crypto.c 64.6 KB
Newer Older
1 2 3 4 5
/**
 * eCryptfs: Linux filesystem encryption layer
 *
 * Copyright (C) 1997-2004 Erez Zadok
 * Copyright (C) 2001-2004 Stony Brook University
6
 * Copyright (C) 2004-2007 International Business Machines Corp.
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
 *   Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
 *   		Michael C. Thompson <mcthomps@us.ibm.com>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation; either version 2 of the
 * License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
 * 02111-1307, USA.
 */

#include <linux/fs.h>
#include <linux/mount.h>
#include <linux/pagemap.h>
#include <linux/random.h>
#include <linux/compiler.h>
#include <linux/key.h>
#include <linux/namei.h>
#include <linux/crypto.h>
#include <linux/file.h>
#include <linux/scatterlist.h>
36
#include <linux/slab.h>
37
#include <asm/unaligned.h>
38 39
#include "ecryptfs_kernel.h"

40 41 42
#define DECRYPT		0
#define ENCRYPT		1

43
static int crypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
44
			     struct page *dst_page, struct page *src_page,
45
			     int offset, int size, unsigned char *iv, int op);
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

/**
 * ecryptfs_to_hex
 * @dst: Buffer to take hex character representation of contents of
 *       src; must be at least of size (src_size * 2)
 * @src: Buffer to be converted to a hex string respresentation
 * @src_size: number of bytes to convert
 */
void ecryptfs_to_hex(char *dst, char *src, size_t src_size)
{
	int x;

	for (x = 0; x < src_size; x++)
		sprintf(&dst[x * 2], "%.2x", (unsigned char)src[x]);
}

/**
 * ecryptfs_from_hex
 * @dst: Buffer to take the bytes from src hex; must be at least of
 *       size (src_size / 2)
 * @src: Buffer to be converted from a hex string respresentation to raw value
 * @dst_size: size of dst buffer, or number of hex characters pairs to convert
 */
void ecryptfs_from_hex(char *dst, char *src, int dst_size)
{
	int x;
	char tmp[3] = { 0, };

	for (x = 0; x < dst_size; x++) {
		tmp[0] = src[x * 2];
		tmp[1] = src[x * 2 + 1];
		dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16);
	}
}

/**
 * ecryptfs_calculate_md5 - calculates the md5 of @src
 * @dst: Pointer to 16 bytes of allocated memory
 * @crypt_stat: Pointer to crypt_stat struct for the current inode
 * @src: Data to be md5'd
 * @len: Length of @src
 *
 * Uses the allocated crypto context that crypt_stat references to
 * generate the MD5 sum of the contents of src.
 */
static int ecryptfs_calculate_md5(char *dst,
				  struct ecryptfs_crypt_stat *crypt_stat,
				  char *src, int len)
{
	struct scatterlist sg;
96 97 98 99 100
	struct hash_desc desc = {
		.tfm = crypt_stat->hash_tfm,
		.flags = CRYPTO_TFM_REQ_MAY_SLEEP
	};
	int rc = 0;
101

102
	mutex_lock(&crypt_stat->cs_hash_tfm_mutex);
103
	sg_init_one(&sg, (u8 *)src, len);
104 105 106 107 108
	if (!desc.tfm) {
		desc.tfm = crypto_alloc_hash(ECRYPTFS_DEFAULT_HASH, 0,
					     CRYPTO_ALG_ASYNC);
		if (IS_ERR(desc.tfm)) {
			rc = PTR_ERR(desc.tfm);
109
			ecryptfs_printk(KERN_ERR, "Error attempting to "
110 111
					"allocate crypto context; rc = [%d]\n",
					rc);
112 113
			goto out;
		}
114
		crypt_stat->hash_tfm = desc.tfm;
115
	}
116 117 118 119
	rc = crypto_hash_init(&desc);
	if (rc) {
		printk(KERN_ERR
		       "%s: Error initializing crypto hash; rc = [%d]\n",
120
		       __func__, rc);
121 122 123 124 125 126
		goto out;
	}
	rc = crypto_hash_update(&desc, &sg, len);
	if (rc) {
		printk(KERN_ERR
		       "%s: Error updating crypto hash; rc = [%d]\n",
127
		       __func__, rc);
128 129 130 131 132 133
		goto out;
	}
	rc = crypto_hash_final(&desc, dst);
	if (rc) {
		printk(KERN_ERR
		       "%s: Error finalizing crypto hash; rc = [%d]\n",
134
		       __func__, rc);
135 136
		goto out;
	}
137
out:
138
	mutex_unlock(&crypt_stat->cs_hash_tfm_mutex);
139 140 141
	return rc;
}

142 143 144
static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name,
						  char *cipher_name,
						  char *chaining_modifier)
145 146 147 148 149 150 151 152
{
	int cipher_name_len = strlen(cipher_name);
	int chaining_modifier_len = strlen(chaining_modifier);
	int algified_name_len;
	int rc;

	algified_name_len = (chaining_modifier_len + cipher_name_len + 3);
	(*algified_name) = kmalloc(algified_name_len, GFP_KERNEL);
153
	if (!(*algified_name)) {
154 155 156 157 158 159 160 161 162 163
		rc = -ENOMEM;
		goto out;
	}
	snprintf((*algified_name), algified_name_len, "%s(%s)",
		 chaining_modifier, cipher_name);
	rc = 0;
out:
	return rc;
}

164 165 166 167
/**
 * ecryptfs_derive_iv
 * @iv: destination for the derived iv vale
 * @crypt_stat: Pointer to crypt_stat struct for the current inode
M
Michael Halcrow 已提交
168
 * @offset: Offset of the extent whose IV we are to derive
169 170 171 172 173 174
 *
 * Generate the initialization vector from the given root IV and page
 * offset.
 *
 * Returns zero on success; non-zero on error.
 */
175 176
int ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat,
		       loff_t offset)
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
{
	int rc = 0;
	char dst[MD5_DIGEST_SIZE];
	char src[ECRYPTFS_MAX_IV_BYTES + 16];

	if (unlikely(ecryptfs_verbosity > 0)) {
		ecryptfs_printk(KERN_DEBUG, "root iv:\n");
		ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes);
	}
	/* TODO: It is probably secure to just cast the least
	 * significant bits of the root IV into an unsigned long and
	 * add the offset to that rather than go through all this
	 * hashing business. -Halcrow */
	memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes);
	memset((src + crypt_stat->iv_bytes), 0, 16);
M
Michael Halcrow 已提交
192
	snprintf((src + crypt_stat->iv_bytes), 16, "%lld", offset);
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
	if (unlikely(ecryptfs_verbosity > 0)) {
		ecryptfs_printk(KERN_DEBUG, "source:\n");
		ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16));
	}
	rc = ecryptfs_calculate_md5(dst, crypt_stat, src,
				    (crypt_stat->iv_bytes + 16));
	if (rc) {
		ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
				"MD5 while generating IV for a page\n");
		goto out;
	}
	memcpy(iv, dst, crypt_stat->iv_bytes);
	if (unlikely(ecryptfs_verbosity > 0)) {
		ecryptfs_printk(KERN_DEBUG, "derived iv:\n");
		ecryptfs_dump_hex(iv, crypt_stat->iv_bytes);
	}
out:
	return rc;
}

/**
 * ecryptfs_init_crypt_stat
 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
 *
 * Initialize the crypt_stat structure.
 */
void
ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
{
	memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
223 224
	INIT_LIST_HEAD(&crypt_stat->keysig_list);
	mutex_init(&crypt_stat->keysig_list_mutex);
225 226
	mutex_init(&crypt_stat->cs_mutex);
	mutex_init(&crypt_stat->cs_tfm_mutex);
227
	mutex_init(&crypt_stat->cs_hash_tfm_mutex);
228
	crypt_stat->flags |= ECRYPTFS_STRUCT_INITIALIZED;
229 230 231
}

/**
232
 * ecryptfs_destroy_crypt_stat
233 234 235 236
 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
 *
 * Releases all memory associated with a crypt_stat struct.
 */
237
void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
238
{
239 240
	struct ecryptfs_key_sig *key_sig, *key_sig_tmp;

241
	if (crypt_stat->tfm)
242
		crypto_free_ablkcipher(crypt_stat->tfm);
243 244
	if (crypt_stat->hash_tfm)
		crypto_free_hash(crypt_stat->hash_tfm);
245 246 247 248 249
	list_for_each_entry_safe(key_sig, key_sig_tmp,
				 &crypt_stat->keysig_list, crypt_stat_list) {
		list_del(&key_sig->crypt_stat_list);
		kmem_cache_free(ecryptfs_key_sig_cache, key_sig);
	}
250 251 252
	memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
}

253
void ecryptfs_destroy_mount_crypt_stat(
254 255
	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
{
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
	struct ecryptfs_global_auth_tok *auth_tok, *auth_tok_tmp;

	if (!(mount_crypt_stat->flags & ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED))
		return;
	mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
	list_for_each_entry_safe(auth_tok, auth_tok_tmp,
				 &mount_crypt_stat->global_auth_tok_list,
				 mount_crypt_stat_list) {
		list_del(&auth_tok->mount_crypt_stat_list);
		if (auth_tok->global_auth_tok_key
		    && !(auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID))
			key_put(auth_tok->global_auth_tok_key);
		kmem_cache_free(ecryptfs_global_auth_tok_cache, auth_tok);
	}
	mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
	memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat));
}

/**
 * virt_to_scatterlist
 * @addr: Virtual address
 * @size: Size of data; should be an even multiple of the block size
 * @sg: Pointer to scatterlist array; set to NULL to obtain only
 *      the number of scatterlist structs required in array
 * @sg_size: Max array size
 *
 * Fills in a scatterlist array with page references for a passed
 * virtual address.
 *
 * Returns the number of scatterlist structs in array used
 */
int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg,
			int sg_size)
{
	int i = 0;
	struct page *pg;
	int offset;
	int remainder_of_page;

295 296
	sg_init_table(sg, sg_size);

297 298 299
	while (size > 0 && i < sg_size) {
		pg = virt_to_page(addr);
		offset = offset_in_page(addr);
300
		sg_set_page(&sg[i], pg, 0, offset);
301 302
		remainder_of_page = PAGE_CACHE_SIZE - offset;
		if (size >= remainder_of_page) {
303
			sg[i].length = remainder_of_page;
304 305 306
			addr += remainder_of_page;
			size -= remainder_of_page;
		} else {
307
			sg[i].length = size;
308 309 310 311 312 313 314 315 316 317
			addr += size;
			size = 0;
		}
		i++;
	}
	if (size > 0)
		return -ENOMEM;
	return i;
}

318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
struct extent_crypt_result {
	struct completion completion;
	int rc;
};

static void extent_crypt_complete(struct crypto_async_request *req, int rc)
{
	struct extent_crypt_result *ecr = req->data;

	if (rc == -EINPROGRESS)
		return;

	ecr->rc = rc;
	complete(&ecr->completion);
}

334
/**
335
 * crypt_scatterlist
336
 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
337 338 339 340 341
 * @dest_sg: Destination of the data after performing the crypto operation
 * @src_sg: Data to be encrypted or decrypted
 * @size: Length of data
 * @iv: IV to use
 * @op: ENCRYPT or DECRYPT to indicate the desired operation
342
 *
343
 * Returns the number of bytes encrypted or decrypted; negative value on error
344
 */
345 346 347 348
static int crypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
			     struct scatterlist *dest_sg,
			     struct scatterlist *src_sg, int size,
			     unsigned char *iv, int op)
349
{
350 351
	struct ablkcipher_request *req = NULL;
	struct extent_crypt_result ecr;
352 353 354
	int rc = 0;

	BUG_ON(!crypt_stat || !crypt_stat->tfm
355
	       || !(crypt_stat->flags & ECRYPTFS_STRUCT_INITIALIZED));
356
	if (unlikely(ecryptfs_verbosity > 0)) {
357
		ecryptfs_printk(KERN_DEBUG, "Key size [%zd]; key:\n",
358 359 360 361
				crypt_stat->key_size);
		ecryptfs_dump_hex(crypt_stat->key,
				  crypt_stat->key_size);
	}
362 363 364

	init_completion(&ecr.completion);

365
	mutex_lock(&crypt_stat->cs_tfm_mutex);
366 367
	req = ablkcipher_request_alloc(crypt_stat->tfm, GFP_NOFS);
	if (!req) {
368
		mutex_unlock(&crypt_stat->cs_tfm_mutex);
369
		rc = -ENOMEM;
370 371
		goto out;
	}
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389

	ablkcipher_request_set_callback(req,
			CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
			extent_crypt_complete, &ecr);
	/* Consider doing this once, when the file is opened */
	if (!(crypt_stat->flags & ECRYPTFS_KEY_SET)) {
		rc = crypto_ablkcipher_setkey(crypt_stat->tfm, crypt_stat->key,
					      crypt_stat->key_size);
		if (rc) {
			ecryptfs_printk(KERN_ERR,
					"Error setting key; rc = [%d]\n",
					rc);
			mutex_unlock(&crypt_stat->cs_tfm_mutex);
			rc = -EINVAL;
			goto out;
		}
		crypt_stat->flags |= ECRYPTFS_KEY_SET;
	}
390
	mutex_unlock(&crypt_stat->cs_tfm_mutex);
391
	ablkcipher_request_set_crypt(req, src_sg, dest_sg, size, iv);
392 393
	rc = op == ENCRYPT ? crypto_ablkcipher_encrypt(req) :
			     crypto_ablkcipher_decrypt(req);
394 395 396 397 398 399 400
	if (rc == -EINPROGRESS || rc == -EBUSY) {
		struct extent_crypt_result *ecr = req->base.data;

		wait_for_completion(&ecr->completion);
		rc = ecr->rc;
		INIT_COMPLETION(ecr->completion);
	}
401
out:
402
	ablkcipher_request_free(req);
403 404 405
	return rc;
}

406
/**
407
 * lower_offset_for_page
408 409 410
 *
 * Convert an eCryptfs page index into a lower byte offset
 */
411 412
static loff_t lower_offset_for_page(struct ecryptfs_crypt_stat *crypt_stat,
				    struct page *page)
413
{
414 415
	return ecryptfs_lower_header_size(crypt_stat) +
	       (page->index << PAGE_CACHE_SHIFT);
416 417 418
}

/**
419 420
 * crypt_extent
 * @dst_page: The page to write the result into
421 422
 * @crypt_stat: crypt_stat containing cryptographic context for the
 *              encryption operation
423
 * @src_page: The page to read from
424
 * @extent_offset: Page extent offset for use in generating IV
425
 * @op: ENCRYPT or DECRYPT to indicate the desired operation
426
 *
427
 * Encrypts or decrypts one extent of data.
428 429 430
 *
 * Return zero on success; non-zero otherwise
 */
431 432 433 434
static int crypt_extent(struct page *dst_page,
			struct ecryptfs_crypt_stat *crypt_stat,
			struct page *src_page,
			unsigned long extent_offset, int op)
435
{
436
	pgoff_t page_index = op == ENCRYPT ? src_page->index : dst_page->index;
M
Michael Halcrow 已提交
437
	loff_t extent_base;
438 439 440
	char extent_iv[ECRYPTFS_MAX_IV_BYTES];
	int rc;

441
	extent_base = (((loff_t)page_index)
442 443 444 445
		       * (PAGE_CACHE_SIZE / crypt_stat->extent_size));
	rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
				(extent_base + extent_offset));
	if (rc) {
446 447 448
		ecryptfs_printk(KERN_ERR, "Error attempting to derive IV for "
			"extent [0x%.16llx]; rc = [%d]\n",
			(unsigned long long)(extent_base + extent_offset), rc);
449 450
		goto out;
	}
451
	rc = crypt_page_offset(crypt_stat, dst_page, src_page,
452
			       (extent_offset * crypt_stat->extent_size),
453
			       crypt_stat->extent_size, extent_iv, op);
454
	if (rc < 0) {
455 456 457
		printk(KERN_ERR "%s: Error attempting to crypt page with "
		       "page_index = [%ld], extent_offset = [%ld]; "
		       "rc = [%d]\n", __func__, page_index, extent_offset, rc);
458 459 460 461 462 463 464
		goto out;
	}
	rc = 0;
out:
	return rc;
}

465 466
/**
 * ecryptfs_encrypt_page
467 468 469
 * @page: Page mapped from the eCryptfs inode for the file; contains
 *        decrypted content that needs to be encrypted (to a temporary
 *        page; not in place) and written out to the lower file
470 471 472 473 474 475 476 477 478 479 480
 *
 * Encrypt an eCryptfs page. This is done on a per-extent basis. Note
 * that eCryptfs pages may straddle the lower pages -- for instance,
 * if the file was created on a machine with an 8K page size
 * (resulting in an 8K header), and then the file is copied onto a
 * host with a 32K page size, then when reading page 0 of the eCryptfs
 * file, 24K of page 0 of the lower file will be read and decrypted,
 * and then 8K of page 1 of the lower file will be read and decrypted.
 *
 * Returns zero on success; negative on error
 */
481
int ecryptfs_encrypt_page(struct page *page)
482
{
483
	struct inode *ecryptfs_inode;
484
	struct ecryptfs_crypt_stat *crypt_stat;
485 486
	char *enc_extent_virt;
	struct page *enc_extent_page = NULL;
487
	loff_t extent_offset;
488
	loff_t lower_offset;
489
	int rc = 0;
490 491 492 493

	ecryptfs_inode = page->mapping->host;
	crypt_stat =
		&(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
494
	BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
495 496
	enc_extent_page = alloc_page(GFP_USER);
	if (!enc_extent_page) {
497 498 499 500 501
		rc = -ENOMEM;
		ecryptfs_printk(KERN_ERR, "Error allocating memory for "
				"encrypted extent\n");
		goto out;
	}
502

503 504 505
	for (extent_offset = 0;
	     extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size);
	     extent_offset++) {
506 507
		rc = crypt_extent(enc_extent_page, crypt_stat, page,
				  extent_offset, ENCRYPT);
508
		if (rc) {
509
			printk(KERN_ERR "%s: Error encrypting extent; "
510
			       "rc = [%d]\n", __func__, rc);
511 512
			goto out;
		}
513 514
	}

515
	lower_offset = lower_offset_for_page(crypt_stat, page);
516 517 518 519 520 521 522 523 524
	enc_extent_virt = kmap(enc_extent_page);
	rc = ecryptfs_write_lower(ecryptfs_inode, enc_extent_virt, lower_offset,
				  PAGE_CACHE_SIZE);
	kunmap(enc_extent_page);
	if (rc < 0) {
		ecryptfs_printk(KERN_ERR,
			"Error attempting to write lower page; rc = [%d]\n",
			rc);
		goto out;
525
	}
526
	rc = 0;
527
out:
528 529 530
	if (enc_extent_page) {
		__free_page(enc_extent_page);
	}
531 532 533
	return rc;
}

534 535
/**
 * ecryptfs_decrypt_page
536 537 538
 * @page: Page mapped from the eCryptfs inode for the file; data read
 *        and decrypted from the lower file will be written into this
 *        page
539 540 541 542 543 544 545 546 547 548 549
 *
 * Decrypt an eCryptfs page. This is done on a per-extent basis. Note
 * that eCryptfs pages may straddle the lower pages -- for instance,
 * if the file was created on a machine with an 8K page size
 * (resulting in an 8K header), and then the file is copied onto a
 * host with a 32K page size, then when reading page 0 of the eCryptfs
 * file, 24K of page 0 of the lower file will be read and decrypted,
 * and then 8K of page 1 of the lower file will be read and decrypted.
 *
 * Returns zero on success; negative on error
 */
550
int ecryptfs_decrypt_page(struct page *page)
551
{
552
	struct inode *ecryptfs_inode;
553
	struct ecryptfs_crypt_stat *crypt_stat;
T
Tyler Hicks 已提交
554
	char *page_virt;
555
	unsigned long extent_offset;
556
	loff_t lower_offset;
557 558
	int rc = 0;

559 560 561
	ecryptfs_inode = page->mapping->host;
	crypt_stat =
		&(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
562
	BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
563

564
	lower_offset = lower_offset_for_page(crypt_stat, page);
T
Tyler Hicks 已提交
565 566
	page_virt = kmap(page);
	rc = ecryptfs_read_lower(page_virt, lower_offset, PAGE_CACHE_SIZE,
567
				 ecryptfs_inode);
T
Tyler Hicks 已提交
568
	kunmap(page);
569 570 571 572 573 574 575
	if (rc < 0) {
		ecryptfs_printk(KERN_ERR,
			"Error attempting to read lower page; rc = [%d]\n",
			rc);
		goto out;
	}

576 577 578
	for (extent_offset = 0;
	     extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size);
	     extent_offset++) {
579 580
		rc = crypt_extent(page, crypt_stat, page,
				  extent_offset, DECRYPT);
581 582
		if (rc) {
			printk(KERN_ERR "%s: Error encrypting extent; "
583
			       "rc = [%d]\n", __func__, rc);
584
			goto out;
585 586 587 588 589 590 591
		}
	}
out:
	return rc;
}

/**
592
 * crypt_page_offset
593
 * @crypt_stat: The cryptographic context
594 595
 * @dst_page: The page to write the result into
 * @src_page: The page to read from
596
 * @offset: The byte offset into the dst_page and src_page
597 598 599
 * @size: The number of bytes of data
 * @iv: The initialization vector to use for the crypto operation
 * @op: ENCRYPT or DECRYPT to indicate the desired operation
600
 *
601
 * Returns the number of bytes encrypted or decrypted
602
 */
603
static int crypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
604
			     struct page *dst_page, struct page *src_page,
605
			     int offset, int size, unsigned char *iv, int op)
606 607 608
{
	struct scatterlist src_sg, dst_sg;

J
Jens Axboe 已提交
609 610 611
	sg_init_table(&src_sg, 1);
	sg_init_table(&dst_sg, 1);

612 613
	sg_set_page(&src_sg, src_page, size, offset);
	sg_set_page(&dst_sg, dst_page, size, offset);
J
Jens Axboe 已提交
614

615
	return crypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv, op);
616 617 618 619 620 621
}

#define ECRYPTFS_MAX_SCATTERLIST_LEN 4

/**
 * ecryptfs_init_crypt_ctx
622
 * @crypt_stat: Uninitialized crypt stats structure
623 624 625 626 627 628 629 630
 *
 * Initialize the crypto context.
 *
 * TODO: Performance: Keep a cache of initialized cipher contexts;
 * only init if needed
 */
int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat)
{
631
	char *full_alg_name;
632 633 634 635 636 637 638 639
	int rc = -EINVAL;

	if (!crypt_stat->cipher) {
		ecryptfs_printk(KERN_ERR, "No cipher specified\n");
		goto out;
	}
	ecryptfs_printk(KERN_DEBUG,
			"Initializing cipher [%s]; strlen = [%d]; "
640
			"key_size_bits = [%zd]\n",
641 642 643 644 645 646 647
			crypt_stat->cipher, (int)strlen(crypt_stat->cipher),
			crypt_stat->key_size << 3);
	if (crypt_stat->tfm) {
		rc = 0;
		goto out;
	}
	mutex_lock(&crypt_stat->cs_tfm_mutex);
648 649 650
	rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name,
						    crypt_stat->cipher, "cbc");
	if (rc)
651
		goto out_unlock;
652
	crypt_stat->tfm = crypto_alloc_ablkcipher(full_alg_name, 0, 0);
653
	kfree(full_alg_name);
654 655
	if (IS_ERR(crypt_stat->tfm)) {
		rc = PTR_ERR(crypt_stat->tfm);
656
		crypt_stat->tfm = NULL;
657 658 659
		ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): "
				"Error initializing cipher [%s]\n",
				crypt_stat->cipher);
660
		goto out_unlock;
661
	}
662
	crypto_ablkcipher_set_flags(crypt_stat->tfm, CRYPTO_TFM_REQ_WEAK_KEY);
663
	rc = 0;
664 665
out_unlock:
	mutex_unlock(&crypt_stat->cs_tfm_mutex);
666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692
out:
	return rc;
}

static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat)
{
	int extent_size_tmp;

	crypt_stat->extent_mask = 0xFFFFFFFF;
	crypt_stat->extent_shift = 0;
	if (crypt_stat->extent_size == 0)
		return;
	extent_size_tmp = crypt_stat->extent_size;
	while ((extent_size_tmp & 0x01) == 0) {
		extent_size_tmp >>= 1;
		crypt_stat->extent_mask <<= 1;
		crypt_stat->extent_shift++;
	}
}

void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat)
{
	/* Default values; may be overwritten as we are parsing the
	 * packets. */
	crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE;
	set_extent_mask_and_shift(crypt_stat);
	crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES;
693
	if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
694
		crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
695 696
	else {
		if (PAGE_CACHE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)
697
			crypt_stat->metadata_size =
698
				ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
699
		else
700
			crypt_stat->metadata_size = PAGE_CACHE_SIZE;
701
	}
702 703 704 705 706 707 708 709 710 711 712 713 714 715 716
}

/**
 * ecryptfs_compute_root_iv
 * @crypt_stats
 *
 * On error, sets the root IV to all 0's.
 */
int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat)
{
	int rc = 0;
	char dst[MD5_DIGEST_SIZE];

	BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE);
	BUG_ON(crypt_stat->iv_bytes <= 0);
717
	if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733
		rc = -EINVAL;
		ecryptfs_printk(KERN_WARNING, "Session key not valid; "
				"cannot generate root IV\n");
		goto out;
	}
	rc = ecryptfs_calculate_md5(dst, crypt_stat, crypt_stat->key,
				    crypt_stat->key_size);
	if (rc) {
		ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
				"MD5 while generating root IV\n");
		goto out;
	}
	memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes);
out:
	if (rc) {
		memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes);
734
		crypt_stat->flags |= ECRYPTFS_SECURITY_WARNING;
735 736 737 738 739 740 741
	}
	return rc;
}

static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat)
{
	get_random_bytes(crypt_stat->key, crypt_stat->key_size);
742
	crypt_stat->flags |= ECRYPTFS_KEY_VALID;
743 744 745 746 747 748 749 750
	ecryptfs_compute_root_iv(crypt_stat);
	if (unlikely(ecryptfs_verbosity > 0)) {
		ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n");
		ecryptfs_dump_hex(crypt_stat->key,
				  crypt_stat->key_size);
	}
}

751 752
/**
 * ecryptfs_copy_mount_wide_flags_to_inode_flags
753 754
 * @crypt_stat: The inode's cryptographic context
 * @mount_crypt_stat: The mount point's cryptographic context
755 756 757 758 759 760 761 762 763 764 765 766
 *
 * This function propagates the mount-wide flags to individual inode
 * flags.
 */
static void ecryptfs_copy_mount_wide_flags_to_inode_flags(
	struct ecryptfs_crypt_stat *crypt_stat,
	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
{
	if (mount_crypt_stat->flags & ECRYPTFS_XATTR_METADATA_ENABLED)
		crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
	if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
		crypt_stat->flags |= ECRYPTFS_VIEW_AS_ENCRYPTED;
767 768 769 770 771 772 773 774 775
	if (mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) {
		crypt_stat->flags |= ECRYPTFS_ENCRYPT_FILENAMES;
		if (mount_crypt_stat->flags
		    & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)
			crypt_stat->flags |= ECRYPTFS_ENCFN_USE_MOUNT_FNEK;
		else if (mount_crypt_stat->flags
			 & ECRYPTFS_GLOBAL_ENCFN_USE_FEK)
			crypt_stat->flags |= ECRYPTFS_ENCFN_USE_FEK;
	}
776 777
}

778 779 780 781 782 783 784
static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs(
	struct ecryptfs_crypt_stat *crypt_stat,
	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
{
	struct ecryptfs_global_auth_tok *global_auth_tok;
	int rc = 0;

785
	mutex_lock(&crypt_stat->keysig_list_mutex);
786
	mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
787

788 789 790
	list_for_each_entry(global_auth_tok,
			    &mount_crypt_stat->global_auth_tok_list,
			    mount_crypt_stat_list) {
791 792
		if (global_auth_tok->flags & ECRYPTFS_AUTH_TOK_FNEK)
			continue;
793 794 795 796 797 798
		rc = ecryptfs_add_keysig(crypt_stat, global_auth_tok->sig);
		if (rc) {
			printk(KERN_ERR "Error adding keysig; rc = [%d]\n", rc);
			goto out;
		}
	}
799

800
out:
801 802
	mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
	mutex_unlock(&crypt_stat->keysig_list_mutex);
803 804 805
	return rc;
}

806 807
/**
 * ecryptfs_set_default_crypt_stat_vals
808 809
 * @crypt_stat: The inode's cryptographic context
 * @mount_crypt_stat: The mount point's cryptographic context
810 811 812 813 814 815 816
 *
 * Default values in the event that policy does not override them.
 */
static void ecryptfs_set_default_crypt_stat_vals(
	struct ecryptfs_crypt_stat *crypt_stat,
	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
{
817 818
	ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
						      mount_crypt_stat);
819 820 821
	ecryptfs_set_default_sizes(crypt_stat);
	strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER);
	crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES;
822
	crypt_stat->flags &= ~(ECRYPTFS_KEY_VALID);
823 824 825 826 827 828
	crypt_stat->file_version = ECRYPTFS_FILE_VERSION;
	crypt_stat->mount_crypt_stat = mount_crypt_stat;
}

/**
 * ecryptfs_new_file_context
829
 * @ecryptfs_inode: The eCryptfs inode
830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845
 *
 * If the crypto context for the file has not yet been established,
 * this is where we do that.  Establishing a new crypto context
 * involves the following decisions:
 *  - What cipher to use?
 *  - What set of authentication tokens to use?
 * Here we just worry about getting enough information into the
 * authentication tokens so that we know that they are available.
 * We associate the available authentication tokens with the new file
 * via the set of signatures in the crypt_stat struct.  Later, when
 * the headers are actually written out, we may again defer to
 * userspace to perform the encryption of the session key; for the
 * foreseeable future, this will be the case with public key packets.
 *
 * Returns zero on success; non-zero otherwise
 */
846
int ecryptfs_new_file_context(struct inode *ecryptfs_inode)
847 848
{
	struct ecryptfs_crypt_stat *crypt_stat =
849
	    &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
850 851
	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
	    &ecryptfs_superblock_to_private(
852
		    ecryptfs_inode->i_sb)->mount_crypt_stat;
853
	int cipher_name_len;
854
	int rc = 0;
855 856

	ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat);
857
	crypt_stat->flags |= (ECRYPTFS_ENCRYPTED | ECRYPTFS_KEY_VALID);
858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875
	ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
						      mount_crypt_stat);
	rc = ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat,
							 mount_crypt_stat);
	if (rc) {
		printk(KERN_ERR "Error attempting to copy mount-wide key sigs "
		       "to the inode key sigs; rc = [%d]\n", rc);
		goto out;
	}
	cipher_name_len =
		strlen(mount_crypt_stat->global_default_cipher_name);
	memcpy(crypt_stat->cipher,
	       mount_crypt_stat->global_default_cipher_name,
	       cipher_name_len);
	crypt_stat->cipher[cipher_name_len] = '\0';
	crypt_stat->key_size =
		mount_crypt_stat->global_default_cipher_key_size;
	ecryptfs_generate_new_key(crypt_stat);
876 877 878 879 880
	rc = ecryptfs_init_crypt_ctx(crypt_stat);
	if (rc)
		ecryptfs_printk(KERN_ERR, "Error initializing cryptographic "
				"context for cipher [%s]: rc = [%d]\n",
				crypt_stat->cipher, rc);
881
out:
882 883 884 885
	return rc;
}

/**
886
 * ecryptfs_validate_marker - check for the ecryptfs marker
887 888
 * @data: The data block in which to check
 *
889
 * Returns zero if marker found; -EINVAL if not found
890
 */
891
static int ecryptfs_validate_marker(char *data)
892 893 894
{
	u32 m_1, m_2;

895 896
	m_1 = get_unaligned_be32(data);
	m_2 = get_unaligned_be32(data + 4);
897
	if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2)
898
		return 0;
899 900 901 902 903
	ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; "
			"MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2,
			MAGIC_ECRYPTFS_MARKER);
	ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = "
			"[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER));
904
	return -EINVAL;
905 906 907 908 909 910 911 912 913 914
}

struct ecryptfs_flag_map_elem {
	u32 file_flag;
	u32 local_flag;
};

/* Add support for additional flags by adding elements here. */
static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = {
	{0x00000001, ECRYPTFS_ENABLE_HMAC},
915
	{0x00000002, ECRYPTFS_ENCRYPTED},
916 917
	{0x00000004, ECRYPTFS_METADATA_IN_XATTR},
	{0x00000008, ECRYPTFS_ENCRYPT_FILENAMES}
918 919 920 921
};

/**
 * ecryptfs_process_flags
922
 * @crypt_stat: The cryptographic context
923 924 925 926 927 928 929 930 931 932 933 934
 * @page_virt: Source data to be parsed
 * @bytes_read: Updated with the number of bytes read
 *
 * Returns zero on success; non-zero if the flag set is invalid
 */
static int ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat,
				  char *page_virt, int *bytes_read)
{
	int rc = 0;
	int i;
	u32 flags;

935
	flags = get_unaligned_be32(page_virt);
936 937 938
	for (i = 0; i < ((sizeof(ecryptfs_flag_map)
			  / sizeof(struct ecryptfs_flag_map_elem))); i++)
		if (flags & ecryptfs_flag_map[i].file_flag) {
939
			crypt_stat->flags |= ecryptfs_flag_map[i].local_flag;
940
		} else
941
			crypt_stat->flags &= ~(ecryptfs_flag_map[i].local_flag);
942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960
	/* Version is in top 8 bits of the 32-bit flag vector */
	crypt_stat->file_version = ((flags >> 24) & 0xFF);
	(*bytes_read) = 4;
	return rc;
}

/**
 * write_ecryptfs_marker
 * @page_virt: The pointer to in a page to begin writing the marker
 * @written: Number of bytes written
 *
 * Marker = 0x3c81b7f5
 */
static void write_ecryptfs_marker(char *page_virt, size_t *written)
{
	u32 m_1, m_2;

	get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
	m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER);
961 962 963
	put_unaligned_be32(m_1, page_virt);
	page_virt += (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2);
	put_unaligned_be32(m_2, page_virt);
964 965 966
	(*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
}

967 968 969
void ecryptfs_write_crypt_stat_flags(char *page_virt,
				     struct ecryptfs_crypt_stat *crypt_stat,
				     size_t *written)
970 971 972 973 974 975
{
	u32 flags = 0;
	int i;

	for (i = 0; i < ((sizeof(ecryptfs_flag_map)
			  / sizeof(struct ecryptfs_flag_map_elem))); i++)
976
		if (crypt_stat->flags & ecryptfs_flag_map[i].local_flag)
977 978 979
			flags |= ecryptfs_flag_map[i].file_flag;
	/* Version is in top 8 bits of the 32-bit flag vector */
	flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000);
980
	put_unaligned_be32(flags, page_virt);
981 982 983 984 985
	(*written) = 4;
}

struct ecryptfs_cipher_code_str_map_elem {
	char cipher_str[16];
986
	u8 cipher_code;
987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005
};

/* Add support for additional ciphers by adding elements here. The
 * cipher_code is whatever OpenPGP applicatoins use to identify the
 * ciphers. List in order of probability. */
static struct ecryptfs_cipher_code_str_map_elem
ecryptfs_cipher_code_str_map[] = {
	{"aes",RFC2440_CIPHER_AES_128 },
	{"blowfish", RFC2440_CIPHER_BLOWFISH},
	{"des3_ede", RFC2440_CIPHER_DES3_EDE},
	{"cast5", RFC2440_CIPHER_CAST_5},
	{"twofish", RFC2440_CIPHER_TWOFISH},
	{"cast6", RFC2440_CIPHER_CAST_6},
	{"aes", RFC2440_CIPHER_AES_192},
	{"aes", RFC2440_CIPHER_AES_256}
};

/**
 * ecryptfs_code_for_cipher_string
1006 1007
 * @cipher_name: The string alias for the cipher
 * @key_bytes: Length of key in bytes; used for AES code selection
1008 1009 1010
 *
 * Returns zero on no match, or the cipher code on match
 */
1011
u8 ecryptfs_code_for_cipher_string(char *cipher_name, size_t key_bytes)
1012 1013
{
	int i;
1014
	u8 code = 0;
1015 1016 1017
	struct ecryptfs_cipher_code_str_map_elem *map =
		ecryptfs_cipher_code_str_map;

1018 1019
	if (strcmp(cipher_name, "aes") == 0) {
		switch (key_bytes) {
1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
		case 16:
			code = RFC2440_CIPHER_AES_128;
			break;
		case 24:
			code = RFC2440_CIPHER_AES_192;
			break;
		case 32:
			code = RFC2440_CIPHER_AES_256;
		}
	} else {
		for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
1031
			if (strcmp(cipher_name, map[i].cipher_str) == 0) {
1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
				code = map[i].cipher_code;
				break;
			}
	}
	return code;
}

/**
 * ecryptfs_cipher_code_to_string
 * @str: Destination to write out the cipher name
 * @cipher_code: The code to convert to cipher name string
 *
 * Returns zero on success
 */
1046
int ecryptfs_cipher_code_to_string(char *str, u8 cipher_code)
1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
{
	int rc = 0;
	int i;

	str[0] = '\0';
	for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
		if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code)
			strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str);
	if (str[0] == '\0') {
		ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: "
				"[%d]\n", cipher_code);
		rc = -EINVAL;
	}
	return rc;
}

1063
int ecryptfs_read_and_validate_header_region(struct inode *inode)
1064
{
1065 1066
	u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
	u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
1067 1068
	int rc;

1069 1070 1071 1072 1073 1074 1075
	rc = ecryptfs_read_lower(file_size, 0, ECRYPTFS_SIZE_AND_MARKER_BYTES,
				 inode);
	if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
		return rc >= 0 ? -EINVAL : rc;
	rc = ecryptfs_validate_marker(marker);
	if (!rc)
		ecryptfs_i_size_init(file_size, inode);
1076 1077 1078
	return rc;
}

1079 1080 1081 1082
void
ecryptfs_write_header_metadata(char *virt,
			       struct ecryptfs_crypt_stat *crypt_stat,
			       size_t *written)
1083 1084 1085 1086
{
	u32 header_extent_size;
	u16 num_header_extents_at_front;

1087
	header_extent_size = (u32)crypt_stat->extent_size;
1088
	num_header_extents_at_front =
1089
		(u16)(crypt_stat->metadata_size / crypt_stat->extent_size);
1090
	put_unaligned_be32(header_extent_size, virt);
1091
	virt += 4;
1092
	put_unaligned_be16(num_header_extents_at_front, virt);
1093 1094 1095
	(*written) = 6;
}

1096
struct kmem_cache *ecryptfs_header_cache;
1097 1098 1099

/**
 * ecryptfs_write_headers_virt
1100
 * @page_virt: The virtual address to write the headers to
1101
 * @max: The size of memory allocated at page_virt
1102 1103 1104
 * @size: Set to the number of bytes written by this function
 * @crypt_stat: The cryptographic context
 * @ecryptfs_dentry: The eCryptfs dentry
1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
 *
 * Format version: 1
 *
 *   Header Extent:
 *     Octets 0-7:        Unencrypted file size (big-endian)
 *     Octets 8-15:       eCryptfs special marker
 *     Octets 16-19:      Flags
 *      Octet 16:         File format version number (between 0 and 255)
 *      Octets 17-18:     Reserved
 *      Octet 19:         Bit 1 (lsb): Reserved
 *                        Bit 2: Encrypted?
 *                        Bits 3-8: Reserved
 *     Octets 20-23:      Header extent size (big-endian)
 *     Octets 24-25:      Number of header extents at front of file
 *                        (big-endian)
 *     Octet  26:         Begin RFC 2440 authentication token packet set
 *   Data Extent 0:
 *     Lower data (CBC encrypted)
 *   Data Extent 1:
 *     Lower data (CBC encrypted)
 *   ...
 *
 * Returns zero on success
 */
1129 1130
static int ecryptfs_write_headers_virt(char *page_virt, size_t max,
				       size_t *size,
1131 1132
				       struct ecryptfs_crypt_stat *crypt_stat,
				       struct dentry *ecryptfs_dentry)
1133 1134 1135 1136 1137 1138 1139 1140
{
	int rc;
	size_t written;
	size_t offset;

	offset = ECRYPTFS_FILE_SIZE_BYTES;
	write_ecryptfs_marker((page_virt + offset), &written);
	offset += written;
1141 1142
	ecryptfs_write_crypt_stat_flags((page_virt + offset), crypt_stat,
					&written);
1143
	offset += written;
1144 1145
	ecryptfs_write_header_metadata((page_virt + offset), crypt_stat,
				       &written);
1146 1147 1148
	offset += written;
	rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat,
					      ecryptfs_dentry, &written,
1149
					      max - offset);
1150 1151 1152
	if (rc)
		ecryptfs_printk(KERN_WARNING, "Error generating key packet "
				"set; rc = [%d]\n", rc);
1153 1154 1155 1156 1157 1158 1159
	if (size) {
		offset += written;
		*size = offset;
	}
	return rc;
}

1160
static int
1161
ecryptfs_write_metadata_to_contents(struct inode *ecryptfs_inode,
1162
				    char *virt, size_t virt_len)
1163
{
1164
	int rc;
1165

1166
	rc = ecryptfs_write_lower(ecryptfs_inode, virt,
1167
				  0, virt_len);
1168
	if (rc < 0)
1169
		printk(KERN_ERR "%s: Error attempting to write header "
1170 1171 1172
		       "information to lower file; rc = [%d]\n", __func__, rc);
	else
		rc = 0;
1173
	return rc;
1174 1175
}

1176 1177 1178
static int
ecryptfs_write_metadata_to_xattr(struct dentry *ecryptfs_dentry,
				 char *page_virt, size_t size)
1179 1180 1181 1182 1183
{
	int rc;

	rc = ecryptfs_setxattr(ecryptfs_dentry, ECRYPTFS_XATTR_NAME, page_virt,
			       size, 0);
1184 1185 1186
	return rc;
}

1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
static unsigned long ecryptfs_get_zeroed_pages(gfp_t gfp_mask,
					       unsigned int order)
{
	struct page *page;

	page = alloc_pages(gfp_mask | __GFP_ZERO, order);
	if (page)
		return (unsigned long) page_address(page);
	return 0;
}

1198
/**
1199
 * ecryptfs_write_metadata
1200 1201
 * @ecryptfs_dentry: The eCryptfs dentry, which should be negative
 * @ecryptfs_inode: The newly created eCryptfs inode
1202 1203 1204 1205 1206 1207 1208 1209 1210
 *
 * Write the file headers out.  This will likely involve a userspace
 * callout, in which the session key is encrypted with one or more
 * public keys and/or the passphrase necessary to do the encryption is
 * retrieved via a prompt.  Exactly what happens at this point should
 * be policy-dependent.
 *
 * Returns zero on success; non-zero on error
 */
1211 1212
int ecryptfs_write_metadata(struct dentry *ecryptfs_dentry,
			    struct inode *ecryptfs_inode)
1213
{
1214
	struct ecryptfs_crypt_stat *crypt_stat =
1215
		&ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1216
	unsigned int order;
1217
	char *virt;
1218
	size_t virt_len;
1219
	size_t size = 0;
1220 1221
	int rc = 0;

1222 1223
	if (likely(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
		if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
1224
			printk(KERN_ERR "Key is invalid; bailing out\n");
1225 1226 1227 1228
			rc = -EINVAL;
			goto out;
		}
	} else {
1229
		printk(KERN_WARNING "%s: Encrypted flag not set\n",
1230
		       __func__);
1231 1232 1233
		rc = -EINVAL;
		goto out;
	}
1234
	virt_len = crypt_stat->metadata_size;
1235
	order = get_order(virt_len);
1236
	/* Released in this function */
1237
	virt = (char *)ecryptfs_get_zeroed_pages(GFP_KERNEL, order);
1238
	if (!virt) {
1239
		printk(KERN_ERR "%s: Out of memory\n", __func__);
1240 1241 1242
		rc = -ENOMEM;
		goto out;
	}
1243
	/* Zeroed page ensures the in-header unencrypted i_size is set to 0 */
1244 1245
	rc = ecryptfs_write_headers_virt(virt, virt_len, &size, crypt_stat,
					 ecryptfs_dentry);
1246
	if (unlikely(rc)) {
1247
		printk(KERN_ERR "%s: Error whilst writing headers; rc = [%d]\n",
1248
		       __func__, rc);
1249 1250
		goto out_free;
	}
1251
	if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1252 1253
		rc = ecryptfs_write_metadata_to_xattr(ecryptfs_dentry, virt,
						      size);
1254
	else
1255
		rc = ecryptfs_write_metadata_to_contents(ecryptfs_inode, virt,
1256
							 virt_len);
1257
	if (rc) {
1258
		printk(KERN_ERR "%s: Error writing metadata out to lower file; "
1259
		       "rc = [%d]\n", __func__, rc);
1260
		goto out_free;
1261 1262
	}
out_free:
1263
	free_pages((unsigned long)virt, order);
1264 1265 1266 1267
out:
	return rc;
}

1268 1269
#define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0
#define ECRYPTFS_VALIDATE_HEADER_SIZE 1
1270
static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat,
1271 1272
				 char *virt, int *bytes_read,
				 int validate_header_size)
1273 1274 1275 1276 1277
{
	int rc = 0;
	u32 header_extent_size;
	u16 num_header_extents_at_front;

1278 1279 1280
	header_extent_size = get_unaligned_be32(virt);
	virt += sizeof(__be32);
	num_header_extents_at_front = get_unaligned_be16(virt);
1281 1282
	crypt_stat->metadata_size = (((size_t)num_header_extents_at_front
				     * (size_t)header_extent_size));
1283
	(*bytes_read) = (sizeof(__be32) + sizeof(__be16));
1284
	if ((validate_header_size == ECRYPTFS_VALIDATE_HEADER_SIZE)
1285
	    && (crypt_stat->metadata_size
1286
		< ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)) {
1287
		rc = -EINVAL;
1288
		printk(KERN_WARNING "Invalid header size: [%zd]\n",
1289
		       crypt_stat->metadata_size);
1290 1291 1292 1293 1294 1295
	}
	return rc;
}

/**
 * set_default_header_data
1296
 * @crypt_stat: The cryptographic context
1297 1298 1299 1300 1301 1302 1303
 *
 * For version 0 file format; this function is only for backwards
 * compatibility for files created with the prior versions of
 * eCryptfs.
 */
static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat)
{
1304
	crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
1305 1306
}

1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
void ecryptfs_i_size_init(const char *page_virt, struct inode *inode)
{
	struct ecryptfs_mount_crypt_stat *mount_crypt_stat;
	struct ecryptfs_crypt_stat *crypt_stat;
	u64 file_size;

	crypt_stat = &ecryptfs_inode_to_private(inode)->crypt_stat;
	mount_crypt_stat =
		&ecryptfs_superblock_to_private(inode->i_sb)->mount_crypt_stat;
	if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED) {
		file_size = i_size_read(ecryptfs_inode_to_lower(inode));
		if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
			file_size += crypt_stat->metadata_size;
	} else
		file_size = get_unaligned_be64(page_virt);
	i_size_write(inode, (loff_t)file_size);
	crypt_stat->flags |= ECRYPTFS_I_SIZE_INITIALIZED;
}

1326 1327
/**
 * ecryptfs_read_headers_virt
1328 1329 1330 1331
 * @page_virt: The virtual address into which to read the headers
 * @crypt_stat: The cryptographic context
 * @ecryptfs_dentry: The eCryptfs dentry
 * @validate_header_size: Whether to validate the header size while reading
1332 1333 1334 1335 1336 1337 1338 1339
 *
 * Read/parse the header data. The header format is detailed in the
 * comment block for the ecryptfs_write_headers_virt() function.
 *
 * Returns zero on success
 */
static int ecryptfs_read_headers_virt(char *page_virt,
				      struct ecryptfs_crypt_stat *crypt_stat,
1340 1341
				      struct dentry *ecryptfs_dentry,
				      int validate_header_size)
1342 1343 1344 1345 1346 1347 1348 1349 1350
{
	int rc = 0;
	int offset;
	int bytes_read;

	ecryptfs_set_default_sizes(crypt_stat);
	crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private(
		ecryptfs_dentry->d_sb)->mount_crypt_stat;
	offset = ECRYPTFS_FILE_SIZE_BYTES;
1351 1352
	rc = ecryptfs_validate_marker(page_virt + offset);
	if (rc)
1353
		goto out;
1354 1355
	if (!(crypt_stat->flags & ECRYPTFS_I_SIZE_INITIALIZED))
		ecryptfs_i_size_init(page_virt, ecryptfs_dentry->d_inode);
1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374
	offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
	rc = ecryptfs_process_flags(crypt_stat, (page_virt + offset),
				    &bytes_read);
	if (rc) {
		ecryptfs_printk(KERN_WARNING, "Error processing flags\n");
		goto out;
	}
	if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) {
		ecryptfs_printk(KERN_WARNING, "File version is [%d]; only "
				"file version [%d] is supported by this "
				"version of eCryptfs\n",
				crypt_stat->file_version,
				ECRYPTFS_SUPPORTED_FILE_VERSION);
		rc = -EINVAL;
		goto out;
	}
	offset += bytes_read;
	if (crypt_stat->file_version >= 1) {
		rc = parse_header_metadata(crypt_stat, (page_virt + offset),
1375
					   &bytes_read, validate_header_size);
1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389
		if (rc) {
			ecryptfs_printk(KERN_WARNING, "Error reading header "
					"metadata; rc = [%d]\n", rc);
		}
		offset += bytes_read;
	} else
		set_default_header_data(crypt_stat);
	rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset),
				       ecryptfs_dentry);
out:
	return rc;
}

/**
1390
 * ecryptfs_read_xattr_region
1391
 * @page_virt: The vitual address into which to read the xattr data
1392
 * @ecryptfs_inode: The eCryptfs inode
1393 1394 1395
 *
 * Attempts to read the crypto metadata from the extended attribute
 * region of the lower file.
1396 1397
 *
 * Returns zero on success; non-zero on error
1398
 */
1399
int ecryptfs_read_xattr_region(char *page_virt, struct inode *ecryptfs_inode)
1400
{
1401 1402
	struct dentry *lower_dentry =
		ecryptfs_inode_to_private(ecryptfs_inode)->lower_file->f_dentry;
1403 1404 1405
	ssize_t size;
	int rc = 0;

1406 1407
	size = ecryptfs_getxattr_lower(lower_dentry, ECRYPTFS_XATTR_NAME,
				       page_virt, ECRYPTFS_DEFAULT_EXTENT_SIZE);
1408
	if (size < 0) {
1409 1410 1411 1412
		if (unlikely(ecryptfs_verbosity > 0))
			printk(KERN_INFO "Error attempting to read the [%s] "
			       "xattr from the lower file; return value = "
			       "[%zd]\n", ECRYPTFS_XATTR_NAME, size);
1413 1414 1415 1416 1417 1418 1419
		rc = -EINVAL;
		goto out;
	}
out:
	return rc;
}

1420
int ecryptfs_read_and_validate_xattr_region(struct dentry *dentry,
1421
					    struct inode *inode)
1422
{
1423 1424
	u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
	u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
1425 1426
	int rc;

1427 1428 1429 1430 1431 1432 1433 1434
	rc = ecryptfs_getxattr_lower(ecryptfs_dentry_to_lower(dentry),
				     ECRYPTFS_XATTR_NAME, file_size,
				     ECRYPTFS_SIZE_AND_MARKER_BYTES);
	if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
		return rc >= 0 ? -EINVAL : rc;
	rc = ecryptfs_validate_marker(marker);
	if (!rc)
		ecryptfs_i_size_init(file_size, inode);
1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446
	return rc;
}

/**
 * ecryptfs_read_metadata
 *
 * Common entry point for reading file metadata. From here, we could
 * retrieve the header information from the header region of the file,
 * the xattr region of the file, or some other repostory that is
 * stored separately from the file itself. The current implementation
 * supports retrieving the metadata information from the file contents
 * and from the xattr region.
1447 1448 1449
 *
 * Returns zero if valid headers found and parsed; non-zero otherwise
 */
1450
int ecryptfs_read_metadata(struct dentry *ecryptfs_dentry)
1451
{
1452 1453
	int rc;
	char *page_virt;
1454
	struct inode *ecryptfs_inode = ecryptfs_dentry->d_inode;
1455
	struct ecryptfs_crypt_stat *crypt_stat =
1456
	    &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1457 1458 1459
	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
		&ecryptfs_superblock_to_private(
			ecryptfs_dentry->d_sb)->mount_crypt_stat;
1460

1461 1462
	ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
						      mount_crypt_stat);
1463
	/* Read the first page from the underlying file */
1464
	page_virt = kmem_cache_alloc(ecryptfs_header_cache, GFP_USER);
1465 1466
	if (!page_virt) {
		rc = -ENOMEM;
1467
		printk(KERN_ERR "%s: Unable to allocate page_virt\n",
1468
		       __func__);
1469 1470
		goto out;
	}
1471 1472
	rc = ecryptfs_read_lower(page_virt, 0, crypt_stat->extent_size,
				 ecryptfs_inode);
1473
	if (rc >= 0)
1474 1475 1476
		rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
						ecryptfs_dentry,
						ECRYPTFS_VALIDATE_HEADER_SIZE);
1477
	if (rc) {
1478
		/* metadata is not in the file header, so try xattrs */
1479
		memset(page_virt, 0, PAGE_CACHE_SIZE);
1480
		rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_inode);
1481 1482
		if (rc) {
			printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1483 1484
			       "file header region or xattr region, inode %lu\n",
				ecryptfs_inode->i_ino);
1485 1486 1487 1488 1489 1490 1491 1492
			rc = -EINVAL;
			goto out;
		}
		rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
						ecryptfs_dentry,
						ECRYPTFS_DONT_VALIDATE_HEADER_SIZE);
		if (rc) {
			printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1493 1494
			       "file xattr region either, inode %lu\n",
				ecryptfs_inode->i_ino);
1495 1496 1497 1498 1499 1500 1501 1502 1503 1504
			rc = -EINVAL;
		}
		if (crypt_stat->mount_crypt_stat->flags
		    & ECRYPTFS_XATTR_METADATA_ENABLED) {
			crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
		} else {
			printk(KERN_WARNING "Attempt to access file with "
			       "crypto metadata only in the extended attribute "
			       "region, but eCryptfs was mounted without "
			       "xattr support enabled. eCryptfs will not treat "
1505 1506
			       "this like an encrypted file, inode %lu\n",
				ecryptfs_inode->i_ino);
1507 1508
			rc = -EINVAL;
		}
1509 1510 1511 1512
	}
out:
	if (page_virt) {
		memset(page_virt, 0, PAGE_CACHE_SIZE);
1513
		kmem_cache_free(ecryptfs_header_cache, page_virt);
1514 1515 1516 1517
	}
	return rc;
}

1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557
/**
 * ecryptfs_encrypt_filename - encrypt filename
 *
 * CBC-encrypts the filename. We do not want to encrypt the same
 * filename with the same key and IV, which may happen with hard
 * links, so we prepend random bits to each filename.
 *
 * Returns zero on success; non-zero otherwise
 */
static int
ecryptfs_encrypt_filename(struct ecryptfs_filename *filename,
			  struct ecryptfs_crypt_stat *crypt_stat,
			  struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
{
	int rc = 0;

	filename->encrypted_filename = NULL;
	filename->encrypted_filename_size = 0;
	if ((crypt_stat && (crypt_stat->flags & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
	    || (mount_crypt_stat && (mount_crypt_stat->flags
				     & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))) {
		size_t packet_size;
		size_t remaining_bytes;

		rc = ecryptfs_write_tag_70_packet(
			NULL, NULL,
			&filename->encrypted_filename_size,
			mount_crypt_stat, NULL,
			filename->filename_size);
		if (rc) {
			printk(KERN_ERR "%s: Error attempting to get packet "
			       "size for tag 72; rc = [%d]\n", __func__,
			       rc);
			filename->encrypted_filename_size = 0;
			goto out;
		}
		filename->encrypted_filename =
			kmalloc(filename->encrypted_filename_size, GFP_KERNEL);
		if (!filename->encrypted_filename) {
			printk(KERN_ERR "%s: Out of memory whilst attempting "
M
Michael Halcrow 已提交
1558
			       "to kmalloc [%zd] bytes\n", __func__,
1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582
			       filename->encrypted_filename_size);
			rc = -ENOMEM;
			goto out;
		}
		remaining_bytes = filename->encrypted_filename_size;
		rc = ecryptfs_write_tag_70_packet(filename->encrypted_filename,
						  &remaining_bytes,
						  &packet_size,
						  mount_crypt_stat,
						  filename->filename,
						  filename->filename_size);
		if (rc) {
			printk(KERN_ERR "%s: Error attempting to generate "
			       "tag 70 packet; rc = [%d]\n", __func__,
			       rc);
			kfree(filename->encrypted_filename);
			filename->encrypted_filename = NULL;
			filename->encrypted_filename_size = 0;
			goto out;
		}
		filename->encrypted_filename_size = packet_size;
	} else {
		printk(KERN_ERR "%s: No support for requested filename "
		       "encryption method in this release\n", __func__);
1583
		rc = -EOPNOTSUPP;
1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594
		goto out;
	}
out:
	return rc;
}

static int ecryptfs_copy_filename(char **copied_name, size_t *copied_name_size,
				  const char *name, size_t name_size)
{
	int rc = 0;

1595
	(*copied_name) = kmalloc((name_size + 1), GFP_KERNEL);
1596 1597 1598 1599 1600 1601 1602 1603 1604
	if (!(*copied_name)) {
		rc = -ENOMEM;
		goto out;
	}
	memcpy((void *)(*copied_name), (void *)name, name_size);
	(*copied_name)[(name_size)] = '\0';	/* Only for convenience
						 * in printing out the
						 * string in debug
						 * messages */
1605
	(*copied_name_size) = name_size;
1606 1607 1608 1609
out:
	return rc;
}

1610
/**
1611
 * ecryptfs_process_key_cipher - Perform key cipher initialization.
1612
 * @key_tfm: Crypto context for key material, set by this function
1613 1614
 * @cipher_name: Name of the cipher
 * @key_size: Size of the key in bytes
1615 1616 1617 1618 1619
 *
 * Returns zero on success. Any crypto_tfm structs allocated here
 * should be released by other functions, such as on a superblock put
 * event, regardless of whether this function succeeds for fails.
 */
1620
static int
1621 1622
ecryptfs_process_key_cipher(struct crypto_blkcipher **key_tfm,
			    char *cipher_name, size_t *key_size)
1623 1624
{
	char dummy_key[ECRYPTFS_MAX_KEY_BYTES];
D
Dan Carpenter 已提交
1625
	char *full_alg_name = NULL;
1626 1627
	int rc;

1628 1629
	*key_tfm = NULL;
	if (*key_size > ECRYPTFS_MAX_KEY_BYTES) {
1630
		rc = -EINVAL;
M
Michael Halcrow 已提交
1631
		printk(KERN_ERR "Requested key size is [%zd] bytes; maximum "
1632
		      "allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES);
1633 1634
		goto out;
	}
1635 1636 1637 1638 1639 1640 1641
	rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name,
						    "ecb");
	if (rc)
		goto out;
	*key_tfm = crypto_alloc_blkcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC);
	if (IS_ERR(*key_tfm)) {
		rc = PTR_ERR(*key_tfm);
1642
		printk(KERN_ERR "Unable to allocate crypto cipher with name "
1643
		       "[%s]; rc = [%d]\n", full_alg_name, rc);
1644 1645
		goto out;
	}
1646 1647 1648 1649 1650 1651
	crypto_blkcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_WEAK_KEY);
	if (*key_size == 0) {
		struct blkcipher_alg *alg = crypto_blkcipher_alg(*key_tfm);

		*key_size = alg->max_keysize;
	}
1652
	get_random_bytes(dummy_key, *key_size);
1653
	rc = crypto_blkcipher_setkey(*key_tfm, dummy_key, *key_size);
1654
	if (rc) {
M
Michael Halcrow 已提交
1655
		printk(KERN_ERR "Error attempting to set key of size [%zd] for "
1656 1657
		       "cipher [%s]; rc = [%d]\n", *key_size, full_alg_name,
		       rc);
1658 1659 1660 1661
		rc = -EINVAL;
		goto out;
	}
out:
D
Dan Carpenter 已提交
1662
	kfree(full_alg_name);
1663 1664
	return rc;
}
1665 1666

struct kmem_cache *ecryptfs_key_tfm_cache;
A
Adrian Bunk 已提交
1667
static struct list_head key_tfm_list;
1668
struct mutex key_tfm_list_mutex;
1669

1670
int __init ecryptfs_init_crypto(void)
1671 1672 1673 1674 1675 1676
{
	mutex_init(&key_tfm_list_mutex);
	INIT_LIST_HEAD(&key_tfm_list);
	return 0;
}

1677 1678 1679 1680 1681
/**
 * ecryptfs_destroy_crypto - free all cached key_tfms on key_tfm_list
 *
 * Called only at module unload time
 */
1682
int ecryptfs_destroy_crypto(void)
1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704
{
	struct ecryptfs_key_tfm *key_tfm, *key_tfm_tmp;

	mutex_lock(&key_tfm_list_mutex);
	list_for_each_entry_safe(key_tfm, key_tfm_tmp, &key_tfm_list,
				 key_tfm_list) {
		list_del(&key_tfm->key_tfm_list);
		if (key_tfm->key_tfm)
			crypto_free_blkcipher(key_tfm->key_tfm);
		kmem_cache_free(ecryptfs_key_tfm_cache, key_tfm);
	}
	mutex_unlock(&key_tfm_list_mutex);
	return 0;
}

int
ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm **key_tfm, char *cipher_name,
			 size_t key_size)
{
	struct ecryptfs_key_tfm *tmp_tfm;
	int rc = 0;

1705 1706
	BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));

1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718
	tmp_tfm = kmem_cache_alloc(ecryptfs_key_tfm_cache, GFP_KERNEL);
	if (key_tfm != NULL)
		(*key_tfm) = tmp_tfm;
	if (!tmp_tfm) {
		rc = -ENOMEM;
		printk(KERN_ERR "Error attempting to allocate from "
		       "ecryptfs_key_tfm_cache\n");
		goto out;
	}
	mutex_init(&tmp_tfm->key_tfm_mutex);
	strncpy(tmp_tfm->cipher_name, cipher_name,
		ECRYPTFS_MAX_CIPHER_NAME_SIZE);
1719
	tmp_tfm->cipher_name[ECRYPTFS_MAX_CIPHER_NAME_SIZE] = '\0';
1720
	tmp_tfm->key_size = key_size;
1721 1722 1723 1724
	rc = ecryptfs_process_key_cipher(&tmp_tfm->key_tfm,
					 tmp_tfm->cipher_name,
					 &tmp_tfm->key_size);
	if (rc) {
1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737
		printk(KERN_ERR "Error attempting to initialize key TFM "
		       "cipher with name = [%s]; rc = [%d]\n",
		       tmp_tfm->cipher_name, rc);
		kmem_cache_free(ecryptfs_key_tfm_cache, tmp_tfm);
		if (key_tfm != NULL)
			(*key_tfm) = NULL;
		goto out;
	}
	list_add(&tmp_tfm->key_tfm_list, &key_tfm_list);
out:
	return rc;
}

1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776
/**
 * ecryptfs_tfm_exists - Search for existing tfm for cipher_name.
 * @cipher_name: the name of the cipher to search for
 * @key_tfm: set to corresponding tfm if found
 *
 * Searches for cached key_tfm matching @cipher_name
 * Must be called with &key_tfm_list_mutex held
 * Returns 1 if found, with @key_tfm set
 * Returns 0 if not found, with @key_tfm set to NULL
 */
int ecryptfs_tfm_exists(char *cipher_name, struct ecryptfs_key_tfm **key_tfm)
{
	struct ecryptfs_key_tfm *tmp_key_tfm;

	BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));

	list_for_each_entry(tmp_key_tfm, &key_tfm_list, key_tfm_list) {
		if (strcmp(tmp_key_tfm->cipher_name, cipher_name) == 0) {
			if (key_tfm)
				(*key_tfm) = tmp_key_tfm;
			return 1;
		}
	}
	if (key_tfm)
		(*key_tfm) = NULL;
	return 0;
}

/**
 * ecryptfs_get_tfm_and_mutex_for_cipher_name
 *
 * @tfm: set to cached tfm found, or new tfm created
 * @tfm_mutex: set to mutex for cached tfm found, or new tfm created
 * @cipher_name: the name of the cipher to search for and/or add
 *
 * Sets pointers to @tfm & @tfm_mutex matching @cipher_name.
 * Searches for cached item first, and creates new if not found.
 * Returns 0 on success, non-zero if adding new cipher failed
 */
1777 1778 1779 1780 1781 1782 1783 1784 1785
int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_blkcipher **tfm,
					       struct mutex **tfm_mutex,
					       char *cipher_name)
{
	struct ecryptfs_key_tfm *key_tfm;
	int rc = 0;

	(*tfm) = NULL;
	(*tfm_mutex) = NULL;
1786

1787
	mutex_lock(&key_tfm_list_mutex);
1788 1789 1790 1791 1792
	if (!ecryptfs_tfm_exists(cipher_name, &key_tfm)) {
		rc = ecryptfs_add_new_key_tfm(&key_tfm, cipher_name, 0);
		if (rc) {
			printk(KERN_ERR "Error adding new key_tfm to list; "
					"rc = [%d]\n", rc);
1793 1794 1795 1796 1797 1798
			goto out;
		}
	}
	(*tfm) = key_tfm->key_tfm;
	(*tfm_mutex) = &key_tfm->key_tfm_mutex;
out:
1799
	mutex_unlock(&key_tfm_list_mutex);
1800 1801
	return rc;
}
1802 1803 1804 1805 1806 1807 1808 1809 1810

/* 64 characters forming a 6-bit target field */
static unsigned char *portable_filename_chars = ("-.0123456789ABCD"
						 "EFGHIJKLMNOPQRST"
						 "UVWXYZabcdefghij"
						 "klmnopqrstuvwxyz");

/* We could either offset on every reverse map or just pad some 0x00's
 * at the front here */
1811
static const unsigned char filename_rev_map[256] = {
1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826
	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 7 */
	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 15 */
	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 23 */
	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 31 */
	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 39 */
	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, /* 47 */
	0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, /* 55 */
	0x0A, 0x0B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 63 */
	0x00, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, /* 71 */
	0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, /* 79 */
	0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22, /* 87 */
	0x23, 0x24, 0x25, 0x00, 0x00, 0x00, 0x00, 0x00, /* 95 */
	0x00, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, /* 103 */
	0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, /* 111 */
	0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, /* 119 */
1827
	0x3D, 0x3E, 0x3F /* 123 - 255 initialized to 0x00 */
1828 1829 1830 1831 1832 1833 1834 1835 1836
};

/**
 * ecryptfs_encode_for_filename
 * @dst: Destination location for encoded filename
 * @dst_size: Size of the encoded filename in bytes
 * @src: Source location for the filename to encode
 * @src_size: Size of the source in bytes
 */
1837
static void ecryptfs_encode_for_filename(unsigned char *dst, size_t *dst_size,
1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891
				  unsigned char *src, size_t src_size)
{
	size_t num_blocks;
	size_t block_num = 0;
	size_t dst_offset = 0;
	unsigned char last_block[3];

	if (src_size == 0) {
		(*dst_size) = 0;
		goto out;
	}
	num_blocks = (src_size / 3);
	if ((src_size % 3) == 0) {
		memcpy(last_block, (&src[src_size - 3]), 3);
	} else {
		num_blocks++;
		last_block[2] = 0x00;
		switch (src_size % 3) {
		case 1:
			last_block[0] = src[src_size - 1];
			last_block[1] = 0x00;
			break;
		case 2:
			last_block[0] = src[src_size - 2];
			last_block[1] = src[src_size - 1];
		}
	}
	(*dst_size) = (num_blocks * 4);
	if (!dst)
		goto out;
	while (block_num < num_blocks) {
		unsigned char *src_block;
		unsigned char dst_block[4];

		if (block_num == (num_blocks - 1))
			src_block = last_block;
		else
			src_block = &src[block_num * 3];
		dst_block[0] = ((src_block[0] >> 2) & 0x3F);
		dst_block[1] = (((src_block[0] << 4) & 0x30)
				| ((src_block[1] >> 4) & 0x0F));
		dst_block[2] = (((src_block[1] << 2) & 0x3C)
				| ((src_block[2] >> 6) & 0x03));
		dst_block[3] = (src_block[2] & 0x3F);
		dst[dst_offset++] = portable_filename_chars[dst_block[0]];
		dst[dst_offset++] = portable_filename_chars[dst_block[1]];
		dst[dst_offset++] = portable_filename_chars[dst_block[2]];
		dst[dst_offset++] = portable_filename_chars[dst_block[3]];
		block_num++;
	}
out:
	return;
}

T
Tyler Hicks 已提交
1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902
static size_t ecryptfs_max_decoded_size(size_t encoded_size)
{
	/* Not exact; conservatively long. Every block of 4
	 * encoded characters decodes into a block of 3
	 * decoded characters. This segment of code provides
	 * the caller with the maximum amount of allocated
	 * space that @dst will need to point to in a
	 * subsequent call. */
	return ((encoded_size + 1) * 3) / 4;
}

1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914
/**
 * ecryptfs_decode_from_filename
 * @dst: If NULL, this function only sets @dst_size and returns. If
 *       non-NULL, this function decodes the encoded octets in @src
 *       into the memory that @dst points to.
 * @dst_size: Set to the size of the decoded string.
 * @src: The encoded set of octets to decode.
 * @src_size: The size of the encoded set of octets to decode.
 */
static void
ecryptfs_decode_from_filename(unsigned char *dst, size_t *dst_size,
			      const unsigned char *src, size_t src_size)
1915 1916 1917 1918 1919 1920
{
	u8 current_bit_offset = 0;
	size_t src_byte_offset = 0;
	size_t dst_byte_offset = 0;

	if (dst == NULL) {
T
Tyler Hicks 已提交
1921
		(*dst_size) = ecryptfs_max_decoded_size(src_size);
1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953
		goto out;
	}
	while (src_byte_offset < src_size) {
		unsigned char src_byte =
				filename_rev_map[(int)src[src_byte_offset]];

		switch (current_bit_offset) {
		case 0:
			dst[dst_byte_offset] = (src_byte << 2);
			current_bit_offset = 6;
			break;
		case 6:
			dst[dst_byte_offset++] |= (src_byte >> 4);
			dst[dst_byte_offset] = ((src_byte & 0xF)
						 << 4);
			current_bit_offset = 4;
			break;
		case 4:
			dst[dst_byte_offset++] |= (src_byte >> 2);
			dst[dst_byte_offset] = (src_byte << 6);
			current_bit_offset = 2;
			break;
		case 2:
			dst[dst_byte_offset++] |= (src_byte);
			dst[dst_byte_offset] = 0;
			current_bit_offset = 0;
			break;
		}
		src_byte_offset++;
	}
	(*dst_size) = dst_byte_offset;
out:
1954
	return;
1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991
}

/**
 * ecryptfs_encrypt_and_encode_filename - converts a plaintext file name to cipher text
 * @crypt_stat: The crypt_stat struct associated with the file anem to encode
 * @name: The plaintext name
 * @length: The length of the plaintext
 * @encoded_name: The encypted name
 *
 * Encrypts and encodes a filename into something that constitutes a
 * valid filename for a filesystem, with printable characters.
 *
 * We assume that we have a properly initialized crypto context,
 * pointed to by crypt_stat->tfm.
 *
 * Returns zero on success; non-zero on otherwise
 */
int ecryptfs_encrypt_and_encode_filename(
	char **encoded_name,
	size_t *encoded_name_size,
	struct ecryptfs_crypt_stat *crypt_stat,
	struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
	const char *name, size_t name_size)
{
	size_t encoded_name_no_prefix_size;
	int rc = 0;

	(*encoded_name) = NULL;
	(*encoded_name_size) = 0;
	if ((crypt_stat && (crypt_stat->flags & ECRYPTFS_ENCRYPT_FILENAMES))
	    || (mount_crypt_stat && (mount_crypt_stat->flags
				     & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES))) {
		struct ecryptfs_filename *filename;

		filename = kzalloc(sizeof(*filename), GFP_KERNEL);
		if (!filename) {
			printk(KERN_ERR "%s: Out of memory whilst attempting "
1992
			       "to kzalloc [%zd] bytes\n", __func__,
1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025
			       sizeof(*filename));
			rc = -ENOMEM;
			goto out;
		}
		filename->filename = (char *)name;
		filename->filename_size = name_size;
		rc = ecryptfs_encrypt_filename(filename, crypt_stat,
					       mount_crypt_stat);
		if (rc) {
			printk(KERN_ERR "%s: Error attempting to encrypt "
			       "filename; rc = [%d]\n", __func__, rc);
			kfree(filename);
			goto out;
		}
		ecryptfs_encode_for_filename(
			NULL, &encoded_name_no_prefix_size,
			filename->encrypted_filename,
			filename->encrypted_filename_size);
		if ((crypt_stat && (crypt_stat->flags
				    & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
		    || (mount_crypt_stat
			&& (mount_crypt_stat->flags
			    & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)))
			(*encoded_name_size) =
				(ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
				 + encoded_name_no_prefix_size);
		else
			(*encoded_name_size) =
				(ECRYPTFS_FEK_ENCRYPTED_FILENAME_PREFIX_SIZE
				 + encoded_name_no_prefix_size);
		(*encoded_name) = kmalloc((*encoded_name_size) + 1, GFP_KERNEL);
		if (!(*encoded_name)) {
			printk(KERN_ERR "%s: Out of memory whilst attempting "
2026
			       "to kzalloc [%zd] bytes\n", __func__,
2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051
			       (*encoded_name_size));
			rc = -ENOMEM;
			kfree(filename->encrypted_filename);
			kfree(filename);
			goto out;
		}
		if ((crypt_stat && (crypt_stat->flags
				    & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
		    || (mount_crypt_stat
			&& (mount_crypt_stat->flags
			    & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))) {
			memcpy((*encoded_name),
			       ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
			       ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE);
			ecryptfs_encode_for_filename(
			    ((*encoded_name)
			     + ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE),
			    &encoded_name_no_prefix_size,
			    filename->encrypted_filename,
			    filename->encrypted_filename_size);
			(*encoded_name_size) =
				(ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
				 + encoded_name_no_prefix_size);
			(*encoded_name)[(*encoded_name_size)] = '\0';
		} else {
2052
			rc = -EOPNOTSUPP;
2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089
		}
		if (rc) {
			printk(KERN_ERR "%s: Error attempting to encode "
			       "encrypted filename; rc = [%d]\n", __func__,
			       rc);
			kfree((*encoded_name));
			(*encoded_name) = NULL;
			(*encoded_name_size) = 0;
		}
		kfree(filename->encrypted_filename);
		kfree(filename);
	} else {
		rc = ecryptfs_copy_filename(encoded_name,
					    encoded_name_size,
					    name, name_size);
	}
out:
	return rc;
}

/**
 * ecryptfs_decode_and_decrypt_filename - converts the encoded cipher text name to decoded plaintext
 * @plaintext_name: The plaintext name
 * @plaintext_name_size: The plaintext name size
 * @ecryptfs_dir_dentry: eCryptfs directory dentry
 * @name: The filename in cipher text
 * @name_size: The cipher text name size
 *
 * Decrypts and decodes the filename.
 *
 * Returns zero on error; non-zero otherwise
 */
int ecryptfs_decode_and_decrypt_filename(char **plaintext_name,
					 size_t *plaintext_name_size,
					 struct dentry *ecryptfs_dir_dentry,
					 const char *name, size_t name_size)
{
2090 2091 2092
	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
		&ecryptfs_superblock_to_private(
			ecryptfs_dir_dentry->d_sb)->mount_crypt_stat;
2093 2094 2095 2096 2097
	char *decoded_name;
	size_t decoded_name_size;
	size_t packet_size;
	int rc = 0;

2098 2099 2100
	if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)
	    && !(mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
	    && (name_size > ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE)
2101 2102 2103 2104 2105 2106 2107
	    && (strncmp(name, ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
			ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE) == 0)) {
		const char *orig_name = name;
		size_t orig_name_size = name_size;

		name += ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
		name_size -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2108 2109
		ecryptfs_decode_from_filename(NULL, &decoded_name_size,
					      name, name_size);
2110 2111 2112
		decoded_name = kmalloc(decoded_name_size, GFP_KERNEL);
		if (!decoded_name) {
			printk(KERN_ERR "%s: Out of memory whilst attempting "
M
Michael Halcrow 已提交
2113
			       "to kmalloc [%zd] bytes\n", __func__,
2114 2115 2116 2117
			       decoded_name_size);
			rc = -ENOMEM;
			goto out;
		}
2118 2119
		ecryptfs_decode_from_filename(decoded_name, &decoded_name_size,
					      name, name_size);
2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145
		rc = ecryptfs_parse_tag_70_packet(plaintext_name,
						  plaintext_name_size,
						  &packet_size,
						  mount_crypt_stat,
						  decoded_name,
						  decoded_name_size);
		if (rc) {
			printk(KERN_INFO "%s: Could not parse tag 70 packet "
			       "from filename; copying through filename "
			       "as-is\n", __func__);
			rc = ecryptfs_copy_filename(plaintext_name,
						    plaintext_name_size,
						    orig_name, orig_name_size);
			goto out_free;
		}
	} else {
		rc = ecryptfs_copy_filename(plaintext_name,
					    plaintext_name_size,
					    name, name_size);
		goto out;
	}
out_free:
	kfree(decoded_name);
out:
	return rc;
}
T
Tyler Hicks 已提交
2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194

#define ENC_NAME_MAX_BLOCKLEN_8_OR_16	143

int ecryptfs_set_f_namelen(long *namelen, long lower_namelen,
			   struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
{
	struct blkcipher_desc desc;
	struct mutex *tfm_mutex;
	size_t cipher_blocksize;
	int rc;

	if (!(mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)) {
		(*namelen) = lower_namelen;
		return 0;
	}

	rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&desc.tfm, &tfm_mutex,
			mount_crypt_stat->global_default_fn_cipher_name);
	if (unlikely(rc)) {
		(*namelen) = 0;
		return rc;
	}

	mutex_lock(tfm_mutex);
	cipher_blocksize = crypto_blkcipher_blocksize(desc.tfm);
	mutex_unlock(tfm_mutex);

	/* Return an exact amount for the common cases */
	if (lower_namelen == NAME_MAX
	    && (cipher_blocksize == 8 || cipher_blocksize == 16)) {
		(*namelen) = ENC_NAME_MAX_BLOCKLEN_8_OR_16;
		return 0;
	}

	/* Return a safe estimate for the uncommon cases */
	(*namelen) = lower_namelen;
	(*namelen) -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
	/* Since this is the max decoded size, subtract 1 "decoded block" len */
	(*namelen) = ecryptfs_max_decoded_size(*namelen) - 3;
	(*namelen) -= ECRYPTFS_TAG_70_MAX_METADATA_SIZE;
	(*namelen) -= ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES;
	/* Worst case is that the filename is padded nearly a full block size */
	(*namelen) -= cipher_blocksize - 1;

	if ((*namelen) < 0)
		(*namelen) = 0;

	return 0;
}