const struct pci_device_id *mc_type)
2660 2661
{
	int ret = 0;
2662 2663
	u8 nid = get_node_id(pdev);
	struct ecc_settings *s;
2664 2665

	ret = pci_enable_device(pdev);
2666 2667 2668 2669
	if (ret < 0) {
		debugf0("ret=%d\n", ret);
		return -EIO;
	}
2670

2671 2672 2673 2674 2675 2676 2677
	ret = -ENOMEM;
	s = kzalloc(sizeof(struct ecc_settings), GFP_KERNEL);
	if (!s)
		return ret;

	ecc_stngs[nid] = s;

2678
	ret = amd64_probe_one_instance(pdev);
2679
	if (ret < 0)
2680
		amd64_err("Error probing instance: %d\n", nid);
2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700

	return ret;
}

static void __devexit amd64_remove_one_instance(struct pci_dev *pdev)
{
	struct mem_ctl_info *mci;
	struct amd64_pvt *pvt;

	/* Remove from EDAC CORE tracking list */
	mci = edac_mc_del_mc(&pdev->dev);
	if (!mci)
		return;

	pvt = mci->pvt_info;

	amd64_restore_ecc_error_reporting(pvt);

	amd64_free_mc_sibling_devices(pvt);

2701 2702 2703 2704
	/* unregister from EDAC MCE */
	amd_report_gart_errors(false);
	amd_unregister_ecc_decoder(amd64_decode_bus_error);

2705 2706 2707
	kfree(ecc_stngs[pvt->mc_node_id]);
	ecc_stngs[pvt->mc_node_id] = NULL;

2708
	/* Free the EDAC CORE resources */
2709
	mci->pvt_info = NULL;
2710
	mcis[pvt->mc_node_id] = NULL;
2711 2712

	kfree(pvt);
2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756
	edac_mc_free(mci);
}

/*
 * This table is part of the interface for loading drivers for PCI devices. The
 * PCI core identifies what devices are on a system during boot, and then
 * inquiry this table to see if this driver is for a given device found.
 */
static const struct pci_device_id amd64_pci_table[] __devinitdata = {
	{
		.vendor		= PCI_VENDOR_ID_AMD,
		.device		= PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
		.subvendor	= PCI_ANY_ID,
		.subdevice	= PCI_ANY_ID,
		.class		= 0,
		.class_mask	= 0,
	},
	{
		.vendor		= PCI_VENDOR_ID_AMD,
		.device		= PCI_DEVICE_ID_AMD_10H_NB_DRAM,
		.subvendor	= PCI_ANY_ID,
		.subdevice	= PCI_ANY_ID,
		.class		= 0,
		.class_mask	= 0,
	},
	{0, }
};
MODULE_DEVICE_TABLE(pci, amd64_pci_table);

static struct pci_driver amd64_pci_driver = {
	.name		= EDAC_MOD_STR,
	.probe		= amd64_init_one_instance,
	.remove		= __devexit_p(amd64_remove_one_instance),
	.id_table	= amd64_pci_table,
};

static void amd64_setup_pci_device(void)
{
	struct mem_ctl_info *mci;
	struct amd64_pvt *pvt;

	if (amd64_ctl_pci)
		return;

2757
	mci = mcis[0];
2758 2759 2760 2761
	if (mci) {

		pvt = mci->pvt_info;
		amd64_ctl_pci =
2762
			edac_pci_create_generic_ctl(&pvt->F2->dev, EDAC_MOD_STR);
2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776

		if (!amd64_ctl_pci) {
			pr_warning("%s(): Unable to create PCI control\n",
				   __func__);

			pr_warning("%s(): PCI error report via EDAC not set\n",
				   __func__);
			}
	}
}

static int __init amd64_edac_init(void)
{
	int nb, err = -ENODEV;
2777
	bool load_ok = false;
2778 2779 2780 2781 2782

	edac_printk(KERN_INFO, EDAC_MOD_STR, EDAC_AMD64_VERSION "\n");

	opstate_init();

2783
	if (amd_cache_northbridges() < 0)
2784
		goto err_ret;
2785

2786
	err = -ENOMEM;
2787 2788 2789 2790
	pvts	  = kzalloc(amd_nb_num() * sizeof(pvts[0]), GFP_KERNEL);
	mcis	  = kzalloc(amd_nb_num() * sizeof(mcis[0]), GFP_KERNEL);
	ecc_stngs = kzalloc(amd_nb_num() * sizeof(ecc_stngs[0]), GFP_KERNEL);
	if (!(pvts && mcis && ecc_stngs))
2791 2792
		goto err_ret;

2793
	msrs = msrs_alloc();
2794 2795
	if (!msrs)
		goto err_ret;
2796

2797 2798
	err = pci_register_driver(&amd64_pci_driver);
	if (err)
2799
		goto err_pci;
2800 2801

	/*
2802
	 * At this point, the array 'pvts[]' contains pointers to alloc'd
2803 2804 2805
	 * amd64_pvt structs. These will be used in the 2nd stage init function
	 * to finish initialization of the MC instances.
	 */
2806
	err = -ENODEV;
2807
	for (nb = 0; nb < amd_nb_num(); nb++) {
2808
		if (!pvts[nb])
2809 2810
			continue;

2811
		err = amd64_init_2nd_stage(pvts[nb]);
2812
		if (err)
2813
			goto err_2nd_stage;
2814

2815 2816
		load_ok = true;
	}
2817

2818 2819 2820 2821
	if (load_ok) {
		amd64_setup_pci_device();
		return 0;
	}
2822

2823
err_2nd_stage:
2824
	pci_unregister_driver(&amd64_pci_driver);
2825

2826 2827 2828
err_pci:
	msrs_free(msrs);
	msrs = NULL;
2829

2830
err_ret:
2831 2832 2833 2834 2835 2836 2837 2838 2839
	return err;
}

static void __exit amd64_edac_exit(void)
{
	if (amd64_ctl_pci)
		edac_pci_release_generic_ctl(amd64_ctl_pci);

	pci_unregister_driver(&amd64_pci_driver);
2840

2841 2842 2843
	kfree(ecc_stngs);
	ecc_stngs = NULL;

2844 2845 2846 2847 2848 2849
	kfree(mcis);
	mcis = NULL;

	kfree(pvts);
	pvts = NULL;

2850 2851
	msrs_free(msrs);
	msrs = NULL;
2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864
}

module_init(amd64_edac_init);
module_exit(amd64_edac_exit);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
		"Dave Peterson, Thayne Harbaugh");
MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
		EDAC_AMD64_VERSION);

module_param(edac_op_state, int, 0444);
MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");