zsmalloc.c 46.6 KB
Newer Older
1 2 3 4
/*
 * zsmalloc memory allocator
 *
 * Copyright (C) 2011  Nitin Gupta
M
Minchan Kim 已提交
5
 * Copyright (C) 2012, 2013 Minchan Kim
6 7 8 9 10 11 12 13
 *
 * This code is released using a dual license strategy: BSD/GPL
 * You can choose the license that better fits your requirements.
 *
 * Released under the terms of 3-clause BSD License
 * Released under the terms of GNU General Public License Version 2.0
 */

N
Nitin Gupta 已提交
14
/*
N
Nitin Cupta 已提交
15 16 17 18 19 20 21
 * This allocator is designed for use with zram. Thus, the allocator is
 * supposed to work well under low memory conditions. In particular, it
 * never attempts higher order page allocation which is very likely to
 * fail under memory pressure. On the other hand, if we just use single
 * (0-order) pages, it would suffer from very high fragmentation --
 * any object of size PAGE_SIZE/2 or larger would occupy an entire page.
 * This was one of the major issues with its predecessor (xvmalloc).
N
Nitin Gupta 已提交
22 23 24 25 26 27 28
 *
 * To overcome these issues, zsmalloc allocates a bunch of 0-order pages
 * and links them together using various 'struct page' fields. These linked
 * pages act as a single higher-order page i.e. an object can span 0-order
 * page boundaries. The code refers to these linked pages as a single entity
 * called zspage.
 *
N
Nitin Cupta 已提交
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
 * For simplicity, zsmalloc can only allocate objects of size up to PAGE_SIZE
 * since this satisfies the requirements of all its current users (in the
 * worst case, page is incompressible and is thus stored "as-is" i.e. in
 * uncompressed form). For allocation requests larger than this size, failure
 * is returned (see zs_malloc).
 *
 * Additionally, zs_malloc() does not return a dereferenceable pointer.
 * Instead, it returns an opaque handle (unsigned long) which encodes actual
 * location of the allocated object. The reason for this indirection is that
 * zsmalloc does not keep zspages permanently mapped since that would cause
 * issues on 32-bit systems where the VA region for kernel space mappings
 * is very small. So, before using the allocating memory, the object has to
 * be mapped using zs_map_object() to get a usable pointer and subsequently
 * unmapped using zs_unmap_object().
 *
N
Nitin Gupta 已提交
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
 * Following is how we use various fields and flags of underlying
 * struct page(s) to form a zspage.
 *
 * Usage of struct page fields:
 *	page->first_page: points to the first component (0-order) page
 *	page->index (union with page->freelist): offset of the first object
 *		starting in this page. For the first page, this is
 *		always 0, so we use this field (aka freelist) to point
 *		to the first free object in zspage.
 *	page->lru: links together all component pages (except the first page)
 *		of a zspage
 *
 *	For _first_ page only:
 *
 *	page->private (union with page->first_page): refers to the
 *		component page after the first page
60 61
 *		If the page is first_page for huge object, it stores handle.
 *		Look at size_class->huge.
N
Nitin Gupta 已提交
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
 *	page->freelist: points to the first free object in zspage.
 *		Free objects are linked together using in-place
 *		metadata.
 *	page->objects: maximum number of objects we can store in this
 *		zspage (class->zspage_order * PAGE_SIZE / class->size)
 *	page->lru: links together first pages of various zspages.
 *		Basically forming list of zspages in a fullness group.
 *	page->mapping: class index and fullness group of the zspage
 *
 * Usage of struct page flags:
 *	PG_private: identifies the first component page
 *	PG_private2: identifies the last component page
 *
 */

77 78 79 80 81 82
#ifdef CONFIG_ZSMALLOC_DEBUG
#define DEBUG
#endif

#include <linux/module.h>
#include <linux/kernel.h>
M
Minchan Kim 已提交
83
#include <linux/sched.h>
84 85 86 87 88 89 90 91 92
#include <linux/bitops.h>
#include <linux/errno.h>
#include <linux/highmem.h>
#include <linux/string.h>
#include <linux/slab.h>
#include <asm/tlbflush.h>
#include <asm/pgtable.h>
#include <linux/cpumask.h>
#include <linux/cpu.h>
93
#include <linux/vmalloc.h>
94
#include <linux/hardirq.h>
95 96
#include <linux/spinlock.h>
#include <linux/types.h>
97
#include <linux/debugfs.h>
M
Minchan Kim 已提交
98
#include <linux/zsmalloc.h>
99
#include <linux/zpool.h>
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115

/*
 * This must be power of 2 and greater than of equal to sizeof(link_free).
 * These two conditions ensure that any 'struct link_free' itself doesn't
 * span more than 1 page which avoids complex case of mapping 2 pages simply
 * to restore link_free pointer values.
 */
#define ZS_ALIGN		8

/*
 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
 */
#define ZS_MAX_ZSPAGE_ORDER 2
#define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)

116 117
#define ZS_HANDLE_SIZE (sizeof(unsigned long))

118 119
/*
 * Object location (<PFN>, <obj_idx>) is encoded as
N
Nitin Cupta 已提交
120
 * as single (unsigned long) handle value.
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
 *
 * Note that object index <obj_idx> is relative to system
 * page <PFN> it is stored in, so for each sub-page belonging
 * to a zspage, obj_idx starts with 0.
 *
 * This is made more complicated by various memory models and PAE.
 */

#ifndef MAX_PHYSMEM_BITS
#ifdef CONFIG_HIGHMEM64G
#define MAX_PHYSMEM_BITS 36
#else /* !CONFIG_HIGHMEM64G */
/*
 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
 * be PAGE_SHIFT
 */
#define MAX_PHYSMEM_BITS BITS_PER_LONG
#endif
#endif
#define _PFN_BITS		(MAX_PHYSMEM_BITS - PAGE_SHIFT)
M
Minchan Kim 已提交
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160

/*
 * Memory for allocating for handle keeps object position by
 * encoding <page, obj_idx> and the encoded value has a room
 * in least bit(ie, look at obj_to_location).
 * We use the bit to synchronize between object access by
 * user and migration.
 */
#define HANDLE_PIN_BIT	0

/*
 * Head in allocated object should have OBJ_ALLOCATED_TAG
 * to identify the object was allocated or not.
 * It's okay to add the status bit in the least bit because
 * header keeps handle which is 4byte-aligned address so we
 * have room for two bit at least.
 */
#define OBJ_ALLOCATED_TAG 1
#define OBJ_TAG_BITS 1
#define OBJ_INDEX_BITS	(BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
161 162 163 164 165 166
#define OBJ_INDEX_MASK	((_AC(1, UL) << OBJ_INDEX_BITS) - 1)

#define MAX(a, b) ((a) >= (b) ? (a) : (b))
/* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
#define ZS_MIN_ALLOC_SIZE \
	MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
167
/* each chunk includes extra space to keep handle */
168
#define ZS_MAX_ALLOC_SIZE	PAGE_SIZE
169 170

/*
171
 * On systems with 4K page size, this gives 255 size classes! There is a
172 173 174 175 176 177 178 179 180 181 182
 * trader-off here:
 *  - Large number of size classes is potentially wasteful as free page are
 *    spread across these classes
 *  - Small number of size classes causes large internal fragmentation
 *  - Probably its better to use specific size classes (empirically
 *    determined). NOTE: all those class sizes must be set as multiple of
 *    ZS_ALIGN to make sure link_free itself never has to span 2 pages.
 *
 *  ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
 *  (reason above)
 */
183
#define ZS_SIZE_CLASS_DELTA	(PAGE_SIZE >> 8)
184 185 186 187 188 189 190 191 192 193 194 195 196

/*
 * We do not maintain any list for completely empty or full pages
 */
enum fullness_group {
	ZS_ALMOST_FULL,
	ZS_ALMOST_EMPTY,
	_ZS_NR_FULLNESS_GROUPS,

	ZS_EMPTY,
	ZS_FULL
};

197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
enum zs_stat_type {
	OBJ_ALLOCATED,
	OBJ_USED,
	NR_ZS_STAT_TYPE,
};

#ifdef CONFIG_ZSMALLOC_STAT

static struct dentry *zs_stat_root;

struct zs_size_stat {
	unsigned long objs[NR_ZS_STAT_TYPE];
};

#endif

213 214 215 216 217
/*
 * number of size_classes
 */
static int zs_size_classes;

218 219 220 221 222
/*
 * We assign a page to ZS_ALMOST_EMPTY fullness group when:
 *	n <= N / f, where
 * n = number of allocated objects
 * N = total number of objects zspage can store
223
 * f = fullness_threshold_frac
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
 *
 * Similarly, we assign zspage to:
 *	ZS_ALMOST_FULL	when n > N / f
 *	ZS_EMPTY	when n == 0
 *	ZS_FULL		when n == N
 *
 * (see: fix_fullness_group())
 */
static const int fullness_threshold_frac = 4;

struct size_class {
	/*
	 * Size of objects stored in this class. Must be multiple
	 * of ZS_ALIGN.
	 */
	int size;
	unsigned int index;

	/* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
	int pages_per_zspage;
244 245
	/* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
	bool huge;
246

247 248 249 250
#ifdef CONFIG_ZSMALLOC_STAT
	struct zs_size_stat stats;
#endif

251 252 253 254 255 256 257 258 259 260 261 262
	spinlock_t lock;

	struct page *fullness_list[_ZS_NR_FULLNESS_GROUPS];
};

/*
 * Placed within free objects to form a singly linked list.
 * For every zspage, first_page->freelist gives head of this list.
 *
 * This must be power of 2 and less than or equal to ZS_ALIGN
 */
struct link_free {
263 264 265 266 267 268 269 270 271 272 273
	union {
		/*
		 * Position of next free chunk (encodes <PFN, obj_idx>)
		 * It's valid for non-allocated object
		 */
		void *next;
		/*
		 * Handle of allocated object.
		 */
		unsigned long handle;
	};
274 275 276
};

struct zs_pool {
277 278
	char *name;

279
	struct size_class **size_class;
280
	struct kmem_cache *handle_cachep;
281 282

	gfp_t flags;	/* allocation flags used when growing pool */
283
	atomic_long_t pages_allocated;
284 285 286 287

#ifdef CONFIG_ZSMALLOC_STAT
	struct dentry *stat_dentry;
#endif
288
};
289 290 291 292 293 294 295 296 297 298

/*
 * A zspage's class index and fullness group
 * are encoded in its (first)page->mapping
 */
#define CLASS_IDX_BITS	28
#define FULLNESS_BITS	4
#define CLASS_IDX_MASK	((1 << CLASS_IDX_BITS) - 1)
#define FULLNESS_MASK	((1 << FULLNESS_BITS) - 1)

299
struct mapping_area {
300
#ifdef CONFIG_PGTABLE_MAPPING
301 302 303 304 305 306
	struct vm_struct *vm; /* vm area for mapping object that span pages */
#else
	char *vm_buf; /* copy buffer for objects that span pages */
#endif
	char *vm_addr; /* address of kmap_atomic()'ed pages */
	enum zs_mapmode vm_mm; /* mapping mode */
307
	bool huge;
308 309
};

310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
static int create_handle_cache(struct zs_pool *pool)
{
	pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
					0, 0, NULL);
	return pool->handle_cachep ? 0 : 1;
}

static void destroy_handle_cache(struct zs_pool *pool)
{
	kmem_cache_destroy(pool->handle_cachep);
}

static unsigned long alloc_handle(struct zs_pool *pool)
{
	return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
		pool->flags & ~__GFP_HIGHMEM);
}

static void free_handle(struct zs_pool *pool, unsigned long handle)
{
	kmem_cache_free(pool->handle_cachep, (void *)handle);
}

static void record_obj(unsigned long handle, unsigned long obj)
{
	*(unsigned long *)handle = obj;
}

338 339 340 341
/* zpool driver */

#ifdef CONFIG_ZPOOL

342
static void *zs_zpool_create(char *name, gfp_t gfp, struct zpool_ops *zpool_ops)
343
{
344
	return zs_create_pool(name, gfp);
345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
}

static void zs_zpool_destroy(void *pool)
{
	zs_destroy_pool(pool);
}

static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
			unsigned long *handle)
{
	*handle = zs_malloc(pool, size);
	return *handle ? 0 : -1;
}
static void zs_zpool_free(void *pool, unsigned long handle)
{
	zs_free(pool, handle);
}

static int zs_zpool_shrink(void *pool, unsigned int pages,
			unsigned int *reclaimed)
{
	return -EINVAL;
}

static void *zs_zpool_map(void *pool, unsigned long handle,
			enum zpool_mapmode mm)
{
	enum zs_mapmode zs_mm;

	switch (mm) {
	case ZPOOL_MM_RO:
		zs_mm = ZS_MM_RO;
		break;
	case ZPOOL_MM_WO:
		zs_mm = ZS_MM_WO;
		break;
	case ZPOOL_MM_RW: /* fallthru */
	default:
		zs_mm = ZS_MM_RW;
		break;
	}

	return zs_map_object(pool, handle, zs_mm);
}
static void zs_zpool_unmap(void *pool, unsigned long handle)
{
	zs_unmap_object(pool, handle);
}

static u64 zs_zpool_total_size(void *pool)
{
396
	return zs_get_total_pages(pool) << PAGE_SHIFT;
397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
}

static struct zpool_driver zs_zpool_driver = {
	.type =		"zsmalloc",
	.owner =	THIS_MODULE,
	.create =	zs_zpool_create,
	.destroy =	zs_zpool_destroy,
	.malloc =	zs_zpool_malloc,
	.free =		zs_zpool_free,
	.shrink =	zs_zpool_shrink,
	.map =		zs_zpool_map,
	.unmap =	zs_zpool_unmap,
	.total_size =	zs_zpool_total_size,
};

412
MODULE_ALIAS("zpool-zsmalloc");
413 414
#endif /* CONFIG_ZPOOL */

415 416 417 418 419
/* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
static DEFINE_PER_CPU(struct mapping_area, zs_map_area);

static int is_first_page(struct page *page)
{
420
	return PagePrivate(page);
421 422 423 424
}

static int is_last_page(struct page *page)
{
425
	return PagePrivate2(page);
426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
}

static void get_zspage_mapping(struct page *page, unsigned int *class_idx,
				enum fullness_group *fullness)
{
	unsigned long m;
	BUG_ON(!is_first_page(page));

	m = (unsigned long)page->mapping;
	*fullness = m & FULLNESS_MASK;
	*class_idx = (m >> FULLNESS_BITS) & CLASS_IDX_MASK;
}

static void set_zspage_mapping(struct page *page, unsigned int class_idx,
				enum fullness_group fullness)
{
	unsigned long m;
	BUG_ON(!is_first_page(page));

	m = ((class_idx & CLASS_IDX_MASK) << FULLNESS_BITS) |
			(fullness & FULLNESS_MASK);
	page->mapping = (struct address_space *)m;
}

N
Nitin Cupta 已提交
450 451 452 453 454 455 456
/*
 * zsmalloc divides the pool into various size classes where each
 * class maintains a list of zspages where each zspage is divided
 * into equal sized chunks. Each allocation falls into one of these
 * classes depending on its size. This function returns index of the
 * size class which has chunk size big enough to hold the give size.
 */
457 458 459 460 461 462 463 464
static int get_size_class_index(int size)
{
	int idx = 0;

	if (likely(size > ZS_MIN_ALLOC_SIZE))
		idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
				ZS_SIZE_CLASS_DELTA);

465
	return min(zs_size_classes - 1, idx);
466 467
}

N
Nitin Cupta 已提交
468 469 470 471 472 473 474
/*
 * For each size class, zspages are divided into different groups
 * depending on how "full" they are. This was done so that we could
 * easily find empty or nearly empty zspages when we try to shrink
 * the pool (not yet implemented). This function returns fullness
 * status of the given page.
 */
475 476 477 478 479 480 481 482 483 484 485 486 487
static enum fullness_group get_fullness_group(struct page *page)
{
	int inuse, max_objects;
	enum fullness_group fg;
	BUG_ON(!is_first_page(page));

	inuse = page->inuse;
	max_objects = page->objects;

	if (inuse == 0)
		fg = ZS_EMPTY;
	else if (inuse == max_objects)
		fg = ZS_FULL;
M
Minchan Kim 已提交
488
	else if (inuse <= 3 * max_objects / fullness_threshold_frac)
489 490 491 492 493 494 495
		fg = ZS_ALMOST_EMPTY;
	else
		fg = ZS_ALMOST_FULL;

	return fg;
}

N
Nitin Cupta 已提交
496 497 498 499 500 501
/*
 * Each size class maintains various freelists and zspages are assigned
 * to one of these freelists based on the number of live objects they
 * have. This functions inserts the given zspage into the freelist
 * identified by <class, fullness_group>.
 */
502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
static void insert_zspage(struct page *page, struct size_class *class,
				enum fullness_group fullness)
{
	struct page **head;

	BUG_ON(!is_first_page(page));

	if (fullness >= _ZS_NR_FULLNESS_GROUPS)
		return;

	head = &class->fullness_list[fullness];
	if (*head)
		list_add_tail(&page->lru, &(*head)->lru);

	*head = page;
}

N
Nitin Cupta 已提交
519 520 521 522
/*
 * This function removes the given zspage from the freelist identified
 * by <class, fullness_group>.
 */
523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543
static void remove_zspage(struct page *page, struct size_class *class,
				enum fullness_group fullness)
{
	struct page **head;

	BUG_ON(!is_first_page(page));

	if (fullness >= _ZS_NR_FULLNESS_GROUPS)
		return;

	head = &class->fullness_list[fullness];
	BUG_ON(!*head);
	if (list_empty(&(*head)->lru))
		*head = NULL;
	else if (*head == page)
		*head = (struct page *)list_entry((*head)->lru.next,
					struct page, lru);

	list_del_init(&page->lru);
}

N
Nitin Cupta 已提交
544 545 546 547 548 549 550 551 552
/*
 * Each size class maintains zspages in different fullness groups depending
 * on the number of live objects they contain. When allocating or freeing
 * objects, the fullness status of the page can change, say, from ALMOST_FULL
 * to ALMOST_EMPTY when freeing an object. This function checks if such
 * a status change has occurred for the given page and accordingly moves the
 * page from the freelist of the old fullness group to that of the new
 * fullness group.
 */
553
static enum fullness_group fix_fullness_group(struct size_class *class,
554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585
						struct page *page)
{
	int class_idx;
	enum fullness_group currfg, newfg;

	BUG_ON(!is_first_page(page));

	get_zspage_mapping(page, &class_idx, &currfg);
	newfg = get_fullness_group(page);
	if (newfg == currfg)
		goto out;

	remove_zspage(page, class, currfg);
	insert_zspage(page, class, newfg);
	set_zspage_mapping(page, class_idx, newfg);

out:
	return newfg;
}

/*
 * We have to decide on how many pages to link together
 * to form a zspage for each size class. This is important
 * to reduce wastage due to unusable space left at end of
 * each zspage which is given as:
 *	wastage = Zp - Zp % size_class
 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
 *
 * For example, for size class of 3/8 * PAGE_SIZE, we should
 * link together 3 PAGE_SIZE sized pages to form a zspage
 * since then we can perfectly fit in 8 such objects.
 */
586
static int get_pages_per_zspage(int class_size)
587 588 589 590 591
{
	int i, max_usedpc = 0;
	/* zspage order which gives maximum used size per KB */
	int max_usedpc_order = 1;

592
	for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628
		int zspage_size;
		int waste, usedpc;

		zspage_size = i * PAGE_SIZE;
		waste = zspage_size % class_size;
		usedpc = (zspage_size - waste) * 100 / zspage_size;

		if (usedpc > max_usedpc) {
			max_usedpc = usedpc;
			max_usedpc_order = i;
		}
	}

	return max_usedpc_order;
}

/*
 * A single 'zspage' is composed of many system pages which are
 * linked together using fields in struct page. This function finds
 * the first/head page, given any component page of a zspage.
 */
static struct page *get_first_page(struct page *page)
{
	if (is_first_page(page))
		return page;
	else
		return page->first_page;
}

static struct page *get_next_page(struct page *page)
{
	struct page *next;

	if (is_last_page(page))
		next = NULL;
	else if (is_first_page(page))
629
		next = (struct page *)page_private(page);
630 631 632 633 634 635
	else
		next = list_entry(page->lru.next, struct page, lru);

	return next;
}

636 637
/*
 * Encode <page, obj_idx> as a single handle value.
M
Minchan Kim 已提交
638
 * We use the least bit of handle for tagging.
639
 */
M
Minchan Kim 已提交
640
static void *location_to_obj(struct page *page, unsigned long obj_idx)
641
{
M
Minchan Kim 已提交
642
	unsigned long obj;
643 644 645 646 647 648

	if (!page) {
		BUG_ON(obj_idx);
		return NULL;
	}

M
Minchan Kim 已提交
649 650 651
	obj = page_to_pfn(page) << OBJ_INDEX_BITS;
	obj |= ((obj_idx) & OBJ_INDEX_MASK);
	obj <<= OBJ_TAG_BITS;
652

M
Minchan Kim 已提交
653
	return (void *)obj;
654 655
}

656 657 658
/*
 * Decode <page, obj_idx> pair from the given object handle. We adjust the
 * decoded obj_idx back to its original value since it was adjusted in
M
Minchan Kim 已提交
659
 * location_to_obj().
660
 */
M
Minchan Kim 已提交
661
static void obj_to_location(unsigned long obj, struct page **page,
662 663
				unsigned long *obj_idx)
{
M
Minchan Kim 已提交
664 665 666
	obj >>= OBJ_TAG_BITS;
	*page = pfn_to_page(obj >> OBJ_INDEX_BITS);
	*obj_idx = (obj & OBJ_INDEX_MASK);
667 668
}

669 670 671 672 673
static unsigned long handle_to_obj(unsigned long handle)
{
	return *(unsigned long *)handle;
}

674 675
static unsigned long obj_to_head(struct size_class *class, struct page *page,
			void *obj)
M
Minchan Kim 已提交
676
{
677 678 679 680 681
	if (class->huge) {
		VM_BUG_ON(!is_first_page(page));
		return *(unsigned long *)page_private(page);
	} else
		return *(unsigned long *)obj;
M
Minchan Kim 已提交
682 683
}

684 685 686 687 688 689 690 691 692 693 694
static unsigned long obj_idx_to_offset(struct page *page,
				unsigned long obj_idx, int class_size)
{
	unsigned long off = 0;

	if (!is_first_page(page))
		off = page->index;

	return off + obj_idx * class_size;
}

M
Minchan Kim 已提交
695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713
static inline int trypin_tag(unsigned long handle)
{
	unsigned long *ptr = (unsigned long *)handle;

	return !test_and_set_bit_lock(HANDLE_PIN_BIT, ptr);
}

static void pin_tag(unsigned long handle)
{
	while (!trypin_tag(handle));
}

static void unpin_tag(unsigned long handle)
{
	unsigned long *ptr = (unsigned long *)handle;

	clear_bit_unlock(HANDLE_PIN_BIT, ptr);
}

N
Nitin Gupta 已提交
714 715 716 717 718 719 720
static void reset_page(struct page *page)
{
	clear_bit(PG_private, &page->flags);
	clear_bit(PG_private_2, &page->flags);
	set_page_private(page, 0);
	page->mapping = NULL;
	page->freelist = NULL;
721
	page_mapcount_reset(page);
N
Nitin Gupta 已提交
722 723
}

724 725
static void free_zspage(struct page *first_page)
{
N
Nitin Gupta 已提交
726
	struct page *nextp, *tmp, *head_extra;
727 728 729 730

	BUG_ON(!is_first_page(first_page));
	BUG_ON(first_page->inuse);

N
Nitin Gupta 已提交
731
	head_extra = (struct page *)page_private(first_page);
732

N
Nitin Gupta 已提交
733
	reset_page(first_page);
734 735 736
	__free_page(first_page);

	/* zspage with only 1 system page */
N
Nitin Gupta 已提交
737
	if (!head_extra)
738 739
		return;

N
Nitin Gupta 已提交
740
	list_for_each_entry_safe(nextp, tmp, &head_extra->lru, lru) {
741
		list_del(&nextp->lru);
N
Nitin Gupta 已提交
742
		reset_page(nextp);
743 744
		__free_page(nextp);
	}
N
Nitin Gupta 已提交
745 746
	reset_page(head_extra);
	__free_page(head_extra);
747 748 749 750 751 752 753 754 755 756 757 758
}

/* Initialize a newly allocated zspage */
static void init_zspage(struct page *first_page, struct size_class *class)
{
	unsigned long off = 0;
	struct page *page = first_page;

	BUG_ON(!is_first_page(first_page));
	while (page) {
		struct page *next_page;
		struct link_free *link;
759
		unsigned int i = 1;
760
		void *vaddr;
761 762 763 764 765 766 767 768 769 770

		/*
		 * page->index stores offset of first object starting
		 * in the page. For the first page, this is always 0,
		 * so we use first_page->index (aka ->freelist) to store
		 * head of corresponding zspage's freelist.
		 */
		if (page != first_page)
			page->index = off;

771 772
		vaddr = kmap_atomic(page);
		link = (struct link_free *)vaddr + off / sizeof(*link);
773 774

		while ((off += class->size) < PAGE_SIZE) {
M
Minchan Kim 已提交
775
			link->next = location_to_obj(page, i++);
776
			link += class->size / sizeof(*link);
777 778 779 780 781 782 783 784
		}

		/*
		 * We now come to the last (full or partial) object on this
		 * page, which must point to the first object on the next
		 * page (if present)
		 */
		next_page = get_next_page(page);
M
Minchan Kim 已提交
785
		link->next = location_to_obj(next_page, 0);
786
		kunmap_atomic(vaddr);
787
		page = next_page;
788
		off %= PAGE_SIZE;
789 790 791 792 793 794 795 796 797
	}
}

/*
 * Allocate a zspage for the given size class
 */
static struct page *alloc_zspage(struct size_class *class, gfp_t flags)
{
	int i, error;
798
	struct page *first_page = NULL, *uninitialized_var(prev_page);
799 800 801 802 803 804 805 806 807 808 809 810 811

	/*
	 * Allocate individual pages and link them together as:
	 * 1. first page->private = first sub-page
	 * 2. all sub-pages are linked together using page->lru
	 * 3. each sub-page is linked to the first page using page->first_page
	 *
	 * For each size class, First/Head pages are linked together using
	 * page->lru. Also, we set PG_private to identify the first page
	 * (i.e. no other sub-page has this flag set) and PG_private_2 to
	 * identify the last page.
	 */
	error = -ENOMEM;
812
	for (i = 0; i < class->pages_per_zspage; i++) {
813
		struct page *page;
814 815 816 817 818 819 820

		page = alloc_page(flags);
		if (!page)
			goto cleanup;

		INIT_LIST_HEAD(&page->lru);
		if (i == 0) {	/* first page */
821
			SetPagePrivate(page);
822 823 824 825 826
			set_page_private(page, 0);
			first_page = page;
			first_page->inuse = 0;
		}
		if (i == 1)
827
			set_page_private(first_page, (unsigned long)page);
828 829 830 831
		if (i >= 1)
			page->first_page = first_page;
		if (i >= 2)
			list_add(&page->lru, &prev_page->lru);
832
		if (i == class->pages_per_zspage - 1)	/* last page */
833
			SetPagePrivate2(page);
834 835 836 837 838
		prev_page = page;
	}

	init_zspage(first_page, class);

M
Minchan Kim 已提交
839
	first_page->freelist = location_to_obj(first_page, 0);
840
	/* Maximum number of objects we can store in this zspage */
841
	first_page->objects = class->pages_per_zspage * PAGE_SIZE / class->size;
842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867

	error = 0; /* Success */

cleanup:
	if (unlikely(error) && first_page) {
		free_zspage(first_page);
		first_page = NULL;
	}

	return first_page;
}

static struct page *find_get_zspage(struct size_class *class)
{
	int i;
	struct page *page;

	for (i = 0; i < _ZS_NR_FULLNESS_GROUPS; i++) {
		page = class->fullness_list[i];
		if (page)
			break;
	}

	return page;
}

868
#ifdef CONFIG_PGTABLE_MAPPING
869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892
static inline int __zs_cpu_up(struct mapping_area *area)
{
	/*
	 * Make sure we don't leak memory if a cpu UP notification
	 * and zs_init() race and both call zs_cpu_up() on the same cpu
	 */
	if (area->vm)
		return 0;
	area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL);
	if (!area->vm)
		return -ENOMEM;
	return 0;
}

static inline void __zs_cpu_down(struct mapping_area *area)
{
	if (area->vm)
		free_vm_area(area->vm);
	area->vm = NULL;
}

static inline void *__zs_map_object(struct mapping_area *area,
				struct page *pages[2], int off, int size)
{
893
	BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages));
894 895 896 897 898 899 900 901 902
	area->vm_addr = area->vm->addr;
	return area->vm_addr + off;
}

static inline void __zs_unmap_object(struct mapping_area *area,
				struct page *pages[2], int off, int size)
{
	unsigned long addr = (unsigned long)area->vm_addr;

903
	unmap_kernel_range(addr, PAGE_SIZE * 2);
904 905
}

906
#else /* CONFIG_PGTABLE_MAPPING */
907 908 909 910 911 912 913 914 915

static inline int __zs_cpu_up(struct mapping_area *area)
{
	/*
	 * Make sure we don't leak memory if a cpu UP notification
	 * and zs_init() race and both call zs_cpu_up() on the same cpu
	 */
	if (area->vm_buf)
		return 0;
916
	area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
917 918 919 920 921 922 923
	if (!area->vm_buf)
		return -ENOMEM;
	return 0;
}

static inline void __zs_cpu_down(struct mapping_area *area)
{
924
	kfree(area->vm_buf);
925 926 927 928 929
	area->vm_buf = NULL;
}

static void *__zs_map_object(struct mapping_area *area,
			struct page *pages[2], int off, int size)
930 931 932
{
	int sizes[2];
	void *addr;
933
	char *buf = area->vm_buf;
934

935 936 937 938 939 940
	/* disable page faults to match kmap_atomic() return conditions */
	pagefault_disable();

	/* no read fastpath */
	if (area->vm_mm == ZS_MM_WO)
		goto out;
941 942 943 944 945 946 947 948 949 950 951

	sizes[0] = PAGE_SIZE - off;
	sizes[1] = size - sizes[0];

	/* copy object to per-cpu buffer */
	addr = kmap_atomic(pages[0]);
	memcpy(buf, addr + off, sizes[0]);
	kunmap_atomic(addr);
	addr = kmap_atomic(pages[1]);
	memcpy(buf + sizes[0], addr, sizes[1]);
	kunmap_atomic(addr);
952 953
out:
	return area->vm_buf;
954 955
}

956 957
static void __zs_unmap_object(struct mapping_area *area,
			struct page *pages[2], int off, int size)
958 959 960
{
	int sizes[2];
	void *addr;
961
	char *buf;
962

963 964 965
	/* no write fastpath */
	if (area->vm_mm == ZS_MM_RO)
		goto out;
966

967 968 969 970 971 972
	buf = area->vm_buf;
	if (!area->huge) {
		buf = buf + ZS_HANDLE_SIZE;
		size -= ZS_HANDLE_SIZE;
		off += ZS_HANDLE_SIZE;
	}
973

974 975 976 977 978 979 980 981 982 983
	sizes[0] = PAGE_SIZE - off;
	sizes[1] = size - sizes[0];

	/* copy per-cpu buffer to object */
	addr = kmap_atomic(pages[0]);
	memcpy(addr + off, buf, sizes[0]);
	kunmap_atomic(addr);
	addr = kmap_atomic(pages[1]);
	memcpy(addr, buf + sizes[0], sizes[1]);
	kunmap_atomic(addr);
984 985 986 987

out:
	/* enable page faults to match kunmap_atomic() return conditions */
	pagefault_enable();
988
}
989

990
#endif /* CONFIG_PGTABLE_MAPPING */
991

992 993 994
static int zs_cpu_notifier(struct notifier_block *nb, unsigned long action,
				void *pcpu)
{
995
	int ret, cpu = (long)pcpu;
996 997 998 999 1000
	struct mapping_area *area;

	switch (action) {
	case CPU_UP_PREPARE:
		area = &per_cpu(zs_map_area, cpu);
1001 1002 1003
		ret = __zs_cpu_up(area);
		if (ret)
			return notifier_from_errno(ret);
1004 1005 1006 1007
		break;
	case CPU_DEAD:
	case CPU_UP_CANCELED:
		area = &per_cpu(zs_map_area, cpu);
1008
		__zs_cpu_down(area);
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
		break;
	}

	return NOTIFY_OK;
}

static struct notifier_block zs_cpu_nb = {
	.notifier_call = zs_cpu_notifier
};

1019
static int zs_register_cpu_notifier(void)
1020
{
1021
	int cpu, uninitialized_var(ret);
1022

1023 1024 1025
	cpu_notifier_register_begin();

	__register_cpu_notifier(&zs_cpu_nb);
1026 1027
	for_each_online_cpu(cpu) {
		ret = zs_cpu_notifier(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
1028 1029
		if (notifier_to_errno(ret))
			break;
1030
	}
1031 1032

	cpu_notifier_register_done();
1033 1034
	return notifier_to_errno(ret);
}
1035

1036
static void zs_unregister_cpu_notifier(void)
1037
{
1038
	int cpu;
1039

1040
	cpu_notifier_register_begin();
1041

1042 1043 1044
	for_each_online_cpu(cpu)
		zs_cpu_notifier(NULL, CPU_DEAD, (void *)(long)cpu);
	__unregister_cpu_notifier(&zs_cpu_nb);
1045

1046
	cpu_notifier_register_done();
1047 1048
}

1049
static void init_zs_size_classes(void)
1050
{
1051
	int nr;
1052

1053 1054 1055
	nr = (ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) / ZS_SIZE_CLASS_DELTA + 1;
	if ((ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) % ZS_SIZE_CLASS_DELTA)
		nr += 1;
1056

1057
	zs_size_classes = nr;
1058 1059
}

1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
static unsigned int get_maxobj_per_zspage(int size, int pages_per_zspage)
{
	return pages_per_zspage * PAGE_SIZE / size;
}

static bool can_merge(struct size_class *prev, int size, int pages_per_zspage)
{
	if (prev->pages_per_zspage != pages_per_zspage)
		return false;

	if (get_maxobj_per_zspage(prev->size, prev->pages_per_zspage)
		!= get_maxobj_per_zspage(size, pages_per_zspage))
		return false;

	return true;
}

M
Minchan Kim 已提交
1077 1078 1079 1080 1081 1082 1083
static bool zspage_full(struct page *page)
{
	BUG_ON(!is_first_page(page));

	return page->inuse == page->objects;
}

1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
#ifdef CONFIG_ZSMALLOC_STAT

static inline void zs_stat_inc(struct size_class *class,
				enum zs_stat_type type, unsigned long cnt)
{
	class->stats.objs[type] += cnt;
}

static inline void zs_stat_dec(struct size_class *class,
				enum zs_stat_type type, unsigned long cnt)
{
	class->stats.objs[type] -= cnt;
}

static inline unsigned long zs_stat_get(struct size_class *class,
				enum zs_stat_type type)
{
	return class->stats.objs[type];
}

static int __init zs_stat_init(void)
{
	if (!debugfs_initialized())
		return -ENODEV;

	zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
	if (!zs_stat_root)
		return -ENOMEM;

	return 0;
}

static void __exit zs_stat_exit(void)
{
	debugfs_remove_recursive(zs_stat_root);
}

static int zs_stats_size_show(struct seq_file *s, void *v)
{
	int i;
	struct zs_pool *pool = s->private;
	struct size_class *class;
	int objs_per_zspage;
	unsigned long obj_allocated, obj_used, pages_used;
	unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;

	seq_printf(s, " %5s %5s %13s %10s %10s\n", "class", "size",
				"obj_allocated", "obj_used", "pages_used");

	for (i = 0; i < zs_size_classes; i++) {
		class = pool->size_class[i];

		if (class->index != i)
			continue;

		spin_lock(&class->lock);
		obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
		obj_used = zs_stat_get(class, OBJ_USED);
		spin_unlock(&class->lock);

		objs_per_zspage = get_maxobj_per_zspage(class->size,
				class->pages_per_zspage);
		pages_used = obj_allocated / objs_per_zspage *
				class->pages_per_zspage;

		seq_printf(s, " %5u %5u    %10lu %10lu %10lu\n", i,
			class->size, obj_allocated, obj_used, pages_used);

		total_objs += obj_allocated;
		total_used_objs += obj_used;
		total_pages += pages_used;
	}

	seq_puts(s, "\n");
	seq_printf(s, " %5s %5s    %10lu %10lu %10lu\n", "Total", "",
			total_objs, total_used_objs, total_pages);

	return 0;
}

static int zs_stats_size_open(struct inode *inode, struct file *file)
{
	return single_open(file, zs_stats_size_show, inode->i_private);
}

static const struct file_operations zs_stat_size_ops = {
	.open           = zs_stats_size_open,
	.read           = seq_read,
	.llseek         = seq_lseek,
	.release        = single_release,
};

static int zs_pool_stat_create(char *name, struct zs_pool *pool)
{
	struct dentry *entry;

	if (!zs_stat_root)
		return -ENODEV;

	entry = debugfs_create_dir(name, zs_stat_root);
	if (!entry) {
		pr_warn("debugfs dir <%s> creation failed\n", name);
		return -ENOMEM;
	}
	pool->stat_dentry = entry;

	entry = debugfs_create_file("obj_in_classes", S_IFREG | S_IRUGO,
			pool->stat_dentry, pool, &zs_stat_size_ops);
	if (!entry) {
		pr_warn("%s: debugfs file entry <%s> creation failed\n",
				name, "obj_in_classes");
		return -ENOMEM;
	}

	return 0;
}

static void zs_pool_stat_destroy(struct zs_pool *pool)
{
	debugfs_remove_recursive(pool->stat_dentry);
}

#else /* CONFIG_ZSMALLOC_STAT */

static inline void zs_stat_inc(struct size_class *class,
				enum zs_stat_type type, unsigned long cnt)
{
}

static inline void zs_stat_dec(struct size_class *class,
				enum zs_stat_type type, unsigned long cnt)
{
}

static inline unsigned long zs_stat_get(struct size_class *class,
				enum zs_stat_type type)
{
	return 0;
}

static int __init zs_stat_init(void)
{
	return 0;
}

static void __exit zs_stat_exit(void)
{
}

static inline int zs_pool_stat_create(char *name, struct zs_pool *pool)
{
	return 0;
}

static inline void zs_pool_stat_destroy(struct zs_pool *pool)
{
}

#endif

1244 1245 1246 1247 1248 1249
unsigned long zs_get_total_pages(struct zs_pool *pool)
{
	return atomic_long_read(&pool->pages_allocated);
}
EXPORT_SYMBOL_GPL(zs_get_total_pages);

1250
/**
1251 1252 1253
 * zs_map_object - get address of allocated object from handle.
 * @pool: pool from which the object was allocated
 * @handle: handle returned from zs_malloc
1254
 *
1255 1256 1257
 * Before using an object allocated from zs_malloc, it must be mapped using
 * this function. When done with the object, it must be unmapped using
 * zs_unmap_object.
1258
 *
1259 1260 1261 1262
 * Only one object can be mapped per cpu at a time. There is no protection
 * against nested mappings.
 *
 * This function returns with preemption and page faults disabled.
1263
 */
1264 1265
void *zs_map_object(struct zs_pool *pool, unsigned long handle,
			enum zs_mapmode mm)
1266
{
1267
	struct page *page;
1268
	unsigned long obj, obj_idx, off;
1269

1270 1271 1272 1273 1274
	unsigned int class_idx;
	enum fullness_group fg;
	struct size_class *class;
	struct mapping_area *area;
	struct page *pages[2];
1275
	void *ret;
1276

1277
	BUG_ON(!handle);
1278

1279
	/*
1280 1281 1282
	 * Because we use per-cpu mapping areas shared among the
	 * pools/users, we can't allow mapping in interrupt context
	 * because it can corrupt another users mappings.
1283
	 */
1284
	BUG_ON(in_interrupt());
1285

M
Minchan Kim 已提交
1286 1287 1288
	/* From now on, migration cannot move the object */
	pin_tag(handle);

1289 1290
	obj = handle_to_obj(handle);
	obj_to_location(obj, &page, &obj_idx);
1291 1292 1293
	get_zspage_mapping(get_first_page(page), &class_idx, &fg);
	class = pool->size_class[class_idx];
	off = obj_idx_to_offset(page, obj_idx, class->size);
1294

1295 1296 1297 1298 1299
	area = &get_cpu_var(zs_map_area);
	area->vm_mm = mm;
	if (off + class->size <= PAGE_SIZE) {
		/* this object is contained entirely within a page */
		area->vm_addr = kmap_atomic(page);
1300 1301
		ret = area->vm_addr + off;
		goto out;
1302 1303
	}

1304 1305 1306 1307
	/* this object spans two pages */
	pages[0] = page;
	pages[1] = get_next_page(page);
	BUG_ON(!pages[1]);
1308

1309 1310
	ret = __zs_map_object(area, pages, off, class->size);
out:
1311 1312 1313 1314
	if (!class->huge)
		ret += ZS_HANDLE_SIZE;

	return ret;
1315
}
1316
EXPORT_SYMBOL_GPL(zs_map_object);
1317

1318
void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1319
{
1320
	struct page *page;
1321
	unsigned long obj, obj_idx, off;
1322

1323 1324 1325 1326
	unsigned int class_idx;
	enum fullness_group fg;
	struct size_class *class;
	struct mapping_area *area;
1327

1328
	BUG_ON(!handle);
1329

1330 1331
	obj = handle_to_obj(handle);
	obj_to_location(obj, &page, &obj_idx);
1332 1333 1334
	get_zspage_mapping(get_first_page(page), &class_idx, &fg);
	class = pool->size_class[class_idx];
	off = obj_idx_to_offset(page, obj_idx, class->size);
1335

1336 1337 1338 1339 1340
	area = this_cpu_ptr(&zs_map_area);
	if (off + class->size <= PAGE_SIZE)
		kunmap_atomic(area->vm_addr);
	else {
		struct page *pages[2];
1341

1342 1343 1344 1345 1346 1347 1348
		pages[0] = page;
		pages[1] = get_next_page(page);
		BUG_ON(!pages[1]);

		__zs_unmap_object(area, pages, off, class->size);
	}
	put_cpu_var(zs_map_area);
M
Minchan Kim 已提交
1349
	unpin_tag(handle);
1350
}
1351
EXPORT_SYMBOL_GPL(zs_unmap_object);
1352

1353 1354 1355 1356 1357 1358 1359 1360 1361 1362
static unsigned long obj_malloc(struct page *first_page,
		struct size_class *class, unsigned long handle)
{
	unsigned long obj;
	struct link_free *link;

	struct page *m_page;
	unsigned long m_objidx, m_offset;
	void *vaddr;

M
Minchan Kim 已提交
1363
	handle |= OBJ_ALLOCATED_TAG;
1364 1365 1366 1367 1368 1369 1370
	obj = (unsigned long)first_page->freelist;
	obj_to_location(obj, &m_page, &m_objidx);
	m_offset = obj_idx_to_offset(m_page, m_objidx, class->size);

	vaddr = kmap_atomic(m_page);
	link = (struct link_free *)vaddr + m_offset / sizeof(*link);
	first_page->freelist = link->next;
1371 1372 1373 1374 1375 1376
	if (!class->huge)
		/* record handle in the header of allocated chunk */
		link->handle = handle;
	else
		/* record handle in first_page->private */
		set_page_private(first_page, handle);
1377 1378 1379 1380 1381 1382 1383 1384
	kunmap_atomic(vaddr);
	first_page->inuse++;
	zs_stat_inc(class, OBJ_USED, 1);

	return obj;
}


1385 1386 1387 1388 1389
/**
 * zs_malloc - Allocate block of given size from pool.
 * @pool: pool to allocate from
 * @size: size of block to allocate
 *
1390
 * On success, handle to the allocated object is returned,
1391
 * otherwise 0.
1392 1393
 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
 */
1394
unsigned long zs_malloc(struct zs_pool *pool, size_t size)
1395
{
1396
	unsigned long handle, obj;
1397
	struct size_class *class;
1398
	struct page *first_page;
1399

1400
	if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
1401 1402 1403 1404
		return 0;

	handle = alloc_handle(pool);
	if (!handle)
1405
		return 0;
1406

1407 1408
	/* extra space in chunk to keep the handle */
	size += ZS_HANDLE_SIZE;
1409
	class = pool->size_class[get_size_class_index(size)];
1410 1411 1412 1413 1414
	/* In huge class size, we store the handle into first_page->private */
	if (class->huge) {
		size -= ZS_HANDLE_SIZE;
		class = pool->size_class[get_size_class_index(size)];
	}
1415 1416 1417 1418 1419 1420 1421

	spin_lock(&class->lock);
	first_page = find_get_zspage(class);

	if (!first_page) {
		spin_unlock(&class->lock);
		first_page = alloc_zspage(class, pool->flags);
1422 1423
		if (unlikely(!first_page)) {
			free_handle(pool, handle);
1424
			return 0;
1425
		}
1426 1427

		set_zspage_mapping(first_page, class->index, ZS_EMPTY);
1428 1429
		atomic_long_add(class->pages_per_zspage,
					&pool->pages_allocated);
1430

1431
		spin_lock(&class->lock);
1432 1433
		zs_stat_inc(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
				class->size, class->pages_per_zspage));
1434 1435
	}

1436
	obj = obj_malloc(first_page, class, handle);
1437
	/* Now move the zspage to another fullness group, if required */
1438
	fix_fullness_group(class, first_page);
1439
	record_obj(handle, obj);
1440 1441
	spin_unlock(&class->lock);

1442
	return handle;
1443 1444 1445
}
EXPORT_SYMBOL_GPL(zs_malloc);

1446 1447
static void obj_free(struct zs_pool *pool, struct size_class *class,
			unsigned long obj)
1448 1449 1450
{
	struct link_free *link;
	struct page *first_page, *f_page;
1451
	unsigned long f_objidx, f_offset;
1452
	void *vaddr;
1453 1454 1455
	int class_idx;
	enum fullness_group fullness;

1456
	BUG_ON(!obj);
1457

M
Minchan Kim 已提交
1458
	obj &= ~OBJ_ALLOCATED_TAG;
1459
	obj_to_location(obj, &f_page, &f_objidx);
1460 1461 1462 1463 1464
	first_page = get_first_page(f_page);

	get_zspage_mapping(first_page, &class_idx, &fullness);
	f_offset = obj_idx_to_offset(f_page, f_objidx, class->size);

1465
	vaddr = kmap_atomic(f_page);
1466 1467

	/* Insert this object in containing zspage's freelist */
1468
	link = (struct link_free *)(vaddr + f_offset);
1469
	link->next = first_page->freelist;
1470 1471
	if (class->huge)
		set_page_private(first_page, 0);
1472
	kunmap_atomic(vaddr);
1473
	first_page->freelist = (void *)obj;
1474
	first_page->inuse--;
1475
	zs_stat_dec(class, OBJ_USED, 1);
1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488
}

void zs_free(struct zs_pool *pool, unsigned long handle)
{
	struct page *first_page, *f_page;
	unsigned long obj, f_objidx;
	int class_idx;
	struct size_class *class;
	enum fullness_group fullness;

	if (unlikely(!handle))
		return;

M
Minchan Kim 已提交
1489
	pin_tag(handle);
1490 1491 1492 1493 1494 1495 1496 1497 1498 1499
	obj = handle_to_obj(handle);
	obj_to_location(obj, &f_page, &f_objidx);
	first_page = get_first_page(f_page);

	get_zspage_mapping(first_page, &class_idx, &fullness);
	class = pool->size_class[class_idx];

	spin_lock(&class->lock);
	obj_free(pool, class, obj);
	fullness = fix_fullness_group(class, first_page);
M
Minchan Kim 已提交
1500
	if (fullness == ZS_EMPTY) {
1501 1502
		zs_stat_dec(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
				class->size, class->pages_per_zspage));
M
Minchan Kim 已提交
1503 1504 1505 1506
		atomic_long_sub(class->pages_per_zspage,
				&pool->pages_allocated);
		free_zspage(first_page);
	}
1507
	spin_unlock(&class->lock);
M
Minchan Kim 已提交
1508
	unpin_tag(handle);
1509

M
Minchan Kim 已提交
1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596
	free_handle(pool, handle);
}
EXPORT_SYMBOL_GPL(zs_free);

static void zs_object_copy(unsigned long src, unsigned long dst,
				struct size_class *class)
{
	struct page *s_page, *d_page;
	unsigned long s_objidx, d_objidx;
	unsigned long s_off, d_off;
	void *s_addr, *d_addr;
	int s_size, d_size, size;
	int written = 0;

	s_size = d_size = class->size;

	obj_to_location(src, &s_page, &s_objidx);
	obj_to_location(dst, &d_page, &d_objidx);

	s_off = obj_idx_to_offset(s_page, s_objidx, class->size);
	d_off = obj_idx_to_offset(d_page, d_objidx, class->size);

	if (s_off + class->size > PAGE_SIZE)
		s_size = PAGE_SIZE - s_off;

	if (d_off + class->size > PAGE_SIZE)
		d_size = PAGE_SIZE - d_off;

	s_addr = kmap_atomic(s_page);
	d_addr = kmap_atomic(d_page);

	while (1) {
		size = min(s_size, d_size);
		memcpy(d_addr + d_off, s_addr + s_off, size);
		written += size;

		if (written == class->size)
			break;

		if (s_off + size >= PAGE_SIZE) {
			kunmap_atomic(d_addr);
			kunmap_atomic(s_addr);
			s_page = get_next_page(s_page);
			BUG_ON(!s_page);
			s_addr = kmap_atomic(s_page);
			d_addr = kmap_atomic(d_page);
			s_size = class->size - written;
			s_off = 0;
		} else {
			s_off += size;
			s_size -= size;
		}

		if (d_off + size >= PAGE_SIZE) {
			kunmap_atomic(d_addr);
			d_page = get_next_page(d_page);
			BUG_ON(!d_page);
			d_addr = kmap_atomic(d_page);
			d_size = class->size - written;
			d_off = 0;
		} else {
			d_off += size;
			d_size -= size;
		}
	}

	kunmap_atomic(d_addr);
	kunmap_atomic(s_addr);
}

/*
 * Find alloced object in zspage from index object and
 * return handle.
 */
static unsigned long find_alloced_obj(struct page *page, int index,
					struct size_class *class)
{
	unsigned long head;
	int offset = 0;
	unsigned long handle = 0;
	void *addr = kmap_atomic(page);

	if (!is_first_page(page))
		offset = page->index;
	offset += class->size * index;

	while (offset < PAGE_SIZE) {
1597
		head = obj_to_head(class, page, addr + offset);
M
Minchan Kim 已提交
1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698
		if (head & OBJ_ALLOCATED_TAG) {
			handle = head & ~OBJ_ALLOCATED_TAG;
			if (trypin_tag(handle))
				break;
			handle = 0;
		}

		offset += class->size;
		index++;
	}

	kunmap_atomic(addr);
	return handle;
}

struct zs_compact_control {
	/* Source page for migration which could be a subpage of zspage. */
	struct page *s_page;
	/* Destination page for migration which should be a first page
	 * of zspage. */
	struct page *d_page;
	 /* Starting object index within @s_page which used for live object
	  * in the subpage. */
	int index;
	/* how many of objects are migrated */
	int nr_migrated;
};

static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
				struct zs_compact_control *cc)
{
	unsigned long used_obj, free_obj;
	unsigned long handle;
	struct page *s_page = cc->s_page;
	struct page *d_page = cc->d_page;
	unsigned long index = cc->index;
	int nr_migrated = 0;
	int ret = 0;

	while (1) {
		handle = find_alloced_obj(s_page, index, class);
		if (!handle) {
			s_page = get_next_page(s_page);
			if (!s_page)
				break;
			index = 0;
			continue;
		}

		/* Stop if there is no more space */
		if (zspage_full(d_page)) {
			unpin_tag(handle);
			ret = -ENOMEM;
			break;
		}

		used_obj = handle_to_obj(handle);
		free_obj = obj_malloc(d_page, class, handle);
		zs_object_copy(used_obj, free_obj, class);
		index++;
		record_obj(handle, free_obj);
		unpin_tag(handle);
		obj_free(pool, class, used_obj);
		nr_migrated++;
	}

	/* Remember last position in this iteration */
	cc->s_page = s_page;
	cc->index = index;
	cc->nr_migrated = nr_migrated;

	return ret;
}

static struct page *alloc_target_page(struct size_class *class)
{
	int i;
	struct page *page;

	for (i = 0; i < _ZS_NR_FULLNESS_GROUPS; i++) {
		page = class->fullness_list[i];
		if (page) {
			remove_zspage(page, class, i);
			break;
		}
	}

	return page;
}

static void putback_zspage(struct zs_pool *pool, struct size_class *class,
				struct page *first_page)
{
	int class_idx;
	enum fullness_group fullness;

	BUG_ON(!is_first_page(first_page));

	get_zspage_mapping(first_page, &class_idx, &fullness);
	insert_zspage(first_page, class, fullness);
	fullness = fix_fullness_group(class, first_page);
1699
	if (fullness == ZS_EMPTY) {
M
Minchan Kim 已提交
1700 1701
		zs_stat_dec(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
			class->size, class->pages_per_zspage));
1702 1703
		atomic_long_sub(class->pages_per_zspage,
				&pool->pages_allocated);
M
Minchan Kim 已提交
1704

1705
		free_zspage(first_page);
1706
	}
1707
}
M
Minchan Kim 已提交
1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794

static struct page *isolate_source_page(struct size_class *class)
{
	struct page *page;

	page = class->fullness_list[ZS_ALMOST_EMPTY];
	if (page)
		remove_zspage(page, class, ZS_ALMOST_EMPTY);

	return page;
}

static unsigned long __zs_compact(struct zs_pool *pool,
				struct size_class *class)
{
	int nr_to_migrate;
	struct zs_compact_control cc;
	struct page *src_page;
	struct page *dst_page = NULL;
	unsigned long nr_total_migrated = 0;

	cond_resched();

	spin_lock(&class->lock);
	while ((src_page = isolate_source_page(class))) {

		BUG_ON(!is_first_page(src_page));

		/* The goal is to migrate all live objects in source page */
		nr_to_migrate = src_page->inuse;
		cc.index = 0;
		cc.s_page = src_page;

		while ((dst_page = alloc_target_page(class))) {
			cc.d_page = dst_page;
			/*
			 * If there is no more space in dst_page, try to
			 * allocate another zspage.
			 */
			if (!migrate_zspage(pool, class, &cc))
				break;

			putback_zspage(pool, class, dst_page);
			nr_total_migrated += cc.nr_migrated;
			nr_to_migrate -= cc.nr_migrated;
		}

		/* Stop if we couldn't find slot */
		if (dst_page == NULL)
			break;

		putback_zspage(pool, class, dst_page);
		putback_zspage(pool, class, src_page);
		spin_unlock(&class->lock);
		nr_total_migrated += cc.nr_migrated;
		cond_resched();
		spin_lock(&class->lock);
	}

	if (src_page)
		putback_zspage(pool, class, src_page);

	spin_unlock(&class->lock);

	return nr_total_migrated;
}

unsigned long zs_compact(struct zs_pool *pool)
{
	int i;
	unsigned long nr_migrated = 0;
	struct size_class *class;

	for (i = zs_size_classes - 1; i >= 0; i--) {
		class = pool->size_class[i];
		if (!class)
			continue;
		if (class->index != i)
			continue;
		nr_migrated += __zs_compact(pool, class);
	}

	synchronize_rcu();

	return nr_migrated;
}
EXPORT_SYMBOL_GPL(zs_compact);
1795

1796
/**
1797 1798
 * zs_create_pool - Creates an allocation pool to work from.
 * @flags: allocation flags used to allocate pool metadata
1799
 *
1800 1801
 * This function must be called before anything when using
 * the zsmalloc allocator.
1802
 *
1803 1804
 * On success, a pointer to the newly created pool is returned,
 * otherwise NULL.
1805
 */
1806
struct zs_pool *zs_create_pool(char *name, gfp_t flags)
1807
{
1808 1809 1810
	int i;
	struct zs_pool *pool;
	struct size_class *prev_class = NULL;
1811

1812 1813 1814
	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
	if (!pool)
		return NULL;
1815

1816 1817 1818 1819 1820 1821
	pool->size_class = kcalloc(zs_size_classes, sizeof(struct size_class *),
			GFP_KERNEL);
	if (!pool->size_class) {
		kfree(pool);
		return NULL;
	}
1822

1823 1824 1825 1826 1827 1828 1829
	pool->name = kstrdup(name, GFP_KERNEL);
	if (!pool->name)
		goto err;

	if (create_handle_cache(pool))
		goto err;

1830
	/*
1831 1832
	 * Iterate reversly, because, size of size_class that we want to use
	 * for merging should be larger or equal to current size.
1833
	 */
1834 1835 1836 1837
	for (i = zs_size_classes - 1; i >= 0; i--) {
		int size;
		int pages_per_zspage;
		struct size_class *class;
1838

1839 1840 1841 1842
		size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
		if (size > ZS_MAX_ALLOC_SIZE)
			size = ZS_MAX_ALLOC_SIZE;
		pages_per_zspage = get_pages_per_zspage(size);
1843

1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866
		/*
		 * size_class is used for normal zsmalloc operation such
		 * as alloc/free for that size. Although it is natural that we
		 * have one size_class for each size, there is a chance that we
		 * can get more memory utilization if we use one size_class for
		 * many different sizes whose size_class have same
		 * characteristics. So, we makes size_class point to
		 * previous size_class if possible.
		 */
		if (prev_class) {
			if (can_merge(prev_class, size, pages_per_zspage)) {
				pool->size_class[i] = prev_class;
				continue;
			}
		}

		class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
		if (!class)
			goto err;

		class->size = size;
		class->index = i;
		class->pages_per_zspage = pages_per_zspage;
1867 1868 1869
		if (pages_per_zspage == 1 &&
			get_maxobj_per_zspage(size, pages_per_zspage) == 1)
			class->huge = true;
1870 1871 1872 1873
		spin_lock_init(&class->lock);
		pool->size_class[i] = class;

		prev_class = class;
1874 1875
	}

1876
	pool->flags = flags;
1877

1878 1879 1880
	if (zs_pool_stat_create(name, pool))
		goto err;

1881 1882 1883 1884 1885
	return pool;

err:
	zs_destroy_pool(pool);
	return NULL;
1886
}
1887
EXPORT_SYMBOL_GPL(zs_create_pool);
1888

1889
void zs_destroy_pool(struct zs_pool *pool)
1890
{
1891
	int i;
1892

1893 1894
	zs_pool_stat_destroy(pool);

1895 1896 1897
	for (i = 0; i < zs_size_classes; i++) {
		int fg;
		struct size_class *class = pool->size_class[i];
1898

1899 1900
		if (!class)
			continue;
1901

1902 1903
		if (class->index != i)
			continue;
1904

1905 1906 1907 1908 1909 1910 1911 1912
		for (fg = 0; fg < _ZS_NR_FULLNESS_GROUPS; fg++) {
			if (class->fullness_list[fg]) {
				pr_info("Freeing non-empty class with size %db, fullness group %d\n",
					class->size, fg);
			}
		}
		kfree(class);
	}
1913

1914
	destroy_handle_cache(pool);
1915
	kfree(pool->size_class);
1916
	kfree(pool->name);
1917 1918 1919
	kfree(pool);
}
EXPORT_SYMBOL_GPL(zs_destroy_pool);
1920

1921 1922 1923 1924
static int __init zs_init(void)
{
	int ret = zs_register_cpu_notifier();

1925 1926
	if (ret)
		goto notifier_fail;
1927 1928 1929 1930 1931 1932

	init_zs_size_classes();

#ifdef CONFIG_ZPOOL
	zpool_register_driver(&zs_zpool_driver);
#endif
1933 1934 1935 1936 1937 1938

	ret = zs_stat_init();
	if (ret) {
		pr_err("zs stat initialization failed\n");
		goto stat_fail;
	}
1939
	return 0;
1940 1941 1942 1943 1944 1945 1946 1947 1948

stat_fail:
#ifdef CONFIG_ZPOOL
	zpool_unregister_driver(&zs_zpool_driver);
#endif
notifier_fail:
	zs_unregister_cpu_notifier();

	return ret;
1949 1950
}

1951
static void __exit zs_exit(void)
1952
{
1953 1954 1955 1956
#ifdef CONFIG_ZPOOL
	zpool_unregister_driver(&zs_zpool_driver);
#endif
	zs_unregister_cpu_notifier();
1957 1958

	zs_stat_exit();
1959
}
1960 1961 1962 1963 1964 1965

module_init(zs_init);
module_exit(zs_exit);

MODULE_LICENSE("Dual BSD/GPL");
MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");