gadget.c 90.5 KB
Newer Older
1 2
/**
 * linux/drivers/usb/gadget/s3c-hsotg.c
3 4 5
 *
 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
 *		http://www.samsung.com
6 7 8 9 10 11 12 13 14 15 16
 *
 * Copyright 2008 Openmoko, Inc.
 * Copyright 2008 Simtec Electronics
 *      Ben Dooks <ben@simtec.co.uk>
 *      http://armlinux.simtec.co.uk/
 *
 * S3C USB2.0 High-speed / OtG driver
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
17
 */
18 19 20 21 22 23 24 25 26 27 28

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
#include <linux/platform_device.h>
#include <linux/dma-mapping.h>
#include <linux/debugfs.h>
#include <linux/seq_file.h>
#include <linux/delay.h>
#include <linux/io.h>
29
#include <linux/slab.h>
30
#include <linux/clk.h>
31
#include <linux/regulator/consumer.h>
32
#include <linux/of_platform.h>
33
#include <linux/phy/phy.h>
34 35 36

#include <linux/usb/ch9.h>
#include <linux/usb/gadget.h>
37
#include <linux/usb/phy.h>
38
#include <linux/platform_data/s3c-hsotg.h>
39

40
#include "core.h"
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101

/* conversion functions */
static inline struct s3c_hsotg_req *our_req(struct usb_request *req)
{
	return container_of(req, struct s3c_hsotg_req, req);
}

static inline struct s3c_hsotg_ep *our_ep(struct usb_ep *ep)
{
	return container_of(ep, struct s3c_hsotg_ep, ep);
}

static inline struct s3c_hsotg *to_hsotg(struct usb_gadget *gadget)
{
	return container_of(gadget, struct s3c_hsotg, gadget);
}

static inline void __orr32(void __iomem *ptr, u32 val)
{
	writel(readl(ptr) | val, ptr);
}

static inline void __bic32(void __iomem *ptr, u32 val)
{
	writel(readl(ptr) & ~val, ptr);
}

/* forward decleration of functions */
static void s3c_hsotg_dump(struct s3c_hsotg *hsotg);

/**
 * using_dma - return the DMA status of the driver.
 * @hsotg: The driver state.
 *
 * Return true if we're using DMA.
 *
 * Currently, we have the DMA support code worked into everywhere
 * that needs it, but the AMBA DMA implementation in the hardware can
 * only DMA from 32bit aligned addresses. This means that gadgets such
 * as the CDC Ethernet cannot work as they often pass packets which are
 * not 32bit aligned.
 *
 * Unfortunately the choice to use DMA or not is global to the controller
 * and seems to be only settable when the controller is being put through
 * a core reset. This means we either need to fix the gadgets to take
 * account of DMA alignment, or add bounce buffers (yuerk).
 *
 * Until this issue is sorted out, we always return 'false'.
 */
static inline bool using_dma(struct s3c_hsotg *hsotg)
{
	return false;	/* support is not complete */
}

/**
 * s3c_hsotg_en_gsint - enable one or more of the general interrupt
 * @hsotg: The device state
 * @ints: A bitmask of the interrupts to enable
 */
static void s3c_hsotg_en_gsint(struct s3c_hsotg *hsotg, u32 ints)
{
102
	u32 gsintmsk = readl(hsotg->regs + GINTMSK);
103 104 105 106 107 108
	u32 new_gsintmsk;

	new_gsintmsk = gsintmsk | ints;

	if (new_gsintmsk != gsintmsk) {
		dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
109
		writel(new_gsintmsk, hsotg->regs + GINTMSK);
110 111 112 113 114 115 116 117 118 119
	}
}

/**
 * s3c_hsotg_disable_gsint - disable one or more of the general interrupt
 * @hsotg: The device state
 * @ints: A bitmask of the interrupts to enable
 */
static void s3c_hsotg_disable_gsint(struct s3c_hsotg *hsotg, u32 ints)
{
120
	u32 gsintmsk = readl(hsotg->regs + GINTMSK);
121 122 123 124 125
	u32 new_gsintmsk;

	new_gsintmsk = gsintmsk & ~ints;

	if (new_gsintmsk != gsintmsk)
126
		writel(new_gsintmsk, hsotg->regs + GINTMSK);
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
}

/**
 * s3c_hsotg_ctrl_epint - enable/disable an endpoint irq
 * @hsotg: The device state
 * @ep: The endpoint index
 * @dir_in: True if direction is in.
 * @en: The enable value, true to enable
 *
 * Set or clear the mask for an individual endpoint's interrupt
 * request.
 */
static void s3c_hsotg_ctrl_epint(struct s3c_hsotg *hsotg,
				 unsigned int ep, unsigned int dir_in,
				 unsigned int en)
{
	unsigned long flags;
	u32 bit = 1 << ep;
	u32 daint;

	if (!dir_in)
		bit <<= 16;

	local_irq_save(flags);
151
	daint = readl(hsotg->regs + DAINTMSK);
152 153 154 155
	if (en)
		daint |= bit;
	else
		daint &= ~bit;
156
	writel(daint, hsotg->regs + DAINTMSK);
157 158 159 160 161 162 163 164 165
	local_irq_restore(flags);
}

/**
 * s3c_hsotg_init_fifo - initialise non-periodic FIFOs
 * @hsotg: The device instance.
 */
static void s3c_hsotg_init_fifo(struct s3c_hsotg *hsotg)
{
166 167 168
	unsigned int ep;
	unsigned int addr;
	unsigned int size;
169
	int timeout;
170 171
	u32 val;

172
	/* set FIFO sizes to 2048/1024 */
173

174
	writel(2048, hsotg->regs + GRXFSIZ);
175 176
	writel((2048 << FIFOSIZE_STARTADDR_SHIFT) |
		(1024 << FIFOSIZE_DEPTH_SHIFT), hsotg->regs + GNPTXFSIZ);
177

178 179
	/*
	 * arange all the rest of the TX FIFOs, as some versions of this
180 181
	 * block have overlapping default addresses. This also ensures
	 * that if the settings have been changed, then they are set to
182 183
	 * known values.
	 */
184 185 186 187 188

	/* start at the end of the GNPTXFSIZ, rounded up */
	addr = 2048 + 1024;
	size = 768;

189 190 191 192
	/*
	 * currently we allocate TX FIFOs for all possible endpoints,
	 * and assume that they are all the same size.
	 */
193

194
	for (ep = 1; ep <= 15; ep++) {
195
		val = addr;
196
		val |= size << FIFOSIZE_DEPTH_SHIFT;
197 198
		addr += size;

199
		writel(val, hsotg->regs + DPTXFSIZN(ep));
200
	}
201

202 203 204 205
	/*
	 * according to p428 of the design guide, we need to ensure that
	 * all fifos are flushed before continuing
	 */
206

207 208
	writel(GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH |
	       GRSTCTL_RXFFLSH, hsotg->regs + GRSTCTL);
209 210 211 212

	/* wait until the fifos are both flushed */
	timeout = 100;
	while (1) {
213
		val = readl(hsotg->regs + GRSTCTL);
214

215
		if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0)
216 217 218 219 220 221 222 223 224 225 226 227
			break;

		if (--timeout == 0) {
			dev_err(hsotg->dev,
				"%s: timeout flushing fifos (GRSTCTL=%08x)\n",
				__func__, val);
		}

		udelay(1);
	}

	dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
228 229 230 231 232 233 234 235
}

/**
 * @ep: USB endpoint to allocate request for.
 * @flags: Allocation flags
 *
 * Allocate a new USB request structure appropriate for the specified endpoint
 */
236 237
static struct usb_request *s3c_hsotg_ep_alloc_request(struct usb_ep *ep,
						      gfp_t flags)
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
{
	struct s3c_hsotg_req *req;

	req = kzalloc(sizeof(struct s3c_hsotg_req), flags);
	if (!req)
		return NULL;

	INIT_LIST_HEAD(&req->queue);

	return &req->req;
}

/**
 * is_ep_periodic - return true if the endpoint is in periodic mode.
 * @hs_ep: The endpoint to query.
 *
 * Returns true if the endpoint is in periodic mode, meaning it is being
 * used for an Interrupt or ISO transfer.
 */
static inline int is_ep_periodic(struct s3c_hsotg_ep *hs_ep)
{
	return hs_ep->periodic;
}

/**
 * s3c_hsotg_unmap_dma - unmap the DMA memory being used for the request
 * @hsotg: The device state.
 * @hs_ep: The endpoint for the request
 * @hs_req: The request being processed.
 *
 * This is the reverse of s3c_hsotg_map_dma(), called for the completion
 * of a request to ensure the buffer is ready for access by the caller.
270
 */
271 272 273 274 275 276 277 278 279 280
static void s3c_hsotg_unmap_dma(struct s3c_hsotg *hsotg,
				struct s3c_hsotg_ep *hs_ep,
				struct s3c_hsotg_req *hs_req)
{
	struct usb_request *req = &hs_req->req;

	/* ignore this if we're not moving any data */
	if (hs_req->req.length == 0)
		return;

281
	usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->dir_in);
282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
}

/**
 * s3c_hsotg_write_fifo - write packet Data to the TxFIFO
 * @hsotg: The controller state.
 * @hs_ep: The endpoint we're going to write for.
 * @hs_req: The request to write data for.
 *
 * This is called when the TxFIFO has some space in it to hold a new
 * transmission and we have something to give it. The actual setup of
 * the data size is done elsewhere, so all we have to do is to actually
 * write the data.
 *
 * The return value is zero if there is more space (or nothing was done)
 * otherwise -ENOSPC is returned if the FIFO space was used up.
 *
 * This routine is only needed for PIO
299
 */
300 301 302 303 304
static int s3c_hsotg_write_fifo(struct s3c_hsotg *hsotg,
				struct s3c_hsotg_ep *hs_ep,
				struct s3c_hsotg_req *hs_req)
{
	bool periodic = is_ep_periodic(hs_ep);
305
	u32 gnptxsts = readl(hsotg->regs + GNPTXSTS);
306 307 308 309 310
	int buf_pos = hs_req->req.actual;
	int to_write = hs_ep->size_loaded;
	void *data;
	int can_write;
	int pkt_round;
311
	int max_transfer;
312 313 314 315 316 317 318

	to_write -= (buf_pos - hs_ep->last_load);

	/* if there's nothing to write, get out early */
	if (to_write == 0)
		return 0;

319
	if (periodic && !hsotg->dedicated_fifos) {
320
		u32 epsize = readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
321 322 323
		int size_left;
		int size_done;

324 325 326 327
		/*
		 * work out how much data was loaded so we can calculate
		 * how much data is left in the fifo.
		 */
328

329
		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
330

331 332
		/*
		 * if shared fifo, we cannot write anything until the
333 334 335
		 * previous data has been completely sent.
		 */
		if (hs_ep->fifo_load != 0) {
336
			s3c_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
337 338 339
			return -ENOSPC;
		}

340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
		dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
			__func__, size_left,
			hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);

		/* how much of the data has moved */
		size_done = hs_ep->size_loaded - size_left;

		/* how much data is left in the fifo */
		can_write = hs_ep->fifo_load - size_done;
		dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
			__func__, can_write);

		can_write = hs_ep->fifo_size - can_write;
		dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
			__func__, can_write);

		if (can_write <= 0) {
357
			s3c_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
358 359
			return -ENOSPC;
		}
360
	} else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
361
		can_write = readl(hsotg->regs + DTXFSTS(hs_ep->index));
362 363 364

		can_write &= 0xffff;
		can_write *= 4;
365
	} else {
366
		if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) {
367 368 369 370
			dev_dbg(hsotg->dev,
				"%s: no queue slots available (0x%08x)\n",
				__func__, gnptxsts);

371
			s3c_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP);
372 373 374
			return -ENOSPC;
		}

375
		can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts);
376
		can_write *= 4;	/* fifo size is in 32bit quantities. */
377 378
	}

379 380 381 382
	max_transfer = hs_ep->ep.maxpacket * hs_ep->mc;

	dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n",
		 __func__, gnptxsts, can_write, to_write, max_transfer);
383

384 385
	/*
	 * limit to 512 bytes of data, it seems at least on the non-periodic
386 387 388
	 * FIFO, requests of >512 cause the endpoint to get stuck with a
	 * fragment of the end of the transfer in it.
	 */
389
	if (can_write > 512 && !periodic)
390 391
		can_write = 512;

392 393
	/*
	 * limit the write to one max-packet size worth of data, but allow
394
	 * the transfer to return that it did not run out of fifo space
395 396
	 * doing it.
	 */
397 398
	if (to_write > max_transfer) {
		to_write = max_transfer;
399

400 401 402
		/* it's needed only when we do not use dedicated fifos */
		if (!hsotg->dedicated_fifos)
			s3c_hsotg_en_gsint(hsotg,
403 404
					   periodic ? GINTSTS_PTXFEMP :
					   GINTSTS_NPTXFEMP);
405 406
	}

407 408 409 410
	/* see if we can write data */

	if (to_write > can_write) {
		to_write = can_write;
411
		pkt_round = to_write % max_transfer;
412

413 414
		/*
		 * Round the write down to an
415 416 417 418 419 420 421 422 423
		 * exact number of packets.
		 *
		 * Note, we do not currently check to see if we can ever
		 * write a full packet or not to the FIFO.
		 */

		if (pkt_round)
			to_write -= pkt_round;

424 425 426 427
		/*
		 * enable correct FIFO interrupt to alert us when there
		 * is more room left.
		 */
428

429 430 431
		/* it's needed only when we do not use dedicated fifos */
		if (!hsotg->dedicated_fifos)
			s3c_hsotg_en_gsint(hsotg,
432 433
					   periodic ? GINTSTS_PTXFEMP :
					   GINTSTS_NPTXFEMP);
434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
	}

	dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
		 to_write, hs_req->req.length, can_write, buf_pos);

	if (to_write <= 0)
		return -ENOSPC;

	hs_req->req.actual = buf_pos + to_write;
	hs_ep->total_data += to_write;

	if (periodic)
		hs_ep->fifo_load += to_write;

	to_write = DIV_ROUND_UP(to_write, 4);
	data = hs_req->req.buf + buf_pos;

451
	iowrite32_rep(hsotg->regs + EPFIFO(hs_ep->index), data, to_write);
452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469

	return (to_write >= can_write) ? -ENOSPC : 0;
}

/**
 * get_ep_limit - get the maximum data legnth for this endpoint
 * @hs_ep: The endpoint
 *
 * Return the maximum data that can be queued in one go on a given endpoint
 * so that transfers that are too long can be split.
 */
static unsigned get_ep_limit(struct s3c_hsotg_ep *hs_ep)
{
	int index = hs_ep->index;
	unsigned maxsize;
	unsigned maxpkt;

	if (index != 0) {
470 471
		maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1;
		maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1;
472
	} else {
473
		maxsize = 64+64;
474
		if (hs_ep->dir_in)
475
			maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1;
476
		else
477 478 479 480 481 482 483
			maxpkt = 2;
	}

	/* we made the constant loading easier above by using +1 */
	maxpkt--;
	maxsize--;

484 485 486 487
	/*
	 * constrain by packet count if maxpkts*pktsize is greater
	 * than the length register size.
	 */
488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533

	if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
		maxsize = maxpkt * hs_ep->ep.maxpacket;

	return maxsize;
}

/**
 * s3c_hsotg_start_req - start a USB request from an endpoint's queue
 * @hsotg: The controller state.
 * @hs_ep: The endpoint to process a request for
 * @hs_req: The request to start.
 * @continuing: True if we are doing more for the current request.
 *
 * Start the given request running by setting the endpoint registers
 * appropriately, and writing any data to the FIFOs.
 */
static void s3c_hsotg_start_req(struct s3c_hsotg *hsotg,
				struct s3c_hsotg_ep *hs_ep,
				struct s3c_hsotg_req *hs_req,
				bool continuing)
{
	struct usb_request *ureq = &hs_req->req;
	int index = hs_ep->index;
	int dir_in = hs_ep->dir_in;
	u32 epctrl_reg;
	u32 epsize_reg;
	u32 epsize;
	u32 ctrl;
	unsigned length;
	unsigned packets;
	unsigned maxreq;

	if (index != 0) {
		if (hs_ep->req && !continuing) {
			dev_err(hsotg->dev, "%s: active request\n", __func__);
			WARN_ON(1);
			return;
		} else if (hs_ep->req != hs_req && continuing) {
			dev_err(hsotg->dev,
				"%s: continue different req\n", __func__);
			WARN_ON(1);
			return;
		}
	}

534 535
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
	epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
536 537 538 539 540

	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
		__func__, readl(hsotg->regs + epctrl_reg), index,
		hs_ep->dir_in ? "in" : "out");

541 542 543
	/* If endpoint is stalled, we will restart request later */
	ctrl = readl(hsotg->regs + epctrl_reg);

544
	if (ctrl & DXEPCTL_STALL) {
545 546 547 548
		dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
		return;
	}

549
	length = ureq->length - ureq->actual;
550 551
	dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n",
		ureq->length, ureq->actual);
552 553
	if (0)
		dev_dbg(hsotg->dev,
554
			"REQ buf %p len %d dma %pad noi=%d zp=%d snok=%d\n",
555
			ureq->buf, length, &ureq->dma,
556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
			ureq->no_interrupt, ureq->zero, ureq->short_not_ok);

	maxreq = get_ep_limit(hs_ep);
	if (length > maxreq) {
		int round = maxreq % hs_ep->ep.maxpacket;

		dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
			__func__, length, maxreq, round);

		/* round down to multiple of packets */
		if (round)
			maxreq -= round;

		length = maxreq;
	}

	if (length)
		packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
	else
		packets = 1;	/* send one packet if length is zero. */

577 578 579 580 581
	if (hs_ep->isochronous && length > (hs_ep->mc * hs_ep->ep.maxpacket)) {
		dev_err(hsotg->dev, "req length > maxpacket*mc\n");
		return;
	}

582
	if (dir_in && index != 0)
583
		if (hs_ep->isochronous)
584
			epsize = DXEPTSIZ_MC(packets);
585
		else
586
			epsize = DXEPTSIZ_MC(1);
587 588 589 590
	else
		epsize = 0;

	if (index != 0 && ureq->zero) {
591 592 593 594
		/*
		 * test for the packets being exactly right for the
		 * transfer
		 */
595 596 597 598 599

		if (length == (packets * hs_ep->ep.maxpacket))
			packets++;
	}

600 601
	epsize |= DXEPTSIZ_PKTCNT(packets);
	epsize |= DXEPTSIZ_XFERSIZE(length);
602 603 604 605 606 607 608 609 610 611

	dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
		__func__, packets, length, ureq->length, epsize, epsize_reg);

	/* store the request as the current one we're doing */
	hs_ep->req = hs_req;

	/* write size / packets */
	writel(epsize, hsotg->regs + epsize_reg);

612
	if (using_dma(hsotg) && !continuing) {
613 614
		unsigned int dma_reg;

615 616 617 618
		/*
		 * write DMA address to control register, buffer already
		 * synced by s3c_hsotg_ep_queue().
		 */
619

620
		dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index);
621 622
		writel(ureq->dma, hsotg->regs + dma_reg);

623
		dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n",
624
			__func__, &ureq->dma, dma_reg);
625 626
	}

627 628
	ctrl |= DXEPCTL_EPENA;	/* ensure ep enabled */
	ctrl |= DXEPCTL_USBACTEP;
629 630 631 632 633 634 635

	dev_dbg(hsotg->dev, "setup req:%d\n", hsotg->setup);

	/* For Setup request do not clear NAK */
	if (hsotg->setup && index == 0)
		hsotg->setup = 0;
	else
636
		ctrl |= DXEPCTL_CNAK;	/* clear NAK set by core */
637

638 639 640 641

	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
	writel(ctrl, hsotg->regs + epctrl_reg);

642 643
	/*
	 * set these, it seems that DMA support increments past the end
644
	 * of the packet buffer so we need to calculate the length from
645 646
	 * this information.
	 */
647 648 649 650 651 652 653 654 655 656
	hs_ep->size_loaded = length;
	hs_ep->last_load = ureq->actual;

	if (dir_in && !using_dma(hsotg)) {
		/* set these anyway, we may need them for non-periodic in */
		hs_ep->fifo_load = 0;

		s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req);
	}

657 658 659 660
	/*
	 * clear the INTknTXFEmpMsk when we start request, more as a aide
	 * to debugging to see what is going on.
	 */
661
	if (dir_in)
662
		writel(DIEPMSK_INTKNTXFEMPMSK,
663
		       hsotg->regs + DIEPINT(index));
664

665 666 667 668
	/*
	 * Note, trying to clear the NAK here causes problems with transmit
	 * on the S3C6400 ending up with the TXFIFO becoming full.
	 */
669 670

	/* check ep is enabled */
671
	if (!(readl(hsotg->regs + epctrl_reg) & DXEPCTL_EPENA))
672
		dev_warn(hsotg->dev,
673
			 "ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n",
674 675
			 index, readl(hsotg->regs + epctrl_reg));

676
	dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n",
677
		__func__, readl(hsotg->regs + epctrl_reg));
678 679 680

	/* enable ep interrupts */
	s3c_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1);
681 682 683 684 685 686 687 688 689 690 691 692 693
}

/**
 * s3c_hsotg_map_dma - map the DMA memory being used for the request
 * @hsotg: The device state.
 * @hs_ep: The endpoint the request is on.
 * @req: The request being processed.
 *
 * We've been asked to queue a request, so ensure that the memory buffer
 * is correctly setup for DMA. If we've been passed an extant DMA address
 * then ensure the buffer has been synced to memory. If our buffer has no
 * DMA memory, then we map the memory and mark our request to allow us to
 * cleanup on completion.
694
 */
695 696 697 698 699
static int s3c_hsotg_map_dma(struct s3c_hsotg *hsotg,
			     struct s3c_hsotg_ep *hs_ep,
			     struct usb_request *req)
{
	struct s3c_hsotg_req *hs_req = our_req(req);
700
	int ret;
701 702 703 704 705

	/* if the length is zero, ignore the DMA data */
	if (hs_req->req.length == 0)
		return 0;

706 707 708
	ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in);
	if (ret)
		goto dma_error;
709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751

	return 0;

dma_error:
	dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
		__func__, req->buf, req->length);

	return -EIO;
}

static int s3c_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
			      gfp_t gfp_flags)
{
	struct s3c_hsotg_req *hs_req = our_req(req);
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
	struct s3c_hsotg *hs = hs_ep->parent;
	bool first;

	dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
		ep->name, req, req->length, req->buf, req->no_interrupt,
		req->zero, req->short_not_ok);

	/* initialise status of the request */
	INIT_LIST_HEAD(&hs_req->queue);
	req->actual = 0;
	req->status = -EINPROGRESS;

	/* if we're using DMA, sync the buffers as necessary */
	if (using_dma(hs)) {
		int ret = s3c_hsotg_map_dma(hs, hs_ep, req);
		if (ret)
			return ret;
	}

	first = list_empty(&hs_ep->queue);
	list_add_tail(&hs_req->queue, &hs_ep->queue);

	if (first)
		s3c_hsotg_start_req(hs, hs_ep, hs_req, false);

	return 0;
}

752 753 754 755 756 757 758 759 760 761 762 763 764 765 766
static int s3c_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req,
			      gfp_t gfp_flags)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
	struct s3c_hsotg *hs = hs_ep->parent;
	unsigned long flags = 0;
	int ret = 0;

	spin_lock_irqsave(&hs->lock, flags);
	ret = s3c_hsotg_ep_queue(ep, req, gfp_flags);
	spin_unlock_irqrestore(&hs->lock, flags);

	return ret;
}

767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800
static void s3c_hsotg_ep_free_request(struct usb_ep *ep,
				      struct usb_request *req)
{
	struct s3c_hsotg_req *hs_req = our_req(req);

	kfree(hs_req);
}

/**
 * s3c_hsotg_complete_oursetup - setup completion callback
 * @ep: The endpoint the request was on.
 * @req: The request completed.
 *
 * Called on completion of any requests the driver itself
 * submitted that need cleaning up.
 */
static void s3c_hsotg_complete_oursetup(struct usb_ep *ep,
					struct usb_request *req)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
	struct s3c_hsotg *hsotg = hs_ep->parent;

	dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);

	s3c_hsotg_ep_free_request(ep, req);
}

/**
 * ep_from_windex - convert control wIndex value to endpoint
 * @hsotg: The driver state.
 * @windex: The control request wIndex field (in host order).
 *
 * Convert the given wIndex into a pointer to an driver endpoint
 * structure, or return NULL if it is not a valid endpoint.
801
 */
802 803 804 805 806 807 808 809 810 811
static struct s3c_hsotg_ep *ep_from_windex(struct s3c_hsotg *hsotg,
					   u32 windex)
{
	struct s3c_hsotg_ep *ep = &hsotg->eps[windex & 0x7F];
	int dir = (windex & USB_DIR_IN) ? 1 : 0;
	int idx = windex & 0x7F;

	if (windex >= 0x100)
		return NULL;

812
	if (idx > hsotg->num_of_eps)
813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923
		return NULL;

	if (idx && ep->dir_in != dir)
		return NULL;

	return ep;
}

/**
 * s3c_hsotg_send_reply - send reply to control request
 * @hsotg: The device state
 * @ep: Endpoint 0
 * @buff: Buffer for request
 * @length: Length of reply.
 *
 * Create a request and queue it on the given endpoint. This is useful as
 * an internal method of sending replies to certain control requests, etc.
 */
static int s3c_hsotg_send_reply(struct s3c_hsotg *hsotg,
				struct s3c_hsotg_ep *ep,
				void *buff,
				int length)
{
	struct usb_request *req;
	int ret;

	dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);

	req = s3c_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
	hsotg->ep0_reply = req;
	if (!req) {
		dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
		return -ENOMEM;
	}

	req->buf = hsotg->ep0_buff;
	req->length = length;
	req->zero = 1; /* always do zero-length final transfer */
	req->complete = s3c_hsotg_complete_oursetup;

	if (length)
		memcpy(req->buf, buff, length);
	else
		ep->sent_zlp = 1;

	ret = s3c_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
	if (ret) {
		dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
		return ret;
	}

	return 0;
}

/**
 * s3c_hsotg_process_req_status - process request GET_STATUS
 * @hsotg: The device state
 * @ctrl: USB control request
 */
static int s3c_hsotg_process_req_status(struct s3c_hsotg *hsotg,
					struct usb_ctrlrequest *ctrl)
{
	struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
	struct s3c_hsotg_ep *ep;
	__le16 reply;
	int ret;

	dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);

	if (!ep0->dir_in) {
		dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
		return -EINVAL;
	}

	switch (ctrl->bRequestType & USB_RECIP_MASK) {
	case USB_RECIP_DEVICE:
		reply = cpu_to_le16(0); /* bit 0 => self powered,
					 * bit 1 => remote wakeup */
		break;

	case USB_RECIP_INTERFACE:
		/* currently, the data result should be zero */
		reply = cpu_to_le16(0);
		break;

	case USB_RECIP_ENDPOINT:
		ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
		if (!ep)
			return -ENOENT;

		reply = cpu_to_le16(ep->halted ? 1 : 0);
		break;

	default:
		return 0;
	}

	if (le16_to_cpu(ctrl->wLength) != 2)
		return -EINVAL;

	ret = s3c_hsotg_send_reply(hsotg, ep0, &reply, 2);
	if (ret) {
		dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
		return ret;
	}

	return 1;
}

static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value);

924 925 926 927 928 929 930 931 932 933 934 935 936 937
/**
 * get_ep_head - return the first request on the endpoint
 * @hs_ep: The controller endpoint to get
 *
 * Get the first request on the endpoint.
 */
static struct s3c_hsotg_req *get_ep_head(struct s3c_hsotg_ep *hs_ep)
{
	if (list_empty(&hs_ep->queue))
		return NULL;

	return list_first_entry(&hs_ep->queue, struct s3c_hsotg_req, queue);
}

938 939 940 941 942 943 944 945
/**
 * s3c_hsotg_process_req_featire - process request {SET,CLEAR}_FEATURE
 * @hsotg: The device state
 * @ctrl: USB control request
 */
static int s3c_hsotg_process_req_feature(struct s3c_hsotg *hsotg,
					 struct usb_ctrlrequest *ctrl)
{
946
	struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
947 948
	struct s3c_hsotg_req *hs_req;
	bool restart;
949 950
	bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
	struct s3c_hsotg_ep *ep;
951
	int ret;
952
	bool halted;
953 954 955 956 957 958 959 960 961 962 963 964 965 966

	dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
		__func__, set ? "SET" : "CLEAR");

	if (ctrl->bRequestType == USB_RECIP_ENDPOINT) {
		ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
		if (!ep) {
			dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
				__func__, le16_to_cpu(ctrl->wIndex));
			return -ENOENT;
		}

		switch (le16_to_cpu(ctrl->wValue)) {
		case USB_ENDPOINT_HALT:
967 968
			halted = ep->halted;

969
			s3c_hsotg_ep_sethalt(&ep->ep, set);
970 971 972 973 974 975 976

			ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
			if (ret) {
				dev_err(hsotg->dev,
					"%s: failed to send reply\n", __func__);
				return ret;
			}
977

978 979 980 981 982 983
			/*
			 * we have to complete all requests for ep if it was
			 * halted, and the halt was cleared by CLEAR_FEATURE
			 */

			if (!set && halted) {
984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004
				/*
				 * If we have request in progress,
				 * then complete it
				 */
				if (ep->req) {
					hs_req = ep->req;
					ep->req = NULL;
					list_del_init(&hs_req->queue);
					hs_req->req.complete(&ep->ep,
							     &hs_req->req);
				}

				/* If we have pending request, then start it */
				restart = !list_empty(&ep->queue);
				if (restart) {
					hs_req = get_ep_head(ep);
					s3c_hsotg_start_req(hsotg, ep,
							    hs_req, false);
				}
			}

1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
			break;

		default:
			return -ENOENT;
		}
	} else
		return -ENOENT;  /* currently only deal with endpoint */

	return 1;
}

1016
static void s3c_hsotg_enqueue_setup(struct s3c_hsotg *hsotg);
1017
static void s3c_hsotg_disconnect(struct s3c_hsotg *hsotg);
1018

1019 1020 1021 1022 1023 1024
/**
 * s3c_hsotg_stall_ep0 - stall ep0
 * @hsotg: The device state
 *
 * Set stall for ep0 as response for setup request.
 */
1025 1026
static void s3c_hsotg_stall_ep0(struct s3c_hsotg *hsotg)
{
1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
	struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
	u32 reg;
	u32 ctrl;

	dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
	reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0;

	/*
	 * DxEPCTL_Stall will be cleared by EP once it has
	 * taken effect, so no need to clear later.
	 */

	ctrl = readl(hsotg->regs + reg);
1040 1041
	ctrl |= DXEPCTL_STALL;
	ctrl |= DXEPCTL_CNAK;
1042 1043 1044
	writel(ctrl, hsotg->regs + reg);

	dev_dbg(hsotg->dev,
1045
		"written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n",
1046 1047 1048 1049 1050 1051 1052 1053 1054
		ctrl, reg, readl(hsotg->regs + reg));

	 /*
	  * complete won't be called, so we enqueue
	  * setup request here
	  */
	 s3c_hsotg_enqueue_setup(hsotg);
}

1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
/**
 * s3c_hsotg_process_control - process a control request
 * @hsotg: The device state
 * @ctrl: The control request received
 *
 * The controller has received the SETUP phase of a control request, and
 * needs to work out what to do next (and whether to pass it on to the
 * gadget driver).
 */
static void s3c_hsotg_process_control(struct s3c_hsotg *hsotg,
				      struct usb_ctrlrequest *ctrl)
{
	struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
	int ret = 0;
	u32 dcfg;

	ep0->sent_zlp = 0;

	dev_dbg(hsotg->dev, "ctrl Req=%02x, Type=%02x, V=%04x, L=%04x\n",
		 ctrl->bRequest, ctrl->bRequestType,
		 ctrl->wValue, ctrl->wLength);

1077 1078 1079 1080
	/*
	 * record the direction of the request, for later use when enquing
	 * packets onto EP0.
	 */
1081 1082 1083 1084

	ep0->dir_in = (ctrl->bRequestType & USB_DIR_IN) ? 1 : 0;
	dev_dbg(hsotg->dev, "ctrl: dir_in=%d\n", ep0->dir_in);

1085 1086 1087 1088
	/*
	 * if we've no data with this request, then the last part of the
	 * transaction is going to implicitly be IN.
	 */
1089 1090 1091 1092 1093 1094
	if (ctrl->wLength == 0)
		ep0->dir_in = 1;

	if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
		switch (ctrl->bRequest) {
		case USB_REQ_SET_ADDRESS:
1095
			s3c_hsotg_disconnect(hsotg);
1096
			dcfg = readl(hsotg->regs + DCFG);
1097
			dcfg &= ~DCFG_DEVADDR_MASK;
P
Paul Zimmerman 已提交
1098 1099
			dcfg |= (le16_to_cpu(ctrl->wValue) <<
				 DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK;
1100
			writel(dcfg, hsotg->regs + DCFG);
1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120

			dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);

			ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
			return;

		case USB_REQ_GET_STATUS:
			ret = s3c_hsotg_process_req_status(hsotg, ctrl);
			break;

		case USB_REQ_CLEAR_FEATURE:
		case USB_REQ_SET_FEATURE:
			ret = s3c_hsotg_process_req_feature(hsotg, ctrl);
			break;
		}
	}

	/* as a fallback, try delivering it to the driver to deal with */

	if (ret == 0 && hsotg->driver) {
1121
		spin_unlock(&hsotg->lock);
1122
		ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
1123
		spin_lock(&hsotg->lock);
1124 1125 1126 1127
		if (ret < 0)
			dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
	}

1128 1129
	/*
	 * the request is either unhandlable, or is not formatted correctly
1130 1131 1132
	 * so respond with a STALL for the status stage to indicate failure.
	 */

1133 1134
	if (ret < 0)
		s3c_hsotg_stall_ep0(hsotg);
1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
}

/**
 * s3c_hsotg_complete_setup - completion of a setup transfer
 * @ep: The endpoint the request was on.
 * @req: The request completed.
 *
 * Called on completion of any requests the driver itself submitted for
 * EP0 setup packets
 */
static void s3c_hsotg_complete_setup(struct usb_ep *ep,
				     struct usb_request *req)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
	struct s3c_hsotg *hsotg = hs_ep->parent;

	if (req->status < 0) {
		dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
		return;
	}

1156
	spin_lock(&hsotg->lock);
1157 1158 1159 1160
	if (req->actual == 0)
		s3c_hsotg_enqueue_setup(hsotg);
	else
		s3c_hsotg_process_control(hsotg, req->buf);
1161
	spin_unlock(&hsotg->lock);
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
}

/**
 * s3c_hsotg_enqueue_setup - start a request for EP0 packets
 * @hsotg: The device state.
 *
 * Enqueue a request on EP0 if necessary to received any SETUP packets
 * received from the host.
 */
static void s3c_hsotg_enqueue_setup(struct s3c_hsotg *hsotg)
{
	struct usb_request *req = hsotg->ctrl_req;
	struct s3c_hsotg_req *hs_req = our_req(req);
	int ret;

	dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);

	req->zero = 0;
	req->length = 8;
	req->buf = hsotg->ctrl_buff;
	req->complete = s3c_hsotg_complete_setup;

	if (!list_empty(&hs_req->queue)) {
		dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
		return;
	}

	hsotg->eps[0].dir_in = 0;

	ret = s3c_hsotg_ep_queue(&hsotg->eps[0].ep, req, GFP_ATOMIC);
	if (ret < 0) {
		dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
1194 1195 1196 1197
		/*
		 * Don't think there's much we can do other than watch the
		 * driver fail.
		 */
1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212
	}
}

/**
 * s3c_hsotg_complete_request - complete a request given to us
 * @hsotg: The device state.
 * @hs_ep: The endpoint the request was on.
 * @hs_req: The request to complete.
 * @result: The result code (0 => Ok, otherwise errno)
 *
 * The given request has finished, so call the necessary completion
 * if it has one and then look to see if we can start a new request
 * on the endpoint.
 *
 * Note, expects the ep to already be locked as appropriate.
1213
 */
1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
static void s3c_hsotg_complete_request(struct s3c_hsotg *hsotg,
				       struct s3c_hsotg_ep *hs_ep,
				       struct s3c_hsotg_req *hs_req,
				       int result)
{
	bool restart;

	if (!hs_req) {
		dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
		return;
	}

	dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
		hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);

1229 1230 1231 1232
	/*
	 * only replace the status if we've not already set an error
	 * from a previous transaction
	 */
1233 1234 1235 1236 1237 1238 1239 1240 1241 1242

	if (hs_req->req.status == -EINPROGRESS)
		hs_req->req.status = result;

	hs_ep->req = NULL;
	list_del_init(&hs_req->queue);

	if (using_dma(hsotg))
		s3c_hsotg_unmap_dma(hsotg, hs_ep, hs_req);

1243 1244 1245 1246
	/*
	 * call the complete request with the locks off, just in case the
	 * request tries to queue more work for this endpoint.
	 */
1247 1248

	if (hs_req->req.complete) {
1249
		spin_unlock(&hsotg->lock);
1250
		hs_req->req.complete(&hs_ep->ep, &hs_req->req);
1251
		spin_lock(&hsotg->lock);
1252 1253
	}

1254 1255
	/*
	 * Look to see if there is anything else to do. Note, the completion
1256
	 * of the previous request may have caused a new request to be started
1257 1258
	 * so be careful when doing this.
	 */
1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282

	if (!hs_ep->req && result >= 0) {
		restart = !list_empty(&hs_ep->queue);
		if (restart) {
			hs_req = get_ep_head(hs_ep);
			s3c_hsotg_start_req(hsotg, hs_ep, hs_req, false);
		}
	}
}

/**
 * s3c_hsotg_rx_data - receive data from the FIFO for an endpoint
 * @hsotg: The device state.
 * @ep_idx: The endpoint index for the data
 * @size: The size of data in the fifo, in bytes
 *
 * The FIFO status shows there is data to read from the FIFO for a given
 * endpoint, so sort out whether we need to read the data into a request
 * that has been made for that endpoint.
 */
static void s3c_hsotg_rx_data(struct s3c_hsotg *hsotg, int ep_idx, int size)
{
	struct s3c_hsotg_ep *hs_ep = &hsotg->eps[ep_idx];
	struct s3c_hsotg_req *hs_req = hs_ep->req;
1283
	void __iomem *fifo = hsotg->regs + EPFIFO(ep_idx);
1284 1285 1286 1287
	int to_read;
	int max_req;
	int read_ptr;

1288

1289
	if (!hs_req) {
1290
		u32 epctl = readl(hsotg->regs + DOEPCTL(ep_idx));
1291 1292 1293
		int ptr;

		dev_warn(hsotg->dev,
1294
			 "%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n",
1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
			 __func__, size, ep_idx, epctl);

		/* dump the data from the FIFO, we've nothing we can do */
		for (ptr = 0; ptr < size; ptr += 4)
			(void)readl(fifo);

		return;
	}

	to_read = size;
	read_ptr = hs_req->req.actual;
	max_req = hs_req->req.length - read_ptr;

1308 1309 1310
	dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
		__func__, to_read, max_req, read_ptr, hs_req->req.length);

1311
	if (to_read > max_req) {
1312 1313
		/*
		 * more data appeared than we where willing
1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324
		 * to deal with in this request.
		 */

		/* currently we don't deal this */
		WARN_ON_ONCE(1);
	}

	hs_ep->total_data += to_read;
	hs_req->req.actual += to_read;
	to_read = DIV_ROUND_UP(to_read, 4);

1325 1326 1327 1328
	/*
	 * note, we might over-write the buffer end by 3 bytes depending on
	 * alignment of the data.
	 */
1329
	ioread32_rep(fifo, hs_req->req.buf + read_ptr, to_read);
1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340
}

/**
 * s3c_hsotg_send_zlp - send zero-length packet on control endpoint
 * @hsotg: The device instance
 * @req: The request currently on this endpoint
 *
 * Generate a zero-length IN packet request for terminating a SETUP
 * transaction.
 *
 * Note, since we don't write any data to the TxFIFO, then it is
L
Lucas De Marchi 已提交
1341
 * currently believed that we do not need to wait for any space in
1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
 * the TxFIFO.
 */
static void s3c_hsotg_send_zlp(struct s3c_hsotg *hsotg,
			       struct s3c_hsotg_req *req)
{
	u32 ctrl;

	if (!req) {
		dev_warn(hsotg->dev, "%s: no request?\n", __func__);
		return;
	}

	if (req->req.length == 0) {
		hsotg->eps[0].sent_zlp = 1;
		s3c_hsotg_enqueue_setup(hsotg);
		return;
	}

	hsotg->eps[0].dir_in = 1;
	hsotg->eps[0].sent_zlp = 1;

	dev_dbg(hsotg->dev, "sending zero-length packet\n");

	/* issue a zero-sized packet to terminate this */
1366 1367
	writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
	       DXEPTSIZ_XFERSIZE(0), hsotg->regs + DIEPTSIZ(0));
1368

1369
	ctrl = readl(hsotg->regs + DIEPCTL0);
1370 1371 1372
	ctrl |= DXEPCTL_CNAK;  /* clear NAK set by core */
	ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
	ctrl |= DXEPCTL_USBACTEP;
1373
	writel(ctrl, hsotg->regs + DIEPCTL0);
1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384
}

/**
 * s3c_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
 * @hsotg: The device instance
 * @epnum: The endpoint received from
 * @was_setup: Set if processing a SetupDone event.
 *
 * The RXFIFO has delivered an OutDone event, which means that the data
 * transfer for an OUT endpoint has been completed, either by a short
 * packet or by the finish of a transfer.
1385
 */
1386 1387 1388
static void s3c_hsotg_handle_outdone(struct s3c_hsotg *hsotg,
				     int epnum, bool was_setup)
{
1389
	u32 epsize = readl(hsotg->regs + DOEPTSIZ(epnum));
1390 1391 1392
	struct s3c_hsotg_ep *hs_ep = &hsotg->eps[epnum];
	struct s3c_hsotg_req *hs_req = hs_ep->req;
	struct usb_request *req = &hs_req->req;
1393
	unsigned size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
1394 1395 1396 1397 1398 1399 1400 1401 1402 1403
	int result = 0;

	if (!hs_req) {
		dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
		return;
	}

	if (using_dma(hsotg)) {
		unsigned size_done;

1404 1405
		/*
		 * Calculate the size of the transfer by checking how much
1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418
		 * is left in the endpoint size register and then working it
		 * out from the amount we loaded for the transfer.
		 *
		 * We need to do this as DMA pointers are always 32bit aligned
		 * so may overshoot/undershoot the transfer.
		 */

		size_done = hs_ep->size_loaded - size_left;
		size_done += hs_ep->last_load;

		req->actual = size_done;
	}

1419 1420 1421 1422
	/* if there is more request to do, schedule new transfer */
	if (req->actual < req->length && size_left == 0) {
		s3c_hsotg_start_req(hsotg, hs_ep, hs_req, true);
		return;
1423 1424 1425 1426 1427 1428
	} else if (epnum == 0) {
		/*
		 * After was_setup = 1 =>
		 * set CNAK for non Setup requests
		 */
		hsotg->setup = was_setup ? 0 : 1;
1429 1430
	}

1431 1432 1433 1434
	if (req->actual < req->length && req->short_not_ok) {
		dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
			__func__, req->actual, req->length);

1435 1436 1437 1438
		/*
		 * todo - what should we return here? there's no one else
		 * even bothering to check the status.
		 */
1439 1440 1441
	}

	if (epnum == 0) {
1442 1443 1444 1445
		/*
		 * Condition req->complete != s3c_hsotg_complete_setup says:
		 * send ZLP when we have an asynchronous request from gadget
		 */
1446 1447 1448 1449
		if (!was_setup && req->complete != s3c_hsotg_complete_setup)
			s3c_hsotg_send_zlp(hsotg, hs_req);
	}

1450
	s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
1451 1452 1453 1454 1455 1456 1457
}

/**
 * s3c_hsotg_read_frameno - read current frame number
 * @hsotg: The device instance
 *
 * Return the current frame number
1458
 */
1459 1460 1461 1462
static u32 s3c_hsotg_read_frameno(struct s3c_hsotg *hsotg)
{
	u32 dsts;

1463 1464 1465
	dsts = readl(hsotg->regs + DSTS);
	dsts &= DSTS_SOFFN_MASK;
	dsts >>= DSTS_SOFFN_SHIFT;
1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477

	return dsts;
}

/**
 * s3c_hsotg_handle_rx - RX FIFO has data
 * @hsotg: The device instance
 *
 * The IRQ handler has detected that the RX FIFO has some data in it
 * that requires processing, so find out what is in there and do the
 * appropriate read.
 *
L
Lucas De Marchi 已提交
1478
 * The RXFIFO is a true FIFO, the packets coming out are still in packet
1479 1480 1481 1482 1483 1484 1485
 * chunks, so if you have x packets received on an endpoint you'll get x
 * FIFO events delivered, each with a packet's worth of data in it.
 *
 * When using DMA, we should not be processing events from the RXFIFO
 * as the actual data should be sent to the memory directly and we turn
 * on the completion interrupts to get notifications of transfer completion.
 */
1486
static void s3c_hsotg_handle_rx(struct s3c_hsotg *hsotg)
1487
{
1488
	u32 grxstsr = readl(hsotg->regs + GRXSTSP);
1489 1490 1491 1492
	u32 epnum, status, size;

	WARN_ON(using_dma(hsotg));

1493 1494
	epnum = grxstsr & GRXSTS_EPNUM_MASK;
	status = grxstsr & GRXSTS_PKTSTS_MASK;
1495

1496 1497
	size = grxstsr & GRXSTS_BYTECNT_MASK;
	size >>= GRXSTS_BYTECNT_SHIFT;
1498 1499 1500 1501 1502

	if (1)
		dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
			__func__, grxstsr, size, epnum);

1503 1504 1505
	switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) {
	case GRXSTS_PKTSTS_GLOBALOUTNAK:
		dev_dbg(hsotg->dev, "GLOBALOUTNAK\n");
1506 1507
		break;

1508
	case GRXSTS_PKTSTS_OUTDONE:
1509 1510 1511 1512 1513 1514 1515
		dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
			s3c_hsotg_read_frameno(hsotg));

		if (!using_dma(hsotg))
			s3c_hsotg_handle_outdone(hsotg, epnum, false);
		break;

1516
	case GRXSTS_PKTSTS_SETUPDONE:
1517 1518 1519
		dev_dbg(hsotg->dev,
			"SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
			s3c_hsotg_read_frameno(hsotg),
1520
			readl(hsotg->regs + DOEPCTL(0)));
1521 1522 1523 1524

		s3c_hsotg_handle_outdone(hsotg, epnum, true);
		break;

1525
	case GRXSTS_PKTSTS_OUTRX:
1526 1527 1528
		s3c_hsotg_rx_data(hsotg, epnum, size);
		break;

1529
	case GRXSTS_PKTSTS_SETUPRX:
1530 1531 1532
		dev_dbg(hsotg->dev,
			"SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
			s3c_hsotg_read_frameno(hsotg),
1533
			readl(hsotg->regs + DOEPCTL(0)));
1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549

		s3c_hsotg_rx_data(hsotg, epnum, size);
		break;

	default:
		dev_warn(hsotg->dev, "%s: unknown status %08x\n",
			 __func__, grxstsr);

		s3c_hsotg_dump(hsotg);
		break;
	}
}

/**
 * s3c_hsotg_ep0_mps - turn max packet size into register setting
 * @mps: The maximum packet size in bytes.
1550
 */
1551 1552 1553 1554
static u32 s3c_hsotg_ep0_mps(unsigned int mps)
{
	switch (mps) {
	case 64:
1555
		return D0EPCTL_MPS_64;
1556
	case 32:
1557
		return D0EPCTL_MPS_32;
1558
	case 16:
1559
		return D0EPCTL_MPS_16;
1560
	case 8:
1561
		return D0EPCTL_MPS_8;
1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
	}

	/* bad max packet size, warn and return invalid result */
	WARN_ON(1);
	return (u32)-1;
}

/**
 * s3c_hsotg_set_ep_maxpacket - set endpoint's max-packet field
 * @hsotg: The driver state.
 * @ep: The index number of the endpoint
 * @mps: The maximum packet size in bytes
 *
 * Configure the maximum packet size for the given endpoint, updating
 * the hardware control registers to reflect this.
 */
static void s3c_hsotg_set_ep_maxpacket(struct s3c_hsotg *hsotg,
				       unsigned int ep, unsigned int mps)
{
	struct s3c_hsotg_ep *hs_ep = &hsotg->eps[ep];
	void __iomem *regs = hsotg->regs;
	u32 mpsval;
1584
	u32 mcval;
1585 1586 1587 1588 1589 1590 1591
	u32 reg;

	if (ep == 0) {
		/* EP0 is a special case */
		mpsval = s3c_hsotg_ep0_mps(mps);
		if (mpsval > 3)
			goto bad_mps;
1592
		hs_ep->ep.maxpacket = mps;
1593
		hs_ep->mc = 1;
1594
	} else {
1595
		mpsval = mps & DXEPCTL_MPS_MASK;
1596
		if (mpsval > 1024)
1597
			goto bad_mps;
1598 1599 1600 1601
		mcval = ((mps >> 11) & 0x3) + 1;
		hs_ep->mc = mcval;
		if (mcval > 3)
			goto bad_mps;
1602
		hs_ep->ep.maxpacket = mpsval;
1603 1604
	}

1605 1606 1607 1608
	/*
	 * update both the in and out endpoint controldir_ registers, even
	 * if one of the directions may not be in use.
	 */
1609

1610
	reg = readl(regs + DIEPCTL(ep));
1611
	reg &= ~DXEPCTL_MPS_MASK;
1612
	reg |= mpsval;
1613
	writel(reg, regs + DIEPCTL(ep));
1614

1615
	if (ep) {
1616
		reg = readl(regs + DOEPCTL(ep));
1617
		reg &= ~DXEPCTL_MPS_MASK;
1618
		reg |= mpsval;
1619
		writel(reg, regs + DOEPCTL(ep));
1620
	}
1621 1622 1623 1624 1625 1626 1627

	return;

bad_mps:
	dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
}

1628 1629 1630 1631 1632 1633 1634 1635 1636 1637
/**
 * s3c_hsotg_txfifo_flush - flush Tx FIFO
 * @hsotg: The driver state
 * @idx: The index for the endpoint (0..15)
 */
static void s3c_hsotg_txfifo_flush(struct s3c_hsotg *hsotg, unsigned int idx)
{
	int timeout;
	int val;

1638
	writel(GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH,
1639
		hsotg->regs + GRSTCTL);
1640 1641 1642 1643 1644

	/* wait until the fifo is flushed */
	timeout = 100;

	while (1) {
1645
		val = readl(hsotg->regs + GRSTCTL);
1646

1647
		if ((val & (GRSTCTL_TXFFLSH)) == 0)
1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658
			break;

		if (--timeout == 0) {
			dev_err(hsotg->dev,
				"%s: timeout flushing fifo (GRSTCTL=%08x)\n",
				__func__, val);
		}

		udelay(1);
	}
}
1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672

/**
 * s3c_hsotg_trytx - check to see if anything needs transmitting
 * @hsotg: The driver state
 * @hs_ep: The driver endpoint to check.
 *
 * Check to see if there is a request that has data to send, and if so
 * make an attempt to write data into the FIFO.
 */
static int s3c_hsotg_trytx(struct s3c_hsotg *hsotg,
			   struct s3c_hsotg_ep *hs_ep)
{
	struct s3c_hsotg_req *hs_req = hs_ep->req;

1673 1674 1675 1676 1677 1678 1679 1680
	if (!hs_ep->dir_in || !hs_req) {
		/**
		 * if request is not enqueued, we disable interrupts
		 * for endpoints, excepting ep0
		 */
		if (hs_ep->index != 0)
			s3c_hsotg_ctrl_epint(hsotg, hs_ep->index,
					     hs_ep->dir_in, 0);
1681
		return 0;
1682
	}
1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704

	if (hs_req->req.actual < hs_req->req.length) {
		dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
			hs_ep->index);
		return s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req);
	}

	return 0;
}

/**
 * s3c_hsotg_complete_in - complete IN transfer
 * @hsotg: The device state.
 * @hs_ep: The endpoint that has just completed.
 *
 * An IN transfer has been completed, update the transfer's state and then
 * call the relevant completion routines.
 */
static void s3c_hsotg_complete_in(struct s3c_hsotg *hsotg,
				  struct s3c_hsotg_ep *hs_ep)
{
	struct s3c_hsotg_req *hs_req = hs_ep->req;
1705
	u32 epsize = readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
1706 1707 1708 1709 1710 1711 1712
	int size_left, size_done;

	if (!hs_req) {
		dev_dbg(hsotg->dev, "XferCompl but no req\n");
		return;
	}

1713 1714 1715
	/* Finish ZLP handling for IN EP0 transactions */
	if (hsotg->eps[0].sent_zlp) {
		dev_dbg(hsotg->dev, "zlp packet received\n");
1716
		s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
1717 1718 1719
		return;
	}

1720 1721
	/*
	 * Calculate the size of the transfer by checking how much is left
1722 1723 1724 1725 1726 1727 1728 1729
	 * in the endpoint size register and then working it out from
	 * the amount we loaded for the transfer.
	 *
	 * We do this even for DMA, as the transfer may have incremented
	 * past the end of the buffer (DMA transfers are always 32bit
	 * aligned).
	 */

1730
	size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
1731 1732 1733 1734 1735 1736 1737 1738 1739

	size_done = hs_ep->size_loaded - size_left;
	size_done += hs_ep->last_load;

	if (hs_req->req.actual != size_done)
		dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
			__func__, hs_req->req.actual, size_done);

	hs_req->req.actual = size_done;
1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758
	dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n",
		hs_req->req.length, hs_req->req.actual, hs_req->req.zero);

	/*
	 * Check if dealing with Maximum Packet Size(MPS) IN transfer at EP0
	 * When sent data is a multiple MPS size (e.g. 64B ,128B ,192B
	 * ,256B ... ), after last MPS sized packet send IN ZLP packet to
	 * inform the host that no more data is available.
	 * The state of req.zero member is checked to be sure that the value to
	 * send is smaller than wValue expected from host.
	 * Check req.length to NOT send another ZLP when the current one is
	 * under completion (the one for which this completion has been called).
	 */
	if (hs_req->req.length && hs_ep->index == 0 && hs_req->req.zero &&
	    hs_req->req.length == hs_req->req.actual &&
	    !(hs_req->req.length % hs_ep->ep.maxpacket)) {

		dev_dbg(hsotg->dev, "ep0 zlp IN packet sent\n");
		s3c_hsotg_send_zlp(hsotg, hs_req);
1759

1760 1761
		return;
	}
1762 1763 1764 1765 1766

	if (!size_left && hs_req->req.actual < hs_req->req.length) {
		dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
		s3c_hsotg_start_req(hsotg, hs_ep, hs_req, true);
	} else
1767
		s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
1768 1769 1770 1771 1772 1773 1774 1775 1776
}

/**
 * s3c_hsotg_epint - handle an in/out endpoint interrupt
 * @hsotg: The driver state
 * @idx: The index for the endpoint (0..15)
 * @dir_in: Set if this is an IN endpoint
 *
 * Process and clear any interrupt pending for an individual endpoint
1777
 */
1778 1779 1780 1781
static void s3c_hsotg_epint(struct s3c_hsotg *hsotg, unsigned int idx,
			    int dir_in)
{
	struct s3c_hsotg_ep *hs_ep = &hsotg->eps[idx];
1782 1783 1784
	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
	u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx);
1785
	u32 ints;
1786
	u32 ctrl;
1787 1788

	ints = readl(hsotg->regs + epint_reg);
1789
	ctrl = readl(hsotg->regs + epctl_reg);
1790

1791 1792 1793
	/* Clear endpoint interrupts */
	writel(ints, hsotg->regs + epint_reg);

1794 1795 1796
	dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
		__func__, idx, dir_in ? "in" : "out", ints);

1797
	if (ints & DXEPINT_XFERCOMPL) {
1798
		if (hs_ep->isochronous && hs_ep->interval == 1) {
1799 1800
			if (ctrl & DXEPCTL_EOFRNUM)
				ctrl |= DXEPCTL_SETEVENFR;
1801
			else
1802
				ctrl |= DXEPCTL_SETODDFR;
1803 1804 1805
			writel(ctrl, hsotg->regs + epctl_reg);
		}

1806
		dev_dbg(hsotg->dev,
1807
			"%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n",
1808 1809 1810
			__func__, readl(hsotg->regs + epctl_reg),
			readl(hsotg->regs + epsiz_reg));

1811 1812 1813 1814
		/*
		 * we get OutDone from the FIFO, so we only need to look
		 * at completing IN requests here
		 */
1815 1816 1817
		if (dir_in) {
			s3c_hsotg_complete_in(hsotg, hs_ep);

1818
			if (idx == 0 && !hs_ep->req)
1819 1820
				s3c_hsotg_enqueue_setup(hsotg);
		} else if (using_dma(hsotg)) {
1821 1822 1823 1824
			/*
			 * We're using DMA, we need to fire an OutDone here
			 * as we ignore the RXFIFO.
			 */
1825 1826 1827 1828 1829

			s3c_hsotg_handle_outdone(hsotg, idx, false);
		}
	}

1830
	if (ints & DXEPINT_EPDISBLD) {
1831 1832
		dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);

1833 1834 1835 1836 1837
		if (dir_in) {
			int epctl = readl(hsotg->regs + epctl_reg);

			s3c_hsotg_txfifo_flush(hsotg, idx);

1838 1839
			if ((epctl & DXEPCTL_STALL) &&
				(epctl & DXEPCTL_EPTYPE_BULK)) {
1840
				int dctl = readl(hsotg->regs + DCTL);
1841

1842
				dctl |= DCTL_CGNPINNAK;
1843
				writel(dctl, hsotg->regs + DCTL);
1844 1845 1846 1847
			}
		}
	}

1848
	if (ints & DXEPINT_AHBERR)
1849 1850
		dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);

1851
	if (ints & DXEPINT_SETUP) {  /* Setup or Timeout */
1852 1853 1854
		dev_dbg(hsotg->dev, "%s: Setup/Timeout\n",  __func__);

		if (using_dma(hsotg) && idx == 0) {
1855 1856
			/*
			 * this is the notification we've received a
1857 1858
			 * setup packet. In non-DMA mode we'd get this
			 * from the RXFIFO, instead we need to process
1859 1860
			 * the setup here.
			 */
1861 1862 1863 1864 1865 1866 1867 1868

			if (dir_in)
				WARN_ON_ONCE(1);
			else
				s3c_hsotg_handle_outdone(hsotg, 0, true);
		}
	}

1869
	if (ints & DXEPINT_BACK2BACKSETUP)
1870 1871
		dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);

1872
	if (dir_in && !hs_ep->isochronous) {
1873
		/* not sure if this is important, but we'll clear it anyway */
1874
		if (ints & DIEPMSK_INTKNTXFEMPMSK) {
1875 1876 1877 1878 1879
			dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
				__func__, idx);
		}

		/* this probably means something bad is happening */
1880
		if (ints & DIEPMSK_INTKNEPMISMSK) {
1881 1882 1883
			dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
				 __func__, idx);
		}
1884 1885 1886

		/* FIFO has space or is empty (see GAHBCFG) */
		if (hsotg->dedicated_fifos &&
1887
		    ints & DIEPMSK_TXFIFOEMPTY) {
1888 1889
			dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
				__func__, idx);
1890 1891
			if (!using_dma(hsotg))
				s3c_hsotg_trytx(hsotg, hs_ep);
1892
		}
1893 1894 1895 1896 1897 1898 1899 1900 1901
	}
}

/**
 * s3c_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
 * @hsotg: The device state.
 *
 * Handle updating the device settings after the enumeration phase has
 * been completed.
1902
 */
1903 1904
static void s3c_hsotg_irq_enumdone(struct s3c_hsotg *hsotg)
{
1905
	u32 dsts = readl(hsotg->regs + DSTS);
1906 1907
	int ep0_mps = 0, ep_mps;

1908 1909
	/*
	 * This should signal the finish of the enumeration phase
1910
	 * of the USB handshaking, so we should now know what rate
1911 1912
	 * we connected at.
	 */
1913 1914 1915

	dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);

1916 1917
	/*
	 * note, since we're limited by the size of transfer on EP0, and
1918
	 * it seems IN transfers must be a even number of packets we do
1919 1920
	 * not advertise a 64byte MPS on EP0.
	 */
1921 1922

	/* catch both EnumSpd_FS and EnumSpd_FS48 */
1923 1924 1925
	switch (dsts & DSTS_ENUMSPD_MASK) {
	case DSTS_ENUMSPD_FS:
	case DSTS_ENUMSPD_FS48:
1926 1927
		hsotg->gadget.speed = USB_SPEED_FULL;
		ep0_mps = EP0_MPS_LIMIT;
1928
		ep_mps = 1023;
1929 1930
		break;

1931
	case DSTS_ENUMSPD_HS:
1932 1933
		hsotg->gadget.speed = USB_SPEED_HIGH;
		ep0_mps = EP0_MPS_LIMIT;
1934
		ep_mps = 1024;
1935 1936
		break;

1937
	case DSTS_ENUMSPD_LS:
1938
		hsotg->gadget.speed = USB_SPEED_LOW;
1939 1940
		/*
		 * note, we don't actually support LS in this driver at the
1941 1942 1943 1944 1945
		 * moment, and the documentation seems to imply that it isn't
		 * supported by the PHYs on some of the devices.
		 */
		break;
	}
1946 1947
	dev_info(hsotg->dev, "new device is %s\n",
		 usb_speed_string(hsotg->gadget.speed));
1948

1949 1950 1951 1952
	/*
	 * we should now know the maximum packet size for an
	 * endpoint, so set the endpoints to a default value.
	 */
1953 1954 1955 1956

	if (ep0_mps) {
		int i;
		s3c_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps);
1957
		for (i = 1; i < hsotg->num_of_eps; i++)
1958 1959 1960 1961 1962 1963 1964 1965
			s3c_hsotg_set_ep_maxpacket(hsotg, i, ep_mps);
	}

	/* ensure after enumeration our EP0 is active */

	s3c_hsotg_enqueue_setup(hsotg);

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
1966 1967
		readl(hsotg->regs + DIEPCTL0),
		readl(hsotg->regs + DOEPCTL0));
1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986
}

/**
 * kill_all_requests - remove all requests from the endpoint's queue
 * @hsotg: The device state.
 * @ep: The endpoint the requests may be on.
 * @result: The result code to use.
 * @force: Force removal of any current requests
 *
 * Go through the requests on the given endpoint and mark them
 * completed with the given result code.
 */
static void kill_all_requests(struct s3c_hsotg *hsotg,
			      struct s3c_hsotg_ep *ep,
			      int result, bool force)
{
	struct s3c_hsotg_req *req, *treq;

	list_for_each_entry_safe(req, treq, &ep->queue, queue) {
1987 1988 1989 1990
		/*
		 * currently, we can't do much about an already
		 * running request on an in endpoint
		 */
1991 1992 1993 1994 1995 1996 1997

		if (ep->req == req && ep->dir_in && !force)
			continue;

		s3c_hsotg_complete_request(hsotg, ep, req,
					   result);
	}
1998
	if (hsotg->dedicated_fifos)
1999 2000
		if ((readl(hsotg->regs + DTXFSTS(ep->index)) & 0xffff) * 4 < 3072)
			s3c_hsotg_txfifo_flush(hsotg, ep->index);
2001 2002 2003
}

/**
2004
 * s3c_hsotg_disconnect - disconnect service
2005 2006
 * @hsotg: The device state.
 *
2007 2008 2009
 * The device has been disconnected. Remove all current
 * transactions and signal the gadget driver that this
 * has happened.
2010
 */
2011
static void s3c_hsotg_disconnect(struct s3c_hsotg *hsotg)
2012 2013 2014
{
	unsigned ep;

2015
	for (ep = 0; ep < hsotg->num_of_eps; ep++)
2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032
		kill_all_requests(hsotg, &hsotg->eps[ep], -ESHUTDOWN, true);

	call_gadget(hsotg, disconnect);
}

/**
 * s3c_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
 * @hsotg: The device state:
 * @periodic: True if this is a periodic FIFO interrupt
 */
static void s3c_hsotg_irq_fifoempty(struct s3c_hsotg *hsotg, bool periodic)
{
	struct s3c_hsotg_ep *ep;
	int epno, ret;

	/* look through for any more data to transmit */

2033
	for (epno = 0; epno < hsotg->num_of_eps; epno++) {
2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049
		ep = &hsotg->eps[epno];

		if (!ep->dir_in)
			continue;

		if ((periodic && !ep->periodic) ||
		    (!periodic && ep->periodic))
			continue;

		ret = s3c_hsotg_trytx(hsotg, ep);
		if (ret < 0)
			break;
	}
}

/* IRQ flags which will trigger a retry around the IRQ loop */
2050 2051 2052
#define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \
			GINTSTS_PTXFEMP |  \
			GINTSTS_RXFLVL)
2053

2054 2055 2056 2057 2058
/**
 * s3c_hsotg_corereset - issue softreset to the core
 * @hsotg: The device state
 *
 * Issue a soft reset to the core, and await the core finishing it.
2059
 */
2060 2061 2062 2063 2064 2065 2066 2067
static int s3c_hsotg_corereset(struct s3c_hsotg *hsotg)
{
	int timeout;
	u32 grstctl;

	dev_dbg(hsotg->dev, "resetting core\n");

	/* issue soft reset */
2068
	writel(GRSTCTL_CSFTRST, hsotg->regs + GRSTCTL);
2069

2070
	timeout = 10000;
2071
	do {
2072
		grstctl = readl(hsotg->regs + GRSTCTL);
2073
	} while ((grstctl & GRSTCTL_CSFTRST) && timeout-- > 0);
2074

2075
	if (grstctl & GRSTCTL_CSFTRST) {
2076 2077 2078 2079
		dev_err(hsotg->dev, "Failed to get CSftRst asserted\n");
		return -EINVAL;
	}

2080
	timeout = 10000;
2081 2082

	while (1) {
2083
		u32 grstctl = readl(hsotg->regs + GRSTCTL);
2084 2085 2086 2087 2088 2089 2090 2091

		if (timeout-- < 0) {
			dev_info(hsotg->dev,
				 "%s: reset failed, GRSTCTL=%08x\n",
				 __func__, grstctl);
			return -ETIMEDOUT;
		}

2092
		if (!(grstctl & GRSTCTL_AHBIDLE))
2093 2094 2095 2096 2097 2098 2099 2100 2101
			continue;

		break;		/* reset done */
	}

	dev_dbg(hsotg->dev, "reset successful\n");
	return 0;
}

2102 2103 2104 2105 2106 2107
/**
 * s3c_hsotg_core_init - issue softreset to the core
 * @hsotg: The device state
 *
 * Issue a soft reset to the core, and await the core finishing it.
 */
2108 2109 2110 2111 2112 2113 2114 2115 2116 2117
static void s3c_hsotg_core_init(struct s3c_hsotg *hsotg)
{
	s3c_hsotg_corereset(hsotg);

	/*
	 * we must now enable ep0 ready for host detection and then
	 * set configuration.
	 */

	/* set the PLL on, remove the HNP/SRP and set the PHY */
2118
	writel(hsotg->phyif | GUSBCFG_TOUTCAL(7) |
2119
	       (0x5 << 10), hsotg->regs + GUSBCFG);
2120 2121 2122

	s3c_hsotg_init_fifo(hsotg);

2123
	__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2124

2125
	writel(1 << 18 | DCFG_DEVSPD_HS,  hsotg->regs + DCFG);
2126 2127

	/* Clear any pending OTG interrupts */
2128
	writel(0xffffffff, hsotg->regs + GOTGINT);
2129 2130

	/* Clear any pending interrupts */
2131
	writel(0xffffffff, hsotg->regs + GINTSTS);
2132

2133 2134 2135 2136 2137 2138
	writel(GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT |
		GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF |
		GINTSTS_CONIDSTSCHNG | GINTSTS_USBRST |
		GINTSTS_ENUMDONE | GINTSTS_OTGINT |
		GINTSTS_USBSUSP | GINTSTS_WKUPINT,
		hsotg->regs + GINTMSK);
2139 2140

	if (using_dma(hsotg))
2141 2142
		writel(GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN |
		       GAHBCFG_HBSTLEN_INCR4,
2143
		       hsotg->regs + GAHBCFG);
2144
	else
2145 2146 2147
		writel(((hsotg->dedicated_fifos) ? (GAHBCFG_NP_TXF_EMP_LVL |
						    GAHBCFG_P_TXF_EMP_LVL) : 0) |
		       GAHBCFG_GLBL_INTR_EN,
2148
		       hsotg->regs + GAHBCFG);
2149 2150

	/*
2151 2152 2153
	 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts
	 * when we have no data to transfer. Otherwise we get being flooded by
	 * interrupts.
2154 2155
	 */

2156 2157 2158 2159 2160 2161
	writel(((hsotg->dedicated_fifos) ? DIEPMSK_TXFIFOEMPTY |
		DIEPMSK_INTKNTXFEMPMSK : 0) |
		DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK |
		DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
		DIEPMSK_INTKNEPMISMSK,
		hsotg->regs + DIEPMSK);
2162 2163 2164 2165 2166

	/*
	 * don't need XferCompl, we get that from RXFIFO in slave mode. In
	 * DMA mode we may need this.
	 */
2167 2168 2169 2170 2171
	writel((using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK |
				    DIEPMSK_TIMEOUTMSK) : 0) |
		DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK |
		DOEPMSK_SETUPMSK,
		hsotg->regs + DOEPMSK);
2172

2173
	writel(0, hsotg->regs + DAINTMSK);
2174 2175

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2176 2177
		readl(hsotg->regs + DIEPCTL0),
		readl(hsotg->regs + DOEPCTL0));
2178 2179

	/* enable in and out endpoint interrupts */
2180
	s3c_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT);
2181 2182 2183 2184 2185 2186 2187

	/*
	 * Enable the RXFIFO when in slave mode, as this is how we collect
	 * the data. In DMA mode, we get events from the FIFO but also
	 * things we cannot process, so do not use it.
	 */
	if (!using_dma(hsotg))
2188
		s3c_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL);
2189 2190 2191 2192 2193

	/* Enable interrupts for EP0 in and out */
	s3c_hsotg_ctrl_epint(hsotg, 0, 0, 1);
	s3c_hsotg_ctrl_epint(hsotg, 0, 1, 1);

2194
	__orr32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
2195
	udelay(10);  /* see openiboot */
2196
	__bic32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
2197

2198
	dev_dbg(hsotg->dev, "DCTL=0x%08x\n", readl(hsotg->regs + DCTL));
2199 2200

	/*
2201
	 * DxEPCTL_USBActEp says RO in manual, but seems to be set by
2202 2203 2204 2205
	 * writing to the EPCTL register..
	 */

	/* set to read 1 8byte packet */
2206 2207
	writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
	       DXEPTSIZ_XFERSIZE(8), hsotg->regs + DOEPTSIZ0);
2208 2209

	writel(s3c_hsotg_ep0_mps(hsotg->eps[0].ep.maxpacket) |
2210 2211
	       DXEPCTL_CNAK | DXEPCTL_EPENA |
	       DXEPCTL_USBACTEP,
2212
	       hsotg->regs + DOEPCTL0);
2213 2214 2215

	/* enable, but don't activate EP0in */
	writel(s3c_hsotg_ep0_mps(hsotg->eps[0].ep.maxpacket) |
2216
	       DXEPCTL_USBACTEP, hsotg->regs + DIEPCTL0);
2217 2218 2219 2220

	s3c_hsotg_enqueue_setup(hsotg);

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2221 2222
		readl(hsotg->regs + DIEPCTL0),
		readl(hsotg->regs + DOEPCTL0));
2223 2224

	/* clear global NAKs */
2225
	writel(DCTL_CGOUTNAK | DCTL_CGNPINNAK,
2226
	       hsotg->regs + DCTL);
2227 2228 2229 2230 2231

	/* must be at-least 3ms to allow bus to see disconnect */
	mdelay(3);

	/* remove the soft-disconnect and let's go */
2232
	__bic32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2233 2234
}

2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246
/**
 * s3c_hsotg_irq - handle device interrupt
 * @irq: The IRQ number triggered
 * @pw: The pw value when registered the handler.
 */
static irqreturn_t s3c_hsotg_irq(int irq, void *pw)
{
	struct s3c_hsotg *hsotg = pw;
	int retry_count = 8;
	u32 gintsts;
	u32 gintmsk;

2247
	spin_lock(&hsotg->lock);
2248
irq_retry:
2249 2250
	gintsts = readl(hsotg->regs + GINTSTS);
	gintmsk = readl(hsotg->regs + GINTMSK);
2251 2252 2253 2254 2255 2256

	dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
		__func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);

	gintsts &= gintmsk;

2257
	if (gintsts & GINTSTS_OTGINT) {
2258
		u32 otgint = readl(hsotg->regs + GOTGINT);
2259 2260 2261

		dev_info(hsotg->dev, "OTGInt: %08x\n", otgint);

2262
		writel(otgint, hsotg->regs + GOTGINT);
2263 2264
	}

2265
	if (gintsts & GINTSTS_SESSREQINT) {
2266
		dev_dbg(hsotg->dev, "%s: SessReqInt\n", __func__);
2267
		writel(GINTSTS_SESSREQINT, hsotg->regs + GINTSTS);
2268 2269
	}

2270 2271
	if (gintsts & GINTSTS_ENUMDONE) {
		writel(GINTSTS_ENUMDONE, hsotg->regs + GINTSTS);
2272 2273

		s3c_hsotg_irq_enumdone(hsotg);
2274 2275
	}

2276
	if (gintsts & GINTSTS_CONIDSTSCHNG) {
2277
		dev_dbg(hsotg->dev, "ConIDStsChg (DSTS=0x%08x, GOTCTL=%08x)\n",
2278 2279
			readl(hsotg->regs + DSTS),
			readl(hsotg->regs + GOTGCTL));
2280

2281
		writel(GINTSTS_CONIDSTSCHNG, hsotg->regs + GINTSTS);
2282 2283
	}

2284
	if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) {
2285
		u32 daint = readl(hsotg->regs + DAINT);
2286 2287
		u32 daintmsk = readl(hsotg->regs + DAINTMSK);
		u32 daint_out, daint_in;
2288 2289
		int ep;

2290
		daint &= daintmsk;
2291 2292
		daint_out = daint >> DAINT_OUTEP_SHIFT;
		daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT);
2293

2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306
		dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);

		for (ep = 0; ep < 15 && daint_out; ep++, daint_out >>= 1) {
			if (daint_out & 1)
				s3c_hsotg_epint(hsotg, ep, 0);
		}

		for (ep = 0; ep < 15 && daint_in; ep++, daint_in >>= 1) {
			if (daint_in & 1)
				s3c_hsotg_epint(hsotg, ep, 1);
		}
	}

2307
	if (gintsts & GINTSTS_USBRST) {
2308

2309
		u32 usb_status = readl(hsotg->regs + GOTGCTL);
2310

2311 2312
		dev_info(hsotg->dev, "%s: USBRst\n", __func__);
		dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
2313
			readl(hsotg->regs + GNPTXSTS));
2314

2315
		writel(GINTSTS_USBRST, hsotg->regs + GINTSTS);
2316

2317
		if (usb_status & GOTGCTL_BSESVLD) {
2318 2319
			if (time_after(jiffies, hsotg->last_rst +
				       msecs_to_jiffies(200))) {
2320

2321 2322
				kill_all_requests(hsotg, &hsotg->eps[0],
							  -ECONNRESET, true);
2323

2324 2325 2326 2327
				s3c_hsotg_core_init(hsotg);
				hsotg->last_rst = jiffies;
			}
		}
2328 2329 2330 2331
	}

	/* check both FIFOs */

2332
	if (gintsts & GINTSTS_NPTXFEMP) {
2333 2334
		dev_dbg(hsotg->dev, "NPTxFEmp\n");

2335 2336
		/*
		 * Disable the interrupt to stop it happening again
2337
		 * unless one of these endpoint routines decides that
2338 2339
		 * it needs re-enabling
		 */
2340

2341
		s3c_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP);
2342 2343 2344
		s3c_hsotg_irq_fifoempty(hsotg, false);
	}

2345
	if (gintsts & GINTSTS_PTXFEMP) {
2346 2347
		dev_dbg(hsotg->dev, "PTxFEmp\n");

2348
		/* See note in GINTSTS_NPTxFEmp */
2349

2350
		s3c_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP);
2351 2352 2353
		s3c_hsotg_irq_fifoempty(hsotg, true);
	}

2354
	if (gintsts & GINTSTS_RXFLVL) {
2355 2356
		/*
		 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
2357
		 * we need to retry s3c_hsotg_handle_rx if this is still
2358 2359
		 * set.
		 */
2360 2361 2362 2363

		s3c_hsotg_handle_rx(hsotg);
	}

2364
	if (gintsts & GINTSTS_MODEMIS) {
2365
		dev_warn(hsotg->dev, "warning, mode mismatch triggered\n");
2366
		writel(GINTSTS_MODEMIS, hsotg->regs + GINTSTS);
2367 2368
	}

2369
	if (gintsts & GINTSTS_USBSUSP) {
2370
		dev_info(hsotg->dev, "GINTSTS_USBSusp\n");
2371
		writel(GINTSTS_USBSUSP, hsotg->regs + GINTSTS);
2372 2373 2374 2375

		call_gadget(hsotg, suspend);
	}

2376
	if (gintsts & GINTSTS_WKUPINT) {
2377
		dev_info(hsotg->dev, "GINTSTS_WkUpIn\n");
2378
		writel(GINTSTS_WKUPINT, hsotg->regs + GINTSTS);
2379 2380 2381 2382

		call_gadget(hsotg, resume);
	}

2383
	if (gintsts & GINTSTS_ERLYSUSP) {
2384
		dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n");
2385
		writel(GINTSTS_ERLYSUSP, hsotg->regs + GINTSTS);
2386 2387
	}

2388 2389
	/*
	 * these next two seem to crop-up occasionally causing the core
2390
	 * to shutdown the USB transfer, so try clearing them and logging
2391 2392
	 * the occurrence.
	 */
2393

2394
	if (gintsts & GINTSTS_GOUTNAKEFF) {
2395 2396
		dev_info(hsotg->dev, "GOUTNakEff triggered\n");

2397
		writel(DCTL_CGOUTNAK, hsotg->regs + DCTL);
2398 2399

		s3c_hsotg_dump(hsotg);
2400 2401
	}

2402
	if (gintsts & GINTSTS_GINNAKEFF) {
2403 2404
		dev_info(hsotg->dev, "GINNakEff triggered\n");

2405
		writel(DCTL_CGNPINNAK, hsotg->regs + DCTL);
2406 2407

		s3c_hsotg_dump(hsotg);
2408 2409
	}

2410 2411 2412 2413
	/*
	 * if we've had fifo events, we should try and go around the
	 * loop again to see if there's any point in returning yet.
	 */
2414 2415 2416 2417

	if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
			goto irq_retry;

2418 2419
	spin_unlock(&hsotg->lock);

2420 2421 2422 2423 2424 2425 2426 2427 2428
	return IRQ_HANDLED;
}

/**
 * s3c_hsotg_ep_enable - enable the given endpoint
 * @ep: The USB endpint to configure
 * @desc: The USB endpoint descriptor to configure with.
 *
 * This is called from the USB gadget code's usb_ep_enable().
2429
 */
2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440
static int s3c_hsotg_ep_enable(struct usb_ep *ep,
			       const struct usb_endpoint_descriptor *desc)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
	struct s3c_hsotg *hsotg = hs_ep->parent;
	unsigned long flags;
	int index = hs_ep->index;
	u32 epctrl_reg;
	u32 epctrl;
	u32 mps;
	int dir_in;
2441
	int ret = 0;
2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456

	dev_dbg(hsotg->dev,
		"%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
		__func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
		desc->wMaxPacketSize, desc->bInterval);

	/* not to be called for EP0 */
	WARN_ON(index == 0);

	dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
	if (dir_in != hs_ep->dir_in) {
		dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
		return -EINVAL;
	}

2457
	mps = usb_endpoint_maxp(desc);
2458 2459 2460

	/* note, we handle this here instead of s3c_hsotg_set_ep_maxpacket */

2461
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
2462 2463 2464 2465 2466
	epctrl = readl(hsotg->regs + epctrl_reg);

	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
		__func__, epctrl, epctrl_reg);

2467
	spin_lock_irqsave(&hsotg->lock, flags);
2468

2469 2470
	epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK);
	epctrl |= DXEPCTL_MPS(mps);
2471

2472 2473 2474 2475
	/*
	 * mark the endpoint as active, otherwise the core may ignore
	 * transactions entirely for this endpoint
	 */
2476
	epctrl |= DXEPCTL_USBACTEP;
2477

2478 2479
	/*
	 * set the NAK status on the endpoint, otherwise we might try and
2480 2481 2482 2483 2484
	 * do something with data that we've yet got a request to process
	 * since the RXFIFO will take data for an endpoint even if the
	 * size register hasn't been set.
	 */

2485
	epctrl |= DXEPCTL_SNAK;
2486 2487

	/* update the endpoint state */
2488
	s3c_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps);
2489 2490

	/* default, set to non-periodic */
2491
	hs_ep->isochronous = 0;
2492
	hs_ep->periodic = 0;
2493
	hs_ep->halted = 0;
2494
	hs_ep->interval = desc->bInterval;
2495

2496 2497 2498
	if (hs_ep->interval > 1 && hs_ep->mc > 1)
		dev_err(hsotg->dev, "MC > 1 when interval is not 1\n");

2499 2500
	switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
	case USB_ENDPOINT_XFER_ISOC:
2501 2502
		epctrl |= DXEPCTL_EPTYPE_ISO;
		epctrl |= DXEPCTL_SETEVENFR;
2503 2504 2505 2506
		hs_ep->isochronous = 1;
		if (dir_in)
			hs_ep->periodic = 1;
		break;
2507 2508

	case USB_ENDPOINT_XFER_BULK:
2509
		epctrl |= DXEPCTL_EPTYPE_BULK;
2510 2511 2512 2513
		break;

	case USB_ENDPOINT_XFER_INT:
		if (dir_in) {
2514 2515
			/*
			 * Allocate our TxFNum by simply using the index
2516 2517
			 * of the endpoint for the moment. We could do
			 * something better if the host indicates how
2518 2519
			 * many FIFOs we are expecting to use.
			 */
2520 2521

			hs_ep->periodic = 1;
2522
			epctrl |= DXEPCTL_TXFNUM(index);
2523 2524
		}

2525
		epctrl |= DXEPCTL_EPTYPE_INTERRUPT;
2526 2527 2528
		break;

	case USB_ENDPOINT_XFER_CONTROL:
2529
		epctrl |= DXEPCTL_EPTYPE_CONTROL;
2530 2531 2532
		break;
	}

2533 2534
	/*
	 * if the hardware has dedicated fifos, we must give each IN EP
2535 2536 2537
	 * a unique tx-fifo even if it is non-periodic.
	 */
	if (dir_in && hsotg->dedicated_fifos)
2538
		epctrl |= DXEPCTL_TXFNUM(index);
2539

2540 2541
	/* for non control endpoints, set PID to D0 */
	if (index)
2542
		epctrl |= DXEPCTL_SETD0PID;
2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553

	dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
		__func__, epctrl);

	writel(epctrl, hsotg->regs + epctrl_reg);
	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
		__func__, readl(hsotg->regs + epctrl_reg));

	/* enable the endpoint interrupt */
	s3c_hsotg_ctrl_epint(hsotg, index, dir_in, 1);

2554
	spin_unlock_irqrestore(&hsotg->lock, flags);
2555
	return ret;
2556 2557
}

2558 2559 2560 2561
/**
 * s3c_hsotg_ep_disable - disable given endpoint
 * @ep: The endpoint to disable.
 */
2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578
static int s3c_hsotg_ep_disable(struct usb_ep *ep)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
	struct s3c_hsotg *hsotg = hs_ep->parent;
	int dir_in = hs_ep->dir_in;
	int index = hs_ep->index;
	unsigned long flags;
	u32 epctrl_reg;
	u32 ctrl;

	dev_info(hsotg->dev, "%s(ep %p)\n", __func__, ep);

	if (ep == &hsotg->eps[0].ep) {
		dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
		return -EINVAL;
	}

2579
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
2580

2581
	spin_lock_irqsave(&hsotg->lock, flags);
2582 2583 2584 2585 2586
	/* terminate all requests with shutdown */
	kill_all_requests(hsotg, hs_ep, -ESHUTDOWN, false);


	ctrl = readl(hsotg->regs + epctrl_reg);
2587 2588 2589
	ctrl &= ~DXEPCTL_EPENA;
	ctrl &= ~DXEPCTL_USBACTEP;
	ctrl |= DXEPCTL_SNAK;
2590 2591 2592 2593 2594 2595 2596

	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
	writel(ctrl, hsotg->regs + epctrl_reg);

	/* disable endpoint interrupts */
	s3c_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);

2597
	spin_unlock_irqrestore(&hsotg->lock, flags);
2598 2599 2600 2601 2602 2603 2604
	return 0;
}

/**
 * on_list - check request is on the given endpoint
 * @ep: The endpoint to check.
 * @test: The request to test if it is on the endpoint.
2605
 */
2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617
static bool on_list(struct s3c_hsotg_ep *ep, struct s3c_hsotg_req *test)
{
	struct s3c_hsotg_req *req, *treq;

	list_for_each_entry_safe(req, treq, &ep->queue, queue) {
		if (req == test)
			return true;
	}

	return false;
}

2618 2619 2620 2621 2622
/**
 * s3c_hsotg_ep_dequeue - dequeue given endpoint
 * @ep: The endpoint to dequeue.
 * @req: The request to be removed from a queue.
 */
2623 2624 2625 2626 2627 2628 2629 2630 2631
static int s3c_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
{
	struct s3c_hsotg_req *hs_req = our_req(req);
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
	struct s3c_hsotg *hs = hs_ep->parent;
	unsigned long flags;

	dev_info(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);

2632
	spin_lock_irqsave(&hs->lock, flags);
2633 2634

	if (!on_list(hs_ep, hs_req)) {
2635
		spin_unlock_irqrestore(&hs->lock, flags);
2636 2637 2638 2639
		return -EINVAL;
	}

	s3c_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
2640
	spin_unlock_irqrestore(&hs->lock, flags);
2641 2642 2643 2644

	return 0;
}

2645 2646 2647 2648 2649
/**
 * s3c_hsotg_ep_sethalt - set halt on a given endpoint
 * @ep: The endpoint to set halt.
 * @value: Set or unset the halt.
 */
2650 2651 2652 2653 2654 2655 2656
static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
	struct s3c_hsotg *hs = hs_ep->parent;
	int index = hs_ep->index;
	u32 epreg;
	u32 epctl;
2657
	u32 xfertype;
2658 2659 2660

	dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);

2661 2662 2663 2664 2665 2666 2667 2668 2669
	if (index == 0) {
		if (value)
			s3c_hsotg_stall_ep0(hs);
		else
			dev_warn(hs->dev,
				 "%s: can't clear halt on ep0\n", __func__);
		return 0;
	}

2670 2671
	/* write both IN and OUT control registers */

2672
	epreg = DIEPCTL(index);
2673 2674
	epctl = readl(hs->regs + epreg);

2675
	if (value) {
2676 2677 2678
		epctl |= DXEPCTL_STALL + DXEPCTL_SNAK;
		if (epctl & DXEPCTL_EPENA)
			epctl |= DXEPCTL_EPDIS;
2679
	} else {
2680 2681 2682 2683 2684
		epctl &= ~DXEPCTL_STALL;
		xfertype = epctl & DXEPCTL_EPTYPE_MASK;
		if (xfertype == DXEPCTL_EPTYPE_BULK ||
			xfertype == DXEPCTL_EPTYPE_INTERRUPT)
				epctl |= DXEPCTL_SETD0PID;
2685
	}
2686 2687 2688

	writel(epctl, hs->regs + epreg);

2689
	epreg = DOEPCTL(index);
2690 2691 2692
	epctl = readl(hs->regs + epreg);

	if (value)
2693
		epctl |= DXEPCTL_STALL;
2694
	else {
2695 2696 2697 2698 2699
		epctl &= ~DXEPCTL_STALL;
		xfertype = epctl & DXEPCTL_EPTYPE_MASK;
		if (xfertype == DXEPCTL_EPTYPE_BULK ||
			xfertype == DXEPCTL_EPTYPE_INTERRUPT)
				epctl |= DXEPCTL_SETD0PID;
2700
	}
2701 2702 2703

	writel(epctl, hs->regs + epreg);

2704 2705
	hs_ep->halted = value;

2706 2707 2708
	return 0;
}

2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727
/**
 * s3c_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held
 * @ep: The endpoint to set halt.
 * @value: Set or unset the halt.
 */
static int s3c_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
	struct s3c_hsotg *hs = hs_ep->parent;
	unsigned long flags = 0;
	int ret = 0;

	spin_lock_irqsave(&hs->lock, flags);
	ret = s3c_hsotg_ep_sethalt(ep, value);
	spin_unlock_irqrestore(&hs->lock, flags);

	return ret;
}

2728 2729 2730 2731 2732
static struct usb_ep_ops s3c_hsotg_ep_ops = {
	.enable		= s3c_hsotg_ep_enable,
	.disable	= s3c_hsotg_ep_disable,
	.alloc_request	= s3c_hsotg_ep_alloc_request,
	.free_request	= s3c_hsotg_ep_free_request,
2733
	.queue		= s3c_hsotg_ep_queue_lock,
2734
	.dequeue	= s3c_hsotg_ep_dequeue,
2735
	.set_halt	= s3c_hsotg_ep_sethalt_lock,
L
Lucas De Marchi 已提交
2736
	/* note, don't believe we have any call for the fifo routines */
2737 2738
};

2739 2740
/**
 * s3c_hsotg_phy_enable - enable platform phy dev
2741
 * @hsotg: The driver state
2742 2743 2744 2745 2746 2747 2748 2749 2750
 *
 * A wrapper for platform code responsible for controlling
 * low-level USB code
 */
static void s3c_hsotg_phy_enable(struct s3c_hsotg *hsotg)
{
	struct platform_device *pdev = to_platform_device(hsotg->dev);

	dev_dbg(hsotg->dev, "pdev 0x%p\n", pdev);
2751

2752 2753 2754 2755 2756
	if (hsotg->phy) {
		phy_init(hsotg->phy);
		phy_power_on(hsotg->phy);
	} else if (hsotg->uphy)
		usb_phy_init(hsotg->uphy);
2757
	else if (hsotg->plat->phy_init)
2758 2759 2760 2761 2762
		hsotg->plat->phy_init(pdev, hsotg->plat->phy_type);
}

/**
 * s3c_hsotg_phy_disable - disable platform phy dev
2763
 * @hsotg: The driver state
2764 2765 2766 2767 2768 2769 2770 2771
 *
 * A wrapper for platform code responsible for controlling
 * low-level USB code
 */
static void s3c_hsotg_phy_disable(struct s3c_hsotg *hsotg)
{
	struct platform_device *pdev = to_platform_device(hsotg->dev);

2772 2773 2774 2775 2776
	if (hsotg->phy) {
		phy_power_off(hsotg->phy);
		phy_exit(hsotg->phy);
	} else if (hsotg->uphy)
		usb_phy_shutdown(hsotg->uphy);
2777
	else if (hsotg->plat->phy_exit)
2778 2779 2780
		hsotg->plat->phy_exit(pdev, hsotg->plat->phy_type);
}

2781 2782 2783 2784
/**
 * s3c_hsotg_init - initalize the usb core
 * @hsotg: The driver state
 */
2785 2786 2787 2788
static void s3c_hsotg_init(struct s3c_hsotg *hsotg)
{
	/* unmask subset of endpoint interrupts */

2789 2790 2791
	writel(DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
		DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK,
		hsotg->regs + DIEPMSK);
2792

2793 2794 2795
	writel(DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK |
		DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK,
		hsotg->regs + DOEPMSK);
2796

2797
	writel(0, hsotg->regs + DAINTMSK);
2798 2799

	/* Be in disconnected state until gadget is registered */
2800
	__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2801 2802 2803

	if (0) {
		/* post global nak until we're ready */
2804
		writel(DCTL_SGNPINNAK | DCTL_SGOUTNAK,
2805
		       hsotg->regs + DCTL);
2806 2807 2808 2809 2810
	}

	/* setup fifos */

	dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
2811 2812
		readl(hsotg->regs + GRXFSIZ),
		readl(hsotg->regs + GNPTXFSIZ));
2813 2814 2815 2816

	s3c_hsotg_init_fifo(hsotg);

	/* set the PLL on, remove the HNP/SRP and set the PHY */
2817
	writel(GUSBCFG_PHYIF16 | GUSBCFG_TOUTCAL(7) | (0x5 << 10),
2818
	       hsotg->regs + GUSBCFG);
2819

2820
	writel(using_dma(hsotg) ? GAHBCFG_DMA_EN : 0x0,
2821
	       hsotg->regs + GAHBCFG);
2822 2823
}

2824 2825 2826 2827 2828 2829 2830 2831
/**
 * s3c_hsotg_udc_start - prepare the udc for work
 * @gadget: The usb gadget state
 * @driver: The usb gadget driver
 *
 * Perform initialization to prepare udc device and driver
 * to work.
 */
2832 2833
static int s3c_hsotg_udc_start(struct usb_gadget *gadget,
			   struct usb_gadget_driver *driver)
2834
{
2835
	struct s3c_hsotg *hsotg = to_hsotg(gadget);
2836 2837 2838
	int ret;

	if (!hsotg) {
2839
		pr_err("%s: called with no device\n", __func__);
2840 2841 2842 2843 2844 2845 2846 2847
		return -ENODEV;
	}

	if (!driver) {
		dev_err(hsotg->dev, "%s: no driver\n", __func__);
		return -EINVAL;
	}

2848
	if (driver->max_speed < USB_SPEED_FULL)
2849 2850
		dev_err(hsotg->dev, "%s: bad speed\n", __func__);

2851
	if (!driver->setup) {
2852 2853 2854 2855 2856 2857 2858 2859
		dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
		return -EINVAL;
	}

	WARN_ON(hsotg->driver);

	driver->driver.bus = NULL;
	hsotg->driver = driver;
2860
	hsotg->gadget.dev.of_node = hsotg->dev->of_node;
2861 2862
	hsotg->gadget.speed = USB_SPEED_UNKNOWN;

2863 2864
	ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
				    hsotg->supplies);
2865
	if (ret) {
2866
		dev_err(hsotg->dev, "failed to enable supplies: %d\n", ret);
2867 2868 2869
		goto err;
	}

2870
	hsotg->last_rst = jiffies;
2871 2872 2873 2874 2875 2876 2877 2878
	dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
	return 0;

err:
	hsotg->driver = NULL;
	return ret;
}

2879 2880 2881 2882 2883 2884 2885
/**
 * s3c_hsotg_udc_stop - stop the udc
 * @gadget: The usb gadget state
 * @driver: The usb gadget driver
 *
 * Stop udc hw block and stay tunned for future transmissions
 */
2886 2887
static int s3c_hsotg_udc_stop(struct usb_gadget *gadget,
			  struct usb_gadget_driver *driver)
2888
{
2889
	struct s3c_hsotg *hsotg = to_hsotg(gadget);
2890
	unsigned long flags = 0;
2891 2892 2893 2894 2895 2896
	int ep;

	if (!hsotg)
		return -ENODEV;

	/* all endpoints should be shutdown */
2897
	for (ep = 0; ep < hsotg->num_of_eps; ep++)
2898 2899
		s3c_hsotg_ep_disable(&hsotg->eps[ep].ep);

2900 2901
	spin_lock_irqsave(&hsotg->lock, flags);

2902
	s3c_hsotg_phy_disable(hsotg);
2903

2904 2905 2906
	if (!driver)
		hsotg->driver = NULL;

2907 2908
	hsotg->gadget.speed = USB_SPEED_UNKNOWN;

2909 2910
	spin_unlock_irqrestore(&hsotg->lock, flags);

2911
	regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies), hsotg->supplies);
2912 2913 2914 2915

	return 0;
}

2916 2917 2918 2919 2920 2921
/**
 * s3c_hsotg_gadget_getframe - read the frame number
 * @gadget: The usb gadget state
 *
 * Read the {micro} frame number
 */
2922 2923 2924 2925 2926
static int s3c_hsotg_gadget_getframe(struct usb_gadget *gadget)
{
	return s3c_hsotg_read_frameno(to_hsotg(gadget));
}

2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955
/**
 * s3c_hsotg_pullup - connect/disconnect the USB PHY
 * @gadget: The usb gadget state
 * @is_on: Current state of the USB PHY
 *
 * Connect/Disconnect the USB PHY pullup
 */
static int s3c_hsotg_pullup(struct usb_gadget *gadget, int is_on)
{
	struct s3c_hsotg *hsotg = to_hsotg(gadget);
	unsigned long flags = 0;

	dev_dbg(hsotg->dev, "%s: is_in: %d\n", __func__, is_on);

	spin_lock_irqsave(&hsotg->lock, flags);
	if (is_on) {
		s3c_hsotg_phy_enable(hsotg);
		s3c_hsotg_core_init(hsotg);
	} else {
		s3c_hsotg_disconnect(hsotg);
		s3c_hsotg_phy_disable(hsotg);
	}

	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
	spin_unlock_irqrestore(&hsotg->lock, flags);

	return 0;
}

2956
static const struct usb_gadget_ops s3c_hsotg_gadget_ops = {
2957
	.get_frame	= s3c_hsotg_gadget_getframe,
2958 2959
	.udc_start		= s3c_hsotg_udc_start,
	.udc_stop		= s3c_hsotg_udc_stop,
2960
	.pullup                 = s3c_hsotg_pullup,
2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972
};

/**
 * s3c_hsotg_initep - initialise a single endpoint
 * @hsotg: The device state.
 * @hs_ep: The endpoint to be initialised.
 * @epnum: The endpoint number
 *
 * Initialise the given endpoint (as part of the probe and device state
 * creation) to give to the gadget driver. Setup the endpoint name, any
 * direction information and other state that may be required.
 */
B
Bill Pemberton 已提交
2973
static void s3c_hsotg_initep(struct s3c_hsotg *hsotg,
2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001
				       struct s3c_hsotg_ep *hs_ep,
				       int epnum)
{
	u32 ptxfifo;
	char *dir;

	if (epnum == 0)
		dir = "";
	else if ((epnum % 2) == 0) {
		dir = "out";
	} else {
		dir = "in";
		hs_ep->dir_in = 1;
	}

	hs_ep->index = epnum;

	snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);

	INIT_LIST_HEAD(&hs_ep->queue);
	INIT_LIST_HEAD(&hs_ep->ep.ep_list);

	/* add to the list of endpoints known by the gadget driver */
	if (epnum)
		list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);

	hs_ep->parent = hsotg;
	hs_ep->ep.name = hs_ep->name;
3002
	usb_ep_set_maxpacket_limit(&hs_ep->ep, epnum ? 1024 : EP0_MPS_LIMIT);
3003 3004
	hs_ep->ep.ops = &s3c_hsotg_ep_ops;

3005 3006
	/*
	 * Read the FIFO size for the Periodic TX FIFO, even if we're
3007 3008 3009 3010
	 * an OUT endpoint, we may as well do this if in future the
	 * code is changed to make each endpoint's direction changeable.
	 */

3011 3012
	ptxfifo = readl(hsotg->regs + DPTXFSIZN(epnum));
	hs_ep->fifo_size = FIFOSIZE_DEPTH_GET(ptxfifo) * 4;
3013

3014 3015
	/*
	 * if we're using dma, we need to set the next-endpoint pointer
3016 3017 3018 3019
	 * to be something valid.
	 */

	if (using_dma(hsotg)) {
3020
		u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15);
3021 3022
		writel(next, hsotg->regs + DIEPCTL(epnum));
		writel(next, hsotg->regs + DOEPCTL(epnum));
3023 3024 3025
	}
}

3026 3027 3028 3029 3030 3031 3032
/**
 * s3c_hsotg_hw_cfg - read HW configuration registers
 * @param: The device state
 *
 * Read the USB core HW configuration registers
 */
static void s3c_hsotg_hw_cfg(struct s3c_hsotg *hsotg)
3033
{
3034 3035
	u32 cfg2, cfg4;
	/* check hardware configuration */
3036

3037 3038
	cfg2 = readl(hsotg->regs + 0x48);
	hsotg->num_of_eps = (cfg2 >> 10) & 0xF;
3039

3040
	dev_info(hsotg->dev, "EPs:%d\n", hsotg->num_of_eps);
3041 3042 3043 3044 3045 3046

	cfg4 = readl(hsotg->regs + 0x50);
	hsotg->dedicated_fifos = (cfg4 >> 25) & 1;

	dev_info(hsotg->dev, "%s fifos\n",
		 hsotg->dedicated_fifos ? "dedicated" : "shared");
3047 3048
}

3049 3050 3051 3052
/**
 * s3c_hsotg_dump - dump state of the udc
 * @param: The device state
 */
3053 3054
static void s3c_hsotg_dump(struct s3c_hsotg *hsotg)
{
M
Mark Brown 已提交
3055
#ifdef DEBUG
3056 3057 3058 3059 3060 3061
	struct device *dev = hsotg->dev;
	void __iomem *regs = hsotg->regs;
	u32 val;
	int idx;

	dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
3062 3063
		 readl(regs + DCFG), readl(regs + DCTL),
		 readl(regs + DIEPMSK));
3064 3065

	dev_info(dev, "GAHBCFG=0x%08x, 0x44=0x%08x\n",
3066
		 readl(regs + GAHBCFG), readl(regs + 0x44));
3067 3068

	dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
3069
		 readl(regs + GRXFSIZ), readl(regs + GNPTXFSIZ));
3070 3071 3072 3073

	/* show periodic fifo settings */

	for (idx = 1; idx <= 15; idx++) {
3074
		val = readl(regs + DPTXFSIZN(idx));
3075
		dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
3076 3077
			 val >> FIFOSIZE_DEPTH_SHIFT,
			 val & FIFOSIZE_STARTADDR_MASK);
3078 3079 3080 3081 3082
	}

	for (idx = 0; idx < 15; idx++) {
		dev_info(dev,
			 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
3083 3084 3085
			 readl(regs + DIEPCTL(idx)),
			 readl(regs + DIEPTSIZ(idx)),
			 readl(regs + DIEPDMA(idx)));
3086

3087
		val = readl(regs + DOEPCTL(idx));
3088 3089
		dev_info(dev,
			 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
3090 3091 3092
			 idx, readl(regs + DOEPCTL(idx)),
			 readl(regs + DOEPTSIZ(idx)),
			 readl(regs + DOEPDMA(idx)));
3093 3094 3095 3096

	}

	dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
3097
		 readl(regs + DVBUSDIS), readl(regs + DVBUSPULSE));
M
Mark Brown 已提交
3098
#endif
3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116
}

/**
 * state_show - debugfs: show overall driver and device state.
 * @seq: The seq file to write to.
 * @v: Unused parameter.
 *
 * This debugfs entry shows the overall state of the hardware and
 * some general information about each of the endpoints available
 * to the system.
 */
static int state_show(struct seq_file *seq, void *v)
{
	struct s3c_hsotg *hsotg = seq->private;
	void __iomem *regs = hsotg->regs;
	int idx;

	seq_printf(seq, "DCFG=0x%08x, DCTL=0x%08x, DSTS=0x%08x\n",
3117 3118 3119
		 readl(regs + DCFG),
		 readl(regs + DCTL),
		 readl(regs + DSTS));
3120 3121

	seq_printf(seq, "DIEPMSK=0x%08x, DOEPMASK=0x%08x\n",
3122
		   readl(regs + DIEPMSK), readl(regs + DOEPMSK));
3123 3124

	seq_printf(seq, "GINTMSK=0x%08x, GINTSTS=0x%08x\n",
3125 3126
		   readl(regs + GINTMSK),
		   readl(regs + GINTSTS));
3127 3128

	seq_printf(seq, "DAINTMSK=0x%08x, DAINT=0x%08x\n",
3129 3130
		   readl(regs + DAINTMSK),
		   readl(regs + DAINT));
3131 3132

	seq_printf(seq, "GNPTXSTS=0x%08x, GRXSTSR=%08x\n",
3133 3134
		   readl(regs + GNPTXSTS),
		   readl(regs + GRXSTSR));
3135

3136
	seq_puts(seq, "\nEndpoint status:\n");
3137 3138 3139 3140

	for (idx = 0; idx < 15; idx++) {
		u32 in, out;

3141 3142
		in = readl(regs + DIEPCTL(idx));
		out = readl(regs + DOEPCTL(idx));
3143 3144 3145 3146

		seq_printf(seq, "ep%d: DIEPCTL=0x%08x, DOEPCTL=0x%08x",
			   idx, in, out);

3147 3148
		in = readl(regs + DIEPTSIZ(idx));
		out = readl(regs + DOEPTSIZ(idx));
3149 3150 3151 3152

		seq_printf(seq, ", DIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x",
			   in, out);

3153
		seq_puts(seq, "\n");
3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178
	}

	return 0;
}

static int state_open(struct inode *inode, struct file *file)
{
	return single_open(file, state_show, inode->i_private);
}

static const struct file_operations state_fops = {
	.owner		= THIS_MODULE,
	.open		= state_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

/**
 * fifo_show - debugfs: show the fifo information
 * @seq: The seq_file to write data to.
 * @v: Unused parameter.
 *
 * Show the FIFO information for the overall fifo and all the
 * periodic transmission FIFOs.
3179
 */
3180 3181 3182 3183 3184 3185 3186
static int fifo_show(struct seq_file *seq, void *v)
{
	struct s3c_hsotg *hsotg = seq->private;
	void __iomem *regs = hsotg->regs;
	u32 val;
	int idx;

3187
	seq_puts(seq, "Non-periodic FIFOs:\n");
3188
	seq_printf(seq, "RXFIFO: Size %d\n", readl(regs + GRXFSIZ));
3189

3190
	val = readl(regs + GNPTXFSIZ);
3191
	seq_printf(seq, "NPTXFIFO: Size %d, Start 0x%08x\n",
3192 3193
		   val >> FIFOSIZE_DEPTH_SHIFT,
		   val & FIFOSIZE_DEPTH_MASK);
3194

3195
	seq_puts(seq, "\nPeriodic TXFIFOs:\n");
3196 3197

	for (idx = 1; idx <= 15; idx++) {
3198
		val = readl(regs + DPTXFSIZN(idx));
3199 3200

		seq_printf(seq, "\tDPTXFIFO%2d: Size %d, Start 0x%08x\n", idx,
3201 3202
			   val >> FIFOSIZE_DEPTH_SHIFT,
			   val & FIFOSIZE_STARTADDR_MASK);
3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233
	}

	return 0;
}

static int fifo_open(struct inode *inode, struct file *file)
{
	return single_open(file, fifo_show, inode->i_private);
}

static const struct file_operations fifo_fops = {
	.owner		= THIS_MODULE,
	.open		= fifo_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};


static const char *decode_direction(int is_in)
{
	return is_in ? "in" : "out";
}

/**
 * ep_show - debugfs: show the state of an endpoint.
 * @seq: The seq_file to write data to.
 * @v: Unused parameter.
 *
 * This debugfs entry shows the state of the given endpoint (one is
 * registered for each available).
3234
 */
3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250
static int ep_show(struct seq_file *seq, void *v)
{
	struct s3c_hsotg_ep *ep = seq->private;
	struct s3c_hsotg *hsotg = ep->parent;
	struct s3c_hsotg_req *req;
	void __iomem *regs = hsotg->regs;
	int index = ep->index;
	int show_limit = 15;
	unsigned long flags;

	seq_printf(seq, "Endpoint index %d, named %s,  dir %s:\n",
		   ep->index, ep->ep.name, decode_direction(ep->dir_in));

	/* first show the register state */

	seq_printf(seq, "\tDIEPCTL=0x%08x, DOEPCTL=0x%08x\n",
3251 3252
		   readl(regs + DIEPCTL(index)),
		   readl(regs + DOEPCTL(index)));
3253 3254

	seq_printf(seq, "\tDIEPDMA=0x%08x, DOEPDMA=0x%08x\n",
3255 3256
		   readl(regs + DIEPDMA(index)),
		   readl(regs + DOEPDMA(index)));
3257 3258

	seq_printf(seq, "\tDIEPINT=0x%08x, DOEPINT=0x%08x\n",
3259 3260
		   readl(regs + DIEPINT(index)),
		   readl(regs + DOEPINT(index)));
3261 3262

	seq_printf(seq, "\tDIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x\n",
3263 3264
		   readl(regs + DIEPTSIZ(index)),
		   readl(regs + DOEPTSIZ(index)));
3265

3266
	seq_puts(seq, "\n");
3267 3268 3269 3270 3271 3272
	seq_printf(seq, "mps %d\n", ep->ep.maxpacket);
	seq_printf(seq, "total_data=%ld\n", ep->total_data);

	seq_printf(seq, "request list (%p,%p):\n",
		   ep->queue.next, ep->queue.prev);

3273
	spin_lock_irqsave(&hsotg->lock, flags);
3274 3275 3276

	list_for_each_entry(req, &ep->queue, queue) {
		if (--show_limit < 0) {
3277
			seq_puts(seq, "not showing more requests...\n");
3278 3279 3280 3281 3282 3283 3284 3285 3286 3287
			break;
		}

		seq_printf(seq, "%c req %p: %d bytes @%p, ",
			   req == ep->req ? '*' : ' ',
			   req, req->req.length, req->req.buf);
		seq_printf(seq, "%d done, res %d\n",
			   req->req.actual, req->req.status);
	}

3288
	spin_unlock_irqrestore(&hsotg->lock, flags);
3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313

	return 0;
}

static int ep_open(struct inode *inode, struct file *file)
{
	return single_open(file, ep_show, inode->i_private);
}

static const struct file_operations ep_fops = {
	.owner		= THIS_MODULE,
	.open		= ep_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

/**
 * s3c_hsotg_create_debug - create debugfs directory and files
 * @hsotg: The driver state
 *
 * Create the debugfs files to allow the user to get information
 * about the state of the system. The directory name is created
 * with the same name as the device itself, in case we end up
 * with multiple blocks in future systems.
3314
 */
B
Bill Pemberton 已提交
3315
static void s3c_hsotg_create_debug(struct s3c_hsotg *hsotg)
3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342
{
	struct dentry *root;
	unsigned epidx;

	root = debugfs_create_dir(dev_name(hsotg->dev), NULL);
	hsotg->debug_root = root;
	if (IS_ERR(root)) {
		dev_err(hsotg->dev, "cannot create debug root\n");
		return;
	}

	/* create general state file */

	hsotg->debug_file = debugfs_create_file("state", 0444, root,
						hsotg, &state_fops);

	if (IS_ERR(hsotg->debug_file))
		dev_err(hsotg->dev, "%s: failed to create state\n", __func__);

	hsotg->debug_fifo = debugfs_create_file("fifo", 0444, root,
						hsotg, &fifo_fops);

	if (IS_ERR(hsotg->debug_fifo))
		dev_err(hsotg->dev, "%s: failed to create fifo\n", __func__);

	/* create one file for each endpoint */

3343
	for (epidx = 0; epidx < hsotg->num_of_eps; epidx++) {
3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359
		struct s3c_hsotg_ep *ep = &hsotg->eps[epidx];

		ep->debugfs = debugfs_create_file(ep->name, 0444,
						  root, ep, &ep_fops);

		if (IS_ERR(ep->debugfs))
			dev_err(hsotg->dev, "failed to create %s debug file\n",
				ep->name);
	}
}

/**
 * s3c_hsotg_delete_debug - cleanup debugfs entries
 * @hsotg: The driver state
 *
 * Cleanup (remove) the debugfs files for use on module exit.
3360
 */
B
Bill Pemberton 已提交
3361
static void s3c_hsotg_delete_debug(struct s3c_hsotg *hsotg)
3362 3363 3364
{
	unsigned epidx;

3365
	for (epidx = 0; epidx < hsotg->num_of_eps; epidx++) {
3366 3367 3368 3369 3370 3371 3372 3373 3374
		struct s3c_hsotg_ep *ep = &hsotg->eps[epidx];
		debugfs_remove(ep->debugfs);
	}

	debugfs_remove(hsotg->debug_file);
	debugfs_remove(hsotg->debug_fifo);
	debugfs_remove(hsotg->debug_root);
}

3375 3376 3377 3378
/**
 * s3c_hsotg_probe - probe function for hsotg driver
 * @pdev: The platform information for the driver
 */
3379

B
Bill Pemberton 已提交
3380
static int s3c_hsotg_probe(struct platform_device *pdev)
3381
{
J
Jingoo Han 已提交
3382
	struct s3c_hsotg_plat *plat = dev_get_platdata(&pdev->dev);
3383 3384
	struct phy *phy;
	struct usb_phy *uphy;
3385
	struct device *dev = &pdev->dev;
3386
	struct s3c_hsotg_ep *eps;
3387 3388 3389 3390
	struct s3c_hsotg *hsotg;
	struct resource *res;
	int epnum;
	int ret;
3391
	int i;
3392

3393
	hsotg = devm_kzalloc(&pdev->dev, sizeof(struct s3c_hsotg), GFP_KERNEL);
3394
	if (!hsotg)
3395 3396
		return -ENOMEM;

3397 3398 3399 3400 3401
	/*
	 * Attempt to find a generic PHY, then look for an old style
	 * USB PHY, finally fall back to pdata
	 */
	phy = devm_phy_get(&pdev->dev, "usb2-phy");
3402
	if (IS_ERR(phy)) {
3403 3404 3405 3406 3407 3408 3409 3410 3411
		uphy = devm_usb_get_phy(dev, USB_PHY_TYPE_USB2);
		if (IS_ERR(uphy)) {
			/* Fallback for pdata */
			plat = dev_get_platdata(&pdev->dev);
			if (!plat) {
				dev_err(&pdev->dev,
				"no platform data or transceiver defined\n");
				return -EPROBE_DEFER;
			}
3412
			hsotg->plat = plat;
3413 3414 3415
		} else
			hsotg->uphy = uphy;
	} else
3416 3417
		hsotg->phy = phy;

3418 3419
	hsotg->dev = dev;

3420
	hsotg->clk = devm_clk_get(&pdev->dev, "otg");
3421 3422
	if (IS_ERR(hsotg->clk)) {
		dev_err(dev, "cannot get otg clock\n");
3423
		return PTR_ERR(hsotg->clk);
3424 3425
	}

3426 3427 3428 3429
	platform_set_drvdata(pdev, hsotg);

	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);

3430 3431 3432
	hsotg->regs = devm_ioremap_resource(&pdev->dev, res);
	if (IS_ERR(hsotg->regs)) {
		ret = PTR_ERR(hsotg->regs);
3433
		goto err_clk;
3434 3435 3436 3437 3438
	}

	ret = platform_get_irq(pdev, 0);
	if (ret < 0) {
		dev_err(dev, "cannot find IRQ\n");
3439
		goto err_clk;
3440 3441
	}

3442 3443
	spin_lock_init(&hsotg->lock);

3444 3445
	hsotg->irq = ret;

3446 3447
	ret = devm_request_irq(&pdev->dev, hsotg->irq, s3c_hsotg_irq, 0,
				dev_name(dev), hsotg);
3448 3449
	if (ret < 0) {
		dev_err(dev, "cannot claim IRQ\n");
3450
		goto err_clk;
3451 3452 3453 3454
	}

	dev_info(dev, "regs %p, irq %d\n", hsotg->regs, hsotg->irq);

3455
	hsotg->gadget.max_speed = USB_SPEED_HIGH;
3456 3457 3458 3459 3460
	hsotg->gadget.ops = &s3c_hsotg_gadget_ops;
	hsotg->gadget.name = dev_name(dev);

	/* reset the system */

3461
	clk_prepare_enable(hsotg->clk);
3462

3463 3464 3465 3466 3467
	/* regulators */

	for (i = 0; i < ARRAY_SIZE(hsotg->supplies); i++)
		hsotg->supplies[i].supply = s3c_hsotg_supply_names[i];

3468
	ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(hsotg->supplies),
3469 3470 3471
				 hsotg->supplies);
	if (ret) {
		dev_err(dev, "failed to request supplies: %d\n", ret);
3472
		goto err_clk;
3473 3474 3475 3476 3477 3478 3479 3480 3481 3482
	}

	ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
				    hsotg->supplies);

	if (ret) {
		dev_err(hsotg->dev, "failed to enable supplies: %d\n", ret);
		goto err_supplies;
	}

3483
	/* Set default UTMI width */
3484
	hsotg->phyif = GUSBCFG_PHYIF16;
3485 3486 3487 3488 3489 3490

	/*
	 * If using the generic PHY framework, check if the PHY bus
	 * width is 8-bit and set the phyif appropriately.
	 */
	if (hsotg->phy && (phy_get_bus_width(phy) == 8))
3491
		hsotg->phyif = GUSBCFG_PHYIF8;
3492

3493 3494 3495
	if (hsotg->phy)
		phy_init(hsotg->phy);

3496 3497
	/* usb phy enable */
	s3c_hsotg_phy_enable(hsotg);
3498 3499 3500

	s3c_hsotg_corereset(hsotg);
	s3c_hsotg_init(hsotg);
3501 3502 3503 3504 3505 3506
	s3c_hsotg_hw_cfg(hsotg);

	/* hsotg->num_of_eps holds number of EPs other than ep0 */

	if (hsotg->num_of_eps == 0) {
		dev_err(dev, "wrong number of EPs (zero)\n");
3507
		ret = -EINVAL;
3508 3509 3510 3511 3512 3513
		goto err_supplies;
	}

	eps = kcalloc(hsotg->num_of_eps + 1, sizeof(struct s3c_hsotg_ep),
		      GFP_KERNEL);
	if (!eps) {
3514
		ret = -ENOMEM;
3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530
		goto err_supplies;
	}

	hsotg->eps = eps;

	/* setup endpoint information */

	INIT_LIST_HEAD(&hsotg->gadget.ep_list);
	hsotg->gadget.ep0 = &hsotg->eps[0].ep;

	/* allocate EP0 request */

	hsotg->ctrl_req = s3c_hsotg_ep_alloc_request(&hsotg->eps[0].ep,
						     GFP_KERNEL);
	if (!hsotg->ctrl_req) {
		dev_err(dev, "failed to allocate ctrl req\n");
3531
		ret = -ENOMEM;
3532 3533
		goto err_ep_mem;
	}
3534 3535

	/* initialise the endpoints now the core has been initialised */
3536
	for (epnum = 0; epnum < hsotg->num_of_eps; epnum++)
3537 3538
		s3c_hsotg_initep(hsotg, &hsotg->eps[epnum], epnum);

3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549
	/* disable power and clock */

	ret = regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies),
				    hsotg->supplies);
	if (ret) {
		dev_err(hsotg->dev, "failed to disable supplies: %d\n", ret);
		goto err_ep_mem;
	}

	s3c_hsotg_phy_disable(hsotg);

3550 3551
	ret = usb_add_gadget_udc(&pdev->dev, &hsotg->gadget);
	if (ret)
3552
		goto err_ep_mem;
3553

3554 3555 3556 3557 3558 3559
	s3c_hsotg_create_debug(hsotg);

	s3c_hsotg_dump(hsotg);

	return 0;

3560
err_ep_mem:
3561
	kfree(eps);
3562
err_supplies:
3563
	s3c_hsotg_phy_disable(hsotg);
3564
err_clk:
3565
	clk_disable_unprepare(hsotg->clk);
3566

3567 3568 3569
	return ret;
}

3570 3571 3572 3573
/**
 * s3c_hsotg_remove - remove function for hsotg driver
 * @pdev: The platform information for the driver
 */
B
Bill Pemberton 已提交
3574
static int s3c_hsotg_remove(struct platform_device *pdev)
3575 3576 3577
{
	struct s3c_hsotg *hsotg = platform_get_drvdata(pdev);

3578 3579
	usb_del_gadget_udc(&hsotg->gadget);

3580 3581
	s3c_hsotg_delete_debug(hsotg);

3582 3583 3584 3585
	if (hsotg->driver) {
		/* should have been done already by driver model core */
		usb_gadget_unregister_driver(hsotg->driver);
	}
3586

3587
	s3c_hsotg_phy_disable(hsotg);
3588 3589
	if (hsotg->phy)
		phy_exit(hsotg->phy);
3590
	clk_disable_unprepare(hsotg->clk);
3591

3592 3593 3594
	return 0;
}

3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643
static int s3c_hsotg_suspend(struct platform_device *pdev, pm_message_t state)
{
	struct s3c_hsotg *hsotg = platform_get_drvdata(pdev);
	unsigned long flags;
	int ret = 0;

	if (hsotg->driver)
		dev_info(hsotg->dev, "suspending usb gadget %s\n",
			 hsotg->driver->driver.name);

	spin_lock_irqsave(&hsotg->lock, flags);
	s3c_hsotg_disconnect(hsotg);
	s3c_hsotg_phy_disable(hsotg);
	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
	spin_unlock_irqrestore(&hsotg->lock, flags);

	if (hsotg->driver) {
		int ep;
		for (ep = 0; ep < hsotg->num_of_eps; ep++)
			s3c_hsotg_ep_disable(&hsotg->eps[ep].ep);

		ret = regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies),
					     hsotg->supplies);
	}

	return ret;
}

static int s3c_hsotg_resume(struct platform_device *pdev)
{
	struct s3c_hsotg *hsotg = platform_get_drvdata(pdev);
	unsigned long flags;
	int ret = 0;

	if (hsotg->driver) {
		dev_info(hsotg->dev, "resuming usb gadget %s\n",
			 hsotg->driver->driver.name);
		ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
				      hsotg->supplies);
	}

	spin_lock_irqsave(&hsotg->lock, flags);
	hsotg->last_rst = jiffies;
	s3c_hsotg_phy_enable(hsotg);
	s3c_hsotg_core_init(hsotg);
	spin_unlock_irqrestore(&hsotg->lock, flags);

	return ret;
}
3644

3645 3646 3647
#ifdef CONFIG_OF
static const struct of_device_id s3c_hsotg_of_ids[] = {
	{ .compatible = "samsung,s3c6400-hsotg", },
3648
	{ .compatible = "snps,dwc2", },
3649 3650 3651 3652 3653
	{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, s3c_hsotg_of_ids);
#endif

3654 3655 3656 3657
static struct platform_driver s3c_hsotg_driver = {
	.driver		= {
		.name	= "s3c-hsotg",
		.owner	= THIS_MODULE,
3658
		.of_match_table = of_match_ptr(s3c_hsotg_of_ids),
3659 3660
	},
	.probe		= s3c_hsotg_probe,
B
Bill Pemberton 已提交
3661
	.remove		= s3c_hsotg_remove,
3662 3663 3664 3665
	.suspend	= s3c_hsotg_suspend,
	.resume		= s3c_hsotg_resume,
};

3666
module_platform_driver(s3c_hsotg_driver);
3667 3668 3669 3670 3671

MODULE_DESCRIPTION("Samsung S3C USB High-speed/OtG device");
MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:s3c-hsotg");