zsmalloc.c 45.4 KB
Newer Older
1 2 3 4
/*
 * zsmalloc memory allocator
 *
 * Copyright (C) 2011  Nitin Gupta
M
Minchan Kim 已提交
5
 * Copyright (C) 2012, 2013 Minchan Kim
6 7 8 9 10 11 12 13
 *
 * This code is released using a dual license strategy: BSD/GPL
 * You can choose the license that better fits your requirements.
 *
 * Released under the terms of 3-clause BSD License
 * Released under the terms of GNU General Public License Version 2.0
 */

N
Nitin Gupta 已提交
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * Following is how we use various fields and flags of underlying
 * struct page(s) to form a zspage.
 *
 * Usage of struct page fields:
 *	page->first_page: points to the first component (0-order) page
 *	page->index (union with page->freelist): offset of the first object
 *		starting in this page. For the first page, this is
 *		always 0, so we use this field (aka freelist) to point
 *		to the first free object in zspage.
 *	page->lru: links together all component pages (except the first page)
 *		of a zspage
 *
 *	For _first_ page only:
 *
 *	page->private (union with page->first_page): refers to the
 *		component page after the first page
31 32
 *		If the page is first_page for huge object, it stores handle.
 *		Look at size_class->huge.
N
Nitin Gupta 已提交
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
 *	page->freelist: points to the first free object in zspage.
 *		Free objects are linked together using in-place
 *		metadata.
 *	page->objects: maximum number of objects we can store in this
 *		zspage (class->zspage_order * PAGE_SIZE / class->size)
 *	page->lru: links together first pages of various zspages.
 *		Basically forming list of zspages in a fullness group.
 *	page->mapping: class index and fullness group of the zspage
 *
 * Usage of struct page flags:
 *	PG_private: identifies the first component page
 *	PG_private2: identifies the last component page
 *
 */

48 49
#include <linux/module.h>
#include <linux/kernel.h>
M
Minchan Kim 已提交
50
#include <linux/sched.h>
51 52 53 54 55 56 57 58 59
#include <linux/bitops.h>
#include <linux/errno.h>
#include <linux/highmem.h>
#include <linux/string.h>
#include <linux/slab.h>
#include <asm/tlbflush.h>
#include <asm/pgtable.h>
#include <linux/cpumask.h>
#include <linux/cpu.h>
60
#include <linux/vmalloc.h>
61
#include <linux/hardirq.h>
62 63
#include <linux/spinlock.h>
#include <linux/types.h>
64
#include <linux/debugfs.h>
M
Minchan Kim 已提交
65
#include <linux/zsmalloc.h>
66
#include <linux/zpool.h>
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82

/*
 * This must be power of 2 and greater than of equal to sizeof(link_free).
 * These two conditions ensure that any 'struct link_free' itself doesn't
 * span more than 1 page which avoids complex case of mapping 2 pages simply
 * to restore link_free pointer values.
 */
#define ZS_ALIGN		8

/*
 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
 */
#define ZS_MAX_ZSPAGE_ORDER 2
#define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)

83 84
#define ZS_HANDLE_SIZE (sizeof(unsigned long))

85 86
/*
 * Object location (<PFN>, <obj_idx>) is encoded as
N
Nitin Cupta 已提交
87
 * as single (unsigned long) handle value.
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
 *
 * Note that object index <obj_idx> is relative to system
 * page <PFN> it is stored in, so for each sub-page belonging
 * to a zspage, obj_idx starts with 0.
 *
 * This is made more complicated by various memory models and PAE.
 */

#ifndef MAX_PHYSMEM_BITS
#ifdef CONFIG_HIGHMEM64G
#define MAX_PHYSMEM_BITS 36
#else /* !CONFIG_HIGHMEM64G */
/*
 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
 * be PAGE_SHIFT
 */
#define MAX_PHYSMEM_BITS BITS_PER_LONG
#endif
#endif
#define _PFN_BITS		(MAX_PHYSMEM_BITS - PAGE_SHIFT)
M
Minchan Kim 已提交
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127

/*
 * Memory for allocating for handle keeps object position by
 * encoding <page, obj_idx> and the encoded value has a room
 * in least bit(ie, look at obj_to_location).
 * We use the bit to synchronize between object access by
 * user and migration.
 */
#define HANDLE_PIN_BIT	0

/*
 * Head in allocated object should have OBJ_ALLOCATED_TAG
 * to identify the object was allocated or not.
 * It's okay to add the status bit in the least bit because
 * header keeps handle which is 4byte-aligned address so we
 * have room for two bit at least.
 */
#define OBJ_ALLOCATED_TAG 1
#define OBJ_TAG_BITS 1
#define OBJ_INDEX_BITS	(BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
128 129 130 131 132 133
#define OBJ_INDEX_MASK	((_AC(1, UL) << OBJ_INDEX_BITS) - 1)

#define MAX(a, b) ((a) >= (b) ? (a) : (b))
/* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
#define ZS_MIN_ALLOC_SIZE \
	MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
134
/* each chunk includes extra space to keep handle */
135
#define ZS_MAX_ALLOC_SIZE	PAGE_SIZE
136 137

/*
138
 * On systems with 4K page size, this gives 255 size classes! There is a
139 140 141 142 143 144 145 146 147 148 149
 * trader-off here:
 *  - Large number of size classes is potentially wasteful as free page are
 *    spread across these classes
 *  - Small number of size classes causes large internal fragmentation
 *  - Probably its better to use specific size classes (empirically
 *    determined). NOTE: all those class sizes must be set as multiple of
 *    ZS_ALIGN to make sure link_free itself never has to span 2 pages.
 *
 *  ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
 *  (reason above)
 */
150
#define ZS_SIZE_CLASS_DELTA	(PAGE_SIZE >> 8)
151 152 153 154 155 156 157 158 159 160 161 162 163

/*
 * We do not maintain any list for completely empty or full pages
 */
enum fullness_group {
	ZS_ALMOST_FULL,
	ZS_ALMOST_EMPTY,
	_ZS_NR_FULLNESS_GROUPS,

	ZS_EMPTY,
	ZS_FULL
};

164 165 166
enum zs_stat_type {
	OBJ_ALLOCATED,
	OBJ_USED,
M
Minchan Kim 已提交
167 168
	CLASS_ALMOST_FULL,
	CLASS_ALMOST_EMPTY,
169 170 171 172 173 174 175 176 177 178 179 180 181
	NR_ZS_STAT_TYPE,
};

#ifdef CONFIG_ZSMALLOC_STAT

static struct dentry *zs_stat_root;

struct zs_size_stat {
	unsigned long objs[NR_ZS_STAT_TYPE];
};

#endif

182 183 184 185 186
/*
 * number of size_classes
 */
static int zs_size_classes;

187 188 189 190 191
/*
 * We assign a page to ZS_ALMOST_EMPTY fullness group when:
 *	n <= N / f, where
 * n = number of allocated objects
 * N = total number of objects zspage can store
192
 * f = fullness_threshold_frac
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
 *
 * Similarly, we assign zspage to:
 *	ZS_ALMOST_FULL	when n > N / f
 *	ZS_EMPTY	when n == 0
 *	ZS_FULL		when n == N
 *
 * (see: fix_fullness_group())
 */
static const int fullness_threshold_frac = 4;

struct size_class {
	/*
	 * Size of objects stored in this class. Must be multiple
	 * of ZS_ALIGN.
	 */
	int size;
	unsigned int index;

	/* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
	int pages_per_zspage;
213 214
	/* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
	bool huge;
215

216 217 218 219
#ifdef CONFIG_ZSMALLOC_STAT
	struct zs_size_stat stats;
#endif

220 221 222 223 224 225 226 227 228 229 230 231
	spinlock_t lock;

	struct page *fullness_list[_ZS_NR_FULLNESS_GROUPS];
};

/*
 * Placed within free objects to form a singly linked list.
 * For every zspage, first_page->freelist gives head of this list.
 *
 * This must be power of 2 and less than or equal to ZS_ALIGN
 */
struct link_free {
232 233 234 235 236 237 238 239 240 241 242
	union {
		/*
		 * Position of next free chunk (encodes <PFN, obj_idx>)
		 * It's valid for non-allocated object
		 */
		void *next;
		/*
		 * Handle of allocated object.
		 */
		unsigned long handle;
	};
243 244 245
};

struct zs_pool {
246 247
	char *name;

248
	struct size_class **size_class;
249
	struct kmem_cache *handle_cachep;
250 251

	gfp_t flags;	/* allocation flags used when growing pool */
252
	atomic_long_t pages_allocated;
253 254 255 256

#ifdef CONFIG_ZSMALLOC_STAT
	struct dentry *stat_dentry;
#endif
257
};
258 259 260 261 262 263 264 265 266 267

/*
 * A zspage's class index and fullness group
 * are encoded in its (first)page->mapping
 */
#define CLASS_IDX_BITS	28
#define FULLNESS_BITS	4
#define CLASS_IDX_MASK	((1 << CLASS_IDX_BITS) - 1)
#define FULLNESS_MASK	((1 << FULLNESS_BITS) - 1)

268
struct mapping_area {
269
#ifdef CONFIG_PGTABLE_MAPPING
270 271 272 273 274 275
	struct vm_struct *vm; /* vm area for mapping object that span pages */
#else
	char *vm_buf; /* copy buffer for objects that span pages */
#endif
	char *vm_addr; /* address of kmap_atomic()'ed pages */
	enum zs_mapmode vm_mm; /* mapping mode */
276
	bool huge;
277 278
};

279 280 281 282 283 284 285 286 287
static int create_handle_cache(struct zs_pool *pool)
{
	pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
					0, 0, NULL);
	return pool->handle_cachep ? 0 : 1;
}

static void destroy_handle_cache(struct zs_pool *pool)
{
288 289
	if (pool->handle_cachep)
		kmem_cache_destroy(pool->handle_cachep);
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
}

static unsigned long alloc_handle(struct zs_pool *pool)
{
	return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
		pool->flags & ~__GFP_HIGHMEM);
}

static void free_handle(struct zs_pool *pool, unsigned long handle)
{
	kmem_cache_free(pool->handle_cachep, (void *)handle);
}

static void record_obj(unsigned long handle, unsigned long obj)
{
	*(unsigned long *)handle = obj;
}

308 309 310 311
/* zpool driver */

#ifdef CONFIG_ZPOOL

312
static void *zs_zpool_create(char *name, gfp_t gfp, struct zpool_ops *zpool_ops)
313
{
314
	return zs_create_pool(name, gfp);
315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
}

static void zs_zpool_destroy(void *pool)
{
	zs_destroy_pool(pool);
}

static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
			unsigned long *handle)
{
	*handle = zs_malloc(pool, size);
	return *handle ? 0 : -1;
}
static void zs_zpool_free(void *pool, unsigned long handle)
{
	zs_free(pool, handle);
}

static int zs_zpool_shrink(void *pool, unsigned int pages,
			unsigned int *reclaimed)
{
	return -EINVAL;
}

static void *zs_zpool_map(void *pool, unsigned long handle,
			enum zpool_mapmode mm)
{
	enum zs_mapmode zs_mm;

	switch (mm) {
	case ZPOOL_MM_RO:
		zs_mm = ZS_MM_RO;
		break;
	case ZPOOL_MM_WO:
		zs_mm = ZS_MM_WO;
		break;
	case ZPOOL_MM_RW: /* fallthru */
	default:
		zs_mm = ZS_MM_RW;
		break;
	}

	return zs_map_object(pool, handle, zs_mm);
}
static void zs_zpool_unmap(void *pool, unsigned long handle)
{
	zs_unmap_object(pool, handle);
}

static u64 zs_zpool_total_size(void *pool)
{
366
	return zs_get_total_pages(pool) << PAGE_SHIFT;
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
}

static struct zpool_driver zs_zpool_driver = {
	.type =		"zsmalloc",
	.owner =	THIS_MODULE,
	.create =	zs_zpool_create,
	.destroy =	zs_zpool_destroy,
	.malloc =	zs_zpool_malloc,
	.free =		zs_zpool_free,
	.shrink =	zs_zpool_shrink,
	.map =		zs_zpool_map,
	.unmap =	zs_zpool_unmap,
	.total_size =	zs_zpool_total_size,
};

382
MODULE_ALIAS("zpool-zsmalloc");
383 384
#endif /* CONFIG_ZPOOL */

M
Minchan Kim 已提交
385 386 387 388 389
static unsigned int get_maxobj_per_zspage(int size, int pages_per_zspage)
{
	return pages_per_zspage * PAGE_SIZE / size;
}

390 391 392 393 394
/* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
static DEFINE_PER_CPU(struct mapping_area, zs_map_area);

static int is_first_page(struct page *page)
{
395
	return PagePrivate(page);
396 397 398 399
}

static int is_last_page(struct page *page)
{
400
	return PagePrivate2(page);
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
}

static void get_zspage_mapping(struct page *page, unsigned int *class_idx,
				enum fullness_group *fullness)
{
	unsigned long m;
	BUG_ON(!is_first_page(page));

	m = (unsigned long)page->mapping;
	*fullness = m & FULLNESS_MASK;
	*class_idx = (m >> FULLNESS_BITS) & CLASS_IDX_MASK;
}

static void set_zspage_mapping(struct page *page, unsigned int class_idx,
				enum fullness_group fullness)
{
	unsigned long m;
	BUG_ON(!is_first_page(page));

	m = ((class_idx & CLASS_IDX_MASK) << FULLNESS_BITS) |
			(fullness & FULLNESS_MASK);
	page->mapping = (struct address_space *)m;
}

N
Nitin Cupta 已提交
425 426 427 428 429 430 431
/*
 * zsmalloc divides the pool into various size classes where each
 * class maintains a list of zspages where each zspage is divided
 * into equal sized chunks. Each allocation falls into one of these
 * classes depending on its size. This function returns index of the
 * size class which has chunk size big enough to hold the give size.
 */
432 433 434 435 436 437 438 439
static int get_size_class_index(int size)
{
	int idx = 0;

	if (likely(size > ZS_MIN_ALLOC_SIZE))
		idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
				ZS_SIZE_CLASS_DELTA);

440
	return min(zs_size_classes - 1, idx);
441 442
}

M
Minchan Kim 已提交
443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615
#ifdef CONFIG_ZSMALLOC_STAT

static inline void zs_stat_inc(struct size_class *class,
				enum zs_stat_type type, unsigned long cnt)
{
	class->stats.objs[type] += cnt;
}

static inline void zs_stat_dec(struct size_class *class,
				enum zs_stat_type type, unsigned long cnt)
{
	class->stats.objs[type] -= cnt;
}

static inline unsigned long zs_stat_get(struct size_class *class,
				enum zs_stat_type type)
{
	return class->stats.objs[type];
}

static int __init zs_stat_init(void)
{
	if (!debugfs_initialized())
		return -ENODEV;

	zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
	if (!zs_stat_root)
		return -ENOMEM;

	return 0;
}

static void __exit zs_stat_exit(void)
{
	debugfs_remove_recursive(zs_stat_root);
}

static int zs_stats_size_show(struct seq_file *s, void *v)
{
	int i;
	struct zs_pool *pool = s->private;
	struct size_class *class;
	int objs_per_zspage;
	unsigned long class_almost_full, class_almost_empty;
	unsigned long obj_allocated, obj_used, pages_used;
	unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
	unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;

	seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s\n",
			"class", "size", "almost_full", "almost_empty",
			"obj_allocated", "obj_used", "pages_used",
			"pages_per_zspage");

	for (i = 0; i < zs_size_classes; i++) {
		class = pool->size_class[i];

		if (class->index != i)
			continue;

		spin_lock(&class->lock);
		class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
		class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
		obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
		obj_used = zs_stat_get(class, OBJ_USED);
		spin_unlock(&class->lock);

		objs_per_zspage = get_maxobj_per_zspage(class->size,
				class->pages_per_zspage);
		pages_used = obj_allocated / objs_per_zspage *
				class->pages_per_zspage;

		seq_printf(s, " %5u %5u %11lu %12lu %13lu %10lu %10lu %16d\n",
			i, class->size, class_almost_full, class_almost_empty,
			obj_allocated, obj_used, pages_used,
			class->pages_per_zspage);

		total_class_almost_full += class_almost_full;
		total_class_almost_empty += class_almost_empty;
		total_objs += obj_allocated;
		total_used_objs += obj_used;
		total_pages += pages_used;
	}

	seq_puts(s, "\n");
	seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu\n",
			"Total", "", total_class_almost_full,
			total_class_almost_empty, total_objs,
			total_used_objs, total_pages);

	return 0;
}

static int zs_stats_size_open(struct inode *inode, struct file *file)
{
	return single_open(file, zs_stats_size_show, inode->i_private);
}

static const struct file_operations zs_stat_size_ops = {
	.open           = zs_stats_size_open,
	.read           = seq_read,
	.llseek         = seq_lseek,
	.release        = single_release,
};

static int zs_pool_stat_create(char *name, struct zs_pool *pool)
{
	struct dentry *entry;

	if (!zs_stat_root)
		return -ENODEV;

	entry = debugfs_create_dir(name, zs_stat_root);
	if (!entry) {
		pr_warn("debugfs dir <%s> creation failed\n", name);
		return -ENOMEM;
	}
	pool->stat_dentry = entry;

	entry = debugfs_create_file("classes", S_IFREG | S_IRUGO,
			pool->stat_dentry, pool, &zs_stat_size_ops);
	if (!entry) {
		pr_warn("%s: debugfs file entry <%s> creation failed\n",
				name, "classes");
		return -ENOMEM;
	}

	return 0;
}

static void zs_pool_stat_destroy(struct zs_pool *pool)
{
	debugfs_remove_recursive(pool->stat_dentry);
}

#else /* CONFIG_ZSMALLOC_STAT */

static inline void zs_stat_inc(struct size_class *class,
				enum zs_stat_type type, unsigned long cnt)
{
}

static inline void zs_stat_dec(struct size_class *class,
				enum zs_stat_type type, unsigned long cnt)
{
}

static inline unsigned long zs_stat_get(struct size_class *class,
				enum zs_stat_type type)
{
	return 0;
}

static int __init zs_stat_init(void)
{
	return 0;
}

static void __exit zs_stat_exit(void)
{
}

static inline int zs_pool_stat_create(char *name, struct zs_pool *pool)
{
	return 0;
}

static inline void zs_pool_stat_destroy(struct zs_pool *pool)
{
}

#endif


N
Nitin Cupta 已提交
616 617 618 619 620 621 622
/*
 * For each size class, zspages are divided into different groups
 * depending on how "full" they are. This was done so that we could
 * easily find empty or nearly empty zspages when we try to shrink
 * the pool (not yet implemented). This function returns fullness
 * status of the given page.
 */
623 624 625 626 627 628 629 630 631 632 633 634 635
static enum fullness_group get_fullness_group(struct page *page)
{
	int inuse, max_objects;
	enum fullness_group fg;
	BUG_ON(!is_first_page(page));

	inuse = page->inuse;
	max_objects = page->objects;

	if (inuse == 0)
		fg = ZS_EMPTY;
	else if (inuse == max_objects)
		fg = ZS_FULL;
M
Minchan Kim 已提交
636
	else if (inuse <= 3 * max_objects / fullness_threshold_frac)
637 638 639 640 641 642 643
		fg = ZS_ALMOST_EMPTY;
	else
		fg = ZS_ALMOST_FULL;

	return fg;
}

N
Nitin Cupta 已提交
644 645 646 647 648 649
/*
 * Each size class maintains various freelists and zspages are assigned
 * to one of these freelists based on the number of live objects they
 * have. This functions inserts the given zspage into the freelist
 * identified by <class, fullness_group>.
 */
650 651 652 653 654 655 656 657 658 659 660 661 662 663 664
static void insert_zspage(struct page *page, struct size_class *class,
				enum fullness_group fullness)
{
	struct page **head;

	BUG_ON(!is_first_page(page));

	if (fullness >= _ZS_NR_FULLNESS_GROUPS)
		return;

	head = &class->fullness_list[fullness];
	if (*head)
		list_add_tail(&page->lru, &(*head)->lru);

	*head = page;
M
Minchan Kim 已提交
665 666
	zs_stat_inc(class, fullness == ZS_ALMOST_EMPTY ?
			CLASS_ALMOST_EMPTY : CLASS_ALMOST_FULL, 1);
667 668
}

N
Nitin Cupta 已提交
669 670 671 672
/*
 * This function removes the given zspage from the freelist identified
 * by <class, fullness_group>.
 */
673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691
static void remove_zspage(struct page *page, struct size_class *class,
				enum fullness_group fullness)
{
	struct page **head;

	BUG_ON(!is_first_page(page));

	if (fullness >= _ZS_NR_FULLNESS_GROUPS)
		return;

	head = &class->fullness_list[fullness];
	BUG_ON(!*head);
	if (list_empty(&(*head)->lru))
		*head = NULL;
	else if (*head == page)
		*head = (struct page *)list_entry((*head)->lru.next,
					struct page, lru);

	list_del_init(&page->lru);
M
Minchan Kim 已提交
692 693
	zs_stat_dec(class, fullness == ZS_ALMOST_EMPTY ?
			CLASS_ALMOST_EMPTY : CLASS_ALMOST_FULL, 1);
694 695
}

N
Nitin Cupta 已提交
696 697 698 699 700 701 702 703 704
/*
 * Each size class maintains zspages in different fullness groups depending
 * on the number of live objects they contain. When allocating or freeing
 * objects, the fullness status of the page can change, say, from ALMOST_FULL
 * to ALMOST_EMPTY when freeing an object. This function checks if such
 * a status change has occurred for the given page and accordingly moves the
 * page from the freelist of the old fullness group to that of the new
 * fullness group.
 */
705
static enum fullness_group fix_fullness_group(struct size_class *class,
706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730
						struct page *page)
{
	int class_idx;
	enum fullness_group currfg, newfg;

	BUG_ON(!is_first_page(page));

	get_zspage_mapping(page, &class_idx, &currfg);
	newfg = get_fullness_group(page);
	if (newfg == currfg)
		goto out;

	remove_zspage(page, class, currfg);
	insert_zspage(page, class, newfg);
	set_zspage_mapping(page, class_idx, newfg);

out:
	return newfg;
}

/*
 * We have to decide on how many pages to link together
 * to form a zspage for each size class. This is important
 * to reduce wastage due to unusable space left at end of
 * each zspage which is given as:
731 732
 *     wastage = Zp % class_size
 *     usage = Zp - wastage
733 734 735 736 737 738
 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
 *
 * For example, for size class of 3/8 * PAGE_SIZE, we should
 * link together 3 PAGE_SIZE sized pages to form a zspage
 * since then we can perfectly fit in 8 such objects.
 */
739
static int get_pages_per_zspage(int class_size)
740 741 742 743 744
{
	int i, max_usedpc = 0;
	/* zspage order which gives maximum used size per KB */
	int max_usedpc_order = 1;

745
	for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781
		int zspage_size;
		int waste, usedpc;

		zspage_size = i * PAGE_SIZE;
		waste = zspage_size % class_size;
		usedpc = (zspage_size - waste) * 100 / zspage_size;

		if (usedpc > max_usedpc) {
			max_usedpc = usedpc;
			max_usedpc_order = i;
		}
	}

	return max_usedpc_order;
}

/*
 * A single 'zspage' is composed of many system pages which are
 * linked together using fields in struct page. This function finds
 * the first/head page, given any component page of a zspage.
 */
static struct page *get_first_page(struct page *page)
{
	if (is_first_page(page))
		return page;
	else
		return page->first_page;
}

static struct page *get_next_page(struct page *page)
{
	struct page *next;

	if (is_last_page(page))
		next = NULL;
	else if (is_first_page(page))
782
		next = (struct page *)page_private(page);
783 784 785 786 787 788
	else
		next = list_entry(page->lru.next, struct page, lru);

	return next;
}

789 790
/*
 * Encode <page, obj_idx> as a single handle value.
M
Minchan Kim 已提交
791
 * We use the least bit of handle for tagging.
792
 */
M
Minchan Kim 已提交
793
static void *location_to_obj(struct page *page, unsigned long obj_idx)
794
{
M
Minchan Kim 已提交
795
	unsigned long obj;
796 797 798 799 800 801

	if (!page) {
		BUG_ON(obj_idx);
		return NULL;
	}

M
Minchan Kim 已提交
802 803 804
	obj = page_to_pfn(page) << OBJ_INDEX_BITS;
	obj |= ((obj_idx) & OBJ_INDEX_MASK);
	obj <<= OBJ_TAG_BITS;
805

M
Minchan Kim 已提交
806
	return (void *)obj;
807 808
}

809 810 811
/*
 * Decode <page, obj_idx> pair from the given object handle. We adjust the
 * decoded obj_idx back to its original value since it was adjusted in
M
Minchan Kim 已提交
812
 * location_to_obj().
813
 */
M
Minchan Kim 已提交
814
static void obj_to_location(unsigned long obj, struct page **page,
815 816
				unsigned long *obj_idx)
{
M
Minchan Kim 已提交
817 818 819
	obj >>= OBJ_TAG_BITS;
	*page = pfn_to_page(obj >> OBJ_INDEX_BITS);
	*obj_idx = (obj & OBJ_INDEX_MASK);
820 821
}

822 823 824 825 826
static unsigned long handle_to_obj(unsigned long handle)
{
	return *(unsigned long *)handle;
}

827 828
static unsigned long obj_to_head(struct size_class *class, struct page *page,
			void *obj)
M
Minchan Kim 已提交
829
{
830 831 832 833 834
	if (class->huge) {
		VM_BUG_ON(!is_first_page(page));
		return *(unsigned long *)page_private(page);
	} else
		return *(unsigned long *)obj;
M
Minchan Kim 已提交
835 836
}

837 838 839 840 841 842 843 844 845 846 847
static unsigned long obj_idx_to_offset(struct page *page,
				unsigned long obj_idx, int class_size)
{
	unsigned long off = 0;

	if (!is_first_page(page))
		off = page->index;

	return off + obj_idx * class_size;
}

M
Minchan Kim 已提交
848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866
static inline int trypin_tag(unsigned long handle)
{
	unsigned long *ptr = (unsigned long *)handle;

	return !test_and_set_bit_lock(HANDLE_PIN_BIT, ptr);
}

static void pin_tag(unsigned long handle)
{
	while (!trypin_tag(handle));
}

static void unpin_tag(unsigned long handle)
{
	unsigned long *ptr = (unsigned long *)handle;

	clear_bit_unlock(HANDLE_PIN_BIT, ptr);
}

N
Nitin Gupta 已提交
867 868 869 870 871 872 873
static void reset_page(struct page *page)
{
	clear_bit(PG_private, &page->flags);
	clear_bit(PG_private_2, &page->flags);
	set_page_private(page, 0);
	page->mapping = NULL;
	page->freelist = NULL;
874
	page_mapcount_reset(page);
N
Nitin Gupta 已提交
875 876
}

877 878
static void free_zspage(struct page *first_page)
{
N
Nitin Gupta 已提交
879
	struct page *nextp, *tmp, *head_extra;
880 881 882 883

	BUG_ON(!is_first_page(first_page));
	BUG_ON(first_page->inuse);

N
Nitin Gupta 已提交
884
	head_extra = (struct page *)page_private(first_page);
885

N
Nitin Gupta 已提交
886
	reset_page(first_page);
887 888 889
	__free_page(first_page);

	/* zspage with only 1 system page */
N
Nitin Gupta 已提交
890
	if (!head_extra)
891 892
		return;

N
Nitin Gupta 已提交
893
	list_for_each_entry_safe(nextp, tmp, &head_extra->lru, lru) {
894
		list_del(&nextp->lru);
N
Nitin Gupta 已提交
895
		reset_page(nextp);
896 897
		__free_page(nextp);
	}
N
Nitin Gupta 已提交
898 899
	reset_page(head_extra);
	__free_page(head_extra);
900 901 902 903 904 905 906 907 908 909 910 911
}

/* Initialize a newly allocated zspage */
static void init_zspage(struct page *first_page, struct size_class *class)
{
	unsigned long off = 0;
	struct page *page = first_page;

	BUG_ON(!is_first_page(first_page));
	while (page) {
		struct page *next_page;
		struct link_free *link;
912
		unsigned int i = 1;
913
		void *vaddr;
914 915 916 917 918 919 920 921 922 923

		/*
		 * page->index stores offset of first object starting
		 * in the page. For the first page, this is always 0,
		 * so we use first_page->index (aka ->freelist) to store
		 * head of corresponding zspage's freelist.
		 */
		if (page != first_page)
			page->index = off;

924 925
		vaddr = kmap_atomic(page);
		link = (struct link_free *)vaddr + off / sizeof(*link);
926 927

		while ((off += class->size) < PAGE_SIZE) {
M
Minchan Kim 已提交
928
			link->next = location_to_obj(page, i++);
929
			link += class->size / sizeof(*link);
930 931 932 933 934 935 936 937
		}

		/*
		 * We now come to the last (full or partial) object on this
		 * page, which must point to the first object on the next
		 * page (if present)
		 */
		next_page = get_next_page(page);
M
Minchan Kim 已提交
938
		link->next = location_to_obj(next_page, 0);
939
		kunmap_atomic(vaddr);
940
		page = next_page;
941
		off %= PAGE_SIZE;
942 943 944 945 946 947 948 949 950
	}
}

/*
 * Allocate a zspage for the given size class
 */
static struct page *alloc_zspage(struct size_class *class, gfp_t flags)
{
	int i, error;
951
	struct page *first_page = NULL, *uninitialized_var(prev_page);
952 953 954 955 956 957 958 959 960 961 962 963 964

	/*
	 * Allocate individual pages and link them together as:
	 * 1. first page->private = first sub-page
	 * 2. all sub-pages are linked together using page->lru
	 * 3. each sub-page is linked to the first page using page->first_page
	 *
	 * For each size class, First/Head pages are linked together using
	 * page->lru. Also, we set PG_private to identify the first page
	 * (i.e. no other sub-page has this flag set) and PG_private_2 to
	 * identify the last page.
	 */
	error = -ENOMEM;
965
	for (i = 0; i < class->pages_per_zspage; i++) {
966
		struct page *page;
967 968 969 970 971 972 973

		page = alloc_page(flags);
		if (!page)
			goto cleanup;

		INIT_LIST_HEAD(&page->lru);
		if (i == 0) {	/* first page */
974
			SetPagePrivate(page);
975 976 977 978 979
			set_page_private(page, 0);
			first_page = page;
			first_page->inuse = 0;
		}
		if (i == 1)
980
			set_page_private(first_page, (unsigned long)page);
981 982 983 984
		if (i >= 1)
			page->first_page = first_page;
		if (i >= 2)
			list_add(&page->lru, &prev_page->lru);
985
		if (i == class->pages_per_zspage - 1)	/* last page */
986
			SetPagePrivate2(page);
987 988 989 990 991
		prev_page = page;
	}

	init_zspage(first_page, class);

M
Minchan Kim 已提交
992
	first_page->freelist = location_to_obj(first_page, 0);
993
	/* Maximum number of objects we can store in this zspage */
994
	first_page->objects = class->pages_per_zspage * PAGE_SIZE / class->size;
995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020

	error = 0; /* Success */

cleanup:
	if (unlikely(error) && first_page) {
		free_zspage(first_page);
		first_page = NULL;
	}

	return first_page;
}

static struct page *find_get_zspage(struct size_class *class)
{
	int i;
	struct page *page;

	for (i = 0; i < _ZS_NR_FULLNESS_GROUPS; i++) {
		page = class->fullness_list[i];
		if (page)
			break;
	}

	return page;
}

1021
#ifdef CONFIG_PGTABLE_MAPPING
1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
static inline int __zs_cpu_up(struct mapping_area *area)
{
	/*
	 * Make sure we don't leak memory if a cpu UP notification
	 * and zs_init() race and both call zs_cpu_up() on the same cpu
	 */
	if (area->vm)
		return 0;
	area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL);
	if (!area->vm)
		return -ENOMEM;
	return 0;
}

static inline void __zs_cpu_down(struct mapping_area *area)
{
	if (area->vm)
		free_vm_area(area->vm);
	area->vm = NULL;
}

static inline void *__zs_map_object(struct mapping_area *area,
				struct page *pages[2], int off, int size)
{
1046
	BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages));
1047 1048 1049 1050 1051 1052 1053 1054 1055
	area->vm_addr = area->vm->addr;
	return area->vm_addr + off;
}

static inline void __zs_unmap_object(struct mapping_area *area,
				struct page *pages[2], int off, int size)
{
	unsigned long addr = (unsigned long)area->vm_addr;

1056
	unmap_kernel_range(addr, PAGE_SIZE * 2);
1057 1058
}

1059
#else /* CONFIG_PGTABLE_MAPPING */
1060 1061 1062 1063 1064 1065 1066 1067 1068

static inline int __zs_cpu_up(struct mapping_area *area)
{
	/*
	 * Make sure we don't leak memory if a cpu UP notification
	 * and zs_init() race and both call zs_cpu_up() on the same cpu
	 */
	if (area->vm_buf)
		return 0;
1069
	area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1070 1071 1072 1073 1074 1075 1076
	if (!area->vm_buf)
		return -ENOMEM;
	return 0;
}

static inline void __zs_cpu_down(struct mapping_area *area)
{
1077
	kfree(area->vm_buf);
1078 1079 1080 1081 1082
	area->vm_buf = NULL;
}

static void *__zs_map_object(struct mapping_area *area,
			struct page *pages[2], int off, int size)
1083 1084 1085
{
	int sizes[2];
	void *addr;
1086
	char *buf = area->vm_buf;
1087

1088 1089 1090 1091 1092 1093
	/* disable page faults to match kmap_atomic() return conditions */
	pagefault_disable();

	/* no read fastpath */
	if (area->vm_mm == ZS_MM_WO)
		goto out;
1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104

	sizes[0] = PAGE_SIZE - off;
	sizes[1] = size - sizes[0];

	/* copy object to per-cpu buffer */
	addr = kmap_atomic(pages[0]);
	memcpy(buf, addr + off, sizes[0]);
	kunmap_atomic(addr);
	addr = kmap_atomic(pages[1]);
	memcpy(buf + sizes[0], addr, sizes[1]);
	kunmap_atomic(addr);
1105 1106
out:
	return area->vm_buf;
1107 1108
}

1109 1110
static void __zs_unmap_object(struct mapping_area *area,
			struct page *pages[2], int off, int size)
1111 1112 1113
{
	int sizes[2];
	void *addr;
1114
	char *buf;
1115

1116 1117 1118
	/* no write fastpath */
	if (area->vm_mm == ZS_MM_RO)
		goto out;
1119

1120 1121 1122 1123 1124 1125
	buf = area->vm_buf;
	if (!area->huge) {
		buf = buf + ZS_HANDLE_SIZE;
		size -= ZS_HANDLE_SIZE;
		off += ZS_HANDLE_SIZE;
	}
1126

1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
	sizes[0] = PAGE_SIZE - off;
	sizes[1] = size - sizes[0];

	/* copy per-cpu buffer to object */
	addr = kmap_atomic(pages[0]);
	memcpy(addr + off, buf, sizes[0]);
	kunmap_atomic(addr);
	addr = kmap_atomic(pages[1]);
	memcpy(addr, buf + sizes[0], sizes[1]);
	kunmap_atomic(addr);
1137 1138 1139 1140

out:
	/* enable page faults to match kunmap_atomic() return conditions */
	pagefault_enable();
1141
}
1142

1143
#endif /* CONFIG_PGTABLE_MAPPING */
1144

1145 1146 1147
static int zs_cpu_notifier(struct notifier_block *nb, unsigned long action,
				void *pcpu)
{
1148
	int ret, cpu = (long)pcpu;
1149 1150 1151 1152 1153
	struct mapping_area *area;

	switch (action) {
	case CPU_UP_PREPARE:
		area = &per_cpu(zs_map_area, cpu);
1154 1155 1156
		ret = __zs_cpu_up(area);
		if (ret)
			return notifier_from_errno(ret);
1157 1158 1159 1160
		break;
	case CPU_DEAD:
	case CPU_UP_CANCELED:
		area = &per_cpu(zs_map_area, cpu);
1161
		__zs_cpu_down(area);
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
		break;
	}

	return NOTIFY_OK;
}

static struct notifier_block zs_cpu_nb = {
	.notifier_call = zs_cpu_notifier
};

1172
static int zs_register_cpu_notifier(void)
1173
{
1174
	int cpu, uninitialized_var(ret);
1175

1176 1177 1178
	cpu_notifier_register_begin();

	__register_cpu_notifier(&zs_cpu_nb);
1179 1180
	for_each_online_cpu(cpu) {
		ret = zs_cpu_notifier(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
1181 1182
		if (notifier_to_errno(ret))
			break;
1183
	}
1184 1185

	cpu_notifier_register_done();
1186 1187
	return notifier_to_errno(ret);
}
1188

1189
static void zs_unregister_cpu_notifier(void)
1190
{
1191
	int cpu;
1192

1193
	cpu_notifier_register_begin();
1194

1195 1196 1197
	for_each_online_cpu(cpu)
		zs_cpu_notifier(NULL, CPU_DEAD, (void *)(long)cpu);
	__unregister_cpu_notifier(&zs_cpu_nb);
1198

1199
	cpu_notifier_register_done();
1200 1201
}

1202
static void init_zs_size_classes(void)
1203
{
1204
	int nr;
1205

1206 1207 1208
	nr = (ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) / ZS_SIZE_CLASS_DELTA + 1;
	if ((ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) % ZS_SIZE_CLASS_DELTA)
		nr += 1;
1209

1210
	zs_size_classes = nr;
1211 1212
}

1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224
static bool can_merge(struct size_class *prev, int size, int pages_per_zspage)
{
	if (prev->pages_per_zspage != pages_per_zspage)
		return false;

	if (get_maxobj_per_zspage(prev->size, prev->pages_per_zspage)
		!= get_maxobj_per_zspage(size, pages_per_zspage))
		return false;

	return true;
}

M
Minchan Kim 已提交
1225 1226 1227 1228 1229 1230 1231
static bool zspage_full(struct page *page)
{
	BUG_ON(!is_first_page(page));

	return page->inuse == page->objects;
}

1232 1233 1234 1235 1236 1237
unsigned long zs_get_total_pages(struct zs_pool *pool)
{
	return atomic_long_read(&pool->pages_allocated);
}
EXPORT_SYMBOL_GPL(zs_get_total_pages);

1238
/**
1239 1240 1241
 * zs_map_object - get address of allocated object from handle.
 * @pool: pool from which the object was allocated
 * @handle: handle returned from zs_malloc
1242
 *
1243 1244 1245
 * Before using an object allocated from zs_malloc, it must be mapped using
 * this function. When done with the object, it must be unmapped using
 * zs_unmap_object.
1246
 *
1247 1248 1249 1250
 * Only one object can be mapped per cpu at a time. There is no protection
 * against nested mappings.
 *
 * This function returns with preemption and page faults disabled.
1251
 */
1252 1253
void *zs_map_object(struct zs_pool *pool, unsigned long handle,
			enum zs_mapmode mm)
1254
{
1255
	struct page *page;
1256
	unsigned long obj, obj_idx, off;
1257

1258 1259 1260 1261 1262
	unsigned int class_idx;
	enum fullness_group fg;
	struct size_class *class;
	struct mapping_area *area;
	struct page *pages[2];
1263
	void *ret;
1264

1265
	BUG_ON(!handle);
1266

1267
	/*
1268 1269 1270
	 * Because we use per-cpu mapping areas shared among the
	 * pools/users, we can't allow mapping in interrupt context
	 * because it can corrupt another users mappings.
1271
	 */
1272
	BUG_ON(in_interrupt());
1273

M
Minchan Kim 已提交
1274 1275 1276
	/* From now on, migration cannot move the object */
	pin_tag(handle);

1277 1278
	obj = handle_to_obj(handle);
	obj_to_location(obj, &page, &obj_idx);
1279 1280 1281
	get_zspage_mapping(get_first_page(page), &class_idx, &fg);
	class = pool->size_class[class_idx];
	off = obj_idx_to_offset(page, obj_idx, class->size);
1282

1283 1284 1285 1286 1287
	area = &get_cpu_var(zs_map_area);
	area->vm_mm = mm;
	if (off + class->size <= PAGE_SIZE) {
		/* this object is contained entirely within a page */
		area->vm_addr = kmap_atomic(page);
1288 1289
		ret = area->vm_addr + off;
		goto out;
1290 1291
	}

1292 1293 1294 1295
	/* this object spans two pages */
	pages[0] = page;
	pages[1] = get_next_page(page);
	BUG_ON(!pages[1]);
1296

1297 1298
	ret = __zs_map_object(area, pages, off, class->size);
out:
1299 1300 1301 1302
	if (!class->huge)
		ret += ZS_HANDLE_SIZE;

	return ret;
1303
}
1304
EXPORT_SYMBOL_GPL(zs_map_object);
1305

1306
void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1307
{
1308
	struct page *page;
1309
	unsigned long obj, obj_idx, off;
1310

1311 1312 1313 1314
	unsigned int class_idx;
	enum fullness_group fg;
	struct size_class *class;
	struct mapping_area *area;
1315

1316
	BUG_ON(!handle);
1317

1318 1319
	obj = handle_to_obj(handle);
	obj_to_location(obj, &page, &obj_idx);
1320 1321 1322
	get_zspage_mapping(get_first_page(page), &class_idx, &fg);
	class = pool->size_class[class_idx];
	off = obj_idx_to_offset(page, obj_idx, class->size);
1323

1324 1325 1326 1327 1328
	area = this_cpu_ptr(&zs_map_area);
	if (off + class->size <= PAGE_SIZE)
		kunmap_atomic(area->vm_addr);
	else {
		struct page *pages[2];
1329

1330 1331 1332 1333 1334 1335 1336
		pages[0] = page;
		pages[1] = get_next_page(page);
		BUG_ON(!pages[1]);

		__zs_unmap_object(area, pages, off, class->size);
	}
	put_cpu_var(zs_map_area);
M
Minchan Kim 已提交
1337
	unpin_tag(handle);
1338
}
1339
EXPORT_SYMBOL_GPL(zs_unmap_object);
1340

1341 1342 1343 1344 1345 1346 1347 1348 1349 1350
static unsigned long obj_malloc(struct page *first_page,
		struct size_class *class, unsigned long handle)
{
	unsigned long obj;
	struct link_free *link;

	struct page *m_page;
	unsigned long m_objidx, m_offset;
	void *vaddr;

M
Minchan Kim 已提交
1351
	handle |= OBJ_ALLOCATED_TAG;
1352 1353 1354 1355 1356 1357 1358
	obj = (unsigned long)first_page->freelist;
	obj_to_location(obj, &m_page, &m_objidx);
	m_offset = obj_idx_to_offset(m_page, m_objidx, class->size);

	vaddr = kmap_atomic(m_page);
	link = (struct link_free *)vaddr + m_offset / sizeof(*link);
	first_page->freelist = link->next;
1359 1360 1361 1362 1363 1364
	if (!class->huge)
		/* record handle in the header of allocated chunk */
		link->handle = handle;
	else
		/* record handle in first_page->private */
		set_page_private(first_page, handle);
1365 1366 1367 1368 1369 1370 1371 1372
	kunmap_atomic(vaddr);
	first_page->inuse++;
	zs_stat_inc(class, OBJ_USED, 1);

	return obj;
}


1373 1374 1375 1376 1377
/**
 * zs_malloc - Allocate block of given size from pool.
 * @pool: pool to allocate from
 * @size: size of block to allocate
 *
1378
 * On success, handle to the allocated object is returned,
1379
 * otherwise 0.
1380 1381
 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
 */
1382
unsigned long zs_malloc(struct zs_pool *pool, size_t size)
1383
{
1384
	unsigned long handle, obj;
1385
	struct size_class *class;
1386
	struct page *first_page;
1387

1388
	if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
1389 1390 1391 1392
		return 0;

	handle = alloc_handle(pool);
	if (!handle)
1393
		return 0;
1394

1395 1396
	/* extra space in chunk to keep the handle */
	size += ZS_HANDLE_SIZE;
1397
	class = pool->size_class[get_size_class_index(size)];
1398 1399 1400 1401 1402 1403 1404

	spin_lock(&class->lock);
	first_page = find_get_zspage(class);

	if (!first_page) {
		spin_unlock(&class->lock);
		first_page = alloc_zspage(class, pool->flags);
1405 1406
		if (unlikely(!first_page)) {
			free_handle(pool, handle);
1407
			return 0;
1408
		}
1409 1410

		set_zspage_mapping(first_page, class->index, ZS_EMPTY);
1411 1412
		atomic_long_add(class->pages_per_zspage,
					&pool->pages_allocated);
1413

1414
		spin_lock(&class->lock);
1415 1416
		zs_stat_inc(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
				class->size, class->pages_per_zspage));
1417 1418
	}

1419
	obj = obj_malloc(first_page, class, handle);
1420
	/* Now move the zspage to another fullness group, if required */
1421
	fix_fullness_group(class, first_page);
1422
	record_obj(handle, obj);
1423 1424
	spin_unlock(&class->lock);

1425
	return handle;
1426 1427 1428
}
EXPORT_SYMBOL_GPL(zs_malloc);

1429 1430
static void obj_free(struct zs_pool *pool, struct size_class *class,
			unsigned long obj)
1431 1432 1433
{
	struct link_free *link;
	struct page *first_page, *f_page;
1434
	unsigned long f_objidx, f_offset;
1435
	void *vaddr;
1436 1437 1438
	int class_idx;
	enum fullness_group fullness;

1439
	BUG_ON(!obj);
1440

M
Minchan Kim 已提交
1441
	obj &= ~OBJ_ALLOCATED_TAG;
1442
	obj_to_location(obj, &f_page, &f_objidx);
1443 1444 1445 1446 1447
	first_page = get_first_page(f_page);

	get_zspage_mapping(first_page, &class_idx, &fullness);
	f_offset = obj_idx_to_offset(f_page, f_objidx, class->size);

1448
	vaddr = kmap_atomic(f_page);
1449 1450

	/* Insert this object in containing zspage's freelist */
1451
	link = (struct link_free *)(vaddr + f_offset);
1452
	link->next = first_page->freelist;
1453 1454
	if (class->huge)
		set_page_private(first_page, 0);
1455
	kunmap_atomic(vaddr);
1456
	first_page->freelist = (void *)obj;
1457
	first_page->inuse--;
1458
	zs_stat_dec(class, OBJ_USED, 1);
1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471
}

void zs_free(struct zs_pool *pool, unsigned long handle)
{
	struct page *first_page, *f_page;
	unsigned long obj, f_objidx;
	int class_idx;
	struct size_class *class;
	enum fullness_group fullness;

	if (unlikely(!handle))
		return;

M
Minchan Kim 已提交
1472
	pin_tag(handle);
1473 1474 1475 1476 1477 1478 1479 1480 1481 1482
	obj = handle_to_obj(handle);
	obj_to_location(obj, &f_page, &f_objidx);
	first_page = get_first_page(f_page);

	get_zspage_mapping(first_page, &class_idx, &fullness);
	class = pool->size_class[class_idx];

	spin_lock(&class->lock);
	obj_free(pool, class, obj);
	fullness = fix_fullness_group(class, first_page);
M
Minchan Kim 已提交
1483
	if (fullness == ZS_EMPTY) {
1484 1485
		zs_stat_dec(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
				class->size, class->pages_per_zspage));
M
Minchan Kim 已提交
1486 1487 1488 1489
		atomic_long_sub(class->pages_per_zspage,
				&pool->pages_allocated);
		free_zspage(first_page);
	}
1490
	spin_unlock(&class->lock);
M
Minchan Kim 已提交
1491
	unpin_tag(handle);
1492

M
Minchan Kim 已提交
1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531
	free_handle(pool, handle);
}
EXPORT_SYMBOL_GPL(zs_free);

static void zs_object_copy(unsigned long src, unsigned long dst,
				struct size_class *class)
{
	struct page *s_page, *d_page;
	unsigned long s_objidx, d_objidx;
	unsigned long s_off, d_off;
	void *s_addr, *d_addr;
	int s_size, d_size, size;
	int written = 0;

	s_size = d_size = class->size;

	obj_to_location(src, &s_page, &s_objidx);
	obj_to_location(dst, &d_page, &d_objidx);

	s_off = obj_idx_to_offset(s_page, s_objidx, class->size);
	d_off = obj_idx_to_offset(d_page, d_objidx, class->size);

	if (s_off + class->size > PAGE_SIZE)
		s_size = PAGE_SIZE - s_off;

	if (d_off + class->size > PAGE_SIZE)
		d_size = PAGE_SIZE - d_off;

	s_addr = kmap_atomic(s_page);
	d_addr = kmap_atomic(d_page);

	while (1) {
		size = min(s_size, d_size);
		memcpy(d_addr + d_off, s_addr + s_off, size);
		written += size;

		if (written == class->size)
			break;

1532 1533 1534 1535 1536 1537
		s_off += size;
		s_size -= size;
		d_off += size;
		d_size -= size;

		if (s_off >= PAGE_SIZE) {
M
Minchan Kim 已提交
1538 1539 1540 1541 1542 1543 1544 1545 1546 1547
			kunmap_atomic(d_addr);
			kunmap_atomic(s_addr);
			s_page = get_next_page(s_page);
			BUG_ON(!s_page);
			s_addr = kmap_atomic(s_page);
			d_addr = kmap_atomic(d_page);
			s_size = class->size - written;
			s_off = 0;
		}

1548
		if (d_off >= PAGE_SIZE) {
M
Minchan Kim 已提交
1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578
			kunmap_atomic(d_addr);
			d_page = get_next_page(d_page);
			BUG_ON(!d_page);
			d_addr = kmap_atomic(d_page);
			d_size = class->size - written;
			d_off = 0;
		}
	}

	kunmap_atomic(d_addr);
	kunmap_atomic(s_addr);
}

/*
 * Find alloced object in zspage from index object and
 * return handle.
 */
static unsigned long find_alloced_obj(struct page *page, int index,
					struct size_class *class)
{
	unsigned long head;
	int offset = 0;
	unsigned long handle = 0;
	void *addr = kmap_atomic(page);

	if (!is_first_page(page))
		offset = page->index;
	offset += class->size * index;

	while (offset < PAGE_SIZE) {
1579
		head = obj_to_head(class, page, addr + offset);
M
Minchan Kim 已提交
1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676
		if (head & OBJ_ALLOCATED_TAG) {
			handle = head & ~OBJ_ALLOCATED_TAG;
			if (trypin_tag(handle))
				break;
			handle = 0;
		}

		offset += class->size;
		index++;
	}

	kunmap_atomic(addr);
	return handle;
}

struct zs_compact_control {
	/* Source page for migration which could be a subpage of zspage. */
	struct page *s_page;
	/* Destination page for migration which should be a first page
	 * of zspage. */
	struct page *d_page;
	 /* Starting object index within @s_page which used for live object
	  * in the subpage. */
	int index;
	/* how many of objects are migrated */
	int nr_migrated;
};

static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
				struct zs_compact_control *cc)
{
	unsigned long used_obj, free_obj;
	unsigned long handle;
	struct page *s_page = cc->s_page;
	struct page *d_page = cc->d_page;
	unsigned long index = cc->index;
	int nr_migrated = 0;
	int ret = 0;

	while (1) {
		handle = find_alloced_obj(s_page, index, class);
		if (!handle) {
			s_page = get_next_page(s_page);
			if (!s_page)
				break;
			index = 0;
			continue;
		}

		/* Stop if there is no more space */
		if (zspage_full(d_page)) {
			unpin_tag(handle);
			ret = -ENOMEM;
			break;
		}

		used_obj = handle_to_obj(handle);
		free_obj = obj_malloc(d_page, class, handle);
		zs_object_copy(used_obj, free_obj, class);
		index++;
		record_obj(handle, free_obj);
		unpin_tag(handle);
		obj_free(pool, class, used_obj);
		nr_migrated++;
	}

	/* Remember last position in this iteration */
	cc->s_page = s_page;
	cc->index = index;
	cc->nr_migrated = nr_migrated;

	return ret;
}

static struct page *alloc_target_page(struct size_class *class)
{
	int i;
	struct page *page;

	for (i = 0; i < _ZS_NR_FULLNESS_GROUPS; i++) {
		page = class->fullness_list[i];
		if (page) {
			remove_zspage(page, class, i);
			break;
		}
	}

	return page;
}

static void putback_zspage(struct zs_pool *pool, struct size_class *class,
				struct page *first_page)
{
	enum fullness_group fullness;

	BUG_ON(!is_first_page(first_page));

1677
	fullness = get_fullness_group(first_page);
M
Minchan Kim 已提交
1678
	insert_zspage(first_page, class, fullness);
1679 1680
	set_zspage_mapping(first_page, class->index, fullness);

1681
	if (fullness == ZS_EMPTY) {
M
Minchan Kim 已提交
1682 1683
		zs_stat_dec(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
			class->size, class->pages_per_zspage));
1684 1685
		atomic_long_sub(class->pages_per_zspage,
				&pool->pages_allocated);
M
Minchan Kim 已提交
1686

1687
		free_zspage(first_page);
1688
	}
1689
}
M
Minchan Kim 已提交
1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772

static struct page *isolate_source_page(struct size_class *class)
{
	struct page *page;

	page = class->fullness_list[ZS_ALMOST_EMPTY];
	if (page)
		remove_zspage(page, class, ZS_ALMOST_EMPTY);

	return page;
}

static unsigned long __zs_compact(struct zs_pool *pool,
				struct size_class *class)
{
	int nr_to_migrate;
	struct zs_compact_control cc;
	struct page *src_page;
	struct page *dst_page = NULL;
	unsigned long nr_total_migrated = 0;

	spin_lock(&class->lock);
	while ((src_page = isolate_source_page(class))) {

		BUG_ON(!is_first_page(src_page));

		/* The goal is to migrate all live objects in source page */
		nr_to_migrate = src_page->inuse;
		cc.index = 0;
		cc.s_page = src_page;

		while ((dst_page = alloc_target_page(class))) {
			cc.d_page = dst_page;
			/*
			 * If there is no more space in dst_page, try to
			 * allocate another zspage.
			 */
			if (!migrate_zspage(pool, class, &cc))
				break;

			putback_zspage(pool, class, dst_page);
			nr_total_migrated += cc.nr_migrated;
			nr_to_migrate -= cc.nr_migrated;
		}

		/* Stop if we couldn't find slot */
		if (dst_page == NULL)
			break;

		putback_zspage(pool, class, dst_page);
		putback_zspage(pool, class, src_page);
		spin_unlock(&class->lock);
		nr_total_migrated += cc.nr_migrated;
		cond_resched();
		spin_lock(&class->lock);
	}

	if (src_page)
		putback_zspage(pool, class, src_page);

	spin_unlock(&class->lock);

	return nr_total_migrated;
}

unsigned long zs_compact(struct zs_pool *pool)
{
	int i;
	unsigned long nr_migrated = 0;
	struct size_class *class;

	for (i = zs_size_classes - 1; i >= 0; i--) {
		class = pool->size_class[i];
		if (!class)
			continue;
		if (class->index != i)
			continue;
		nr_migrated += __zs_compact(pool, class);
	}

	return nr_migrated;
}
EXPORT_SYMBOL_GPL(zs_compact);
1773

1774
/**
1775 1776
 * zs_create_pool - Creates an allocation pool to work from.
 * @flags: allocation flags used to allocate pool metadata
1777
 *
1778 1779
 * This function must be called before anything when using
 * the zsmalloc allocator.
1780
 *
1781 1782
 * On success, a pointer to the newly created pool is returned,
 * otherwise NULL.
1783
 */
1784
struct zs_pool *zs_create_pool(char *name, gfp_t flags)
1785
{
1786 1787 1788
	int i;
	struct zs_pool *pool;
	struct size_class *prev_class = NULL;
1789

1790 1791 1792
	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
	if (!pool)
		return NULL;
1793

1794 1795 1796 1797 1798 1799
	pool->size_class = kcalloc(zs_size_classes, sizeof(struct size_class *),
			GFP_KERNEL);
	if (!pool->size_class) {
		kfree(pool);
		return NULL;
	}
1800

1801 1802 1803 1804 1805 1806 1807
	pool->name = kstrdup(name, GFP_KERNEL);
	if (!pool->name)
		goto err;

	if (create_handle_cache(pool))
		goto err;

1808
	/*
1809 1810
	 * Iterate reversly, because, size of size_class that we want to use
	 * for merging should be larger or equal to current size.
1811
	 */
1812 1813 1814 1815
	for (i = zs_size_classes - 1; i >= 0; i--) {
		int size;
		int pages_per_zspage;
		struct size_class *class;
1816

1817 1818 1819 1820
		size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
		if (size > ZS_MAX_ALLOC_SIZE)
			size = ZS_MAX_ALLOC_SIZE;
		pages_per_zspage = get_pages_per_zspage(size);
1821

1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844
		/*
		 * size_class is used for normal zsmalloc operation such
		 * as alloc/free for that size. Although it is natural that we
		 * have one size_class for each size, there is a chance that we
		 * can get more memory utilization if we use one size_class for
		 * many different sizes whose size_class have same
		 * characteristics. So, we makes size_class point to
		 * previous size_class if possible.
		 */
		if (prev_class) {
			if (can_merge(prev_class, size, pages_per_zspage)) {
				pool->size_class[i] = prev_class;
				continue;
			}
		}

		class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
		if (!class)
			goto err;

		class->size = size;
		class->index = i;
		class->pages_per_zspage = pages_per_zspage;
1845 1846 1847
		if (pages_per_zspage == 1 &&
			get_maxobj_per_zspage(size, pages_per_zspage) == 1)
			class->huge = true;
1848 1849 1850 1851
		spin_lock_init(&class->lock);
		pool->size_class[i] = class;

		prev_class = class;
1852 1853
	}

1854
	pool->flags = flags;
1855

1856 1857 1858
	if (zs_pool_stat_create(name, pool))
		goto err;

1859 1860 1861 1862 1863
	return pool;

err:
	zs_destroy_pool(pool);
	return NULL;
1864
}
1865
EXPORT_SYMBOL_GPL(zs_create_pool);
1866

1867
void zs_destroy_pool(struct zs_pool *pool)
1868
{
1869
	int i;
1870

1871 1872
	zs_pool_stat_destroy(pool);

1873 1874 1875
	for (i = 0; i < zs_size_classes; i++) {
		int fg;
		struct size_class *class = pool->size_class[i];
1876

1877 1878
		if (!class)
			continue;
1879

1880 1881
		if (class->index != i)
			continue;
1882

1883 1884 1885 1886 1887 1888 1889 1890
		for (fg = 0; fg < _ZS_NR_FULLNESS_GROUPS; fg++) {
			if (class->fullness_list[fg]) {
				pr_info("Freeing non-empty class with size %db, fullness group %d\n",
					class->size, fg);
			}
		}
		kfree(class);
	}
1891

1892
	destroy_handle_cache(pool);
1893
	kfree(pool->size_class);
1894
	kfree(pool->name);
1895 1896 1897
	kfree(pool);
}
EXPORT_SYMBOL_GPL(zs_destroy_pool);
1898

1899 1900 1901 1902
static int __init zs_init(void)
{
	int ret = zs_register_cpu_notifier();

1903 1904
	if (ret)
		goto notifier_fail;
1905 1906 1907 1908 1909 1910

	init_zs_size_classes();

#ifdef CONFIG_ZPOOL
	zpool_register_driver(&zs_zpool_driver);
#endif
1911 1912 1913 1914 1915 1916

	ret = zs_stat_init();
	if (ret) {
		pr_err("zs stat initialization failed\n");
		goto stat_fail;
	}
1917
	return 0;
1918 1919 1920 1921 1922 1923 1924 1925 1926

stat_fail:
#ifdef CONFIG_ZPOOL
	zpool_unregister_driver(&zs_zpool_driver);
#endif
notifier_fail:
	zs_unregister_cpu_notifier();

	return ret;
1927 1928
}

1929
static void __exit zs_exit(void)
1930
{
1931 1932 1933 1934
#ifdef CONFIG_ZPOOL
	zpool_unregister_driver(&zs_zpool_driver);
#endif
	zs_unregister_cpu_notifier();
1935 1936

	zs_stat_exit();
1937
}
1938 1939 1940 1941 1942 1943

module_init(zs_init);
module_exit(zs_exit);

MODULE_LICENSE("Dual BSD/GPL");
MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");