crypto.c 69.4 KB
Newer Older
1 2 3 4 5
/**
 * eCryptfs: Linux filesystem encryption layer
 *
 * Copyright (C) 1997-2004 Erez Zadok
 * Copyright (C) 2001-2004 Stony Brook University
6
 * Copyright (C) 2004-2007 International Business Machines Corp.
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
 *   Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
 *   		Michael C. Thompson <mcthomps@us.ibm.com>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation; either version 2 of the
 * License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
 * 02111-1307, USA.
 */

#include <linux/fs.h>
#include <linux/mount.h>
#include <linux/pagemap.h>
#include <linux/random.h>
#include <linux/compiler.h>
#include <linux/key.h>
#include <linux/namei.h>
#include <linux/crypto.h>
#include <linux/file.h>
#include <linux/scatterlist.h>
36
#include <linux/slab.h>
37
#include <asm/unaligned.h>
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
#include "ecryptfs_kernel.h"

static int
ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
			     struct page *dst_page, int dst_offset,
			     struct page *src_page, int src_offset, int size,
			     unsigned char *iv);
static int
ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
			     struct page *dst_page, int dst_offset,
			     struct page *src_page, int src_offset, int size,
			     unsigned char *iv);

/**
 * ecryptfs_to_hex
 * @dst: Buffer to take hex character representation of contents of
 *       src; must be at least of size (src_size * 2)
 * @src: Buffer to be converted to a hex string respresentation
 * @src_size: number of bytes to convert
 */
void ecryptfs_to_hex(char *dst, char *src, size_t src_size)
{
	int x;

	for (x = 0; x < src_size; x++)
		sprintf(&dst[x * 2], "%.2x", (unsigned char)src[x]);
}

/**
 * ecryptfs_from_hex
 * @dst: Buffer to take the bytes from src hex; must be at least of
 *       size (src_size / 2)
 * @src: Buffer to be converted from a hex string respresentation to raw value
 * @dst_size: size of dst buffer, or number of hex characters pairs to convert
 */
void ecryptfs_from_hex(char *dst, char *src, int dst_size)
{
	int x;
	char tmp[3] = { 0, };

	for (x = 0; x < dst_size; x++) {
		tmp[0] = src[x * 2];
		tmp[1] = src[x * 2 + 1];
		dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16);
	}
}

/**
 * ecryptfs_calculate_md5 - calculates the md5 of @src
 * @dst: Pointer to 16 bytes of allocated memory
 * @crypt_stat: Pointer to crypt_stat struct for the current inode
 * @src: Data to be md5'd
 * @len: Length of @src
 *
 * Uses the allocated crypto context that crypt_stat references to
 * generate the MD5 sum of the contents of src.
 */
static int ecryptfs_calculate_md5(char *dst,
				  struct ecryptfs_crypt_stat *crypt_stat,
				  char *src, int len)
{
	struct scatterlist sg;
100 101 102 103 104
	struct hash_desc desc = {
		.tfm = crypt_stat->hash_tfm,
		.flags = CRYPTO_TFM_REQ_MAY_SLEEP
	};
	int rc = 0;
105

106
	mutex_lock(&crypt_stat->cs_hash_tfm_mutex);
107
	sg_init_one(&sg, (u8 *)src, len);
108 109 110 111 112
	if (!desc.tfm) {
		desc.tfm = crypto_alloc_hash(ECRYPTFS_DEFAULT_HASH, 0,
					     CRYPTO_ALG_ASYNC);
		if (IS_ERR(desc.tfm)) {
			rc = PTR_ERR(desc.tfm);
113
			ecryptfs_printk(KERN_ERR, "Error attempting to "
114 115
					"allocate crypto context; rc = [%d]\n",
					rc);
116 117
			goto out;
		}
118
		crypt_stat->hash_tfm = desc.tfm;
119
	}
120 121 122 123
	rc = crypto_hash_init(&desc);
	if (rc) {
		printk(KERN_ERR
		       "%s: Error initializing crypto hash; rc = [%d]\n",
124
		       __func__, rc);
125 126 127 128 129 130
		goto out;
	}
	rc = crypto_hash_update(&desc, &sg, len);
	if (rc) {
		printk(KERN_ERR
		       "%s: Error updating crypto hash; rc = [%d]\n",
131
		       __func__, rc);
132 133 134 135 136 137
		goto out;
	}
	rc = crypto_hash_final(&desc, dst);
	if (rc) {
		printk(KERN_ERR
		       "%s: Error finalizing crypto hash; rc = [%d]\n",
138
		       __func__, rc);
139 140
		goto out;
	}
141
out:
142
	mutex_unlock(&crypt_stat->cs_hash_tfm_mutex);
143 144 145
	return rc;
}

146 147 148
static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name,
						  char *cipher_name,
						  char *chaining_modifier)
149 150 151 152 153 154 155 156
{
	int cipher_name_len = strlen(cipher_name);
	int chaining_modifier_len = strlen(chaining_modifier);
	int algified_name_len;
	int rc;

	algified_name_len = (chaining_modifier_len + cipher_name_len + 3);
	(*algified_name) = kmalloc(algified_name_len, GFP_KERNEL);
157
	if (!(*algified_name)) {
158 159 160 161 162 163 164 165 166 167
		rc = -ENOMEM;
		goto out;
	}
	snprintf((*algified_name), algified_name_len, "%s(%s)",
		 chaining_modifier, cipher_name);
	rc = 0;
out:
	return rc;
}

168 169 170 171
/**
 * ecryptfs_derive_iv
 * @iv: destination for the derived iv vale
 * @crypt_stat: Pointer to crypt_stat struct for the current inode
M
Michael Halcrow 已提交
172
 * @offset: Offset of the extent whose IV we are to derive
173 174 175 176 177 178
 *
 * Generate the initialization vector from the given root IV and page
 * offset.
 *
 * Returns zero on success; non-zero on error.
 */
179 180
int ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat,
		       loff_t offset)
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
{
	int rc = 0;
	char dst[MD5_DIGEST_SIZE];
	char src[ECRYPTFS_MAX_IV_BYTES + 16];

	if (unlikely(ecryptfs_verbosity > 0)) {
		ecryptfs_printk(KERN_DEBUG, "root iv:\n");
		ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes);
	}
	/* TODO: It is probably secure to just cast the least
	 * significant bits of the root IV into an unsigned long and
	 * add the offset to that rather than go through all this
	 * hashing business. -Halcrow */
	memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes);
	memset((src + crypt_stat->iv_bytes), 0, 16);
M
Michael Halcrow 已提交
196
	snprintf((src + crypt_stat->iv_bytes), 16, "%lld", offset);
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
	if (unlikely(ecryptfs_verbosity > 0)) {
		ecryptfs_printk(KERN_DEBUG, "source:\n");
		ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16));
	}
	rc = ecryptfs_calculate_md5(dst, crypt_stat, src,
				    (crypt_stat->iv_bytes + 16));
	if (rc) {
		ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
				"MD5 while generating IV for a page\n");
		goto out;
	}
	memcpy(iv, dst, crypt_stat->iv_bytes);
	if (unlikely(ecryptfs_verbosity > 0)) {
		ecryptfs_printk(KERN_DEBUG, "derived iv:\n");
		ecryptfs_dump_hex(iv, crypt_stat->iv_bytes);
	}
out:
	return rc;
}

/**
 * ecryptfs_init_crypt_stat
 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
 *
 * Initialize the crypt_stat structure.
 */
void
ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
{
	memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
227 228
	INIT_LIST_HEAD(&crypt_stat->keysig_list);
	mutex_init(&crypt_stat->keysig_list_mutex);
229 230
	mutex_init(&crypt_stat->cs_mutex);
	mutex_init(&crypt_stat->cs_tfm_mutex);
231
	mutex_init(&crypt_stat->cs_hash_tfm_mutex);
232
	crypt_stat->flags |= ECRYPTFS_STRUCT_INITIALIZED;
233 234 235
}

/**
236
 * ecryptfs_destroy_crypt_stat
237 238 239 240
 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
 *
 * Releases all memory associated with a crypt_stat struct.
 */
241
void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
242
{
243 244
	struct ecryptfs_key_sig *key_sig, *key_sig_tmp;

245
	if (crypt_stat->tfm)
246
		crypto_free_ablkcipher(crypt_stat->tfm);
247 248
	if (crypt_stat->hash_tfm)
		crypto_free_hash(crypt_stat->hash_tfm);
249 250 251 252 253
	list_for_each_entry_safe(key_sig, key_sig_tmp,
				 &crypt_stat->keysig_list, crypt_stat_list) {
		list_del(&key_sig->crypt_stat_list);
		kmem_cache_free(ecryptfs_key_sig_cache, key_sig);
	}
254 255 256
	memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
}

257
void ecryptfs_destroy_mount_crypt_stat(
258 259
	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
{
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
	struct ecryptfs_global_auth_tok *auth_tok, *auth_tok_tmp;

	if (!(mount_crypt_stat->flags & ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED))
		return;
	mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
	list_for_each_entry_safe(auth_tok, auth_tok_tmp,
				 &mount_crypt_stat->global_auth_tok_list,
				 mount_crypt_stat_list) {
		list_del(&auth_tok->mount_crypt_stat_list);
		if (auth_tok->global_auth_tok_key
		    && !(auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID))
			key_put(auth_tok->global_auth_tok_key);
		kmem_cache_free(ecryptfs_global_auth_tok_cache, auth_tok);
	}
	mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
	memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat));
}

/**
 * virt_to_scatterlist
 * @addr: Virtual address
 * @size: Size of data; should be an even multiple of the block size
 * @sg: Pointer to scatterlist array; set to NULL to obtain only
 *      the number of scatterlist structs required in array
 * @sg_size: Max array size
 *
 * Fills in a scatterlist array with page references for a passed
 * virtual address.
 *
 * Returns the number of scatterlist structs in array used
 */
int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg,
			int sg_size)
{
	int i = 0;
	struct page *pg;
	int offset;
	int remainder_of_page;

299 300
	sg_init_table(sg, sg_size);

301 302 303
	while (size > 0 && i < sg_size) {
		pg = virt_to_page(addr);
		offset = offset_in_page(addr);
304
		sg_set_page(&sg[i], pg, 0, offset);
305 306
		remainder_of_page = PAGE_CACHE_SIZE - offset;
		if (size >= remainder_of_page) {
307
			sg[i].length = remainder_of_page;
308 309 310
			addr += remainder_of_page;
			size -= remainder_of_page;
		} else {
311
			sg[i].length = size;
312 313 314 315 316 317 318 319 320 321
			addr += size;
			size = 0;
		}
		i++;
	}
	if (size > 0)
		return -ENOMEM;
	return i;
}

322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
struct extent_crypt_result {
	struct completion completion;
	int rc;
};

static void extent_crypt_complete(struct crypto_async_request *req, int rc)
{
	struct extent_crypt_result *ecr = req->data;

	if (rc == -EINPROGRESS)
		return;

	ecr->rc = rc;
	complete(&ecr->completion);
}

338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
/**
 * encrypt_scatterlist
 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
 * @dest_sg: Destination of encrypted data
 * @src_sg: Data to be encrypted
 * @size: Length of data to be encrypted
 * @iv: iv to use during encryption
 *
 * Returns the number of bytes encrypted; negative value on error
 */
static int encrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
			       struct scatterlist *dest_sg,
			       struct scatterlist *src_sg, int size,
			       unsigned char *iv)
{
353 354
	struct ablkcipher_request *req = NULL;
	struct extent_crypt_result ecr;
355 356 357
	int rc = 0;

	BUG_ON(!crypt_stat || !crypt_stat->tfm
358
	       || !(crypt_stat->flags & ECRYPTFS_STRUCT_INITIALIZED));
359
	if (unlikely(ecryptfs_verbosity > 0)) {
360
		ecryptfs_printk(KERN_DEBUG, "Key size [%zd]; key:\n",
361 362 363 364
				crypt_stat->key_size);
		ecryptfs_dump_hex(crypt_stat->key,
				  crypt_stat->key_size);
	}
365 366 367

	init_completion(&ecr.completion);

368
	mutex_lock(&crypt_stat->cs_tfm_mutex);
369 370
	req = ablkcipher_request_alloc(crypt_stat->tfm, GFP_NOFS);
	if (!req) {
371
		mutex_unlock(&crypt_stat->cs_tfm_mutex);
372
		rc = -ENOMEM;
373 374
		goto out;
	}
375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392

	ablkcipher_request_set_callback(req,
			CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
			extent_crypt_complete, &ecr);
	/* Consider doing this once, when the file is opened */
	if (!(crypt_stat->flags & ECRYPTFS_KEY_SET)) {
		rc = crypto_ablkcipher_setkey(crypt_stat->tfm, crypt_stat->key,
					      crypt_stat->key_size);
		if (rc) {
			ecryptfs_printk(KERN_ERR,
					"Error setting key; rc = [%d]\n",
					rc);
			mutex_unlock(&crypt_stat->cs_tfm_mutex);
			rc = -EINVAL;
			goto out;
		}
		crypt_stat->flags |= ECRYPTFS_KEY_SET;
	}
393
	mutex_unlock(&crypt_stat->cs_tfm_mutex);
394 395 396 397 398 399 400 401 402 403
	ecryptfs_printk(KERN_DEBUG, "Encrypting [%d] bytes.\n", size);
	ablkcipher_request_set_crypt(req, src_sg, dest_sg, size, iv);
	rc = crypto_ablkcipher_encrypt(req);
	if (rc == -EINPROGRESS || rc == -EBUSY) {
		struct extent_crypt_result *ecr = req->base.data;

		wait_for_completion(&ecr->completion);
		rc = ecr->rc;
		INIT_COMPLETION(ecr->completion);
	}
404
out:
405
	ablkcipher_request_free(req);
406 407 408
	return rc;
}

409 410 411 412 413
/**
 * ecryptfs_lower_offset_for_extent
 *
 * Convert an eCryptfs page index into a lower byte offset
 */
A
Adrian Bunk 已提交
414 415
static void ecryptfs_lower_offset_for_extent(loff_t *offset, loff_t extent_num,
					     struct ecryptfs_crypt_stat *crypt_stat)
416
{
417 418
	(*offset) = ecryptfs_lower_header_size(crypt_stat)
		    + (crypt_stat->extent_size * extent_num);
419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
}

/**
 * ecryptfs_encrypt_extent
 * @enc_extent_page: Allocated page into which to encrypt the data in
 *                   @page
 * @crypt_stat: crypt_stat containing cryptographic context for the
 *              encryption operation
 * @page: Page containing plaintext data extent to encrypt
 * @extent_offset: Page extent offset for use in generating IV
 *
 * Encrypts one extent of data.
 *
 * Return zero on success; non-zero otherwise
 */
static int ecryptfs_encrypt_extent(struct page *enc_extent_page,
				   struct ecryptfs_crypt_stat *crypt_stat,
				   struct page *page,
				   unsigned long extent_offset)
{
M
Michael Halcrow 已提交
439
	loff_t extent_base;
440 441 442
	char extent_iv[ECRYPTFS_MAX_IV_BYTES];
	int rc;

M
Michael Halcrow 已提交
443
	extent_base = (((loff_t)page->index)
444 445 446 447
		       * (PAGE_CACHE_SIZE / crypt_stat->extent_size));
	rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
				(extent_base + extent_offset));
	if (rc) {
448 449 450
		ecryptfs_printk(KERN_ERR, "Error attempting to derive IV for "
			"extent [0x%.16llx]; rc = [%d]\n",
			(unsigned long long)(extent_base + extent_offset), rc);
451 452
		goto out;
	}
453 454 455 456 457
	rc = ecryptfs_encrypt_page_offset(crypt_stat, enc_extent_page,
					extent_offset * crypt_stat->extent_size,
					page,
					extent_offset * crypt_stat->extent_size,
					crypt_stat->extent_size, extent_iv);
458 459 460
	if (rc < 0) {
		printk(KERN_ERR "%s: Error attempting to encrypt page with "
		       "page->index = [%ld], extent_offset = [%ld]; "
461
		       "rc = [%d]\n", __func__, page->index, extent_offset,
462 463 464 465 466 467 468 469
		       rc);
		goto out;
	}
	rc = 0;
out:
	return rc;
}

470 471
/**
 * ecryptfs_encrypt_page
472 473 474
 * @page: Page mapped from the eCryptfs inode for the file; contains
 *        decrypted content that needs to be encrypted (to a temporary
 *        page; not in place) and written out to the lower file
475 476 477 478 479 480 481 482 483 484 485
 *
 * Encrypt an eCryptfs page. This is done on a per-extent basis. Note
 * that eCryptfs pages may straddle the lower pages -- for instance,
 * if the file was created on a machine with an 8K page size
 * (resulting in an 8K header), and then the file is copied onto a
 * host with a 32K page size, then when reading page 0 of the eCryptfs
 * file, 24K of page 0 of the lower file will be read and decrypted,
 * and then 8K of page 1 of the lower file will be read and decrypted.
 *
 * Returns zero on success; negative on error
 */
486
int ecryptfs_encrypt_page(struct page *page)
487
{
488
	struct inode *ecryptfs_inode;
489
	struct ecryptfs_crypt_stat *crypt_stat;
490 491
	char *enc_extent_virt;
	struct page *enc_extent_page = NULL;
492
	loff_t extent_offset;
493
	int rc = 0;
494 495 496 497

	ecryptfs_inode = page->mapping->host;
	crypt_stat =
		&(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
498
	BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
499 500
	enc_extent_page = alloc_page(GFP_USER);
	if (!enc_extent_page) {
501 502 503 504 505
		rc = -ENOMEM;
		ecryptfs_printk(KERN_ERR, "Error allocating memory for "
				"encrypted extent\n");
		goto out;
	}
506
	enc_extent_virt = kmap(enc_extent_page);
507 508 509 510 511 512 513
	for (extent_offset = 0;
	     extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size);
	     extent_offset++) {
		loff_t offset;

		rc = ecryptfs_encrypt_extent(enc_extent_page, crypt_stat, page,
					     extent_offset);
514
		if (rc) {
515
			printk(KERN_ERR "%s: Error encrypting extent; "
516
			       "rc = [%d]\n", __func__, rc);
517 518
			goto out;
		}
519
		ecryptfs_lower_offset_for_extent(
M
Michael Halcrow 已提交
520 521 522
			&offset, ((((loff_t)page->index)
				   * (PAGE_CACHE_SIZE
				      / crypt_stat->extent_size))
523
				  + extent_offset), crypt_stat);
524 525 526
		rc = ecryptfs_write_lower(ecryptfs_inode, (enc_extent_virt +
				extent_offset * crypt_stat->extent_size),
				offset, crypt_stat->extent_size);
527
		if (rc < 0) {
528 529 530 531
			ecryptfs_printk(KERN_ERR, "Error attempting "
					"to write lower page; rc = [%d]"
					"\n", rc);
			goto out;
532 533
		}
	}
534
	rc = 0;
535
out:
536 537 538 539
	if (enc_extent_page) {
		kunmap(enc_extent_page);
		__free_page(enc_extent_page);
	}
540 541 542 543 544 545 546 547
	return rc;
}

static int ecryptfs_decrypt_extent(struct page *page,
				   struct ecryptfs_crypt_stat *crypt_stat,
				   struct page *enc_extent_page,
				   unsigned long extent_offset)
{
M
Michael Halcrow 已提交
548
	loff_t extent_base;
549 550 551
	char extent_iv[ECRYPTFS_MAX_IV_BYTES];
	int rc;

M
Michael Halcrow 已提交
552
	extent_base = (((loff_t)page->index)
553 554 555
		       * (PAGE_CACHE_SIZE / crypt_stat->extent_size));
	rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
				(extent_base + extent_offset));
556
	if (rc) {
557 558 559
		ecryptfs_printk(KERN_ERR, "Error attempting to derive IV for "
			"extent [0x%.16llx]; rc = [%d]\n",
			(unsigned long long)(extent_base + extent_offset), rc);
560 561 562
		goto out;
	}
	rc = ecryptfs_decrypt_page_offset(crypt_stat, page,
563 564 565 566
					extent_offset * crypt_stat->extent_size,
					enc_extent_page,
					extent_offset * crypt_stat->extent_size,
					crypt_stat->extent_size, extent_iv);
567 568 569
	if (rc < 0) {
		printk(KERN_ERR "%s: Error attempting to decrypt to page with "
		       "page->index = [%ld], extent_offset = [%ld]; "
570
		       "rc = [%d]\n", __func__, page->index, extent_offset,
571 572 573 574
		       rc);
		goto out;
	}
	rc = 0;
575 576 577 578 579 580
out:
	return rc;
}

/**
 * ecryptfs_decrypt_page
581 582 583
 * @page: Page mapped from the eCryptfs inode for the file; data read
 *        and decrypted from the lower file will be written into this
 *        page
584 585 586 587 588 589 590 591 592 593 594
 *
 * Decrypt an eCryptfs page. This is done on a per-extent basis. Note
 * that eCryptfs pages may straddle the lower pages -- for instance,
 * if the file was created on a machine with an 8K page size
 * (resulting in an 8K header), and then the file is copied onto a
 * host with a 32K page size, then when reading page 0 of the eCryptfs
 * file, 24K of page 0 of the lower file will be read and decrypted,
 * and then 8K of page 1 of the lower file will be read and decrypted.
 *
 * Returns zero on success; negative on error
 */
595
int ecryptfs_decrypt_page(struct page *page)
596
{
597
	struct inode *ecryptfs_inode;
598
	struct ecryptfs_crypt_stat *crypt_stat;
599 600
	char *enc_extent_virt;
	struct page *enc_extent_page = NULL;
601
	unsigned long extent_offset;
602 603
	int rc = 0;

604 605 606
	ecryptfs_inode = page->mapping->host;
	crypt_stat =
		&(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
607
	BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
608 609
	enc_extent_page = alloc_page(GFP_USER);
	if (!enc_extent_page) {
610
		rc = -ENOMEM;
611 612
		ecryptfs_printk(KERN_ERR, "Error allocating memory for "
				"encrypted extent\n");
613
		goto out;
614
	}
615
	enc_extent_virt = kmap(enc_extent_page);
616 617 618 619 620 621 622 623 624
	for (extent_offset = 0;
	     extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size);
	     extent_offset++) {
		loff_t offset;

		ecryptfs_lower_offset_for_extent(
			&offset, ((page->index * (PAGE_CACHE_SIZE
						  / crypt_stat->extent_size))
				  + extent_offset), crypt_stat);
625 626 627 628
		rc = ecryptfs_read_lower((enc_extent_virt +
				extent_offset * crypt_stat->extent_size),
				offset, crypt_stat->extent_size,
				ecryptfs_inode);
629
		if (rc < 0) {
630 631 632
			ecryptfs_printk(KERN_ERR, "Error attempting "
					"to read lower page; rc = [%d]"
					"\n", rc);
633
			goto out;
634
		}
635 636 637 638
		rc = ecryptfs_decrypt_extent(page, crypt_stat, enc_extent_page,
					     extent_offset);
		if (rc) {
			printk(KERN_ERR "%s: Error encrypting extent; "
639
			       "rc = [%d]\n", __func__, rc);
640
			goto out;
641 642 643
		}
	}
out:
644 645 646 647
	if (enc_extent_page) {
		kunmap(enc_extent_page);
		__free_page(enc_extent_page);
	}
648 649 650 651 652
	return rc;
}

/**
 * decrypt_scatterlist
653 654 655 656 657
 * @crypt_stat: Cryptographic context
 * @dest_sg: The destination scatterlist to decrypt into
 * @src_sg: The source scatterlist to decrypt from
 * @size: The number of bytes to decrypt
 * @iv: The initialization vector to use for the decryption
658 659 660 661 662 663 664 665
 *
 * Returns the number of bytes decrypted; negative value on error
 */
static int decrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
			       struct scatterlist *dest_sg,
			       struct scatterlist *src_sg, int size,
			       unsigned char *iv)
{
666 667
	struct ablkcipher_request *req = NULL;
	struct extent_crypt_result ecr;
668 669
	int rc = 0;

670 671 672 673 674 675 676 677 678 679 680
	BUG_ON(!crypt_stat || !crypt_stat->tfm
	       || !(crypt_stat->flags & ECRYPTFS_STRUCT_INITIALIZED));
	if (unlikely(ecryptfs_verbosity > 0)) {
		ecryptfs_printk(KERN_DEBUG, "Key size [%zd]; key:\n",
				crypt_stat->key_size);
		ecryptfs_dump_hex(crypt_stat->key,
				  crypt_stat->key_size);
	}

	init_completion(&ecr.completion);

681
	mutex_lock(&crypt_stat->cs_tfm_mutex);
682 683
	req = ablkcipher_request_alloc(crypt_stat->tfm, GFP_NOFS);
	if (!req) {
684
		mutex_unlock(&crypt_stat->cs_tfm_mutex);
685
		rc = -ENOMEM;
686 687
		goto out;
	}
688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705

	ablkcipher_request_set_callback(req,
			CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
			extent_crypt_complete, &ecr);
	/* Consider doing this once, when the file is opened */
	if (!(crypt_stat->flags & ECRYPTFS_KEY_SET)) {
		rc = crypto_ablkcipher_setkey(crypt_stat->tfm, crypt_stat->key,
					      crypt_stat->key_size);
		if (rc) {
			ecryptfs_printk(KERN_ERR,
					"Error setting key; rc = [%d]\n",
					rc);
			mutex_unlock(&crypt_stat->cs_tfm_mutex);
			rc = -EINVAL;
			goto out;
		}
		crypt_stat->flags |= ECRYPTFS_KEY_SET;
	}
706
	mutex_unlock(&crypt_stat->cs_tfm_mutex);
707 708 709 710 711 712 713 714 715
	ecryptfs_printk(KERN_DEBUG, "Decrypting [%d] bytes.\n", size);
	ablkcipher_request_set_crypt(req, src_sg, dest_sg, size, iv);
	rc = crypto_ablkcipher_decrypt(req);
	if (rc == -EINPROGRESS || rc == -EBUSY) {
		struct extent_crypt_result *ecr = req->base.data;

		wait_for_completion(&ecr->completion);
		rc = ecr->rc;
		INIT_COMPLETION(ecr->completion);
716 717
	}
out:
718
	ablkcipher_request_free(req);
719
	return rc;
720

721 722 723 724
}

/**
 * ecryptfs_encrypt_page_offset
725 726 727 728 729 730 731
 * @crypt_stat: The cryptographic context
 * @dst_page: The page to encrypt into
 * @dst_offset: The offset in the page to encrypt into
 * @src_page: The page to encrypt from
 * @src_offset: The offset in the page to encrypt from
 * @size: The number of bytes to encrypt
 * @iv: The initialization vector to use for the encryption
732 733 734 735 736 737 738 739 740 741 742
 *
 * Returns the number of bytes encrypted
 */
static int
ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
			     struct page *dst_page, int dst_offset,
			     struct page *src_page, int src_offset, int size,
			     unsigned char *iv)
{
	struct scatterlist src_sg, dst_sg;

J
Jens Axboe 已提交
743 744 745
	sg_init_table(&src_sg, 1);
	sg_init_table(&dst_sg, 1);

746 747
	sg_set_page(&src_sg, src_page, size, src_offset);
	sg_set_page(&dst_sg, dst_page, size, dst_offset);
748 749 750 751 752
	return encrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv);
}

/**
 * ecryptfs_decrypt_page_offset
753 754 755 756 757 758 759
 * @crypt_stat: The cryptographic context
 * @dst_page: The page to decrypt into
 * @dst_offset: The offset in the page to decrypt into
 * @src_page: The page to decrypt from
 * @src_offset: The offset in the page to decrypt from
 * @size: The number of bytes to decrypt
 * @iv: The initialization vector to use for the decryption
760 761 762 763 764 765 766 767 768 769 770
 *
 * Returns the number of bytes decrypted
 */
static int
ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
			     struct page *dst_page, int dst_offset,
			     struct page *src_page, int src_offset, int size,
			     unsigned char *iv)
{
	struct scatterlist src_sg, dst_sg;

J
Jens Axboe 已提交
771
	sg_init_table(&src_sg, 1);
772 773
	sg_set_page(&src_sg, src_page, size, src_offset);

J
Jens Axboe 已提交
774
	sg_init_table(&dst_sg, 1);
775
	sg_set_page(&dst_sg, dst_page, size, dst_offset);
J
Jens Axboe 已提交
776

777 778 779 780 781 782 783
	return decrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv);
}

#define ECRYPTFS_MAX_SCATTERLIST_LEN 4

/**
 * ecryptfs_init_crypt_ctx
784
 * @crypt_stat: Uninitialized crypt stats structure
785 786 787 788 789 790 791 792
 *
 * Initialize the crypto context.
 *
 * TODO: Performance: Keep a cache of initialized cipher contexts;
 * only init if needed
 */
int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat)
{
793
	char *full_alg_name;
794 795 796 797 798 799 800 801
	int rc = -EINVAL;

	if (!crypt_stat->cipher) {
		ecryptfs_printk(KERN_ERR, "No cipher specified\n");
		goto out;
	}
	ecryptfs_printk(KERN_DEBUG,
			"Initializing cipher [%s]; strlen = [%d]; "
802
			"key_size_bits = [%zd]\n",
803 804 805 806 807 808 809
			crypt_stat->cipher, (int)strlen(crypt_stat->cipher),
			crypt_stat->key_size << 3);
	if (crypt_stat->tfm) {
		rc = 0;
		goto out;
	}
	mutex_lock(&crypt_stat->cs_tfm_mutex);
810 811 812
	rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name,
						    crypt_stat->cipher, "cbc");
	if (rc)
813
		goto out_unlock;
814
	crypt_stat->tfm = crypto_alloc_ablkcipher(full_alg_name, 0, 0);
815
	kfree(full_alg_name);
816 817
	if (IS_ERR(crypt_stat->tfm)) {
		rc = PTR_ERR(crypt_stat->tfm);
818
		crypt_stat->tfm = NULL;
819 820 821
		ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): "
				"Error initializing cipher [%s]\n",
				crypt_stat->cipher);
822
		goto out_unlock;
823
	}
824
	crypto_ablkcipher_set_flags(crypt_stat->tfm, CRYPTO_TFM_REQ_WEAK_KEY);
825
	rc = 0;
826 827
out_unlock:
	mutex_unlock(&crypt_stat->cs_tfm_mutex);
828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854
out:
	return rc;
}

static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat)
{
	int extent_size_tmp;

	crypt_stat->extent_mask = 0xFFFFFFFF;
	crypt_stat->extent_shift = 0;
	if (crypt_stat->extent_size == 0)
		return;
	extent_size_tmp = crypt_stat->extent_size;
	while ((extent_size_tmp & 0x01) == 0) {
		extent_size_tmp >>= 1;
		crypt_stat->extent_mask <<= 1;
		crypt_stat->extent_shift++;
	}
}

void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat)
{
	/* Default values; may be overwritten as we are parsing the
	 * packets. */
	crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE;
	set_extent_mask_and_shift(crypt_stat);
	crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES;
855
	if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
856
		crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
857 858
	else {
		if (PAGE_CACHE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)
859
			crypt_stat->metadata_size =
860
				ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
861
		else
862
			crypt_stat->metadata_size = PAGE_CACHE_SIZE;
863
	}
864 865 866 867 868 869 870 871 872 873 874 875 876 877 878
}

/**
 * ecryptfs_compute_root_iv
 * @crypt_stats
 *
 * On error, sets the root IV to all 0's.
 */
int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat)
{
	int rc = 0;
	char dst[MD5_DIGEST_SIZE];

	BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE);
	BUG_ON(crypt_stat->iv_bytes <= 0);
879
	if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895
		rc = -EINVAL;
		ecryptfs_printk(KERN_WARNING, "Session key not valid; "
				"cannot generate root IV\n");
		goto out;
	}
	rc = ecryptfs_calculate_md5(dst, crypt_stat, crypt_stat->key,
				    crypt_stat->key_size);
	if (rc) {
		ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
				"MD5 while generating root IV\n");
		goto out;
	}
	memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes);
out:
	if (rc) {
		memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes);
896
		crypt_stat->flags |= ECRYPTFS_SECURITY_WARNING;
897 898 899 900 901 902 903
	}
	return rc;
}

static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat)
{
	get_random_bytes(crypt_stat->key, crypt_stat->key_size);
904
	crypt_stat->flags |= ECRYPTFS_KEY_VALID;
905 906 907 908 909 910 911 912
	ecryptfs_compute_root_iv(crypt_stat);
	if (unlikely(ecryptfs_verbosity > 0)) {
		ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n");
		ecryptfs_dump_hex(crypt_stat->key,
				  crypt_stat->key_size);
	}
}

913 914
/**
 * ecryptfs_copy_mount_wide_flags_to_inode_flags
915 916
 * @crypt_stat: The inode's cryptographic context
 * @mount_crypt_stat: The mount point's cryptographic context
917 918 919 920 921 922 923 924 925 926 927 928
 *
 * This function propagates the mount-wide flags to individual inode
 * flags.
 */
static void ecryptfs_copy_mount_wide_flags_to_inode_flags(
	struct ecryptfs_crypt_stat *crypt_stat,
	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
{
	if (mount_crypt_stat->flags & ECRYPTFS_XATTR_METADATA_ENABLED)
		crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
	if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
		crypt_stat->flags |= ECRYPTFS_VIEW_AS_ENCRYPTED;
929 930 931 932 933 934 935 936 937
	if (mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) {
		crypt_stat->flags |= ECRYPTFS_ENCRYPT_FILENAMES;
		if (mount_crypt_stat->flags
		    & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)
			crypt_stat->flags |= ECRYPTFS_ENCFN_USE_MOUNT_FNEK;
		else if (mount_crypt_stat->flags
			 & ECRYPTFS_GLOBAL_ENCFN_USE_FEK)
			crypt_stat->flags |= ECRYPTFS_ENCFN_USE_FEK;
	}
938 939
}

940 941 942 943 944 945 946
static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs(
	struct ecryptfs_crypt_stat *crypt_stat,
	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
{
	struct ecryptfs_global_auth_tok *global_auth_tok;
	int rc = 0;

947
	mutex_lock(&crypt_stat->keysig_list_mutex);
948
	mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
949

950 951 952
	list_for_each_entry(global_auth_tok,
			    &mount_crypt_stat->global_auth_tok_list,
			    mount_crypt_stat_list) {
953 954
		if (global_auth_tok->flags & ECRYPTFS_AUTH_TOK_FNEK)
			continue;
955 956 957 958 959 960
		rc = ecryptfs_add_keysig(crypt_stat, global_auth_tok->sig);
		if (rc) {
			printk(KERN_ERR "Error adding keysig; rc = [%d]\n", rc);
			goto out;
		}
	}
961

962
out:
963 964
	mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
	mutex_unlock(&crypt_stat->keysig_list_mutex);
965 966 967
	return rc;
}

968 969
/**
 * ecryptfs_set_default_crypt_stat_vals
970 971
 * @crypt_stat: The inode's cryptographic context
 * @mount_crypt_stat: The mount point's cryptographic context
972 973 974 975 976 977 978
 *
 * Default values in the event that policy does not override them.
 */
static void ecryptfs_set_default_crypt_stat_vals(
	struct ecryptfs_crypt_stat *crypt_stat,
	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
{
979 980
	ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
						      mount_crypt_stat);
981 982 983
	ecryptfs_set_default_sizes(crypt_stat);
	strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER);
	crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES;
984
	crypt_stat->flags &= ~(ECRYPTFS_KEY_VALID);
985 986 987 988 989 990
	crypt_stat->file_version = ECRYPTFS_FILE_VERSION;
	crypt_stat->mount_crypt_stat = mount_crypt_stat;
}

/**
 * ecryptfs_new_file_context
991
 * @ecryptfs_inode: The eCryptfs inode
992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007
 *
 * If the crypto context for the file has not yet been established,
 * this is where we do that.  Establishing a new crypto context
 * involves the following decisions:
 *  - What cipher to use?
 *  - What set of authentication tokens to use?
 * Here we just worry about getting enough information into the
 * authentication tokens so that we know that they are available.
 * We associate the available authentication tokens with the new file
 * via the set of signatures in the crypt_stat struct.  Later, when
 * the headers are actually written out, we may again defer to
 * userspace to perform the encryption of the session key; for the
 * foreseeable future, this will be the case with public key packets.
 *
 * Returns zero on success; non-zero otherwise
 */
1008
int ecryptfs_new_file_context(struct inode *ecryptfs_inode)
1009 1010
{
	struct ecryptfs_crypt_stat *crypt_stat =
1011
	    &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1012 1013
	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
	    &ecryptfs_superblock_to_private(
1014
		    ecryptfs_inode->i_sb)->mount_crypt_stat;
1015
	int cipher_name_len;
1016
	int rc = 0;
1017 1018

	ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat);
1019
	crypt_stat->flags |= (ECRYPTFS_ENCRYPTED | ECRYPTFS_KEY_VALID);
1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
	ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
						      mount_crypt_stat);
	rc = ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat,
							 mount_crypt_stat);
	if (rc) {
		printk(KERN_ERR "Error attempting to copy mount-wide key sigs "
		       "to the inode key sigs; rc = [%d]\n", rc);
		goto out;
	}
	cipher_name_len =
		strlen(mount_crypt_stat->global_default_cipher_name);
	memcpy(crypt_stat->cipher,
	       mount_crypt_stat->global_default_cipher_name,
	       cipher_name_len);
	crypt_stat->cipher[cipher_name_len] = '\0';
	crypt_stat->key_size =
		mount_crypt_stat->global_default_cipher_key_size;
	ecryptfs_generate_new_key(crypt_stat);
1038 1039 1040 1041 1042
	rc = ecryptfs_init_crypt_ctx(crypt_stat);
	if (rc)
		ecryptfs_printk(KERN_ERR, "Error initializing cryptographic "
				"context for cipher [%s]: rc = [%d]\n",
				crypt_stat->cipher, rc);
1043
out:
1044 1045 1046 1047
	return rc;
}

/**
1048
 * ecryptfs_validate_marker - check for the ecryptfs marker
1049 1050
 * @data: The data block in which to check
 *
1051
 * Returns zero if marker found; -EINVAL if not found
1052
 */
1053
static int ecryptfs_validate_marker(char *data)
1054 1055 1056
{
	u32 m_1, m_2;

1057 1058
	m_1 = get_unaligned_be32(data);
	m_2 = get_unaligned_be32(data + 4);
1059
	if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2)
1060
		return 0;
1061 1062 1063 1064 1065
	ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; "
			"MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2,
			MAGIC_ECRYPTFS_MARKER);
	ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = "
			"[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER));
1066
	return -EINVAL;
1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
}

struct ecryptfs_flag_map_elem {
	u32 file_flag;
	u32 local_flag;
};

/* Add support for additional flags by adding elements here. */
static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = {
	{0x00000001, ECRYPTFS_ENABLE_HMAC},
1077
	{0x00000002, ECRYPTFS_ENCRYPTED},
1078 1079
	{0x00000004, ECRYPTFS_METADATA_IN_XATTR},
	{0x00000008, ECRYPTFS_ENCRYPT_FILENAMES}
1080 1081 1082 1083
};

/**
 * ecryptfs_process_flags
1084
 * @crypt_stat: The cryptographic context
1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
 * @page_virt: Source data to be parsed
 * @bytes_read: Updated with the number of bytes read
 *
 * Returns zero on success; non-zero if the flag set is invalid
 */
static int ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat,
				  char *page_virt, int *bytes_read)
{
	int rc = 0;
	int i;
	u32 flags;

1097
	flags = get_unaligned_be32(page_virt);
1098 1099 1100
	for (i = 0; i < ((sizeof(ecryptfs_flag_map)
			  / sizeof(struct ecryptfs_flag_map_elem))); i++)
		if (flags & ecryptfs_flag_map[i].file_flag) {
1101
			crypt_stat->flags |= ecryptfs_flag_map[i].local_flag;
1102
		} else
1103
			crypt_stat->flags &= ~(ecryptfs_flag_map[i].local_flag);
1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122
	/* Version is in top 8 bits of the 32-bit flag vector */
	crypt_stat->file_version = ((flags >> 24) & 0xFF);
	(*bytes_read) = 4;
	return rc;
}

/**
 * write_ecryptfs_marker
 * @page_virt: The pointer to in a page to begin writing the marker
 * @written: Number of bytes written
 *
 * Marker = 0x3c81b7f5
 */
static void write_ecryptfs_marker(char *page_virt, size_t *written)
{
	u32 m_1, m_2;

	get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
	m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER);
1123 1124 1125
	put_unaligned_be32(m_1, page_virt);
	page_virt += (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2);
	put_unaligned_be32(m_2, page_virt);
1126 1127 1128
	(*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
}

1129 1130 1131
void ecryptfs_write_crypt_stat_flags(char *page_virt,
				     struct ecryptfs_crypt_stat *crypt_stat,
				     size_t *written)
1132 1133 1134 1135 1136 1137
{
	u32 flags = 0;
	int i;

	for (i = 0; i < ((sizeof(ecryptfs_flag_map)
			  / sizeof(struct ecryptfs_flag_map_elem))); i++)
1138
		if (crypt_stat->flags & ecryptfs_flag_map[i].local_flag)
1139 1140 1141
			flags |= ecryptfs_flag_map[i].file_flag;
	/* Version is in top 8 bits of the 32-bit flag vector */
	flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000);
1142
	put_unaligned_be32(flags, page_virt);
1143 1144 1145 1146 1147
	(*written) = 4;
}

struct ecryptfs_cipher_code_str_map_elem {
	char cipher_str[16];
1148
	u8 cipher_code;
1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
};

/* Add support for additional ciphers by adding elements here. The
 * cipher_code is whatever OpenPGP applicatoins use to identify the
 * ciphers. List in order of probability. */
static struct ecryptfs_cipher_code_str_map_elem
ecryptfs_cipher_code_str_map[] = {
	{"aes",RFC2440_CIPHER_AES_128 },
	{"blowfish", RFC2440_CIPHER_BLOWFISH},
	{"des3_ede", RFC2440_CIPHER_DES3_EDE},
	{"cast5", RFC2440_CIPHER_CAST_5},
	{"twofish", RFC2440_CIPHER_TWOFISH},
	{"cast6", RFC2440_CIPHER_CAST_6},
	{"aes", RFC2440_CIPHER_AES_192},
	{"aes", RFC2440_CIPHER_AES_256}
};

/**
 * ecryptfs_code_for_cipher_string
1168 1169
 * @cipher_name: The string alias for the cipher
 * @key_bytes: Length of key in bytes; used for AES code selection
1170 1171 1172
 *
 * Returns zero on no match, or the cipher code on match
 */
1173
u8 ecryptfs_code_for_cipher_string(char *cipher_name, size_t key_bytes)
1174 1175
{
	int i;
1176
	u8 code = 0;
1177 1178 1179
	struct ecryptfs_cipher_code_str_map_elem *map =
		ecryptfs_cipher_code_str_map;

1180 1181
	if (strcmp(cipher_name, "aes") == 0) {
		switch (key_bytes) {
1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
		case 16:
			code = RFC2440_CIPHER_AES_128;
			break;
		case 24:
			code = RFC2440_CIPHER_AES_192;
			break;
		case 32:
			code = RFC2440_CIPHER_AES_256;
		}
	} else {
		for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
1193
			if (strcmp(cipher_name, map[i].cipher_str) == 0) {
1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
				code = map[i].cipher_code;
				break;
			}
	}
	return code;
}

/**
 * ecryptfs_cipher_code_to_string
 * @str: Destination to write out the cipher name
 * @cipher_code: The code to convert to cipher name string
 *
 * Returns zero on success
 */
1208
int ecryptfs_cipher_code_to_string(char *str, u8 cipher_code)
1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224
{
	int rc = 0;
	int i;

	str[0] = '\0';
	for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
		if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code)
			strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str);
	if (str[0] == '\0') {
		ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: "
				"[%d]\n", cipher_code);
		rc = -EINVAL;
	}
	return rc;
}

1225
int ecryptfs_read_and_validate_header_region(struct inode *inode)
1226
{
1227 1228
	u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
	u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
1229 1230
	int rc;

1231 1232 1233 1234 1235 1236 1237
	rc = ecryptfs_read_lower(file_size, 0, ECRYPTFS_SIZE_AND_MARKER_BYTES,
				 inode);
	if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
		return rc >= 0 ? -EINVAL : rc;
	rc = ecryptfs_validate_marker(marker);
	if (!rc)
		ecryptfs_i_size_init(file_size, inode);
1238 1239 1240
	return rc;
}

1241 1242 1243 1244
void
ecryptfs_write_header_metadata(char *virt,
			       struct ecryptfs_crypt_stat *crypt_stat,
			       size_t *written)
1245 1246 1247 1248
{
	u32 header_extent_size;
	u16 num_header_extents_at_front;

1249
	header_extent_size = (u32)crypt_stat->extent_size;
1250
	num_header_extents_at_front =
1251
		(u16)(crypt_stat->metadata_size / crypt_stat->extent_size);
1252
	put_unaligned_be32(header_extent_size, virt);
1253
	virt += 4;
1254
	put_unaligned_be16(num_header_extents_at_front, virt);
1255 1256 1257
	(*written) = 6;
}

1258
struct kmem_cache *ecryptfs_header_cache;
1259 1260 1261

/**
 * ecryptfs_write_headers_virt
1262
 * @page_virt: The virtual address to write the headers to
1263
 * @max: The size of memory allocated at page_virt
1264 1265 1266
 * @size: Set to the number of bytes written by this function
 * @crypt_stat: The cryptographic context
 * @ecryptfs_dentry: The eCryptfs dentry
1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290
 *
 * Format version: 1
 *
 *   Header Extent:
 *     Octets 0-7:        Unencrypted file size (big-endian)
 *     Octets 8-15:       eCryptfs special marker
 *     Octets 16-19:      Flags
 *      Octet 16:         File format version number (between 0 and 255)
 *      Octets 17-18:     Reserved
 *      Octet 19:         Bit 1 (lsb): Reserved
 *                        Bit 2: Encrypted?
 *                        Bits 3-8: Reserved
 *     Octets 20-23:      Header extent size (big-endian)
 *     Octets 24-25:      Number of header extents at front of file
 *                        (big-endian)
 *     Octet  26:         Begin RFC 2440 authentication token packet set
 *   Data Extent 0:
 *     Lower data (CBC encrypted)
 *   Data Extent 1:
 *     Lower data (CBC encrypted)
 *   ...
 *
 * Returns zero on success
 */
1291 1292
static int ecryptfs_write_headers_virt(char *page_virt, size_t max,
				       size_t *size,
1293 1294
				       struct ecryptfs_crypt_stat *crypt_stat,
				       struct dentry *ecryptfs_dentry)
1295 1296 1297 1298 1299 1300 1301 1302
{
	int rc;
	size_t written;
	size_t offset;

	offset = ECRYPTFS_FILE_SIZE_BYTES;
	write_ecryptfs_marker((page_virt + offset), &written);
	offset += written;
1303 1304
	ecryptfs_write_crypt_stat_flags((page_virt + offset), crypt_stat,
					&written);
1305
	offset += written;
1306 1307
	ecryptfs_write_header_metadata((page_virt + offset), crypt_stat,
				       &written);
1308 1309 1310
	offset += written;
	rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat,
					      ecryptfs_dentry, &written,
1311
					      max - offset);
1312 1313 1314
	if (rc)
		ecryptfs_printk(KERN_WARNING, "Error generating key packet "
				"set; rc = [%d]\n", rc);
1315 1316 1317 1318 1319 1320 1321
	if (size) {
		offset += written;
		*size = offset;
	}
	return rc;
}

1322
static int
1323
ecryptfs_write_metadata_to_contents(struct inode *ecryptfs_inode,
1324
				    char *virt, size_t virt_len)
1325
{
1326
	int rc;
1327

1328
	rc = ecryptfs_write_lower(ecryptfs_inode, virt,
1329
				  0, virt_len);
1330
	if (rc < 0)
1331
		printk(KERN_ERR "%s: Error attempting to write header "
1332 1333 1334
		       "information to lower file; rc = [%d]\n", __func__, rc);
	else
		rc = 0;
1335
	return rc;
1336 1337
}

1338 1339 1340
static int
ecryptfs_write_metadata_to_xattr(struct dentry *ecryptfs_dentry,
				 char *page_virt, size_t size)
1341 1342 1343 1344 1345
{
	int rc;

	rc = ecryptfs_setxattr(ecryptfs_dentry, ECRYPTFS_XATTR_NAME, page_virt,
			       size, 0);
1346 1347 1348
	return rc;
}

1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
static unsigned long ecryptfs_get_zeroed_pages(gfp_t gfp_mask,
					       unsigned int order)
{
	struct page *page;

	page = alloc_pages(gfp_mask | __GFP_ZERO, order);
	if (page)
		return (unsigned long) page_address(page);
	return 0;
}

1360
/**
1361
 * ecryptfs_write_metadata
1362 1363
 * @ecryptfs_dentry: The eCryptfs dentry, which should be negative
 * @ecryptfs_inode: The newly created eCryptfs inode
1364 1365 1366 1367 1368 1369 1370 1371 1372
 *
 * Write the file headers out.  This will likely involve a userspace
 * callout, in which the session key is encrypted with one or more
 * public keys and/or the passphrase necessary to do the encryption is
 * retrieved via a prompt.  Exactly what happens at this point should
 * be policy-dependent.
 *
 * Returns zero on success; non-zero on error
 */
1373 1374
int ecryptfs_write_metadata(struct dentry *ecryptfs_dentry,
			    struct inode *ecryptfs_inode)
1375
{
1376
	struct ecryptfs_crypt_stat *crypt_stat =
1377
		&ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1378
	unsigned int order;
1379
	char *virt;
1380
	size_t virt_len;
1381
	size_t size = 0;
1382 1383
	int rc = 0;

1384 1385
	if (likely(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
		if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
1386
			printk(KERN_ERR "Key is invalid; bailing out\n");
1387 1388 1389 1390
			rc = -EINVAL;
			goto out;
		}
	} else {
1391
		printk(KERN_WARNING "%s: Encrypted flag not set\n",
1392
		       __func__);
1393 1394 1395
		rc = -EINVAL;
		goto out;
	}
1396
	virt_len = crypt_stat->metadata_size;
1397
	order = get_order(virt_len);
1398
	/* Released in this function */
1399
	virt = (char *)ecryptfs_get_zeroed_pages(GFP_KERNEL, order);
1400
	if (!virt) {
1401
		printk(KERN_ERR "%s: Out of memory\n", __func__);
1402 1403 1404
		rc = -ENOMEM;
		goto out;
	}
1405
	/* Zeroed page ensures the in-header unencrypted i_size is set to 0 */
1406 1407
	rc = ecryptfs_write_headers_virt(virt, virt_len, &size, crypt_stat,
					 ecryptfs_dentry);
1408
	if (unlikely(rc)) {
1409
		printk(KERN_ERR "%s: Error whilst writing headers; rc = [%d]\n",
1410
		       __func__, rc);
1411 1412
		goto out_free;
	}
1413
	if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1414 1415
		rc = ecryptfs_write_metadata_to_xattr(ecryptfs_dentry, virt,
						      size);
1416
	else
1417
		rc = ecryptfs_write_metadata_to_contents(ecryptfs_inode, virt,
1418
							 virt_len);
1419
	if (rc) {
1420
		printk(KERN_ERR "%s: Error writing metadata out to lower file; "
1421
		       "rc = [%d]\n", __func__, rc);
1422
		goto out_free;
1423 1424
	}
out_free:
1425
	free_pages((unsigned long)virt, order);
1426 1427 1428 1429
out:
	return rc;
}

1430 1431
#define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0
#define ECRYPTFS_VALIDATE_HEADER_SIZE 1
1432
static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat,
1433 1434
				 char *virt, int *bytes_read,
				 int validate_header_size)
1435 1436 1437 1438 1439
{
	int rc = 0;
	u32 header_extent_size;
	u16 num_header_extents_at_front;

1440 1441 1442
	header_extent_size = get_unaligned_be32(virt);
	virt += sizeof(__be32);
	num_header_extents_at_front = get_unaligned_be16(virt);
1443 1444
	crypt_stat->metadata_size = (((size_t)num_header_extents_at_front
				     * (size_t)header_extent_size));
1445
	(*bytes_read) = (sizeof(__be32) + sizeof(__be16));
1446
	if ((validate_header_size == ECRYPTFS_VALIDATE_HEADER_SIZE)
1447
	    && (crypt_stat->metadata_size
1448
		< ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)) {
1449
		rc = -EINVAL;
1450
		printk(KERN_WARNING "Invalid header size: [%zd]\n",
1451
		       crypt_stat->metadata_size);
1452 1453 1454 1455 1456 1457
	}
	return rc;
}

/**
 * set_default_header_data
1458
 * @crypt_stat: The cryptographic context
1459 1460 1461 1462 1463 1464 1465
 *
 * For version 0 file format; this function is only for backwards
 * compatibility for files created with the prior versions of
 * eCryptfs.
 */
static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat)
{
1466
	crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
1467 1468
}

1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
void ecryptfs_i_size_init(const char *page_virt, struct inode *inode)
{
	struct ecryptfs_mount_crypt_stat *mount_crypt_stat;
	struct ecryptfs_crypt_stat *crypt_stat;
	u64 file_size;

	crypt_stat = &ecryptfs_inode_to_private(inode)->crypt_stat;
	mount_crypt_stat =
		&ecryptfs_superblock_to_private(inode->i_sb)->mount_crypt_stat;
	if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED) {
		file_size = i_size_read(ecryptfs_inode_to_lower(inode));
		if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
			file_size += crypt_stat->metadata_size;
	} else
		file_size = get_unaligned_be64(page_virt);
	i_size_write(inode, (loff_t)file_size);
	crypt_stat->flags |= ECRYPTFS_I_SIZE_INITIALIZED;
}

1488 1489
/**
 * ecryptfs_read_headers_virt
1490 1491 1492 1493
 * @page_virt: The virtual address into which to read the headers
 * @crypt_stat: The cryptographic context
 * @ecryptfs_dentry: The eCryptfs dentry
 * @validate_header_size: Whether to validate the header size while reading
1494 1495 1496 1497 1498 1499 1500 1501
 *
 * Read/parse the header data. The header format is detailed in the
 * comment block for the ecryptfs_write_headers_virt() function.
 *
 * Returns zero on success
 */
static int ecryptfs_read_headers_virt(char *page_virt,
				      struct ecryptfs_crypt_stat *crypt_stat,
1502 1503
				      struct dentry *ecryptfs_dentry,
				      int validate_header_size)
1504 1505 1506 1507 1508 1509 1510 1511 1512
{
	int rc = 0;
	int offset;
	int bytes_read;

	ecryptfs_set_default_sizes(crypt_stat);
	crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private(
		ecryptfs_dentry->d_sb)->mount_crypt_stat;
	offset = ECRYPTFS_FILE_SIZE_BYTES;
1513 1514
	rc = ecryptfs_validate_marker(page_virt + offset);
	if (rc)
1515
		goto out;
1516 1517
	if (!(crypt_stat->flags & ECRYPTFS_I_SIZE_INITIALIZED))
		ecryptfs_i_size_init(page_virt, ecryptfs_dentry->d_inode);
1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536
	offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
	rc = ecryptfs_process_flags(crypt_stat, (page_virt + offset),
				    &bytes_read);
	if (rc) {
		ecryptfs_printk(KERN_WARNING, "Error processing flags\n");
		goto out;
	}
	if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) {
		ecryptfs_printk(KERN_WARNING, "File version is [%d]; only "
				"file version [%d] is supported by this "
				"version of eCryptfs\n",
				crypt_stat->file_version,
				ECRYPTFS_SUPPORTED_FILE_VERSION);
		rc = -EINVAL;
		goto out;
	}
	offset += bytes_read;
	if (crypt_stat->file_version >= 1) {
		rc = parse_header_metadata(crypt_stat, (page_virt + offset),
1537
					   &bytes_read, validate_header_size);
1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
		if (rc) {
			ecryptfs_printk(KERN_WARNING, "Error reading header "
					"metadata; rc = [%d]\n", rc);
		}
		offset += bytes_read;
	} else
		set_default_header_data(crypt_stat);
	rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset),
				       ecryptfs_dentry);
out:
	return rc;
}

/**
1552
 * ecryptfs_read_xattr_region
1553
 * @page_virt: The vitual address into which to read the xattr data
1554
 * @ecryptfs_inode: The eCryptfs inode
1555 1556 1557
 *
 * Attempts to read the crypto metadata from the extended attribute
 * region of the lower file.
1558 1559
 *
 * Returns zero on success; non-zero on error
1560
 */
1561
int ecryptfs_read_xattr_region(char *page_virt, struct inode *ecryptfs_inode)
1562
{
1563 1564
	struct dentry *lower_dentry =
		ecryptfs_inode_to_private(ecryptfs_inode)->lower_file->f_dentry;
1565 1566 1567
	ssize_t size;
	int rc = 0;

1568 1569
	size = ecryptfs_getxattr_lower(lower_dentry, ECRYPTFS_XATTR_NAME,
				       page_virt, ECRYPTFS_DEFAULT_EXTENT_SIZE);
1570
	if (size < 0) {
1571 1572 1573 1574
		if (unlikely(ecryptfs_verbosity > 0))
			printk(KERN_INFO "Error attempting to read the [%s] "
			       "xattr from the lower file; return value = "
			       "[%zd]\n", ECRYPTFS_XATTR_NAME, size);
1575 1576 1577 1578 1579 1580 1581
		rc = -EINVAL;
		goto out;
	}
out:
	return rc;
}

1582
int ecryptfs_read_and_validate_xattr_region(struct dentry *dentry,
1583
					    struct inode *inode)
1584
{
1585 1586
	u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
	u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
1587 1588
	int rc;

1589 1590 1591 1592 1593 1594 1595 1596
	rc = ecryptfs_getxattr_lower(ecryptfs_dentry_to_lower(dentry),
				     ECRYPTFS_XATTR_NAME, file_size,
				     ECRYPTFS_SIZE_AND_MARKER_BYTES);
	if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
		return rc >= 0 ? -EINVAL : rc;
	rc = ecryptfs_validate_marker(marker);
	if (!rc)
		ecryptfs_i_size_init(file_size, inode);
1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608
	return rc;
}

/**
 * ecryptfs_read_metadata
 *
 * Common entry point for reading file metadata. From here, we could
 * retrieve the header information from the header region of the file,
 * the xattr region of the file, or some other repostory that is
 * stored separately from the file itself. The current implementation
 * supports retrieving the metadata information from the file contents
 * and from the xattr region.
1609 1610 1611
 *
 * Returns zero if valid headers found and parsed; non-zero otherwise
 */
1612
int ecryptfs_read_metadata(struct dentry *ecryptfs_dentry)
1613
{
1614 1615
	int rc;
	char *page_virt;
1616
	struct inode *ecryptfs_inode = ecryptfs_dentry->d_inode;
1617
	struct ecryptfs_crypt_stat *crypt_stat =
1618
	    &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1619 1620 1621
	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
		&ecryptfs_superblock_to_private(
			ecryptfs_dentry->d_sb)->mount_crypt_stat;
1622

1623 1624
	ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
						      mount_crypt_stat);
1625
	/* Read the first page from the underlying file */
1626
	page_virt = kmem_cache_alloc(ecryptfs_header_cache, GFP_USER);
1627 1628
	if (!page_virt) {
		rc = -ENOMEM;
1629
		printk(KERN_ERR "%s: Unable to allocate page_virt\n",
1630
		       __func__);
1631 1632
		goto out;
	}
1633 1634
	rc = ecryptfs_read_lower(page_virt, 0, crypt_stat->extent_size,
				 ecryptfs_inode);
1635
	if (rc >= 0)
1636 1637 1638
		rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
						ecryptfs_dentry,
						ECRYPTFS_VALIDATE_HEADER_SIZE);
1639
	if (rc) {
1640
		/* metadata is not in the file header, so try xattrs */
1641
		memset(page_virt, 0, PAGE_CACHE_SIZE);
1642
		rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_inode);
1643 1644
		if (rc) {
			printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1645 1646
			       "file header region or xattr region, inode %lu\n",
				ecryptfs_inode->i_ino);
1647 1648 1649 1650 1651 1652 1653 1654
			rc = -EINVAL;
			goto out;
		}
		rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
						ecryptfs_dentry,
						ECRYPTFS_DONT_VALIDATE_HEADER_SIZE);
		if (rc) {
			printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1655 1656
			       "file xattr region either, inode %lu\n",
				ecryptfs_inode->i_ino);
1657 1658 1659 1660 1661 1662 1663 1664 1665 1666
			rc = -EINVAL;
		}
		if (crypt_stat->mount_crypt_stat->flags
		    & ECRYPTFS_XATTR_METADATA_ENABLED) {
			crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
		} else {
			printk(KERN_WARNING "Attempt to access file with "
			       "crypto metadata only in the extended attribute "
			       "region, but eCryptfs was mounted without "
			       "xattr support enabled. eCryptfs will not treat "
1667 1668
			       "this like an encrypted file, inode %lu\n",
				ecryptfs_inode->i_ino);
1669 1670
			rc = -EINVAL;
		}
1671 1672 1673 1674
	}
out:
	if (page_virt) {
		memset(page_virt, 0, PAGE_CACHE_SIZE);
1675
		kmem_cache_free(ecryptfs_header_cache, page_virt);
1676 1677 1678 1679
	}
	return rc;
}

1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719
/**
 * ecryptfs_encrypt_filename - encrypt filename
 *
 * CBC-encrypts the filename. We do not want to encrypt the same
 * filename with the same key and IV, which may happen with hard
 * links, so we prepend random bits to each filename.
 *
 * Returns zero on success; non-zero otherwise
 */
static int
ecryptfs_encrypt_filename(struct ecryptfs_filename *filename,
			  struct ecryptfs_crypt_stat *crypt_stat,
			  struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
{
	int rc = 0;

	filename->encrypted_filename = NULL;
	filename->encrypted_filename_size = 0;
	if ((crypt_stat && (crypt_stat->flags & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
	    || (mount_crypt_stat && (mount_crypt_stat->flags
				     & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))) {
		size_t packet_size;
		size_t remaining_bytes;

		rc = ecryptfs_write_tag_70_packet(
			NULL, NULL,
			&filename->encrypted_filename_size,
			mount_crypt_stat, NULL,
			filename->filename_size);
		if (rc) {
			printk(KERN_ERR "%s: Error attempting to get packet "
			       "size for tag 72; rc = [%d]\n", __func__,
			       rc);
			filename->encrypted_filename_size = 0;
			goto out;
		}
		filename->encrypted_filename =
			kmalloc(filename->encrypted_filename_size, GFP_KERNEL);
		if (!filename->encrypted_filename) {
			printk(KERN_ERR "%s: Out of memory whilst attempting "
M
Michael Halcrow 已提交
1720
			       "to kmalloc [%zd] bytes\n", __func__,
1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744
			       filename->encrypted_filename_size);
			rc = -ENOMEM;
			goto out;
		}
		remaining_bytes = filename->encrypted_filename_size;
		rc = ecryptfs_write_tag_70_packet(filename->encrypted_filename,
						  &remaining_bytes,
						  &packet_size,
						  mount_crypt_stat,
						  filename->filename,
						  filename->filename_size);
		if (rc) {
			printk(KERN_ERR "%s: Error attempting to generate "
			       "tag 70 packet; rc = [%d]\n", __func__,
			       rc);
			kfree(filename->encrypted_filename);
			filename->encrypted_filename = NULL;
			filename->encrypted_filename_size = 0;
			goto out;
		}
		filename->encrypted_filename_size = packet_size;
	} else {
		printk(KERN_ERR "%s: No support for requested filename "
		       "encryption method in this release\n", __func__);
1745
		rc = -EOPNOTSUPP;
1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756
		goto out;
	}
out:
	return rc;
}

static int ecryptfs_copy_filename(char **copied_name, size_t *copied_name_size,
				  const char *name, size_t name_size)
{
	int rc = 0;

1757
	(*copied_name) = kmalloc((name_size + 1), GFP_KERNEL);
1758 1759 1760 1761 1762 1763 1764 1765 1766
	if (!(*copied_name)) {
		rc = -ENOMEM;
		goto out;
	}
	memcpy((void *)(*copied_name), (void *)name, name_size);
	(*copied_name)[(name_size)] = '\0';	/* Only for convenience
						 * in printing out the
						 * string in debug
						 * messages */
1767
	(*copied_name_size) = name_size;
1768 1769 1770 1771
out:
	return rc;
}

1772
/**
1773
 * ecryptfs_process_key_cipher - Perform key cipher initialization.
1774
 * @key_tfm: Crypto context for key material, set by this function
1775 1776
 * @cipher_name: Name of the cipher
 * @key_size: Size of the key in bytes
1777 1778 1779 1780 1781
 *
 * Returns zero on success. Any crypto_tfm structs allocated here
 * should be released by other functions, such as on a superblock put
 * event, regardless of whether this function succeeds for fails.
 */
1782
static int
1783 1784
ecryptfs_process_key_cipher(struct crypto_blkcipher **key_tfm,
			    char *cipher_name, size_t *key_size)
1785 1786
{
	char dummy_key[ECRYPTFS_MAX_KEY_BYTES];
D
Dan Carpenter 已提交
1787
	char *full_alg_name = NULL;
1788 1789
	int rc;

1790 1791
	*key_tfm = NULL;
	if (*key_size > ECRYPTFS_MAX_KEY_BYTES) {
1792
		rc = -EINVAL;
M
Michael Halcrow 已提交
1793
		printk(KERN_ERR "Requested key size is [%zd] bytes; maximum "
1794
		      "allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES);
1795 1796
		goto out;
	}
1797 1798 1799 1800 1801 1802 1803
	rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name,
						    "ecb");
	if (rc)
		goto out;
	*key_tfm = crypto_alloc_blkcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC);
	if (IS_ERR(*key_tfm)) {
		rc = PTR_ERR(*key_tfm);
1804
		printk(KERN_ERR "Unable to allocate crypto cipher with name "
1805
		       "[%s]; rc = [%d]\n", full_alg_name, rc);
1806 1807
		goto out;
	}
1808 1809 1810 1811 1812 1813
	crypto_blkcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_WEAK_KEY);
	if (*key_size == 0) {
		struct blkcipher_alg *alg = crypto_blkcipher_alg(*key_tfm);

		*key_size = alg->max_keysize;
	}
1814
	get_random_bytes(dummy_key, *key_size);
1815
	rc = crypto_blkcipher_setkey(*key_tfm, dummy_key, *key_size);
1816
	if (rc) {
M
Michael Halcrow 已提交
1817
		printk(KERN_ERR "Error attempting to set key of size [%zd] for "
1818 1819
		       "cipher [%s]; rc = [%d]\n", *key_size, full_alg_name,
		       rc);
1820 1821 1822 1823
		rc = -EINVAL;
		goto out;
	}
out:
D
Dan Carpenter 已提交
1824
	kfree(full_alg_name);
1825 1826
	return rc;
}
1827 1828

struct kmem_cache *ecryptfs_key_tfm_cache;
A
Adrian Bunk 已提交
1829
static struct list_head key_tfm_list;
1830
struct mutex key_tfm_list_mutex;
1831

1832
int __init ecryptfs_init_crypto(void)
1833 1834 1835 1836 1837 1838
{
	mutex_init(&key_tfm_list_mutex);
	INIT_LIST_HEAD(&key_tfm_list);
	return 0;
}

1839 1840 1841 1842 1843
/**
 * ecryptfs_destroy_crypto - free all cached key_tfms on key_tfm_list
 *
 * Called only at module unload time
 */
1844
int ecryptfs_destroy_crypto(void)
1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866
{
	struct ecryptfs_key_tfm *key_tfm, *key_tfm_tmp;

	mutex_lock(&key_tfm_list_mutex);
	list_for_each_entry_safe(key_tfm, key_tfm_tmp, &key_tfm_list,
				 key_tfm_list) {
		list_del(&key_tfm->key_tfm_list);
		if (key_tfm->key_tfm)
			crypto_free_blkcipher(key_tfm->key_tfm);
		kmem_cache_free(ecryptfs_key_tfm_cache, key_tfm);
	}
	mutex_unlock(&key_tfm_list_mutex);
	return 0;
}

int
ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm **key_tfm, char *cipher_name,
			 size_t key_size)
{
	struct ecryptfs_key_tfm *tmp_tfm;
	int rc = 0;

1867 1868
	BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));

1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880
	tmp_tfm = kmem_cache_alloc(ecryptfs_key_tfm_cache, GFP_KERNEL);
	if (key_tfm != NULL)
		(*key_tfm) = tmp_tfm;
	if (!tmp_tfm) {
		rc = -ENOMEM;
		printk(KERN_ERR "Error attempting to allocate from "
		       "ecryptfs_key_tfm_cache\n");
		goto out;
	}
	mutex_init(&tmp_tfm->key_tfm_mutex);
	strncpy(tmp_tfm->cipher_name, cipher_name,
		ECRYPTFS_MAX_CIPHER_NAME_SIZE);
1881
	tmp_tfm->cipher_name[ECRYPTFS_MAX_CIPHER_NAME_SIZE] = '\0';
1882
	tmp_tfm->key_size = key_size;
1883 1884 1885 1886
	rc = ecryptfs_process_key_cipher(&tmp_tfm->key_tfm,
					 tmp_tfm->cipher_name,
					 &tmp_tfm->key_size);
	if (rc) {
1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899
		printk(KERN_ERR "Error attempting to initialize key TFM "
		       "cipher with name = [%s]; rc = [%d]\n",
		       tmp_tfm->cipher_name, rc);
		kmem_cache_free(ecryptfs_key_tfm_cache, tmp_tfm);
		if (key_tfm != NULL)
			(*key_tfm) = NULL;
		goto out;
	}
	list_add(&tmp_tfm->key_tfm_list, &key_tfm_list);
out:
	return rc;
}

1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938
/**
 * ecryptfs_tfm_exists - Search for existing tfm for cipher_name.
 * @cipher_name: the name of the cipher to search for
 * @key_tfm: set to corresponding tfm if found
 *
 * Searches for cached key_tfm matching @cipher_name
 * Must be called with &key_tfm_list_mutex held
 * Returns 1 if found, with @key_tfm set
 * Returns 0 if not found, with @key_tfm set to NULL
 */
int ecryptfs_tfm_exists(char *cipher_name, struct ecryptfs_key_tfm **key_tfm)
{
	struct ecryptfs_key_tfm *tmp_key_tfm;

	BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));

	list_for_each_entry(tmp_key_tfm, &key_tfm_list, key_tfm_list) {
		if (strcmp(tmp_key_tfm->cipher_name, cipher_name) == 0) {
			if (key_tfm)
				(*key_tfm) = tmp_key_tfm;
			return 1;
		}
	}
	if (key_tfm)
		(*key_tfm) = NULL;
	return 0;
}

/**
 * ecryptfs_get_tfm_and_mutex_for_cipher_name
 *
 * @tfm: set to cached tfm found, or new tfm created
 * @tfm_mutex: set to mutex for cached tfm found, or new tfm created
 * @cipher_name: the name of the cipher to search for and/or add
 *
 * Sets pointers to @tfm & @tfm_mutex matching @cipher_name.
 * Searches for cached item first, and creates new if not found.
 * Returns 0 on success, non-zero if adding new cipher failed
 */
1939 1940 1941 1942 1943 1944 1945 1946 1947
int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_blkcipher **tfm,
					       struct mutex **tfm_mutex,
					       char *cipher_name)
{
	struct ecryptfs_key_tfm *key_tfm;
	int rc = 0;

	(*tfm) = NULL;
	(*tfm_mutex) = NULL;
1948

1949
	mutex_lock(&key_tfm_list_mutex);
1950 1951 1952 1953 1954
	if (!ecryptfs_tfm_exists(cipher_name, &key_tfm)) {
		rc = ecryptfs_add_new_key_tfm(&key_tfm, cipher_name, 0);
		if (rc) {
			printk(KERN_ERR "Error adding new key_tfm to list; "
					"rc = [%d]\n", rc);
1955 1956 1957 1958 1959 1960
			goto out;
		}
	}
	(*tfm) = key_tfm->key_tfm;
	(*tfm_mutex) = &key_tfm->key_tfm_mutex;
out:
1961
	mutex_unlock(&key_tfm_list_mutex);
1962 1963
	return rc;
}
1964 1965 1966 1967 1968 1969 1970 1971 1972

/* 64 characters forming a 6-bit target field */
static unsigned char *portable_filename_chars = ("-.0123456789ABCD"
						 "EFGHIJKLMNOPQRST"
						 "UVWXYZabcdefghij"
						 "klmnopqrstuvwxyz");

/* We could either offset on every reverse map or just pad some 0x00's
 * at the front here */
1973
static const unsigned char filename_rev_map[256] = {
1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988
	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 7 */
	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 15 */
	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 23 */
	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 31 */
	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 39 */
	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, /* 47 */
	0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, /* 55 */
	0x0A, 0x0B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 63 */
	0x00, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, /* 71 */
	0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, /* 79 */
	0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22, /* 87 */
	0x23, 0x24, 0x25, 0x00, 0x00, 0x00, 0x00, 0x00, /* 95 */
	0x00, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, /* 103 */
	0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, /* 111 */
	0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, /* 119 */
1989
	0x3D, 0x3E, 0x3F /* 123 - 255 initialized to 0x00 */
1990 1991 1992 1993 1994 1995 1996 1997 1998
};

/**
 * ecryptfs_encode_for_filename
 * @dst: Destination location for encoded filename
 * @dst_size: Size of the encoded filename in bytes
 * @src: Source location for the filename to encode
 * @src_size: Size of the source in bytes
 */
1999
static void ecryptfs_encode_for_filename(unsigned char *dst, size_t *dst_size,
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053
				  unsigned char *src, size_t src_size)
{
	size_t num_blocks;
	size_t block_num = 0;
	size_t dst_offset = 0;
	unsigned char last_block[3];

	if (src_size == 0) {
		(*dst_size) = 0;
		goto out;
	}
	num_blocks = (src_size / 3);
	if ((src_size % 3) == 0) {
		memcpy(last_block, (&src[src_size - 3]), 3);
	} else {
		num_blocks++;
		last_block[2] = 0x00;
		switch (src_size % 3) {
		case 1:
			last_block[0] = src[src_size - 1];
			last_block[1] = 0x00;
			break;
		case 2:
			last_block[0] = src[src_size - 2];
			last_block[1] = src[src_size - 1];
		}
	}
	(*dst_size) = (num_blocks * 4);
	if (!dst)
		goto out;
	while (block_num < num_blocks) {
		unsigned char *src_block;
		unsigned char dst_block[4];

		if (block_num == (num_blocks - 1))
			src_block = last_block;
		else
			src_block = &src[block_num * 3];
		dst_block[0] = ((src_block[0] >> 2) & 0x3F);
		dst_block[1] = (((src_block[0] << 4) & 0x30)
				| ((src_block[1] >> 4) & 0x0F));
		dst_block[2] = (((src_block[1] << 2) & 0x3C)
				| ((src_block[2] >> 6) & 0x03));
		dst_block[3] = (src_block[2] & 0x3F);
		dst[dst_offset++] = portable_filename_chars[dst_block[0]];
		dst[dst_offset++] = portable_filename_chars[dst_block[1]];
		dst[dst_offset++] = portable_filename_chars[dst_block[2]];
		dst[dst_offset++] = portable_filename_chars[dst_block[3]];
		block_num++;
	}
out:
	return;
}

T
Tyler Hicks 已提交
2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064
static size_t ecryptfs_max_decoded_size(size_t encoded_size)
{
	/* Not exact; conservatively long. Every block of 4
	 * encoded characters decodes into a block of 3
	 * decoded characters. This segment of code provides
	 * the caller with the maximum amount of allocated
	 * space that @dst will need to point to in a
	 * subsequent call. */
	return ((encoded_size + 1) * 3) / 4;
}

2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076
/**
 * ecryptfs_decode_from_filename
 * @dst: If NULL, this function only sets @dst_size and returns. If
 *       non-NULL, this function decodes the encoded octets in @src
 *       into the memory that @dst points to.
 * @dst_size: Set to the size of the decoded string.
 * @src: The encoded set of octets to decode.
 * @src_size: The size of the encoded set of octets to decode.
 */
static void
ecryptfs_decode_from_filename(unsigned char *dst, size_t *dst_size,
			      const unsigned char *src, size_t src_size)
2077 2078 2079 2080 2081 2082
{
	u8 current_bit_offset = 0;
	size_t src_byte_offset = 0;
	size_t dst_byte_offset = 0;

	if (dst == NULL) {
T
Tyler Hicks 已提交
2083
		(*dst_size) = ecryptfs_max_decoded_size(src_size);
2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115
		goto out;
	}
	while (src_byte_offset < src_size) {
		unsigned char src_byte =
				filename_rev_map[(int)src[src_byte_offset]];

		switch (current_bit_offset) {
		case 0:
			dst[dst_byte_offset] = (src_byte << 2);
			current_bit_offset = 6;
			break;
		case 6:
			dst[dst_byte_offset++] |= (src_byte >> 4);
			dst[dst_byte_offset] = ((src_byte & 0xF)
						 << 4);
			current_bit_offset = 4;
			break;
		case 4:
			dst[dst_byte_offset++] |= (src_byte >> 2);
			dst[dst_byte_offset] = (src_byte << 6);
			current_bit_offset = 2;
			break;
		case 2:
			dst[dst_byte_offset++] |= (src_byte);
			dst[dst_byte_offset] = 0;
			current_bit_offset = 0;
			break;
		}
		src_byte_offset++;
	}
	(*dst_size) = dst_byte_offset;
out:
2116
	return;
2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153
}

/**
 * ecryptfs_encrypt_and_encode_filename - converts a plaintext file name to cipher text
 * @crypt_stat: The crypt_stat struct associated with the file anem to encode
 * @name: The plaintext name
 * @length: The length of the plaintext
 * @encoded_name: The encypted name
 *
 * Encrypts and encodes a filename into something that constitutes a
 * valid filename for a filesystem, with printable characters.
 *
 * We assume that we have a properly initialized crypto context,
 * pointed to by crypt_stat->tfm.
 *
 * Returns zero on success; non-zero on otherwise
 */
int ecryptfs_encrypt_and_encode_filename(
	char **encoded_name,
	size_t *encoded_name_size,
	struct ecryptfs_crypt_stat *crypt_stat,
	struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
	const char *name, size_t name_size)
{
	size_t encoded_name_no_prefix_size;
	int rc = 0;

	(*encoded_name) = NULL;
	(*encoded_name_size) = 0;
	if ((crypt_stat && (crypt_stat->flags & ECRYPTFS_ENCRYPT_FILENAMES))
	    || (mount_crypt_stat && (mount_crypt_stat->flags
				     & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES))) {
		struct ecryptfs_filename *filename;

		filename = kzalloc(sizeof(*filename), GFP_KERNEL);
		if (!filename) {
			printk(KERN_ERR "%s: Out of memory whilst attempting "
2154
			       "to kzalloc [%zd] bytes\n", __func__,
2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187
			       sizeof(*filename));
			rc = -ENOMEM;
			goto out;
		}
		filename->filename = (char *)name;
		filename->filename_size = name_size;
		rc = ecryptfs_encrypt_filename(filename, crypt_stat,
					       mount_crypt_stat);
		if (rc) {
			printk(KERN_ERR "%s: Error attempting to encrypt "
			       "filename; rc = [%d]\n", __func__, rc);
			kfree(filename);
			goto out;
		}
		ecryptfs_encode_for_filename(
			NULL, &encoded_name_no_prefix_size,
			filename->encrypted_filename,
			filename->encrypted_filename_size);
		if ((crypt_stat && (crypt_stat->flags
				    & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
		    || (mount_crypt_stat
			&& (mount_crypt_stat->flags
			    & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)))
			(*encoded_name_size) =
				(ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
				 + encoded_name_no_prefix_size);
		else
			(*encoded_name_size) =
				(ECRYPTFS_FEK_ENCRYPTED_FILENAME_PREFIX_SIZE
				 + encoded_name_no_prefix_size);
		(*encoded_name) = kmalloc((*encoded_name_size) + 1, GFP_KERNEL);
		if (!(*encoded_name)) {
			printk(KERN_ERR "%s: Out of memory whilst attempting "
2188
			       "to kzalloc [%zd] bytes\n", __func__,
2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213
			       (*encoded_name_size));
			rc = -ENOMEM;
			kfree(filename->encrypted_filename);
			kfree(filename);
			goto out;
		}
		if ((crypt_stat && (crypt_stat->flags
				    & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
		    || (mount_crypt_stat
			&& (mount_crypt_stat->flags
			    & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))) {
			memcpy((*encoded_name),
			       ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
			       ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE);
			ecryptfs_encode_for_filename(
			    ((*encoded_name)
			     + ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE),
			    &encoded_name_no_prefix_size,
			    filename->encrypted_filename,
			    filename->encrypted_filename_size);
			(*encoded_name_size) =
				(ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
				 + encoded_name_no_prefix_size);
			(*encoded_name)[(*encoded_name_size)] = '\0';
		} else {
2214
			rc = -EOPNOTSUPP;
2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251
		}
		if (rc) {
			printk(KERN_ERR "%s: Error attempting to encode "
			       "encrypted filename; rc = [%d]\n", __func__,
			       rc);
			kfree((*encoded_name));
			(*encoded_name) = NULL;
			(*encoded_name_size) = 0;
		}
		kfree(filename->encrypted_filename);
		kfree(filename);
	} else {
		rc = ecryptfs_copy_filename(encoded_name,
					    encoded_name_size,
					    name, name_size);
	}
out:
	return rc;
}

/**
 * ecryptfs_decode_and_decrypt_filename - converts the encoded cipher text name to decoded plaintext
 * @plaintext_name: The plaintext name
 * @plaintext_name_size: The plaintext name size
 * @ecryptfs_dir_dentry: eCryptfs directory dentry
 * @name: The filename in cipher text
 * @name_size: The cipher text name size
 *
 * Decrypts and decodes the filename.
 *
 * Returns zero on error; non-zero otherwise
 */
int ecryptfs_decode_and_decrypt_filename(char **plaintext_name,
					 size_t *plaintext_name_size,
					 struct dentry *ecryptfs_dir_dentry,
					 const char *name, size_t name_size)
{
2252 2253 2254
	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
		&ecryptfs_superblock_to_private(
			ecryptfs_dir_dentry->d_sb)->mount_crypt_stat;
2255 2256 2257 2258 2259
	char *decoded_name;
	size_t decoded_name_size;
	size_t packet_size;
	int rc = 0;

2260 2261 2262
	if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)
	    && !(mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
	    && (name_size > ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE)
2263 2264 2265 2266 2267 2268 2269
	    && (strncmp(name, ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
			ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE) == 0)) {
		const char *orig_name = name;
		size_t orig_name_size = name_size;

		name += ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
		name_size -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2270 2271
		ecryptfs_decode_from_filename(NULL, &decoded_name_size,
					      name, name_size);
2272 2273 2274
		decoded_name = kmalloc(decoded_name_size, GFP_KERNEL);
		if (!decoded_name) {
			printk(KERN_ERR "%s: Out of memory whilst attempting "
M
Michael Halcrow 已提交
2275
			       "to kmalloc [%zd] bytes\n", __func__,
2276 2277 2278 2279
			       decoded_name_size);
			rc = -ENOMEM;
			goto out;
		}
2280 2281
		ecryptfs_decode_from_filename(decoded_name, &decoded_name_size,
					      name, name_size);
2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307
		rc = ecryptfs_parse_tag_70_packet(plaintext_name,
						  plaintext_name_size,
						  &packet_size,
						  mount_crypt_stat,
						  decoded_name,
						  decoded_name_size);
		if (rc) {
			printk(KERN_INFO "%s: Could not parse tag 70 packet "
			       "from filename; copying through filename "
			       "as-is\n", __func__);
			rc = ecryptfs_copy_filename(plaintext_name,
						    plaintext_name_size,
						    orig_name, orig_name_size);
			goto out_free;
		}
	} else {
		rc = ecryptfs_copy_filename(plaintext_name,
					    plaintext_name_size,
					    name, name_size);
		goto out;
	}
out_free:
	kfree(decoded_name);
out:
	return rc;
}
T
Tyler Hicks 已提交
2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356

#define ENC_NAME_MAX_BLOCKLEN_8_OR_16	143

int ecryptfs_set_f_namelen(long *namelen, long lower_namelen,
			   struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
{
	struct blkcipher_desc desc;
	struct mutex *tfm_mutex;
	size_t cipher_blocksize;
	int rc;

	if (!(mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)) {
		(*namelen) = lower_namelen;
		return 0;
	}

	rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&desc.tfm, &tfm_mutex,
			mount_crypt_stat->global_default_fn_cipher_name);
	if (unlikely(rc)) {
		(*namelen) = 0;
		return rc;
	}

	mutex_lock(tfm_mutex);
	cipher_blocksize = crypto_blkcipher_blocksize(desc.tfm);
	mutex_unlock(tfm_mutex);

	/* Return an exact amount for the common cases */
	if (lower_namelen == NAME_MAX
	    && (cipher_blocksize == 8 || cipher_blocksize == 16)) {
		(*namelen) = ENC_NAME_MAX_BLOCKLEN_8_OR_16;
		return 0;
	}

	/* Return a safe estimate for the uncommon cases */
	(*namelen) = lower_namelen;
	(*namelen) -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
	/* Since this is the max decoded size, subtract 1 "decoded block" len */
	(*namelen) = ecryptfs_max_decoded_size(*namelen) - 3;
	(*namelen) -= ECRYPTFS_TAG_70_MAX_METADATA_SIZE;
	(*namelen) -= ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES;
	/* Worst case is that the filename is padded nearly a full block size */
	(*namelen) -= cipher_blocksize - 1;

	if ((*namelen) < 0)
		(*namelen) = 0;

	return 0;
}