crypto.c 55.6 KB
Newer Older
1 2 3 4 5
/**
 * eCryptfs: Linux filesystem encryption layer
 *
 * Copyright (C) 1997-2004 Erez Zadok
 * Copyright (C) 2001-2004 Stony Brook University
6
 * Copyright (C) 2004-2007 International Business Machines Corp.
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
 *   Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
 *   		Michael C. Thompson <mcthomps@us.ibm.com>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation; either version 2 of the
 * License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
 * 02111-1307, USA.
 */

#include <linux/fs.h>
#include <linux/mount.h>
#include <linux/pagemap.h>
#include <linux/random.h>
#include <linux/compiler.h>
#include <linux/key.h>
#include <linux/namei.h>
#include <linux/crypto.h>
#include <linux/file.h>
#include <linux/scatterlist.h>
#include "ecryptfs_kernel.h"

static int
ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
			     struct page *dst_page, int dst_offset,
			     struct page *src_page, int src_offset, int size,
			     unsigned char *iv);
static int
ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
			     struct page *dst_page, int dst_offset,
			     struct page *src_page, int src_offset, int size,
			     unsigned char *iv);

/**
 * ecryptfs_to_hex
 * @dst: Buffer to take hex character representation of contents of
 *       src; must be at least of size (src_size * 2)
 * @src: Buffer to be converted to a hex string respresentation
 * @src_size: number of bytes to convert
 */
void ecryptfs_to_hex(char *dst, char *src, size_t src_size)
{
	int x;

	for (x = 0; x < src_size; x++)
		sprintf(&dst[x * 2], "%.2x", (unsigned char)src[x]);
}

/**
 * ecryptfs_from_hex
 * @dst: Buffer to take the bytes from src hex; must be at least of
 *       size (src_size / 2)
 * @src: Buffer to be converted from a hex string respresentation to raw value
 * @dst_size: size of dst buffer, or number of hex characters pairs to convert
 */
void ecryptfs_from_hex(char *dst, char *src, int dst_size)
{
	int x;
	char tmp[3] = { 0, };

	for (x = 0; x < dst_size; x++) {
		tmp[0] = src[x * 2];
		tmp[1] = src[x * 2 + 1];
		dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16);
	}
}

/**
 * ecryptfs_calculate_md5 - calculates the md5 of @src
 * @dst: Pointer to 16 bytes of allocated memory
 * @crypt_stat: Pointer to crypt_stat struct for the current inode
 * @src: Data to be md5'd
 * @len: Length of @src
 *
 * Uses the allocated crypto context that crypt_stat references to
 * generate the MD5 sum of the contents of src.
 */
static int ecryptfs_calculate_md5(char *dst,
				  struct ecryptfs_crypt_stat *crypt_stat,
				  char *src, int len)
{
	struct scatterlist sg;
98 99 100 101 102
	struct hash_desc desc = {
		.tfm = crypt_stat->hash_tfm,
		.flags = CRYPTO_TFM_REQ_MAY_SLEEP
	};
	int rc = 0;
103

104
	mutex_lock(&crypt_stat->cs_hash_tfm_mutex);
105
	sg_init_one(&sg, (u8 *)src, len);
106 107 108 109 110
	if (!desc.tfm) {
		desc.tfm = crypto_alloc_hash(ECRYPTFS_DEFAULT_HASH, 0,
					     CRYPTO_ALG_ASYNC);
		if (IS_ERR(desc.tfm)) {
			rc = PTR_ERR(desc.tfm);
111
			ecryptfs_printk(KERN_ERR, "Error attempting to "
112 113
					"allocate crypto context; rc = [%d]\n",
					rc);
114 115
			goto out;
		}
116
		crypt_stat->hash_tfm = desc.tfm;
117
	}
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
	rc = crypto_hash_init(&desc);
	if (rc) {
		printk(KERN_ERR
		       "%s: Error initializing crypto hash; rc = [%d]\n",
		       __FUNCTION__, rc);
		goto out;
	}
	rc = crypto_hash_update(&desc, &sg, len);
	if (rc) {
		printk(KERN_ERR
		       "%s: Error updating crypto hash; rc = [%d]\n",
		       __FUNCTION__, rc);
		goto out;
	}
	rc = crypto_hash_final(&desc, dst);
	if (rc) {
		printk(KERN_ERR
		       "%s: Error finalizing crypto hash; rc = [%d]\n",
		       __FUNCTION__, rc);
		goto out;
	}
139
out:
140
	mutex_unlock(&crypt_stat->cs_hash_tfm_mutex);
141 142 143
	return rc;
}

144 145 146
static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name,
						  char *cipher_name,
						  char *chaining_modifier)
147 148 149 150 151 152 153 154
{
	int cipher_name_len = strlen(cipher_name);
	int chaining_modifier_len = strlen(chaining_modifier);
	int algified_name_len;
	int rc;

	algified_name_len = (chaining_modifier_len + cipher_name_len + 3);
	(*algified_name) = kmalloc(algified_name_len, GFP_KERNEL);
155
	if (!(*algified_name)) {
156 157 158 159 160 161 162 163 164 165
		rc = -ENOMEM;
		goto out;
	}
	snprintf((*algified_name), algified_name_len, "%s(%s)",
		 chaining_modifier, cipher_name);
	rc = 0;
out:
	return rc;
}

166 167 168 169
/**
 * ecryptfs_derive_iv
 * @iv: destination for the derived iv vale
 * @crypt_stat: Pointer to crypt_stat struct for the current inode
M
Michael Halcrow 已提交
170
 * @offset: Offset of the extent whose IV we are to derive
171 172 173 174 175 176 177
 *
 * Generate the initialization vector from the given root IV and page
 * offset.
 *
 * Returns zero on success; non-zero on error.
 */
static int ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat,
M
Michael Halcrow 已提交
178
			      loff_t offset)
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
{
	int rc = 0;
	char dst[MD5_DIGEST_SIZE];
	char src[ECRYPTFS_MAX_IV_BYTES + 16];

	if (unlikely(ecryptfs_verbosity > 0)) {
		ecryptfs_printk(KERN_DEBUG, "root iv:\n");
		ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes);
	}
	/* TODO: It is probably secure to just cast the least
	 * significant bits of the root IV into an unsigned long and
	 * add the offset to that rather than go through all this
	 * hashing business. -Halcrow */
	memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes);
	memset((src + crypt_stat->iv_bytes), 0, 16);
M
Michael Halcrow 已提交
194
	snprintf((src + crypt_stat->iv_bytes), 16, "%lld", offset);
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
	if (unlikely(ecryptfs_verbosity > 0)) {
		ecryptfs_printk(KERN_DEBUG, "source:\n");
		ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16));
	}
	rc = ecryptfs_calculate_md5(dst, crypt_stat, src,
				    (crypt_stat->iv_bytes + 16));
	if (rc) {
		ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
				"MD5 while generating IV for a page\n");
		goto out;
	}
	memcpy(iv, dst, crypt_stat->iv_bytes);
	if (unlikely(ecryptfs_verbosity > 0)) {
		ecryptfs_printk(KERN_DEBUG, "derived iv:\n");
		ecryptfs_dump_hex(iv, crypt_stat->iv_bytes);
	}
out:
	return rc;
}

/**
 * ecryptfs_init_crypt_stat
 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
 *
 * Initialize the crypt_stat structure.
 */
void
ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
{
	memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
225 226
	INIT_LIST_HEAD(&crypt_stat->keysig_list);
	mutex_init(&crypt_stat->keysig_list_mutex);
227 228
	mutex_init(&crypt_stat->cs_mutex);
	mutex_init(&crypt_stat->cs_tfm_mutex);
229
	mutex_init(&crypt_stat->cs_hash_tfm_mutex);
230
	crypt_stat->flags |= ECRYPTFS_STRUCT_INITIALIZED;
231 232 233
}

/**
234
 * ecryptfs_destroy_crypt_stat
235 236 237 238
 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
 *
 * Releases all memory associated with a crypt_stat struct.
 */
239
void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
240
{
241 242
	struct ecryptfs_key_sig *key_sig, *key_sig_tmp;

243
	if (crypt_stat->tfm)
244
		crypto_free_blkcipher(crypt_stat->tfm);
245 246
	if (crypt_stat->hash_tfm)
		crypto_free_hash(crypt_stat->hash_tfm);
247 248 249 250 251 252 253
	mutex_lock(&crypt_stat->keysig_list_mutex);
	list_for_each_entry_safe(key_sig, key_sig_tmp,
				 &crypt_stat->keysig_list, crypt_stat_list) {
		list_del(&key_sig->crypt_stat_list);
		kmem_cache_free(ecryptfs_key_sig_cache, key_sig);
	}
	mutex_unlock(&crypt_stat->keysig_list_mutex);
254 255 256
	memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
}

257
void ecryptfs_destroy_mount_crypt_stat(
258 259
	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
{
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
	struct ecryptfs_global_auth_tok *auth_tok, *auth_tok_tmp;

	if (!(mount_crypt_stat->flags & ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED))
		return;
	mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
	list_for_each_entry_safe(auth_tok, auth_tok_tmp,
				 &mount_crypt_stat->global_auth_tok_list,
				 mount_crypt_stat_list) {
		list_del(&auth_tok->mount_crypt_stat_list);
		mount_crypt_stat->num_global_auth_toks--;
		if (auth_tok->global_auth_tok_key
		    && !(auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID))
			key_put(auth_tok->global_auth_tok_key);
		kmem_cache_free(ecryptfs_global_auth_tok_cache, auth_tok);
	}
	mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
	memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat));
}

/**
 * virt_to_scatterlist
 * @addr: Virtual address
 * @size: Size of data; should be an even multiple of the block size
 * @sg: Pointer to scatterlist array; set to NULL to obtain only
 *      the number of scatterlist structs required in array
 * @sg_size: Max array size
 *
 * Fills in a scatterlist array with page references for a passed
 * virtual address.
 *
 * Returns the number of scatterlist structs in array used
 */
int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg,
			int sg_size)
{
	int i = 0;
	struct page *pg;
	int offset;
	int remainder_of_page;

300 301
	sg_init_table(sg, sg_size);

302 303 304
	while (size > 0 && i < sg_size) {
		pg = virt_to_page(addr);
		offset = offset_in_page(addr);
305 306
		if (sg)
			sg_set_page(&sg[i], pg, 0, offset);
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
		remainder_of_page = PAGE_CACHE_SIZE - offset;
		if (size >= remainder_of_page) {
			if (sg)
				sg[i].length = remainder_of_page;
			addr += remainder_of_page;
			size -= remainder_of_page;
		} else {
			if (sg)
				sg[i].length = size;
			addr += size;
			size = 0;
		}
		i++;
	}
	if (size > 0)
		return -ENOMEM;
	return i;
}

/**
 * encrypt_scatterlist
 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
 * @dest_sg: Destination of encrypted data
 * @src_sg: Data to be encrypted
 * @size: Length of data to be encrypted
 * @iv: iv to use during encryption
 *
 * Returns the number of bytes encrypted; negative value on error
 */
static int encrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
			       struct scatterlist *dest_sg,
			       struct scatterlist *src_sg, int size,
			       unsigned char *iv)
{
341 342 343 344 345
	struct blkcipher_desc desc = {
		.tfm = crypt_stat->tfm,
		.info = iv,
		.flags = CRYPTO_TFM_REQ_MAY_SLEEP
	};
346 347 348
	int rc = 0;

	BUG_ON(!crypt_stat || !crypt_stat->tfm
349
	       || !(crypt_stat->flags & ECRYPTFS_STRUCT_INITIALIZED));
350 351 352 353 354 355 356 357
	if (unlikely(ecryptfs_verbosity > 0)) {
		ecryptfs_printk(KERN_DEBUG, "Key size [%d]; key:\n",
				crypt_stat->key_size);
		ecryptfs_dump_hex(crypt_stat->key,
				  crypt_stat->key_size);
	}
	/* Consider doing this once, when the file is opened */
	mutex_lock(&crypt_stat->cs_tfm_mutex);
358 359 360 361 362
	if (!(crypt_stat->flags & ECRYPTFS_KEY_SET)) {
		rc = crypto_blkcipher_setkey(crypt_stat->tfm, crypt_stat->key,
					     crypt_stat->key_size);
		crypt_stat->flags |= ECRYPTFS_KEY_SET;
	}
363 364 365 366 367 368 369 370
	if (rc) {
		ecryptfs_printk(KERN_ERR, "Error setting key; rc = [%d]\n",
				rc);
		mutex_unlock(&crypt_stat->cs_tfm_mutex);
		rc = -EINVAL;
		goto out;
	}
	ecryptfs_printk(KERN_DEBUG, "Encrypting [%d] bytes.\n", size);
371
	crypto_blkcipher_encrypt_iv(&desc, dest_sg, src_sg, size);
372 373 374 375 376
	mutex_unlock(&crypt_stat->cs_tfm_mutex);
out:
	return rc;
}

377 378 379 380 381
/**
 * ecryptfs_lower_offset_for_extent
 *
 * Convert an eCryptfs page index into a lower byte offset
 */
A
Adrian Bunk 已提交
382 383
static void ecryptfs_lower_offset_for_extent(loff_t *offset, loff_t extent_num,
					     struct ecryptfs_crypt_stat *crypt_stat)
384
{
385
	(*offset) = (crypt_stat->num_header_bytes_at_front
386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
		     + (crypt_stat->extent_size * extent_num));
}

/**
 * ecryptfs_encrypt_extent
 * @enc_extent_page: Allocated page into which to encrypt the data in
 *                   @page
 * @crypt_stat: crypt_stat containing cryptographic context for the
 *              encryption operation
 * @page: Page containing plaintext data extent to encrypt
 * @extent_offset: Page extent offset for use in generating IV
 *
 * Encrypts one extent of data.
 *
 * Return zero on success; non-zero otherwise
 */
static int ecryptfs_encrypt_extent(struct page *enc_extent_page,
				   struct ecryptfs_crypt_stat *crypt_stat,
				   struct page *page,
				   unsigned long extent_offset)
{
M
Michael Halcrow 已提交
407
	loff_t extent_base;
408 409 410
	char extent_iv[ECRYPTFS_MAX_IV_BYTES];
	int rc;

M
Michael Halcrow 已提交
411
	extent_base = (((loff_t)page->index)
412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
		       * (PAGE_CACHE_SIZE / crypt_stat->extent_size));
	rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
				(extent_base + extent_offset));
	if (rc) {
		ecryptfs_printk(KERN_ERR, "Error attempting to "
				"derive IV for extent [0x%.16x]; "
				"rc = [%d]\n", (extent_base + extent_offset),
				rc);
		goto out;
	}
	if (unlikely(ecryptfs_verbosity > 0)) {
		ecryptfs_printk(KERN_DEBUG, "Encrypting extent "
				"with iv:\n");
		ecryptfs_dump_hex(extent_iv, crypt_stat->iv_bytes);
		ecryptfs_printk(KERN_DEBUG, "First 8 bytes before "
				"encryption:\n");
		ecryptfs_dump_hex((char *)
				  (page_address(page)
				   + (extent_offset * crypt_stat->extent_size)),
				  8);
	}
	rc = ecryptfs_encrypt_page_offset(crypt_stat, enc_extent_page, 0,
					  page, (extent_offset
						 * crypt_stat->extent_size),
					  crypt_stat->extent_size, extent_iv);
	if (rc < 0) {
		printk(KERN_ERR "%s: Error attempting to encrypt page with "
		       "page->index = [%ld], extent_offset = [%ld]; "
		       "rc = [%d]\n", __FUNCTION__, page->index, extent_offset,
		       rc);
		goto out;
	}
	rc = 0;
	if (unlikely(ecryptfs_verbosity > 0)) {
		ecryptfs_printk(KERN_DEBUG, "Encrypt extent [0x%.16x]; "
				"rc = [%d]\n", (extent_base + extent_offset),
				rc);
		ecryptfs_printk(KERN_DEBUG, "First 8 bytes after "
				"encryption:\n");
		ecryptfs_dump_hex((char *)(page_address(enc_extent_page)), 8);
	}
out:
	return rc;
}

457 458
/**
 * ecryptfs_encrypt_page
459 460 461
 * @page: Page mapped from the eCryptfs inode for the file; contains
 *        decrypted content that needs to be encrypted (to a temporary
 *        page; not in place) and written out to the lower file
462 463 464 465 466 467 468 469 470 471 472
 *
 * Encrypt an eCryptfs page. This is done on a per-extent basis. Note
 * that eCryptfs pages may straddle the lower pages -- for instance,
 * if the file was created on a machine with an 8K page size
 * (resulting in an 8K header), and then the file is copied onto a
 * host with a 32K page size, then when reading page 0 of the eCryptfs
 * file, 24K of page 0 of the lower file will be read and decrypted,
 * and then 8K of page 1 of the lower file will be read and decrypted.
 *
 * Returns zero on success; negative on error
 */
473
int ecryptfs_encrypt_page(struct page *page)
474
{
475
	struct inode *ecryptfs_inode;
476
	struct ecryptfs_crypt_stat *crypt_stat;
477 478 479
	char *enc_extent_virt = NULL;
	struct page *enc_extent_page;
	loff_t extent_offset;
480
	int rc = 0;
481 482 483 484

	ecryptfs_inode = page->mapping->host;
	crypt_stat =
		&(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
485
	if (!(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
486 487
		rc = ecryptfs_write_lower_page_segment(ecryptfs_inode, page,
						       0, PAGE_CACHE_SIZE);
488
		if (rc)
489 490 491
			printk(KERN_ERR "%s: Error attempting to copy "
			       "page at index [%ld]\n", __FUNCTION__,
			       page->index);
492 493
		goto out;
	}
494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
	enc_extent_virt = kmalloc(PAGE_CACHE_SIZE, GFP_USER);
	if (!enc_extent_virt) {
		rc = -ENOMEM;
		ecryptfs_printk(KERN_ERR, "Error allocating memory for "
				"encrypted extent\n");
		goto out;
	}
	enc_extent_page = virt_to_page(enc_extent_virt);
	for (extent_offset = 0;
	     extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size);
	     extent_offset++) {
		loff_t offset;

		rc = ecryptfs_encrypt_extent(enc_extent_page, crypt_stat, page,
					     extent_offset);
509
		if (rc) {
510 511
			printk(KERN_ERR "%s: Error encrypting extent; "
			       "rc = [%d]\n", __FUNCTION__, rc);
512 513
			goto out;
		}
514
		ecryptfs_lower_offset_for_extent(
M
Michael Halcrow 已提交
515 516 517
			&offset, ((((loff_t)page->index)
				   * (PAGE_CACHE_SIZE
				      / crypt_stat->extent_size))
518 519 520 521 522 523 524 525
				  + extent_offset), crypt_stat);
		rc = ecryptfs_write_lower(ecryptfs_inode, enc_extent_virt,
					  offset, crypt_stat->extent_size);
		if (rc) {
			ecryptfs_printk(KERN_ERR, "Error attempting "
					"to write lower page; rc = [%d]"
					"\n", rc);
			goto out;
526 527
		}
	}
528 529 530 531 532 533 534 535 536 537
out:
	kfree(enc_extent_virt);
	return rc;
}

static int ecryptfs_decrypt_extent(struct page *page,
				   struct ecryptfs_crypt_stat *crypt_stat,
				   struct page *enc_extent_page,
				   unsigned long extent_offset)
{
M
Michael Halcrow 已提交
538
	loff_t extent_base;
539 540 541
	char extent_iv[ECRYPTFS_MAX_IV_BYTES];
	int rc;

M
Michael Halcrow 已提交
542
	extent_base = (((loff_t)page->index)
543 544 545
		       * (PAGE_CACHE_SIZE / crypt_stat->extent_size));
	rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
				(extent_base + extent_offset));
546
	if (rc) {
547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585
		ecryptfs_printk(KERN_ERR, "Error attempting to "
				"derive IV for extent [0x%.16x]; "
				"rc = [%d]\n", (extent_base + extent_offset),
				rc);
		goto out;
	}
	if (unlikely(ecryptfs_verbosity > 0)) {
		ecryptfs_printk(KERN_DEBUG, "Decrypting extent "
				"with iv:\n");
		ecryptfs_dump_hex(extent_iv, crypt_stat->iv_bytes);
		ecryptfs_printk(KERN_DEBUG, "First 8 bytes before "
				"decryption:\n");
		ecryptfs_dump_hex((char *)
				  (page_address(enc_extent_page)
				   + (extent_offset * crypt_stat->extent_size)),
				  8);
	}
	rc = ecryptfs_decrypt_page_offset(crypt_stat, page,
					  (extent_offset
					   * crypt_stat->extent_size),
					  enc_extent_page, 0,
					  crypt_stat->extent_size, extent_iv);
	if (rc < 0) {
		printk(KERN_ERR "%s: Error attempting to decrypt to page with "
		       "page->index = [%ld], extent_offset = [%ld]; "
		       "rc = [%d]\n", __FUNCTION__, page->index, extent_offset,
		       rc);
		goto out;
	}
	rc = 0;
	if (unlikely(ecryptfs_verbosity > 0)) {
		ecryptfs_printk(KERN_DEBUG, "Decrypt extent [0x%.16x]; "
				"rc = [%d]\n", (extent_base + extent_offset),
				rc);
		ecryptfs_printk(KERN_DEBUG, "First 8 bytes after "
				"decryption:\n");
		ecryptfs_dump_hex((char *)(page_address(page)
					   + (extent_offset
					      * crypt_stat->extent_size)), 8);
586 587 588 589 590 591 592
	}
out:
	return rc;
}

/**
 * ecryptfs_decrypt_page
593 594 595
 * @page: Page mapped from the eCryptfs inode for the file; data read
 *        and decrypted from the lower file will be written into this
 *        page
596 597 598 599 600 601 602 603 604 605 606
 *
 * Decrypt an eCryptfs page. This is done on a per-extent basis. Note
 * that eCryptfs pages may straddle the lower pages -- for instance,
 * if the file was created on a machine with an 8K page size
 * (resulting in an 8K header), and then the file is copied onto a
 * host with a 32K page size, then when reading page 0 of the eCryptfs
 * file, 24K of page 0 of the lower file will be read and decrypted,
 * and then 8K of page 1 of the lower file will be read and decrypted.
 *
 * Returns zero on success; negative on error
 */
607
int ecryptfs_decrypt_page(struct page *page)
608
{
609
	struct inode *ecryptfs_inode;
610
	struct ecryptfs_crypt_stat *crypt_stat;
611 612 613
	char *enc_extent_virt = NULL;
	struct page *enc_extent_page;
	unsigned long extent_offset;
614 615
	int rc = 0;

616 617 618
	ecryptfs_inode = page->mapping->host;
	crypt_stat =
		&(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
619
	if (!(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
620 621 622
		rc = ecryptfs_read_lower_page_segment(page, page->index, 0,
						      PAGE_CACHE_SIZE,
						      ecryptfs_inode);
623
		if (rc)
624 625 626
			printk(KERN_ERR "%s: Error attempting to copy "
			       "page at index [%ld]\n", __FUNCTION__,
			       page->index);
627
		goto out;
628
	}
629 630
	enc_extent_virt = kmalloc(PAGE_CACHE_SIZE, GFP_USER);
	if (!enc_extent_virt) {
631
		rc = -ENOMEM;
632 633
		ecryptfs_printk(KERN_ERR, "Error allocating memory for "
				"encrypted extent\n");
634
		goto out;
635
	}
636 637 638 639 640 641 642 643 644 645 646 647 648
	enc_extent_page = virt_to_page(enc_extent_virt);
	for (extent_offset = 0;
	     extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size);
	     extent_offset++) {
		loff_t offset;

		ecryptfs_lower_offset_for_extent(
			&offset, ((page->index * (PAGE_CACHE_SIZE
						  / crypt_stat->extent_size))
				  + extent_offset), crypt_stat);
		rc = ecryptfs_read_lower(enc_extent_virt, offset,
					 crypt_stat->extent_size,
					 ecryptfs_inode);
649
		if (rc) {
650 651 652
			ecryptfs_printk(KERN_ERR, "Error attempting "
					"to read lower page; rc = [%d]"
					"\n", rc);
653
			goto out;
654
		}
655 656 657 658 659
		rc = ecryptfs_decrypt_extent(page, crypt_stat, enc_extent_page,
					     extent_offset);
		if (rc) {
			printk(KERN_ERR "%s: Error encrypting extent; "
			       "rc = [%d]\n", __FUNCTION__, rc);
660
			goto out;
661 662 663
		}
	}
out:
664
	kfree(enc_extent_virt);
665 666 667 668 669
	return rc;
}

/**
 * decrypt_scatterlist
670 671 672 673 674
 * @crypt_stat: Cryptographic context
 * @dest_sg: The destination scatterlist to decrypt into
 * @src_sg: The source scatterlist to decrypt from
 * @size: The number of bytes to decrypt
 * @iv: The initialization vector to use for the decryption
675 676 677 678 679 680 681 682
 *
 * Returns the number of bytes decrypted; negative value on error
 */
static int decrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
			       struct scatterlist *dest_sg,
			       struct scatterlist *src_sg, int size,
			       unsigned char *iv)
{
683 684 685 686 687
	struct blkcipher_desc desc = {
		.tfm = crypt_stat->tfm,
		.info = iv,
		.flags = CRYPTO_TFM_REQ_MAY_SLEEP
	};
688 689 690 691
	int rc = 0;

	/* Consider doing this once, when the file is opened */
	mutex_lock(&crypt_stat->cs_tfm_mutex);
692 693
	rc = crypto_blkcipher_setkey(crypt_stat->tfm, crypt_stat->key,
				     crypt_stat->key_size);
694 695 696 697 698 699 700 701
	if (rc) {
		ecryptfs_printk(KERN_ERR, "Error setting key; rc = [%d]\n",
				rc);
		mutex_unlock(&crypt_stat->cs_tfm_mutex);
		rc = -EINVAL;
		goto out;
	}
	ecryptfs_printk(KERN_DEBUG, "Decrypting [%d] bytes.\n", size);
702
	rc = crypto_blkcipher_decrypt_iv(&desc, dest_sg, src_sg, size);
703 704 705 706 707 708 709 710 711 712 713 714 715
	mutex_unlock(&crypt_stat->cs_tfm_mutex);
	if (rc) {
		ecryptfs_printk(KERN_ERR, "Error decrypting; rc = [%d]\n",
				rc);
		goto out;
	}
	rc = size;
out:
	return rc;
}

/**
 * ecryptfs_encrypt_page_offset
716 717 718 719 720 721 722
 * @crypt_stat: The cryptographic context
 * @dst_page: The page to encrypt into
 * @dst_offset: The offset in the page to encrypt into
 * @src_page: The page to encrypt from
 * @src_offset: The offset in the page to encrypt from
 * @size: The number of bytes to encrypt
 * @iv: The initialization vector to use for the encryption
723 724 725 726 727 728 729 730 731 732 733
 *
 * Returns the number of bytes encrypted
 */
static int
ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
			     struct page *dst_page, int dst_offset,
			     struct page *src_page, int src_offset, int size,
			     unsigned char *iv)
{
	struct scatterlist src_sg, dst_sg;

J
Jens Axboe 已提交
734 735 736
	sg_init_table(&src_sg, 1);
	sg_init_table(&dst_sg, 1);

737 738
	sg_set_page(&src_sg, src_page, size, src_offset);
	sg_set_page(&dst_sg, dst_page, size, dst_offset);
739 740 741 742 743
	return encrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv);
}

/**
 * ecryptfs_decrypt_page_offset
744 745 746 747 748 749 750
 * @crypt_stat: The cryptographic context
 * @dst_page: The page to decrypt into
 * @dst_offset: The offset in the page to decrypt into
 * @src_page: The page to decrypt from
 * @src_offset: The offset in the page to decrypt from
 * @size: The number of bytes to decrypt
 * @iv: The initialization vector to use for the decryption
751 752 753 754 755 756 757 758 759 760 761
 *
 * Returns the number of bytes decrypted
 */
static int
ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
			     struct page *dst_page, int dst_offset,
			     struct page *src_page, int src_offset, int size,
			     unsigned char *iv)
{
	struct scatterlist src_sg, dst_sg;

J
Jens Axboe 已提交
762
	sg_init_table(&src_sg, 1);
763 764
	sg_set_page(&src_sg, src_page, size, src_offset);

J
Jens Axboe 已提交
765
	sg_init_table(&dst_sg, 1);
766
	sg_set_page(&dst_sg, dst_page, size, dst_offset);
J
Jens Axboe 已提交
767

768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783
	return decrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv);
}

#define ECRYPTFS_MAX_SCATTERLIST_LEN 4

/**
 * ecryptfs_init_crypt_ctx
 * @crypt_stat: Uninitilized crypt stats structure
 *
 * Initialize the crypto context.
 *
 * TODO: Performance: Keep a cache of initialized cipher contexts;
 * only init if needed
 */
int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat)
{
784
	char *full_alg_name;
785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800
	int rc = -EINVAL;

	if (!crypt_stat->cipher) {
		ecryptfs_printk(KERN_ERR, "No cipher specified\n");
		goto out;
	}
	ecryptfs_printk(KERN_DEBUG,
			"Initializing cipher [%s]; strlen = [%d]; "
			"key_size_bits = [%d]\n",
			crypt_stat->cipher, (int)strlen(crypt_stat->cipher),
			crypt_stat->key_size << 3);
	if (crypt_stat->tfm) {
		rc = 0;
		goto out;
	}
	mutex_lock(&crypt_stat->cs_tfm_mutex);
801 802 803
	rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name,
						    crypt_stat->cipher, "cbc");
	if (rc)
804
		goto out_unlock;
805 806 807
	crypt_stat->tfm = crypto_alloc_blkcipher(full_alg_name, 0,
						 CRYPTO_ALG_ASYNC);
	kfree(full_alg_name);
808 809
	if (IS_ERR(crypt_stat->tfm)) {
		rc = PTR_ERR(crypt_stat->tfm);
810 811 812
		ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): "
				"Error initializing cipher [%s]\n",
				crypt_stat->cipher);
813
		goto out_unlock;
814
	}
815
	crypto_blkcipher_set_flags(crypt_stat->tfm, CRYPTO_TFM_REQ_WEAK_KEY);
816
	rc = 0;
817 818
out_unlock:
	mutex_unlock(&crypt_stat->cs_tfm_mutex);
819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845
out:
	return rc;
}

static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat)
{
	int extent_size_tmp;

	crypt_stat->extent_mask = 0xFFFFFFFF;
	crypt_stat->extent_shift = 0;
	if (crypt_stat->extent_size == 0)
		return;
	extent_size_tmp = crypt_stat->extent_size;
	while ((extent_size_tmp & 0x01) == 0) {
		extent_size_tmp >>= 1;
		crypt_stat->extent_mask <<= 1;
		crypt_stat->extent_shift++;
	}
}

void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat)
{
	/* Default values; may be overwritten as we are parsing the
	 * packets. */
	crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE;
	set_extent_mask_and_shift(crypt_stat);
	crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES;
846
	if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
847
		crypt_stat->num_header_bytes_at_front = 0;
848 849
	else {
		if (PAGE_CACHE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)
850 851
			crypt_stat->num_header_bytes_at_front =
				ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
852
		else
853
			crypt_stat->num_header_bytes_at_front =	PAGE_CACHE_SIZE;
854
	}
855 856 857 858 859 860 861 862 863 864 865 866 867 868 869
}

/**
 * ecryptfs_compute_root_iv
 * @crypt_stats
 *
 * On error, sets the root IV to all 0's.
 */
int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat)
{
	int rc = 0;
	char dst[MD5_DIGEST_SIZE];

	BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE);
	BUG_ON(crypt_stat->iv_bytes <= 0);
870
	if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886
		rc = -EINVAL;
		ecryptfs_printk(KERN_WARNING, "Session key not valid; "
				"cannot generate root IV\n");
		goto out;
	}
	rc = ecryptfs_calculate_md5(dst, crypt_stat, crypt_stat->key,
				    crypt_stat->key_size);
	if (rc) {
		ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
				"MD5 while generating root IV\n");
		goto out;
	}
	memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes);
out:
	if (rc) {
		memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes);
887
		crypt_stat->flags |= ECRYPTFS_SECURITY_WARNING;
888 889 890 891 892 893 894
	}
	return rc;
}

static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat)
{
	get_random_bytes(crypt_stat->key, crypt_stat->key_size);
895
	crypt_stat->flags |= ECRYPTFS_KEY_VALID;
896 897 898 899 900 901 902 903
	ecryptfs_compute_root_iv(crypt_stat);
	if (unlikely(ecryptfs_verbosity > 0)) {
		ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n");
		ecryptfs_dump_hex(crypt_stat->key,
				  crypt_stat->key_size);
	}
}

904 905
/**
 * ecryptfs_copy_mount_wide_flags_to_inode_flags
906 907
 * @crypt_stat: The inode's cryptographic context
 * @mount_crypt_stat: The mount point's cryptographic context
908 909 910 911 912 913 914 915 916 917 918 919 920 921
 *
 * This function propagates the mount-wide flags to individual inode
 * flags.
 */
static void ecryptfs_copy_mount_wide_flags_to_inode_flags(
	struct ecryptfs_crypt_stat *crypt_stat,
	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
{
	if (mount_crypt_stat->flags & ECRYPTFS_XATTR_METADATA_ENABLED)
		crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
	if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
		crypt_stat->flags |= ECRYPTFS_VIEW_AS_ENCRYPTED;
}

922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945
static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs(
	struct ecryptfs_crypt_stat *crypt_stat,
	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
{
	struct ecryptfs_global_auth_tok *global_auth_tok;
	int rc = 0;

	mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
	list_for_each_entry(global_auth_tok,
			    &mount_crypt_stat->global_auth_tok_list,
			    mount_crypt_stat_list) {
		rc = ecryptfs_add_keysig(crypt_stat, global_auth_tok->sig);
		if (rc) {
			printk(KERN_ERR "Error adding keysig; rc = [%d]\n", rc);
			mutex_unlock(
				&mount_crypt_stat->global_auth_tok_list_mutex);
			goto out;
		}
	}
	mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
out:
	return rc;
}

946 947
/**
 * ecryptfs_set_default_crypt_stat_vals
948 949
 * @crypt_stat: The inode's cryptographic context
 * @mount_crypt_stat: The mount point's cryptographic context
950 951 952 953 954 955 956
 *
 * Default values in the event that policy does not override them.
 */
static void ecryptfs_set_default_crypt_stat_vals(
	struct ecryptfs_crypt_stat *crypt_stat,
	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
{
957 958
	ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
						      mount_crypt_stat);
959 960 961
	ecryptfs_set_default_sizes(crypt_stat);
	strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER);
	crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES;
962
	crypt_stat->flags &= ~(ECRYPTFS_KEY_VALID);
963 964 965 966 967 968
	crypt_stat->file_version = ECRYPTFS_FILE_VERSION;
	crypt_stat->mount_crypt_stat = mount_crypt_stat;
}

/**
 * ecryptfs_new_file_context
969
 * @ecryptfs_dentry: The eCryptfs dentry
970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993
 *
 * If the crypto context for the file has not yet been established,
 * this is where we do that.  Establishing a new crypto context
 * involves the following decisions:
 *  - What cipher to use?
 *  - What set of authentication tokens to use?
 * Here we just worry about getting enough information into the
 * authentication tokens so that we know that they are available.
 * We associate the available authentication tokens with the new file
 * via the set of signatures in the crypt_stat struct.  Later, when
 * the headers are actually written out, we may again defer to
 * userspace to perform the encryption of the session key; for the
 * foreseeable future, this will be the case with public key packets.
 *
 * Returns zero on success; non-zero otherwise
 */
int ecryptfs_new_file_context(struct dentry *ecryptfs_dentry)
{
	struct ecryptfs_crypt_stat *crypt_stat =
	    &ecryptfs_inode_to_private(ecryptfs_dentry->d_inode)->crypt_stat;
	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
	    &ecryptfs_superblock_to_private(
		    ecryptfs_dentry->d_sb)->mount_crypt_stat;
	int cipher_name_len;
994
	int rc = 0;
995 996

	ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat);
997
	crypt_stat->flags |= (ECRYPTFS_ENCRYPTED | ECRYPTFS_KEY_VALID);
998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
	ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
						      mount_crypt_stat);
	rc = ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat,
							 mount_crypt_stat);
	if (rc) {
		printk(KERN_ERR "Error attempting to copy mount-wide key sigs "
		       "to the inode key sigs; rc = [%d]\n", rc);
		goto out;
	}
	cipher_name_len =
		strlen(mount_crypt_stat->global_default_cipher_name);
	memcpy(crypt_stat->cipher,
	       mount_crypt_stat->global_default_cipher_name,
	       cipher_name_len);
	crypt_stat->cipher[cipher_name_len] = '\0';
	crypt_stat->key_size =
		mount_crypt_stat->global_default_cipher_key_size;
	ecryptfs_generate_new_key(crypt_stat);
1016 1017 1018 1019 1020
	rc = ecryptfs_init_crypt_ctx(crypt_stat);
	if (rc)
		ecryptfs_printk(KERN_ERR, "Error initializing cryptographic "
				"context for cipher [%s]: rc = [%d]\n",
				crypt_stat->cipher, rc);
1021
out:
1022 1023 1024 1025 1026 1027 1028 1029 1030
	return rc;
}

/**
 * contains_ecryptfs_marker - check for the ecryptfs marker
 * @data: The data block in which to check
 *
 * Returns one if marker found; zero if not found
 */
1031
static int contains_ecryptfs_marker(char *data)
1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
{
	u32 m_1, m_2;

	memcpy(&m_1, data, 4);
	m_1 = be32_to_cpu(m_1);
	memcpy(&m_2, (data + 4), 4);
	m_2 = be32_to_cpu(m_2);
	if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2)
		return 1;
	ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; "
			"MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2,
			MAGIC_ECRYPTFS_MARKER);
	ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = "
			"[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER));
	return 0;
}

struct ecryptfs_flag_map_elem {
	u32 file_flag;
	u32 local_flag;
};

/* Add support for additional flags by adding elements here. */
static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = {
	{0x00000001, ECRYPTFS_ENABLE_HMAC},
1057 1058
	{0x00000002, ECRYPTFS_ENCRYPTED},
	{0x00000004, ECRYPTFS_METADATA_IN_XATTR}
1059 1060 1061 1062
};

/**
 * ecryptfs_process_flags
1063
 * @crypt_stat: The cryptographic context
1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
 * @page_virt: Source data to be parsed
 * @bytes_read: Updated with the number of bytes read
 *
 * Returns zero on success; non-zero if the flag set is invalid
 */
static int ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat,
				  char *page_virt, int *bytes_read)
{
	int rc = 0;
	int i;
	u32 flags;

	memcpy(&flags, page_virt, 4);
	flags = be32_to_cpu(flags);
	for (i = 0; i < ((sizeof(ecryptfs_flag_map)
			  / sizeof(struct ecryptfs_flag_map_elem))); i++)
		if (flags & ecryptfs_flag_map[i].file_flag) {
1081
			crypt_stat->flags |= ecryptfs_flag_map[i].local_flag;
1082
		} else
1083
			crypt_stat->flags &= ~(ecryptfs_flag_map[i].local_flag);
1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
	/* Version is in top 8 bits of the 32-bit flag vector */
	crypt_stat->file_version = ((flags >> 24) & 0xFF);
	(*bytes_read) = 4;
	return rc;
}

/**
 * write_ecryptfs_marker
 * @page_virt: The pointer to in a page to begin writing the marker
 * @written: Number of bytes written
 *
 * Marker = 0x3c81b7f5
 */
static void write_ecryptfs_marker(char *page_virt, size_t *written)
{
	u32 m_1, m_2;

	get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
	m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER);
	m_1 = cpu_to_be32(m_1);
	memcpy(page_virt, &m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
	m_2 = cpu_to_be32(m_2);
	memcpy(page_virt + (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2), &m_2,
	       (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
	(*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
}

static void
write_ecryptfs_flags(char *page_virt, struct ecryptfs_crypt_stat *crypt_stat,
		     size_t *written)
{
	u32 flags = 0;
	int i;

	for (i = 0; i < ((sizeof(ecryptfs_flag_map)
			  / sizeof(struct ecryptfs_flag_map_elem))); i++)
1120
		if (crypt_stat->flags & ecryptfs_flag_map[i].local_flag)
1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
			flags |= ecryptfs_flag_map[i].file_flag;
	/* Version is in top 8 bits of the 32-bit flag vector */
	flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000);
	flags = cpu_to_be32(flags);
	memcpy(page_virt, &flags, 4);
	(*written) = 4;
}

struct ecryptfs_cipher_code_str_map_elem {
	char cipher_str[16];
	u16 cipher_code;
};

/* Add support for additional ciphers by adding elements here. The
 * cipher_code is whatever OpenPGP applicatoins use to identify the
 * ciphers. List in order of probability. */
static struct ecryptfs_cipher_code_str_map_elem
ecryptfs_cipher_code_str_map[] = {
	{"aes",RFC2440_CIPHER_AES_128 },
	{"blowfish", RFC2440_CIPHER_BLOWFISH},
	{"des3_ede", RFC2440_CIPHER_DES3_EDE},
	{"cast5", RFC2440_CIPHER_CAST_5},
	{"twofish", RFC2440_CIPHER_TWOFISH},
	{"cast6", RFC2440_CIPHER_CAST_6},
	{"aes", RFC2440_CIPHER_AES_192},
	{"aes", RFC2440_CIPHER_AES_256}
};

/**
 * ecryptfs_code_for_cipher_string
1151
 * @crypt_stat: The cryptographic context
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
 *
 * Returns zero on no match, or the cipher code on match
 */
u16 ecryptfs_code_for_cipher_string(struct ecryptfs_crypt_stat *crypt_stat)
{
	int i;
	u16 code = 0;
	struct ecryptfs_cipher_code_str_map_elem *map =
		ecryptfs_cipher_code_str_map;

	if (strcmp(crypt_stat->cipher, "aes") == 0) {
		switch (crypt_stat->key_size) {
		case 16:
			code = RFC2440_CIPHER_AES_128;
			break;
		case 24:
			code = RFC2440_CIPHER_AES_192;
			break;
		case 32:
			code = RFC2440_CIPHER_AES_256;
		}
	} else {
		for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
			if (strcmp(crypt_stat->cipher, map[i].cipher_str) == 0){
				code = map[i].cipher_code;
				break;
			}
	}
	return code;
}

/**
 * ecryptfs_cipher_code_to_string
 * @str: Destination to write out the cipher name
 * @cipher_code: The code to convert to cipher name string
 *
 * Returns zero on success
 */
int ecryptfs_cipher_code_to_string(char *str, u16 cipher_code)
{
	int rc = 0;
	int i;

	str[0] = '\0';
	for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
		if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code)
			strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str);
	if (str[0] == '\0') {
		ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: "
				"[%d]\n", cipher_code);
		rc = -EINVAL;
	}
	return rc;
}

1207 1208
int ecryptfs_read_and_validate_header_region(char *data,
					     struct inode *ecryptfs_inode)
1209
{
1210 1211
	struct ecryptfs_crypt_stat *crypt_stat =
		&(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
1212 1213
	int rc;

1214 1215 1216 1217 1218
	rc = ecryptfs_read_lower(data, 0, crypt_stat->extent_size,
				 ecryptfs_inode);
	if (rc) {
		printk(KERN_ERR "%s: Error reading header region; rc = [%d]\n",
		       __FUNCTION__, rc);
1219
		goto out;
1220 1221
	}
	if (!contains_ecryptfs_marker(data + ECRYPTFS_FILE_SIZE_BYTES)) {
1222
		rc = -EINVAL;
1223 1224
		ecryptfs_printk(KERN_DEBUG, "Valid marker not found\n");
	}
1225 1226 1227 1228
out:
	return rc;
}

1229 1230 1231 1232
void
ecryptfs_write_header_metadata(char *virt,
			       struct ecryptfs_crypt_stat *crypt_stat,
			       size_t *written)
1233 1234 1235 1236
{
	u32 header_extent_size;
	u16 num_header_extents_at_front;

1237
	header_extent_size = (u32)crypt_stat->extent_size;
1238
	num_header_extents_at_front =
1239 1240
		(u16)(crypt_stat->num_header_bytes_at_front
		      / crypt_stat->extent_size);
1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
	header_extent_size = cpu_to_be32(header_extent_size);
	memcpy(virt, &header_extent_size, 4);
	virt += 4;
	num_header_extents_at_front = cpu_to_be16(num_header_extents_at_front);
	memcpy(virt, &num_header_extents_at_front, 2);
	(*written) = 6;
}

struct kmem_cache *ecryptfs_header_cache_0;
struct kmem_cache *ecryptfs_header_cache_1;
struct kmem_cache *ecryptfs_header_cache_2;

/**
 * ecryptfs_write_headers_virt
1255 1256 1257 1258
 * @page_virt: The virtual address to write the headers to
 * @size: Set to the number of bytes written by this function
 * @crypt_stat: The cryptographic context
 * @ecryptfs_dentry: The eCryptfs dentry
1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
 *
 * Format version: 1
 *
 *   Header Extent:
 *     Octets 0-7:        Unencrypted file size (big-endian)
 *     Octets 8-15:       eCryptfs special marker
 *     Octets 16-19:      Flags
 *      Octet 16:         File format version number (between 0 and 255)
 *      Octets 17-18:     Reserved
 *      Octet 19:         Bit 1 (lsb): Reserved
 *                        Bit 2: Encrypted?
 *                        Bits 3-8: Reserved
 *     Octets 20-23:      Header extent size (big-endian)
 *     Octets 24-25:      Number of header extents at front of file
 *                        (big-endian)
 *     Octet  26:         Begin RFC 2440 authentication token packet set
 *   Data Extent 0:
 *     Lower data (CBC encrypted)
 *   Data Extent 1:
 *     Lower data (CBC encrypted)
 *   ...
 *
 * Returns zero on success
 */
1283 1284 1285
static int ecryptfs_write_headers_virt(char *page_virt, size_t *size,
				       struct ecryptfs_crypt_stat *crypt_stat,
				       struct dentry *ecryptfs_dentry)
1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
{
	int rc;
	size_t written;
	size_t offset;

	offset = ECRYPTFS_FILE_SIZE_BYTES;
	write_ecryptfs_marker((page_virt + offset), &written);
	offset += written;
	write_ecryptfs_flags((page_virt + offset), crypt_stat, &written);
	offset += written;
1296 1297
	ecryptfs_write_header_metadata((page_virt + offset), crypt_stat,
				       &written);
1298 1299 1300 1301 1302 1303 1304
	offset += written;
	rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat,
					      ecryptfs_dentry, &written,
					      PAGE_CACHE_SIZE - offset);
	if (rc)
		ecryptfs_printk(KERN_WARNING, "Error generating key packet "
				"set; rc = [%d]\n", rc);
1305 1306 1307 1308 1309 1310 1311
	if (size) {
		offset += written;
		*size = offset;
	}
	return rc;
}

1312 1313
static int
ecryptfs_write_metadata_to_contents(struct ecryptfs_crypt_stat *crypt_stat,
1314
				    struct dentry *ecryptfs_dentry,
1315
				    char *virt)
1316
{
1317
	int rc;
1318

1319 1320 1321
	rc = ecryptfs_write_lower(ecryptfs_dentry->d_inode, virt,
				  0, crypt_stat->num_header_bytes_at_front);
	if (rc)
1322 1323 1324
		printk(KERN_ERR "%s: Error attempting to write header "
		       "information to lower file; rc = [%d]\n", __FUNCTION__,
		       rc);
1325
	return rc;
1326 1327
}

1328 1329 1330 1331
static int
ecryptfs_write_metadata_to_xattr(struct dentry *ecryptfs_dentry,
				 struct ecryptfs_crypt_stat *crypt_stat,
				 char *page_virt, size_t size)
1332 1333 1334 1335 1336
{
	int rc;

	rc = ecryptfs_setxattr(ecryptfs_dentry, ECRYPTFS_XATTR_NAME, page_virt,
			       size, 0);
1337 1338 1339 1340
	return rc;
}

/**
1341
 * ecryptfs_write_metadata
1342
 * @ecryptfs_dentry: The eCryptfs dentry
1343 1344 1345 1346 1347 1348 1349 1350 1351
 *
 * Write the file headers out.  This will likely involve a userspace
 * callout, in which the session key is encrypted with one or more
 * public keys and/or the passphrase necessary to do the encryption is
 * retrieved via a prompt.  Exactly what happens at this point should
 * be policy-dependent.
 *
 * Returns zero on success; non-zero on error
 */
1352
int ecryptfs_write_metadata(struct dentry *ecryptfs_dentry)
1353
{
1354 1355
	struct ecryptfs_crypt_stat *crypt_stat =
		&ecryptfs_inode_to_private(ecryptfs_dentry->d_inode)->crypt_stat;
1356
	char *virt;
1357
	size_t size = 0;
1358 1359
	int rc = 0;

1360 1361
	if (likely(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
		if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
1362
			printk(KERN_ERR "Key is invalid; bailing out\n");
1363 1364 1365 1366
			rc = -EINVAL;
			goto out;
		}
	} else {
1367 1368
		printk(KERN_WARNING "%s: Encrypted flag not set\n",
		       __FUNCTION__);
1369 1370 1371 1372
		rc = -EINVAL;
		goto out;
	}
	/* Released in this function */
1373 1374 1375
	virt = kzalloc(crypt_stat->num_header_bytes_at_front, GFP_KERNEL);
	if (!virt) {
		printk(KERN_ERR "%s: Out of memory\n", __FUNCTION__);
1376 1377 1378
		rc = -ENOMEM;
		goto out;
	}
1379 1380
	rc = ecryptfs_write_headers_virt(virt, &size, crypt_stat,
					 ecryptfs_dentry);
1381
	if (unlikely(rc)) {
1382 1383
		printk(KERN_ERR "%s: Error whilst writing headers; rc = [%d]\n",
		       __FUNCTION__, rc);
1384 1385
		goto out_free;
	}
1386 1387
	if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
		rc = ecryptfs_write_metadata_to_xattr(ecryptfs_dentry,
1388
						      crypt_stat, virt, size);
1389
	else
1390
		rc = ecryptfs_write_metadata_to_contents(crypt_stat,
1391
							 ecryptfs_dentry, virt);
1392
	if (rc) {
1393 1394
		printk(KERN_ERR "%s: Error writing metadata out to lower file; "
		       "rc = [%d]\n", __FUNCTION__, rc);
1395
		goto out_free;
1396 1397
	}
out_free:
1398 1399
	memset(virt, 0, crypt_stat->num_header_bytes_at_front);
	kfree(virt);
1400 1401 1402 1403
out:
	return rc;
}

1404 1405
#define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0
#define ECRYPTFS_VALIDATE_HEADER_SIZE 1
1406
static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat,
1407 1408
				 char *virt, int *bytes_read,
				 int validate_header_size)
1409 1410 1411 1412 1413
{
	int rc = 0;
	u32 header_extent_size;
	u16 num_header_extents_at_front;

M
Michael Halcrow 已提交
1414
	memcpy(&header_extent_size, virt, sizeof(u32));
1415
	header_extent_size = be32_to_cpu(header_extent_size);
M
Michael Halcrow 已提交
1416 1417
	virt += sizeof(u32);
	memcpy(&num_header_extents_at_front, virt, sizeof(u16));
1418
	num_header_extents_at_front = be16_to_cpu(num_header_extents_at_front);
1419 1420 1421
	crypt_stat->num_header_bytes_at_front =
		(((size_t)num_header_extents_at_front
		  * (size_t)header_extent_size));
1422
	(*bytes_read) = (sizeof(u32) + sizeof(u16));
1423
	if ((validate_header_size == ECRYPTFS_VALIDATE_HEADER_SIZE)
1424
	    && (crypt_stat->num_header_bytes_at_front
1425
		< ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)) {
1426
		rc = -EINVAL;
1427 1428
		printk(KERN_WARNING "Invalid header size: [%zd]\n",
		       crypt_stat->num_header_bytes_at_front);
1429 1430 1431 1432 1433 1434
	}
	return rc;
}

/**
 * set_default_header_data
1435
 * @crypt_stat: The cryptographic context
1436 1437 1438 1439 1440 1441 1442
 *
 * For version 0 file format; this function is only for backwards
 * compatibility for files created with the prior versions of
 * eCryptfs.
 */
static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat)
{
1443 1444
	crypt_stat->num_header_bytes_at_front =
		ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
1445 1446 1447 1448
}

/**
 * ecryptfs_read_headers_virt
1449 1450 1451 1452
 * @page_virt: The virtual address into which to read the headers
 * @crypt_stat: The cryptographic context
 * @ecryptfs_dentry: The eCryptfs dentry
 * @validate_header_size: Whether to validate the header size while reading
1453 1454 1455 1456 1457 1458 1459 1460
 *
 * Read/parse the header data. The header format is detailed in the
 * comment block for the ecryptfs_write_headers_virt() function.
 *
 * Returns zero on success
 */
static int ecryptfs_read_headers_virt(char *page_virt,
				      struct ecryptfs_crypt_stat *crypt_stat,
1461 1462
				      struct dentry *ecryptfs_dentry,
				      int validate_header_size)
1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495
{
	int rc = 0;
	int offset;
	int bytes_read;

	ecryptfs_set_default_sizes(crypt_stat);
	crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private(
		ecryptfs_dentry->d_sb)->mount_crypt_stat;
	offset = ECRYPTFS_FILE_SIZE_BYTES;
	rc = contains_ecryptfs_marker(page_virt + offset);
	if (rc == 0) {
		rc = -EINVAL;
		goto out;
	}
	offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
	rc = ecryptfs_process_flags(crypt_stat, (page_virt + offset),
				    &bytes_read);
	if (rc) {
		ecryptfs_printk(KERN_WARNING, "Error processing flags\n");
		goto out;
	}
	if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) {
		ecryptfs_printk(KERN_WARNING, "File version is [%d]; only "
				"file version [%d] is supported by this "
				"version of eCryptfs\n",
				crypt_stat->file_version,
				ECRYPTFS_SUPPORTED_FILE_VERSION);
		rc = -EINVAL;
		goto out;
	}
	offset += bytes_read;
	if (crypt_stat->file_version >= 1) {
		rc = parse_header_metadata(crypt_stat, (page_virt + offset),
1496
					   &bytes_read, validate_header_size);
1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510
		if (rc) {
			ecryptfs_printk(KERN_WARNING, "Error reading header "
					"metadata; rc = [%d]\n", rc);
		}
		offset += bytes_read;
	} else
		set_default_header_data(crypt_stat);
	rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset),
				       ecryptfs_dentry);
out:
	return rc;
}

/**
1511
 * ecryptfs_read_xattr_region
1512
 * @page_virt: The vitual address into which to read the xattr data
1513
 * @ecryptfs_inode: The eCryptfs inode
1514 1515 1516
 *
 * Attempts to read the crypto metadata from the extended attribute
 * region of the lower file.
1517 1518
 *
 * Returns zero on success; non-zero on error
1519
 */
1520
int ecryptfs_read_xattr_region(char *page_virt, struct inode *ecryptfs_inode)
1521
{
1522 1523
	struct dentry *lower_dentry =
		ecryptfs_inode_to_private(ecryptfs_inode)->lower_file->f_dentry;
1524 1525 1526
	ssize_t size;
	int rc = 0;

1527 1528
	size = ecryptfs_getxattr_lower(lower_dentry, ECRYPTFS_XATTR_NAME,
				       page_virt, ECRYPTFS_DEFAULT_EXTENT_SIZE);
1529
	if (size < 0) {
1530 1531 1532 1533
		if (unlikely(ecryptfs_verbosity > 0))
			printk(KERN_INFO "Error attempting to read the [%s] "
			       "xattr from the lower file; return value = "
			       "[%zd]\n", ECRYPTFS_XATTR_NAME, size);
1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545
		rc = -EINVAL;
		goto out;
	}
out:
	return rc;
}

int ecryptfs_read_and_validate_xattr_region(char *page_virt,
					    struct dentry *ecryptfs_dentry)
{
	int rc;

1546
	rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_dentry->d_inode);
1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566
	if (rc)
		goto out;
	if (!contains_ecryptfs_marker(page_virt	+ ECRYPTFS_FILE_SIZE_BYTES)) {
		printk(KERN_WARNING "Valid data found in [%s] xattr, but "
			"the marker is invalid\n", ECRYPTFS_XATTR_NAME);
		rc = -EINVAL;
	}
out:
	return rc;
}

/**
 * ecryptfs_read_metadata
 *
 * Common entry point for reading file metadata. From here, we could
 * retrieve the header information from the header region of the file,
 * the xattr region of the file, or some other repostory that is
 * stored separately from the file itself. The current implementation
 * supports retrieving the metadata information from the file contents
 * and from the xattr region.
1567 1568 1569
 *
 * Returns zero if valid headers found and parsed; non-zero otherwise
 */
1570
int ecryptfs_read_metadata(struct dentry *ecryptfs_dentry)
1571 1572 1573
{
	int rc = 0;
	char *page_virt = NULL;
1574
	struct inode *ecryptfs_inode = ecryptfs_dentry->d_inode;
1575
	struct ecryptfs_crypt_stat *crypt_stat =
1576
	    &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1577 1578 1579
	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
		&ecryptfs_superblock_to_private(
			ecryptfs_dentry->d_sb)->mount_crypt_stat;
1580

1581 1582
	ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
						      mount_crypt_stat);
1583
	/* Read the first page from the underlying file */
C
Christoph Lameter 已提交
1584
	page_virt = kmem_cache_alloc(ecryptfs_header_cache_1, GFP_USER);
1585 1586
	if (!page_virt) {
		rc = -ENOMEM;
1587 1588
		printk(KERN_ERR "%s: Unable to allocate page_virt\n",
		       __FUNCTION__);
1589 1590
		goto out;
	}
1591 1592 1593 1594 1595 1596
	rc = ecryptfs_read_lower(page_virt, 0, crypt_stat->extent_size,
				 ecryptfs_inode);
	if (!rc)
		rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
						ecryptfs_dentry,
						ECRYPTFS_VALIDATE_HEADER_SIZE);
1597
	if (rc) {
1598
		rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_inode);
1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623
		if (rc) {
			printk(KERN_DEBUG "Valid eCryptfs headers not found in "
			       "file header region or xattr region\n");
			rc = -EINVAL;
			goto out;
		}
		rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
						ecryptfs_dentry,
						ECRYPTFS_DONT_VALIDATE_HEADER_SIZE);
		if (rc) {
			printk(KERN_DEBUG "Valid eCryptfs headers not found in "
			       "file xattr region either\n");
			rc = -EINVAL;
		}
		if (crypt_stat->mount_crypt_stat->flags
		    & ECRYPTFS_XATTR_METADATA_ENABLED) {
			crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
		} else {
			printk(KERN_WARNING "Attempt to access file with "
			       "crypto metadata only in the extended attribute "
			       "region, but eCryptfs was mounted without "
			       "xattr support enabled. eCryptfs will not treat "
			       "this like an encrypted file.\n");
			rc = -EINVAL;
		}
1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725
	}
out:
	if (page_virt) {
		memset(page_virt, 0, PAGE_CACHE_SIZE);
		kmem_cache_free(ecryptfs_header_cache_1, page_virt);
	}
	return rc;
}

/**
 * ecryptfs_encode_filename - converts a plaintext file name to cipher text
 * @crypt_stat: The crypt_stat struct associated with the file anem to encode
 * @name: The plaintext name
 * @length: The length of the plaintext
 * @encoded_name: The encypted name
 *
 * Encrypts and encodes a filename into something that constitutes a
 * valid filename for a filesystem, with printable characters.
 *
 * We assume that we have a properly initialized crypto context,
 * pointed to by crypt_stat->tfm.
 *
 * TODO: Implement filename decoding and decryption here, in place of
 * memcpy. We are keeping the framework around for now to (1)
 * facilitate testing of the components needed to implement filename
 * encryption and (2) to provide a code base from which other
 * developers in the community can easily implement this feature.
 *
 * Returns the length of encoded filename; negative if error
 */
int
ecryptfs_encode_filename(struct ecryptfs_crypt_stat *crypt_stat,
			 const char *name, int length, char **encoded_name)
{
	int error = 0;

	(*encoded_name) = kmalloc(length + 2, GFP_KERNEL);
	if (!(*encoded_name)) {
		error = -ENOMEM;
		goto out;
	}
	/* TODO: Filename encryption is a scheduled feature for a
	 * future version of eCryptfs. This function is here only for
	 * the purpose of providing a framework for other developers
	 * to easily implement filename encryption. Hint: Replace this
	 * memcpy() with a call to encrypt and encode the
	 * filename, the set the length accordingly. */
	memcpy((void *)(*encoded_name), (void *)name, length);
	(*encoded_name)[length] = '\0';
	error = length + 1;
out:
	return error;
}

/**
 * ecryptfs_decode_filename - converts the cipher text name to plaintext
 * @crypt_stat: The crypt_stat struct associated with the file
 * @name: The filename in cipher text
 * @length: The length of the cipher text name
 * @decrypted_name: The plaintext name
 *
 * Decodes and decrypts the filename.
 *
 * We assume that we have a properly initialized crypto context,
 * pointed to by crypt_stat->tfm.
 *
 * TODO: Implement filename decoding and decryption here, in place of
 * memcpy. We are keeping the framework around for now to (1)
 * facilitate testing of the components needed to implement filename
 * encryption and (2) to provide a code base from which other
 * developers in the community can easily implement this feature.
 *
 * Returns the length of decoded filename; negative if error
 */
int
ecryptfs_decode_filename(struct ecryptfs_crypt_stat *crypt_stat,
			 const char *name, int length, char **decrypted_name)
{
	int error = 0;

	(*decrypted_name) = kmalloc(length + 2, GFP_KERNEL);
	if (!(*decrypted_name)) {
		error = -ENOMEM;
		goto out;
	}
	/* TODO: Filename encryption is a scheduled feature for a
	 * future version of eCryptfs. This function is here only for
	 * the purpose of providing a framework for other developers
	 * to easily implement filename encryption. Hint: Replace this
	 * memcpy() with a call to decode and decrypt the
	 * filename, the set the length accordingly. */
	memcpy((void *)(*decrypted_name), (void *)name, length);
	(*decrypted_name)[length + 1] = '\0';	/* Only for convenience
						 * in printing out the
						 * string in debug
						 * messages */
	error = length;
out:
	return error;
}

/**
1726
 * ecryptfs_process_key_cipher - Perform key cipher initialization.
1727
 * @key_tfm: Crypto context for key material, set by this function
1728 1729
 * @cipher_name: Name of the cipher
 * @key_size: Size of the key in bytes
1730 1731 1732 1733 1734
 *
 * Returns zero on success. Any crypto_tfm structs allocated here
 * should be released by other functions, such as on a superblock put
 * event, regardless of whether this function succeeds for fails.
 */
1735
static int
1736 1737
ecryptfs_process_key_cipher(struct crypto_blkcipher **key_tfm,
			    char *cipher_name, size_t *key_size)
1738 1739
{
	char dummy_key[ECRYPTFS_MAX_KEY_BYTES];
1740
	char *full_alg_name;
1741 1742
	int rc;

1743 1744
	*key_tfm = NULL;
	if (*key_size > ECRYPTFS_MAX_KEY_BYTES) {
1745 1746
		rc = -EINVAL;
		printk(KERN_ERR "Requested key size is [%Zd] bytes; maximum "
1747
		      "allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES);
1748 1749
		goto out;
	}
1750 1751 1752 1753 1754 1755 1756 1757
	rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name,
						    "ecb");
	if (rc)
		goto out;
	*key_tfm = crypto_alloc_blkcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC);
	kfree(full_alg_name);
	if (IS_ERR(*key_tfm)) {
		rc = PTR_ERR(*key_tfm);
1758
		printk(KERN_ERR "Unable to allocate crypto cipher with name "
1759
		       "[%s]; rc = [%d]\n", cipher_name, rc);
1760 1761
		goto out;
	}
1762 1763 1764 1765 1766 1767
	crypto_blkcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_WEAK_KEY);
	if (*key_size == 0) {
		struct blkcipher_alg *alg = crypto_blkcipher_alg(*key_tfm);

		*key_size = alg->max_keysize;
	}
1768
	get_random_bytes(dummy_key, *key_size);
1769
	rc = crypto_blkcipher_setkey(*key_tfm, dummy_key, *key_size);
1770 1771
	if (rc) {
		printk(KERN_ERR "Error attempting to set key of size [%Zd] for "
1772
		       "cipher [%s]; rc = [%d]\n", *key_size, cipher_name, rc);
1773 1774 1775 1776 1777 1778
		rc = -EINVAL;
		goto out;
	}
out:
	return rc;
}
1779 1780

struct kmem_cache *ecryptfs_key_tfm_cache;
A
Adrian Bunk 已提交
1781 1782
static struct list_head key_tfm_list;
static struct mutex key_tfm_list_mutex;
1783 1784 1785 1786 1787 1788 1789 1790

int ecryptfs_init_crypto(void)
{
	mutex_init(&key_tfm_list_mutex);
	INIT_LIST_HEAD(&key_tfm_list);
	return 0;
}

1791
int ecryptfs_destroy_crypto(void)
1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825
{
	struct ecryptfs_key_tfm *key_tfm, *key_tfm_tmp;

	mutex_lock(&key_tfm_list_mutex);
	list_for_each_entry_safe(key_tfm, key_tfm_tmp, &key_tfm_list,
				 key_tfm_list) {
		list_del(&key_tfm->key_tfm_list);
		if (key_tfm->key_tfm)
			crypto_free_blkcipher(key_tfm->key_tfm);
		kmem_cache_free(ecryptfs_key_tfm_cache, key_tfm);
	}
	mutex_unlock(&key_tfm_list_mutex);
	return 0;
}

int
ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm **key_tfm, char *cipher_name,
			 size_t key_size)
{
	struct ecryptfs_key_tfm *tmp_tfm;
	int rc = 0;

	tmp_tfm = kmem_cache_alloc(ecryptfs_key_tfm_cache, GFP_KERNEL);
	if (key_tfm != NULL)
		(*key_tfm) = tmp_tfm;
	if (!tmp_tfm) {
		rc = -ENOMEM;
		printk(KERN_ERR "Error attempting to allocate from "
		       "ecryptfs_key_tfm_cache\n");
		goto out;
	}
	mutex_init(&tmp_tfm->key_tfm_mutex);
	strncpy(tmp_tfm->cipher_name, cipher_name,
		ECRYPTFS_MAX_CIPHER_NAME_SIZE);
1826
	tmp_tfm->cipher_name[ECRYPTFS_MAX_CIPHER_NAME_SIZE] = '\0';
1827
	tmp_tfm->key_size = key_size;
1828 1829 1830 1831
	rc = ecryptfs_process_key_cipher(&tmp_tfm->key_tfm,
					 tmp_tfm->cipher_name,
					 &tmp_tfm->key_size);
	if (rc) {
1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865
		printk(KERN_ERR "Error attempting to initialize key TFM "
		       "cipher with name = [%s]; rc = [%d]\n",
		       tmp_tfm->cipher_name, rc);
		kmem_cache_free(ecryptfs_key_tfm_cache, tmp_tfm);
		if (key_tfm != NULL)
			(*key_tfm) = NULL;
		goto out;
	}
	mutex_lock(&key_tfm_list_mutex);
	list_add(&tmp_tfm->key_tfm_list, &key_tfm_list);
	mutex_unlock(&key_tfm_list_mutex);
out:
	return rc;
}

int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_blkcipher **tfm,
					       struct mutex **tfm_mutex,
					       char *cipher_name)
{
	struct ecryptfs_key_tfm *key_tfm;
	int rc = 0;

	(*tfm) = NULL;
	(*tfm_mutex) = NULL;
	mutex_lock(&key_tfm_list_mutex);
	list_for_each_entry(key_tfm, &key_tfm_list, key_tfm_list) {
		if (strcmp(key_tfm->cipher_name, cipher_name) == 0) {
			(*tfm) = key_tfm->key_tfm;
			(*tfm_mutex) = &key_tfm->key_tfm_mutex;
			mutex_unlock(&key_tfm_list_mutex);
			goto out;
		}
	}
	mutex_unlock(&key_tfm_list_mutex);
1866 1867
	rc = ecryptfs_add_new_key_tfm(&key_tfm, cipher_name, 0);
	if (rc) {
1868 1869 1870 1871 1872 1873 1874 1875 1876
		printk(KERN_ERR "Error adding new key_tfm to list; rc = [%d]\n",
		       rc);
		goto out;
	}
	(*tfm) = key_tfm->key_tfm;
	(*tfm_mutex) = &key_tfm->key_tfm_mutex;
out:
	return rc;
}