zsmalloc.c 45.7 KB
Newer Older
1 2 3 4
/*
 * zsmalloc memory allocator
 *
 * Copyright (C) 2011  Nitin Gupta
M
Minchan Kim 已提交
5
 * Copyright (C) 2012, 2013 Minchan Kim
6 7 8 9 10 11 12 13
 *
 * This code is released using a dual license strategy: BSD/GPL
 * You can choose the license that better fits your requirements.
 *
 * Released under the terms of 3-clause BSD License
 * Released under the terms of GNU General Public License Version 2.0
 */

N
Nitin Gupta 已提交
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * Following is how we use various fields and flags of underlying
 * struct page(s) to form a zspage.
 *
 * Usage of struct page fields:
 *	page->first_page: points to the first component (0-order) page
 *	page->index (union with page->freelist): offset of the first object
 *		starting in this page. For the first page, this is
 *		always 0, so we use this field (aka freelist) to point
 *		to the first free object in zspage.
 *	page->lru: links together all component pages (except the first page)
 *		of a zspage
 *
 *	For _first_ page only:
 *
 *	page->private (union with page->first_page): refers to the
 *		component page after the first page
31 32
 *		If the page is first_page for huge object, it stores handle.
 *		Look at size_class->huge.
N
Nitin Gupta 已提交
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
 *	page->freelist: points to the first free object in zspage.
 *		Free objects are linked together using in-place
 *		metadata.
 *	page->objects: maximum number of objects we can store in this
 *		zspage (class->zspage_order * PAGE_SIZE / class->size)
 *	page->lru: links together first pages of various zspages.
 *		Basically forming list of zspages in a fullness group.
 *	page->mapping: class index and fullness group of the zspage
 *
 * Usage of struct page flags:
 *	PG_private: identifies the first component page
 *	PG_private2: identifies the last component page
 *
 */

48 49 50 51 52 53
#ifdef CONFIG_ZSMALLOC_DEBUG
#define DEBUG
#endif

#include <linux/module.h>
#include <linux/kernel.h>
M
Minchan Kim 已提交
54
#include <linux/sched.h>
55 56 57 58 59 60 61 62 63
#include <linux/bitops.h>
#include <linux/errno.h>
#include <linux/highmem.h>
#include <linux/string.h>
#include <linux/slab.h>
#include <asm/tlbflush.h>
#include <asm/pgtable.h>
#include <linux/cpumask.h>
#include <linux/cpu.h>
64
#include <linux/vmalloc.h>
65
#include <linux/hardirq.h>
66 67
#include <linux/spinlock.h>
#include <linux/types.h>
68
#include <linux/debugfs.h>
M
Minchan Kim 已提交
69
#include <linux/zsmalloc.h>
70
#include <linux/zpool.h>
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86

/*
 * This must be power of 2 and greater than of equal to sizeof(link_free).
 * These two conditions ensure that any 'struct link_free' itself doesn't
 * span more than 1 page which avoids complex case of mapping 2 pages simply
 * to restore link_free pointer values.
 */
#define ZS_ALIGN		8

/*
 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
 */
#define ZS_MAX_ZSPAGE_ORDER 2
#define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)

87 88
#define ZS_HANDLE_SIZE (sizeof(unsigned long))

89 90
/*
 * Object location (<PFN>, <obj_idx>) is encoded as
N
Nitin Cupta 已提交
91
 * as single (unsigned long) handle value.
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
 *
 * Note that object index <obj_idx> is relative to system
 * page <PFN> it is stored in, so for each sub-page belonging
 * to a zspage, obj_idx starts with 0.
 *
 * This is made more complicated by various memory models and PAE.
 */

#ifndef MAX_PHYSMEM_BITS
#ifdef CONFIG_HIGHMEM64G
#define MAX_PHYSMEM_BITS 36
#else /* !CONFIG_HIGHMEM64G */
/*
 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
 * be PAGE_SHIFT
 */
#define MAX_PHYSMEM_BITS BITS_PER_LONG
#endif
#endif
#define _PFN_BITS		(MAX_PHYSMEM_BITS - PAGE_SHIFT)
M
Minchan Kim 已提交
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131

/*
 * Memory for allocating for handle keeps object position by
 * encoding <page, obj_idx> and the encoded value has a room
 * in least bit(ie, look at obj_to_location).
 * We use the bit to synchronize between object access by
 * user and migration.
 */
#define HANDLE_PIN_BIT	0

/*
 * Head in allocated object should have OBJ_ALLOCATED_TAG
 * to identify the object was allocated or not.
 * It's okay to add the status bit in the least bit because
 * header keeps handle which is 4byte-aligned address so we
 * have room for two bit at least.
 */
#define OBJ_ALLOCATED_TAG 1
#define OBJ_TAG_BITS 1
#define OBJ_INDEX_BITS	(BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
132 133 134 135 136 137
#define OBJ_INDEX_MASK	((_AC(1, UL) << OBJ_INDEX_BITS) - 1)

#define MAX(a, b) ((a) >= (b) ? (a) : (b))
/* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
#define ZS_MIN_ALLOC_SIZE \
	MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
138
/* each chunk includes extra space to keep handle */
139
#define ZS_MAX_ALLOC_SIZE	PAGE_SIZE
140 141

/*
142
 * On systems with 4K page size, this gives 255 size classes! There is a
143 144 145 146 147 148 149 150 151 152 153
 * trader-off here:
 *  - Large number of size classes is potentially wasteful as free page are
 *    spread across these classes
 *  - Small number of size classes causes large internal fragmentation
 *  - Probably its better to use specific size classes (empirically
 *    determined). NOTE: all those class sizes must be set as multiple of
 *    ZS_ALIGN to make sure link_free itself never has to span 2 pages.
 *
 *  ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
 *  (reason above)
 */
154
#define ZS_SIZE_CLASS_DELTA	(PAGE_SIZE >> 8)
155 156 157 158 159 160 161 162 163 164 165 166 167

/*
 * We do not maintain any list for completely empty or full pages
 */
enum fullness_group {
	ZS_ALMOST_FULL,
	ZS_ALMOST_EMPTY,
	_ZS_NR_FULLNESS_GROUPS,

	ZS_EMPTY,
	ZS_FULL
};

168 169 170
enum zs_stat_type {
	OBJ_ALLOCATED,
	OBJ_USED,
M
Minchan Kim 已提交
171 172
	CLASS_ALMOST_FULL,
	CLASS_ALMOST_EMPTY,
173 174 175 176 177 178 179 180 181 182 183 184 185
	NR_ZS_STAT_TYPE,
};

#ifdef CONFIG_ZSMALLOC_STAT

static struct dentry *zs_stat_root;

struct zs_size_stat {
	unsigned long objs[NR_ZS_STAT_TYPE];
};

#endif

186 187 188 189 190
/*
 * number of size_classes
 */
static int zs_size_classes;

191 192 193 194 195
/*
 * We assign a page to ZS_ALMOST_EMPTY fullness group when:
 *	n <= N / f, where
 * n = number of allocated objects
 * N = total number of objects zspage can store
196
 * f = fullness_threshold_frac
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
 *
 * Similarly, we assign zspage to:
 *	ZS_ALMOST_FULL	when n > N / f
 *	ZS_EMPTY	when n == 0
 *	ZS_FULL		when n == N
 *
 * (see: fix_fullness_group())
 */
static const int fullness_threshold_frac = 4;

struct size_class {
	/*
	 * Size of objects stored in this class. Must be multiple
	 * of ZS_ALIGN.
	 */
	int size;
	unsigned int index;

	/* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
	int pages_per_zspage;
217 218
	/* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
	bool huge;
219

220 221 222 223
#ifdef CONFIG_ZSMALLOC_STAT
	struct zs_size_stat stats;
#endif

224 225 226 227 228 229 230 231 232 233 234 235
	spinlock_t lock;

	struct page *fullness_list[_ZS_NR_FULLNESS_GROUPS];
};

/*
 * Placed within free objects to form a singly linked list.
 * For every zspage, first_page->freelist gives head of this list.
 *
 * This must be power of 2 and less than or equal to ZS_ALIGN
 */
struct link_free {
236 237 238 239 240 241 242 243 244 245 246
	union {
		/*
		 * Position of next free chunk (encodes <PFN, obj_idx>)
		 * It's valid for non-allocated object
		 */
		void *next;
		/*
		 * Handle of allocated object.
		 */
		unsigned long handle;
	};
247 248 249
};

struct zs_pool {
250 251
	char *name;

252
	struct size_class **size_class;
253
	struct kmem_cache *handle_cachep;
254 255

	gfp_t flags;	/* allocation flags used when growing pool */
256
	atomic_long_t pages_allocated;
257 258 259 260

#ifdef CONFIG_ZSMALLOC_STAT
	struct dentry *stat_dentry;
#endif
261
};
262 263 264 265 266 267 268 269 270 271

/*
 * A zspage's class index and fullness group
 * are encoded in its (first)page->mapping
 */
#define CLASS_IDX_BITS	28
#define FULLNESS_BITS	4
#define CLASS_IDX_MASK	((1 << CLASS_IDX_BITS) - 1)
#define FULLNESS_MASK	((1 << FULLNESS_BITS) - 1)

272
struct mapping_area {
273
#ifdef CONFIG_PGTABLE_MAPPING
274 275 276 277 278 279
	struct vm_struct *vm; /* vm area for mapping object that span pages */
#else
	char *vm_buf; /* copy buffer for objects that span pages */
#endif
	char *vm_addr; /* address of kmap_atomic()'ed pages */
	enum zs_mapmode vm_mm; /* mapping mode */
280
	bool huge;
281 282
};

283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
static int create_handle_cache(struct zs_pool *pool)
{
	pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
					0, 0, NULL);
	return pool->handle_cachep ? 0 : 1;
}

static void destroy_handle_cache(struct zs_pool *pool)
{
	kmem_cache_destroy(pool->handle_cachep);
}

static unsigned long alloc_handle(struct zs_pool *pool)
{
	return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
		pool->flags & ~__GFP_HIGHMEM);
}

static void free_handle(struct zs_pool *pool, unsigned long handle)
{
	kmem_cache_free(pool->handle_cachep, (void *)handle);
}

static void record_obj(unsigned long handle, unsigned long obj)
{
	*(unsigned long *)handle = obj;
}

311 312 313 314
/* zpool driver */

#ifdef CONFIG_ZPOOL

315
static void *zs_zpool_create(char *name, gfp_t gfp, struct zpool_ops *zpool_ops)
316
{
317
	return zs_create_pool(name, gfp);
318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
}

static void zs_zpool_destroy(void *pool)
{
	zs_destroy_pool(pool);
}

static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
			unsigned long *handle)
{
	*handle = zs_malloc(pool, size);
	return *handle ? 0 : -1;
}
static void zs_zpool_free(void *pool, unsigned long handle)
{
	zs_free(pool, handle);
}

static int zs_zpool_shrink(void *pool, unsigned int pages,
			unsigned int *reclaimed)
{
	return -EINVAL;
}

static void *zs_zpool_map(void *pool, unsigned long handle,
			enum zpool_mapmode mm)
{
	enum zs_mapmode zs_mm;

	switch (mm) {
	case ZPOOL_MM_RO:
		zs_mm = ZS_MM_RO;
		break;
	case ZPOOL_MM_WO:
		zs_mm = ZS_MM_WO;
		break;
	case ZPOOL_MM_RW: /* fallthru */
	default:
		zs_mm = ZS_MM_RW;
		break;
	}

	return zs_map_object(pool, handle, zs_mm);
}
static void zs_zpool_unmap(void *pool, unsigned long handle)
{
	zs_unmap_object(pool, handle);
}

static u64 zs_zpool_total_size(void *pool)
{
369
	return zs_get_total_pages(pool) << PAGE_SHIFT;
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
}

static struct zpool_driver zs_zpool_driver = {
	.type =		"zsmalloc",
	.owner =	THIS_MODULE,
	.create =	zs_zpool_create,
	.destroy =	zs_zpool_destroy,
	.malloc =	zs_zpool_malloc,
	.free =		zs_zpool_free,
	.shrink =	zs_zpool_shrink,
	.map =		zs_zpool_map,
	.unmap =	zs_zpool_unmap,
	.total_size =	zs_zpool_total_size,
};

385
MODULE_ALIAS("zpool-zsmalloc");
386 387
#endif /* CONFIG_ZPOOL */

M
Minchan Kim 已提交
388 389 390 391 392
static unsigned int get_maxobj_per_zspage(int size, int pages_per_zspage)
{
	return pages_per_zspage * PAGE_SIZE / size;
}

393 394 395 396 397
/* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
static DEFINE_PER_CPU(struct mapping_area, zs_map_area);

static int is_first_page(struct page *page)
{
398
	return PagePrivate(page);
399 400 401 402
}

static int is_last_page(struct page *page)
{
403
	return PagePrivate2(page);
404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
}

static void get_zspage_mapping(struct page *page, unsigned int *class_idx,
				enum fullness_group *fullness)
{
	unsigned long m;
	BUG_ON(!is_first_page(page));

	m = (unsigned long)page->mapping;
	*fullness = m & FULLNESS_MASK;
	*class_idx = (m >> FULLNESS_BITS) & CLASS_IDX_MASK;
}

static void set_zspage_mapping(struct page *page, unsigned int class_idx,
				enum fullness_group fullness)
{
	unsigned long m;
	BUG_ON(!is_first_page(page));

	m = ((class_idx & CLASS_IDX_MASK) << FULLNESS_BITS) |
			(fullness & FULLNESS_MASK);
	page->mapping = (struct address_space *)m;
}

N
Nitin Cupta 已提交
428 429 430 431 432 433 434
/*
 * zsmalloc divides the pool into various size classes where each
 * class maintains a list of zspages where each zspage is divided
 * into equal sized chunks. Each allocation falls into one of these
 * classes depending on its size. This function returns index of the
 * size class which has chunk size big enough to hold the give size.
 */
435 436 437 438 439 440 441 442
static int get_size_class_index(int size)
{
	int idx = 0;

	if (likely(size > ZS_MIN_ALLOC_SIZE))
		idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
				ZS_SIZE_CLASS_DELTA);

443
	return min(zs_size_classes - 1, idx);
444 445
}

M
Minchan Kim 已提交
446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618
#ifdef CONFIG_ZSMALLOC_STAT

static inline void zs_stat_inc(struct size_class *class,
				enum zs_stat_type type, unsigned long cnt)
{
	class->stats.objs[type] += cnt;
}

static inline void zs_stat_dec(struct size_class *class,
				enum zs_stat_type type, unsigned long cnt)
{
	class->stats.objs[type] -= cnt;
}

static inline unsigned long zs_stat_get(struct size_class *class,
				enum zs_stat_type type)
{
	return class->stats.objs[type];
}

static int __init zs_stat_init(void)
{
	if (!debugfs_initialized())
		return -ENODEV;

	zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
	if (!zs_stat_root)
		return -ENOMEM;

	return 0;
}

static void __exit zs_stat_exit(void)
{
	debugfs_remove_recursive(zs_stat_root);
}

static int zs_stats_size_show(struct seq_file *s, void *v)
{
	int i;
	struct zs_pool *pool = s->private;
	struct size_class *class;
	int objs_per_zspage;
	unsigned long class_almost_full, class_almost_empty;
	unsigned long obj_allocated, obj_used, pages_used;
	unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
	unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;

	seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s\n",
			"class", "size", "almost_full", "almost_empty",
			"obj_allocated", "obj_used", "pages_used",
			"pages_per_zspage");

	for (i = 0; i < zs_size_classes; i++) {
		class = pool->size_class[i];

		if (class->index != i)
			continue;

		spin_lock(&class->lock);
		class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
		class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
		obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
		obj_used = zs_stat_get(class, OBJ_USED);
		spin_unlock(&class->lock);

		objs_per_zspage = get_maxobj_per_zspage(class->size,
				class->pages_per_zspage);
		pages_used = obj_allocated / objs_per_zspage *
				class->pages_per_zspage;

		seq_printf(s, " %5u %5u %11lu %12lu %13lu %10lu %10lu %16d\n",
			i, class->size, class_almost_full, class_almost_empty,
			obj_allocated, obj_used, pages_used,
			class->pages_per_zspage);

		total_class_almost_full += class_almost_full;
		total_class_almost_empty += class_almost_empty;
		total_objs += obj_allocated;
		total_used_objs += obj_used;
		total_pages += pages_used;
	}

	seq_puts(s, "\n");
	seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu\n",
			"Total", "", total_class_almost_full,
			total_class_almost_empty, total_objs,
			total_used_objs, total_pages);

	return 0;
}

static int zs_stats_size_open(struct inode *inode, struct file *file)
{
	return single_open(file, zs_stats_size_show, inode->i_private);
}

static const struct file_operations zs_stat_size_ops = {
	.open           = zs_stats_size_open,
	.read           = seq_read,
	.llseek         = seq_lseek,
	.release        = single_release,
};

static int zs_pool_stat_create(char *name, struct zs_pool *pool)
{
	struct dentry *entry;

	if (!zs_stat_root)
		return -ENODEV;

	entry = debugfs_create_dir(name, zs_stat_root);
	if (!entry) {
		pr_warn("debugfs dir <%s> creation failed\n", name);
		return -ENOMEM;
	}
	pool->stat_dentry = entry;

	entry = debugfs_create_file("classes", S_IFREG | S_IRUGO,
			pool->stat_dentry, pool, &zs_stat_size_ops);
	if (!entry) {
		pr_warn("%s: debugfs file entry <%s> creation failed\n",
				name, "classes");
		return -ENOMEM;
	}

	return 0;
}

static void zs_pool_stat_destroy(struct zs_pool *pool)
{
	debugfs_remove_recursive(pool->stat_dentry);
}

#else /* CONFIG_ZSMALLOC_STAT */

static inline void zs_stat_inc(struct size_class *class,
				enum zs_stat_type type, unsigned long cnt)
{
}

static inline void zs_stat_dec(struct size_class *class,
				enum zs_stat_type type, unsigned long cnt)
{
}

static inline unsigned long zs_stat_get(struct size_class *class,
				enum zs_stat_type type)
{
	return 0;
}

static int __init zs_stat_init(void)
{
	return 0;
}

static void __exit zs_stat_exit(void)
{
}

static inline int zs_pool_stat_create(char *name, struct zs_pool *pool)
{
	return 0;
}

static inline void zs_pool_stat_destroy(struct zs_pool *pool)
{
}

#endif


N
Nitin Cupta 已提交
619 620 621 622 623 624 625
/*
 * For each size class, zspages are divided into different groups
 * depending on how "full" they are. This was done so that we could
 * easily find empty or nearly empty zspages when we try to shrink
 * the pool (not yet implemented). This function returns fullness
 * status of the given page.
 */
626 627 628 629 630 631 632 633 634 635 636 637 638
static enum fullness_group get_fullness_group(struct page *page)
{
	int inuse, max_objects;
	enum fullness_group fg;
	BUG_ON(!is_first_page(page));

	inuse = page->inuse;
	max_objects = page->objects;

	if (inuse == 0)
		fg = ZS_EMPTY;
	else if (inuse == max_objects)
		fg = ZS_FULL;
M
Minchan Kim 已提交
639
	else if (inuse <= 3 * max_objects / fullness_threshold_frac)
640 641 642 643 644 645 646
		fg = ZS_ALMOST_EMPTY;
	else
		fg = ZS_ALMOST_FULL;

	return fg;
}

N
Nitin Cupta 已提交
647 648 649 650 651 652
/*
 * Each size class maintains various freelists and zspages are assigned
 * to one of these freelists based on the number of live objects they
 * have. This functions inserts the given zspage into the freelist
 * identified by <class, fullness_group>.
 */
653 654 655 656 657 658 659 660 661 662 663 664 665 666 667
static void insert_zspage(struct page *page, struct size_class *class,
				enum fullness_group fullness)
{
	struct page **head;

	BUG_ON(!is_first_page(page));

	if (fullness >= _ZS_NR_FULLNESS_GROUPS)
		return;

	head = &class->fullness_list[fullness];
	if (*head)
		list_add_tail(&page->lru, &(*head)->lru);

	*head = page;
M
Minchan Kim 已提交
668 669
	zs_stat_inc(class, fullness == ZS_ALMOST_EMPTY ?
			CLASS_ALMOST_EMPTY : CLASS_ALMOST_FULL, 1);
670 671
}

N
Nitin Cupta 已提交
672 673 674 675
/*
 * This function removes the given zspage from the freelist identified
 * by <class, fullness_group>.
 */
676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694
static void remove_zspage(struct page *page, struct size_class *class,
				enum fullness_group fullness)
{
	struct page **head;

	BUG_ON(!is_first_page(page));

	if (fullness >= _ZS_NR_FULLNESS_GROUPS)
		return;

	head = &class->fullness_list[fullness];
	BUG_ON(!*head);
	if (list_empty(&(*head)->lru))
		*head = NULL;
	else if (*head == page)
		*head = (struct page *)list_entry((*head)->lru.next,
					struct page, lru);

	list_del_init(&page->lru);
M
Minchan Kim 已提交
695 696
	zs_stat_dec(class, fullness == ZS_ALMOST_EMPTY ?
			CLASS_ALMOST_EMPTY : CLASS_ALMOST_FULL, 1);
697 698
}

N
Nitin Cupta 已提交
699 700 701 702 703 704 705 706 707
/*
 * Each size class maintains zspages in different fullness groups depending
 * on the number of live objects they contain. When allocating or freeing
 * objects, the fullness status of the page can change, say, from ALMOST_FULL
 * to ALMOST_EMPTY when freeing an object. This function checks if such
 * a status change has occurred for the given page and accordingly moves the
 * page from the freelist of the old fullness group to that of the new
 * fullness group.
 */
708
static enum fullness_group fix_fullness_group(struct size_class *class,
709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733
						struct page *page)
{
	int class_idx;
	enum fullness_group currfg, newfg;

	BUG_ON(!is_first_page(page));

	get_zspage_mapping(page, &class_idx, &currfg);
	newfg = get_fullness_group(page);
	if (newfg == currfg)
		goto out;

	remove_zspage(page, class, currfg);
	insert_zspage(page, class, newfg);
	set_zspage_mapping(page, class_idx, newfg);

out:
	return newfg;
}

/*
 * We have to decide on how many pages to link together
 * to form a zspage for each size class. This is important
 * to reduce wastage due to unusable space left at end of
 * each zspage which is given as:
734 735
 *     wastage = Zp % class_size
 *     usage = Zp - wastage
736 737 738 739 740 741
 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
 *
 * For example, for size class of 3/8 * PAGE_SIZE, we should
 * link together 3 PAGE_SIZE sized pages to form a zspage
 * since then we can perfectly fit in 8 such objects.
 */
742
static int get_pages_per_zspage(int class_size)
743 744 745 746 747
{
	int i, max_usedpc = 0;
	/* zspage order which gives maximum used size per KB */
	int max_usedpc_order = 1;

748
	for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784
		int zspage_size;
		int waste, usedpc;

		zspage_size = i * PAGE_SIZE;
		waste = zspage_size % class_size;
		usedpc = (zspage_size - waste) * 100 / zspage_size;

		if (usedpc > max_usedpc) {
			max_usedpc = usedpc;
			max_usedpc_order = i;
		}
	}

	return max_usedpc_order;
}

/*
 * A single 'zspage' is composed of many system pages which are
 * linked together using fields in struct page. This function finds
 * the first/head page, given any component page of a zspage.
 */
static struct page *get_first_page(struct page *page)
{
	if (is_first_page(page))
		return page;
	else
		return page->first_page;
}

static struct page *get_next_page(struct page *page)
{
	struct page *next;

	if (is_last_page(page))
		next = NULL;
	else if (is_first_page(page))
785
		next = (struct page *)page_private(page);
786 787 788 789 790 791
	else
		next = list_entry(page->lru.next, struct page, lru);

	return next;
}

792 793
/*
 * Encode <page, obj_idx> as a single handle value.
M
Minchan Kim 已提交
794
 * We use the least bit of handle for tagging.
795
 */
M
Minchan Kim 已提交
796
static void *location_to_obj(struct page *page, unsigned long obj_idx)
797
{
M
Minchan Kim 已提交
798
	unsigned long obj;
799 800 801 802 803 804

	if (!page) {
		BUG_ON(obj_idx);
		return NULL;
	}

M
Minchan Kim 已提交
805 806 807
	obj = page_to_pfn(page) << OBJ_INDEX_BITS;
	obj |= ((obj_idx) & OBJ_INDEX_MASK);
	obj <<= OBJ_TAG_BITS;
808

M
Minchan Kim 已提交
809
	return (void *)obj;
810 811
}

812 813 814
/*
 * Decode <page, obj_idx> pair from the given object handle. We adjust the
 * decoded obj_idx back to its original value since it was adjusted in
M
Minchan Kim 已提交
815
 * location_to_obj().
816
 */
M
Minchan Kim 已提交
817
static void obj_to_location(unsigned long obj, struct page **page,
818 819
				unsigned long *obj_idx)
{
M
Minchan Kim 已提交
820 821 822
	obj >>= OBJ_TAG_BITS;
	*page = pfn_to_page(obj >> OBJ_INDEX_BITS);
	*obj_idx = (obj & OBJ_INDEX_MASK);
823 824
}

825 826 827 828 829
static unsigned long handle_to_obj(unsigned long handle)
{
	return *(unsigned long *)handle;
}

830 831
static unsigned long obj_to_head(struct size_class *class, struct page *page,
			void *obj)
M
Minchan Kim 已提交
832
{
833 834 835 836 837
	if (class->huge) {
		VM_BUG_ON(!is_first_page(page));
		return *(unsigned long *)page_private(page);
	} else
		return *(unsigned long *)obj;
M
Minchan Kim 已提交
838 839
}

840 841 842 843 844 845 846 847 848 849 850
static unsigned long obj_idx_to_offset(struct page *page,
				unsigned long obj_idx, int class_size)
{
	unsigned long off = 0;

	if (!is_first_page(page))
		off = page->index;

	return off + obj_idx * class_size;
}

M
Minchan Kim 已提交
851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869
static inline int trypin_tag(unsigned long handle)
{
	unsigned long *ptr = (unsigned long *)handle;

	return !test_and_set_bit_lock(HANDLE_PIN_BIT, ptr);
}

static void pin_tag(unsigned long handle)
{
	while (!trypin_tag(handle));
}

static void unpin_tag(unsigned long handle)
{
	unsigned long *ptr = (unsigned long *)handle;

	clear_bit_unlock(HANDLE_PIN_BIT, ptr);
}

N
Nitin Gupta 已提交
870 871 872 873 874 875 876
static void reset_page(struct page *page)
{
	clear_bit(PG_private, &page->flags);
	clear_bit(PG_private_2, &page->flags);
	set_page_private(page, 0);
	page->mapping = NULL;
	page->freelist = NULL;
877
	page_mapcount_reset(page);
N
Nitin Gupta 已提交
878 879
}

880 881
static void free_zspage(struct page *first_page)
{
N
Nitin Gupta 已提交
882
	struct page *nextp, *tmp, *head_extra;
883 884 885 886

	BUG_ON(!is_first_page(first_page));
	BUG_ON(first_page->inuse);

N
Nitin Gupta 已提交
887
	head_extra = (struct page *)page_private(first_page);
888

N
Nitin Gupta 已提交
889
	reset_page(first_page);
890 891 892
	__free_page(first_page);

	/* zspage with only 1 system page */
N
Nitin Gupta 已提交
893
	if (!head_extra)
894 895
		return;

N
Nitin Gupta 已提交
896
	list_for_each_entry_safe(nextp, tmp, &head_extra->lru, lru) {
897
		list_del(&nextp->lru);
N
Nitin Gupta 已提交
898
		reset_page(nextp);
899 900
		__free_page(nextp);
	}
N
Nitin Gupta 已提交
901 902
	reset_page(head_extra);
	__free_page(head_extra);
903 904 905 906 907 908 909 910 911 912 913 914
}

/* Initialize a newly allocated zspage */
static void init_zspage(struct page *first_page, struct size_class *class)
{
	unsigned long off = 0;
	struct page *page = first_page;

	BUG_ON(!is_first_page(first_page));
	while (page) {
		struct page *next_page;
		struct link_free *link;
915
		unsigned int i = 1;
916
		void *vaddr;
917 918 919 920 921 922 923 924 925 926

		/*
		 * page->index stores offset of first object starting
		 * in the page. For the first page, this is always 0,
		 * so we use first_page->index (aka ->freelist) to store
		 * head of corresponding zspage's freelist.
		 */
		if (page != first_page)
			page->index = off;

927 928
		vaddr = kmap_atomic(page);
		link = (struct link_free *)vaddr + off / sizeof(*link);
929 930

		while ((off += class->size) < PAGE_SIZE) {
M
Minchan Kim 已提交
931
			link->next = location_to_obj(page, i++);
932
			link += class->size / sizeof(*link);
933 934 935 936 937 938 939 940
		}

		/*
		 * We now come to the last (full or partial) object on this
		 * page, which must point to the first object on the next
		 * page (if present)
		 */
		next_page = get_next_page(page);
M
Minchan Kim 已提交
941
		link->next = location_to_obj(next_page, 0);
942
		kunmap_atomic(vaddr);
943
		page = next_page;
944
		off %= PAGE_SIZE;
945 946 947 948 949 950 951 952 953
	}
}

/*
 * Allocate a zspage for the given size class
 */
static struct page *alloc_zspage(struct size_class *class, gfp_t flags)
{
	int i, error;
954
	struct page *first_page = NULL, *uninitialized_var(prev_page);
955 956 957 958 959 960 961 962 963 964 965 966 967

	/*
	 * Allocate individual pages and link them together as:
	 * 1. first page->private = first sub-page
	 * 2. all sub-pages are linked together using page->lru
	 * 3. each sub-page is linked to the first page using page->first_page
	 *
	 * For each size class, First/Head pages are linked together using
	 * page->lru. Also, we set PG_private to identify the first page
	 * (i.e. no other sub-page has this flag set) and PG_private_2 to
	 * identify the last page.
	 */
	error = -ENOMEM;
968
	for (i = 0; i < class->pages_per_zspage; i++) {
969
		struct page *page;
970 971 972 973 974 975 976

		page = alloc_page(flags);
		if (!page)
			goto cleanup;

		INIT_LIST_HEAD(&page->lru);
		if (i == 0) {	/* first page */
977
			SetPagePrivate(page);
978 979 980 981 982
			set_page_private(page, 0);
			first_page = page;
			first_page->inuse = 0;
		}
		if (i == 1)
983
			set_page_private(first_page, (unsigned long)page);
984 985 986 987
		if (i >= 1)
			page->first_page = first_page;
		if (i >= 2)
			list_add(&page->lru, &prev_page->lru);
988
		if (i == class->pages_per_zspage - 1)	/* last page */
989
			SetPagePrivate2(page);
990 991 992 993 994
		prev_page = page;
	}

	init_zspage(first_page, class);

M
Minchan Kim 已提交
995
	first_page->freelist = location_to_obj(first_page, 0);
996
	/* Maximum number of objects we can store in this zspage */
997
	first_page->objects = class->pages_per_zspage * PAGE_SIZE / class->size;
998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023

	error = 0; /* Success */

cleanup:
	if (unlikely(error) && first_page) {
		free_zspage(first_page);
		first_page = NULL;
	}

	return first_page;
}

static struct page *find_get_zspage(struct size_class *class)
{
	int i;
	struct page *page;

	for (i = 0; i < _ZS_NR_FULLNESS_GROUPS; i++) {
		page = class->fullness_list[i];
		if (page)
			break;
	}

	return page;
}

1024
#ifdef CONFIG_PGTABLE_MAPPING
1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
static inline int __zs_cpu_up(struct mapping_area *area)
{
	/*
	 * Make sure we don't leak memory if a cpu UP notification
	 * and zs_init() race and both call zs_cpu_up() on the same cpu
	 */
	if (area->vm)
		return 0;
	area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL);
	if (!area->vm)
		return -ENOMEM;
	return 0;
}

static inline void __zs_cpu_down(struct mapping_area *area)
{
	if (area->vm)
		free_vm_area(area->vm);
	area->vm = NULL;
}

static inline void *__zs_map_object(struct mapping_area *area,
				struct page *pages[2], int off, int size)
{
1049
	BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages));
1050 1051 1052 1053 1054 1055 1056 1057 1058
	area->vm_addr = area->vm->addr;
	return area->vm_addr + off;
}

static inline void __zs_unmap_object(struct mapping_area *area,
				struct page *pages[2], int off, int size)
{
	unsigned long addr = (unsigned long)area->vm_addr;

1059
	unmap_kernel_range(addr, PAGE_SIZE * 2);
1060 1061
}

1062
#else /* CONFIG_PGTABLE_MAPPING */
1063 1064 1065 1066 1067 1068 1069 1070 1071

static inline int __zs_cpu_up(struct mapping_area *area)
{
	/*
	 * Make sure we don't leak memory if a cpu UP notification
	 * and zs_init() race and both call zs_cpu_up() on the same cpu
	 */
	if (area->vm_buf)
		return 0;
1072
	area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1073 1074 1075 1076 1077 1078 1079
	if (!area->vm_buf)
		return -ENOMEM;
	return 0;
}

static inline void __zs_cpu_down(struct mapping_area *area)
{
1080
	kfree(area->vm_buf);
1081 1082 1083 1084 1085
	area->vm_buf = NULL;
}

static void *__zs_map_object(struct mapping_area *area,
			struct page *pages[2], int off, int size)
1086 1087 1088
{
	int sizes[2];
	void *addr;
1089
	char *buf = area->vm_buf;
1090

1091 1092 1093 1094 1095 1096
	/* disable page faults to match kmap_atomic() return conditions */
	pagefault_disable();

	/* no read fastpath */
	if (area->vm_mm == ZS_MM_WO)
		goto out;
1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107

	sizes[0] = PAGE_SIZE - off;
	sizes[1] = size - sizes[0];

	/* copy object to per-cpu buffer */
	addr = kmap_atomic(pages[0]);
	memcpy(buf, addr + off, sizes[0]);
	kunmap_atomic(addr);
	addr = kmap_atomic(pages[1]);
	memcpy(buf + sizes[0], addr, sizes[1]);
	kunmap_atomic(addr);
1108 1109
out:
	return area->vm_buf;
1110 1111
}

1112 1113
static void __zs_unmap_object(struct mapping_area *area,
			struct page *pages[2], int off, int size)
1114 1115 1116
{
	int sizes[2];
	void *addr;
1117
	char *buf;
1118

1119 1120 1121
	/* no write fastpath */
	if (area->vm_mm == ZS_MM_RO)
		goto out;
1122

1123 1124 1125 1126 1127 1128
	buf = area->vm_buf;
	if (!area->huge) {
		buf = buf + ZS_HANDLE_SIZE;
		size -= ZS_HANDLE_SIZE;
		off += ZS_HANDLE_SIZE;
	}
1129

1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
	sizes[0] = PAGE_SIZE - off;
	sizes[1] = size - sizes[0];

	/* copy per-cpu buffer to object */
	addr = kmap_atomic(pages[0]);
	memcpy(addr + off, buf, sizes[0]);
	kunmap_atomic(addr);
	addr = kmap_atomic(pages[1]);
	memcpy(addr, buf + sizes[0], sizes[1]);
	kunmap_atomic(addr);
1140 1141 1142 1143

out:
	/* enable page faults to match kunmap_atomic() return conditions */
	pagefault_enable();
1144
}
1145

1146
#endif /* CONFIG_PGTABLE_MAPPING */
1147

1148 1149 1150
static int zs_cpu_notifier(struct notifier_block *nb, unsigned long action,
				void *pcpu)
{
1151
	int ret, cpu = (long)pcpu;
1152 1153 1154 1155 1156
	struct mapping_area *area;

	switch (action) {
	case CPU_UP_PREPARE:
		area = &per_cpu(zs_map_area, cpu);
1157 1158 1159
		ret = __zs_cpu_up(area);
		if (ret)
			return notifier_from_errno(ret);
1160 1161 1162 1163
		break;
	case CPU_DEAD:
	case CPU_UP_CANCELED:
		area = &per_cpu(zs_map_area, cpu);
1164
		__zs_cpu_down(area);
1165 1166 1167 1168 1169 1170 1171 1172 1173 1174
		break;
	}

	return NOTIFY_OK;
}

static struct notifier_block zs_cpu_nb = {
	.notifier_call = zs_cpu_notifier
};

1175
static int zs_register_cpu_notifier(void)
1176
{
1177
	int cpu, uninitialized_var(ret);
1178

1179 1180 1181
	cpu_notifier_register_begin();

	__register_cpu_notifier(&zs_cpu_nb);
1182 1183
	for_each_online_cpu(cpu) {
		ret = zs_cpu_notifier(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
1184 1185
		if (notifier_to_errno(ret))
			break;
1186
	}
1187 1188

	cpu_notifier_register_done();
1189 1190
	return notifier_to_errno(ret);
}
1191

1192
static void zs_unregister_cpu_notifier(void)
1193
{
1194
	int cpu;
1195

1196
	cpu_notifier_register_begin();
1197

1198 1199 1200
	for_each_online_cpu(cpu)
		zs_cpu_notifier(NULL, CPU_DEAD, (void *)(long)cpu);
	__unregister_cpu_notifier(&zs_cpu_nb);
1201

1202
	cpu_notifier_register_done();
1203 1204
}

1205
static void init_zs_size_classes(void)
1206
{
1207
	int nr;
1208

1209 1210 1211
	nr = (ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) / ZS_SIZE_CLASS_DELTA + 1;
	if ((ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) % ZS_SIZE_CLASS_DELTA)
		nr += 1;
1212

1213
	zs_size_classes = nr;
1214 1215
}

1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227
static bool can_merge(struct size_class *prev, int size, int pages_per_zspage)
{
	if (prev->pages_per_zspage != pages_per_zspage)
		return false;

	if (get_maxobj_per_zspage(prev->size, prev->pages_per_zspage)
		!= get_maxobj_per_zspage(size, pages_per_zspage))
		return false;

	return true;
}

M
Minchan Kim 已提交
1228 1229 1230 1231 1232 1233 1234
static bool zspage_full(struct page *page)
{
	BUG_ON(!is_first_page(page));

	return page->inuse == page->objects;
}

1235 1236 1237 1238 1239 1240
unsigned long zs_get_total_pages(struct zs_pool *pool)
{
	return atomic_long_read(&pool->pages_allocated);
}
EXPORT_SYMBOL_GPL(zs_get_total_pages);

1241
/**
1242 1243 1244
 * zs_map_object - get address of allocated object from handle.
 * @pool: pool from which the object was allocated
 * @handle: handle returned from zs_malloc
1245
 *
1246 1247 1248
 * Before using an object allocated from zs_malloc, it must be mapped using
 * this function. When done with the object, it must be unmapped using
 * zs_unmap_object.
1249
 *
1250 1251 1252 1253
 * Only one object can be mapped per cpu at a time. There is no protection
 * against nested mappings.
 *
 * This function returns with preemption and page faults disabled.
1254
 */
1255 1256
void *zs_map_object(struct zs_pool *pool, unsigned long handle,
			enum zs_mapmode mm)
1257
{
1258
	struct page *page;
1259
	unsigned long obj, obj_idx, off;
1260

1261 1262 1263 1264 1265
	unsigned int class_idx;
	enum fullness_group fg;
	struct size_class *class;
	struct mapping_area *area;
	struct page *pages[2];
1266
	void *ret;
1267

1268
	BUG_ON(!handle);
1269

1270
	/*
1271 1272 1273
	 * Because we use per-cpu mapping areas shared among the
	 * pools/users, we can't allow mapping in interrupt context
	 * because it can corrupt another users mappings.
1274
	 */
1275
	BUG_ON(in_interrupt());
1276

M
Minchan Kim 已提交
1277 1278 1279
	/* From now on, migration cannot move the object */
	pin_tag(handle);

1280 1281
	obj = handle_to_obj(handle);
	obj_to_location(obj, &page, &obj_idx);
1282 1283 1284
	get_zspage_mapping(get_first_page(page), &class_idx, &fg);
	class = pool->size_class[class_idx];
	off = obj_idx_to_offset(page, obj_idx, class->size);
1285

1286 1287 1288 1289 1290
	area = &get_cpu_var(zs_map_area);
	area->vm_mm = mm;
	if (off + class->size <= PAGE_SIZE) {
		/* this object is contained entirely within a page */
		area->vm_addr = kmap_atomic(page);
1291 1292
		ret = area->vm_addr + off;
		goto out;
1293 1294
	}

1295 1296 1297 1298
	/* this object spans two pages */
	pages[0] = page;
	pages[1] = get_next_page(page);
	BUG_ON(!pages[1]);
1299

1300 1301
	ret = __zs_map_object(area, pages, off, class->size);
out:
1302 1303 1304 1305
	if (!class->huge)
		ret += ZS_HANDLE_SIZE;

	return ret;
1306
}
1307
EXPORT_SYMBOL_GPL(zs_map_object);
1308

1309
void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1310
{
1311
	struct page *page;
1312
	unsigned long obj, obj_idx, off;
1313

1314 1315 1316 1317
	unsigned int class_idx;
	enum fullness_group fg;
	struct size_class *class;
	struct mapping_area *area;
1318

1319
	BUG_ON(!handle);
1320

1321 1322
	obj = handle_to_obj(handle);
	obj_to_location(obj, &page, &obj_idx);
1323 1324 1325
	get_zspage_mapping(get_first_page(page), &class_idx, &fg);
	class = pool->size_class[class_idx];
	off = obj_idx_to_offset(page, obj_idx, class->size);
1326

1327 1328 1329 1330 1331
	area = this_cpu_ptr(&zs_map_area);
	if (off + class->size <= PAGE_SIZE)
		kunmap_atomic(area->vm_addr);
	else {
		struct page *pages[2];
1332

1333 1334 1335 1336 1337 1338 1339
		pages[0] = page;
		pages[1] = get_next_page(page);
		BUG_ON(!pages[1]);

		__zs_unmap_object(area, pages, off, class->size);
	}
	put_cpu_var(zs_map_area);
M
Minchan Kim 已提交
1340
	unpin_tag(handle);
1341
}
1342
EXPORT_SYMBOL_GPL(zs_unmap_object);
1343

1344 1345 1346 1347 1348 1349 1350 1351 1352 1353
static unsigned long obj_malloc(struct page *first_page,
		struct size_class *class, unsigned long handle)
{
	unsigned long obj;
	struct link_free *link;

	struct page *m_page;
	unsigned long m_objidx, m_offset;
	void *vaddr;

M
Minchan Kim 已提交
1354
	handle |= OBJ_ALLOCATED_TAG;
1355 1356 1357 1358 1359 1360 1361
	obj = (unsigned long)first_page->freelist;
	obj_to_location(obj, &m_page, &m_objidx);
	m_offset = obj_idx_to_offset(m_page, m_objidx, class->size);

	vaddr = kmap_atomic(m_page);
	link = (struct link_free *)vaddr + m_offset / sizeof(*link);
	first_page->freelist = link->next;
1362 1363 1364 1365 1366 1367
	if (!class->huge)
		/* record handle in the header of allocated chunk */
		link->handle = handle;
	else
		/* record handle in first_page->private */
		set_page_private(first_page, handle);
1368 1369 1370 1371 1372 1373 1374 1375
	kunmap_atomic(vaddr);
	first_page->inuse++;
	zs_stat_inc(class, OBJ_USED, 1);

	return obj;
}


1376 1377 1378 1379 1380
/**
 * zs_malloc - Allocate block of given size from pool.
 * @pool: pool to allocate from
 * @size: size of block to allocate
 *
1381
 * On success, handle to the allocated object is returned,
1382
 * otherwise 0.
1383 1384
 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
 */
1385
unsigned long zs_malloc(struct zs_pool *pool, size_t size)
1386
{
1387
	unsigned long handle, obj;
1388
	struct size_class *class;
1389
	struct page *first_page;
1390

1391
	if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
1392 1393 1394 1395
		return 0;

	handle = alloc_handle(pool);
	if (!handle)
1396
		return 0;
1397

1398 1399
	/* extra space in chunk to keep the handle */
	size += ZS_HANDLE_SIZE;
1400
	class = pool->size_class[get_size_class_index(size)];
1401 1402 1403 1404 1405
	/* In huge class size, we store the handle into first_page->private */
	if (class->huge) {
		size -= ZS_HANDLE_SIZE;
		class = pool->size_class[get_size_class_index(size)];
	}
1406 1407 1408 1409 1410 1411 1412

	spin_lock(&class->lock);
	first_page = find_get_zspage(class);

	if (!first_page) {
		spin_unlock(&class->lock);
		first_page = alloc_zspage(class, pool->flags);
1413 1414
		if (unlikely(!first_page)) {
			free_handle(pool, handle);
1415
			return 0;
1416
		}
1417 1418

		set_zspage_mapping(first_page, class->index, ZS_EMPTY);
1419 1420
		atomic_long_add(class->pages_per_zspage,
					&pool->pages_allocated);
1421

1422
		spin_lock(&class->lock);
1423 1424
		zs_stat_inc(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
				class->size, class->pages_per_zspage));
1425 1426
	}

1427
	obj = obj_malloc(first_page, class, handle);
1428
	/* Now move the zspage to another fullness group, if required */
1429
	fix_fullness_group(class, first_page);
1430
	record_obj(handle, obj);
1431 1432
	spin_unlock(&class->lock);

1433
	return handle;
1434 1435 1436
}
EXPORT_SYMBOL_GPL(zs_malloc);

1437 1438
static void obj_free(struct zs_pool *pool, struct size_class *class,
			unsigned long obj)
1439 1440 1441
{
	struct link_free *link;
	struct page *first_page, *f_page;
1442
	unsigned long f_objidx, f_offset;
1443
	void *vaddr;
1444 1445 1446
	int class_idx;
	enum fullness_group fullness;

1447
	BUG_ON(!obj);
1448

M
Minchan Kim 已提交
1449
	obj &= ~OBJ_ALLOCATED_TAG;
1450
	obj_to_location(obj, &f_page, &f_objidx);
1451 1452 1453 1454 1455
	first_page = get_first_page(f_page);

	get_zspage_mapping(first_page, &class_idx, &fullness);
	f_offset = obj_idx_to_offset(f_page, f_objidx, class->size);

1456
	vaddr = kmap_atomic(f_page);
1457 1458

	/* Insert this object in containing zspage's freelist */
1459
	link = (struct link_free *)(vaddr + f_offset);
1460
	link->next = first_page->freelist;
1461 1462
	if (class->huge)
		set_page_private(first_page, 0);
1463
	kunmap_atomic(vaddr);
1464
	first_page->freelist = (void *)obj;
1465
	first_page->inuse--;
1466
	zs_stat_dec(class, OBJ_USED, 1);
1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479
}

void zs_free(struct zs_pool *pool, unsigned long handle)
{
	struct page *first_page, *f_page;
	unsigned long obj, f_objidx;
	int class_idx;
	struct size_class *class;
	enum fullness_group fullness;

	if (unlikely(!handle))
		return;

M
Minchan Kim 已提交
1480
	pin_tag(handle);
1481 1482 1483 1484 1485 1486 1487 1488 1489 1490
	obj = handle_to_obj(handle);
	obj_to_location(obj, &f_page, &f_objidx);
	first_page = get_first_page(f_page);

	get_zspage_mapping(first_page, &class_idx, &fullness);
	class = pool->size_class[class_idx];

	spin_lock(&class->lock);
	obj_free(pool, class, obj);
	fullness = fix_fullness_group(class, first_page);
M
Minchan Kim 已提交
1491
	if (fullness == ZS_EMPTY) {
1492 1493
		zs_stat_dec(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
				class->size, class->pages_per_zspage));
M
Minchan Kim 已提交
1494 1495 1496 1497
		atomic_long_sub(class->pages_per_zspage,
				&pool->pages_allocated);
		free_zspage(first_page);
	}
1498
	spin_unlock(&class->lock);
M
Minchan Kim 已提交
1499
	unpin_tag(handle);
1500

M
Minchan Kim 已提交
1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587
	free_handle(pool, handle);
}
EXPORT_SYMBOL_GPL(zs_free);

static void zs_object_copy(unsigned long src, unsigned long dst,
				struct size_class *class)
{
	struct page *s_page, *d_page;
	unsigned long s_objidx, d_objidx;
	unsigned long s_off, d_off;
	void *s_addr, *d_addr;
	int s_size, d_size, size;
	int written = 0;

	s_size = d_size = class->size;

	obj_to_location(src, &s_page, &s_objidx);
	obj_to_location(dst, &d_page, &d_objidx);

	s_off = obj_idx_to_offset(s_page, s_objidx, class->size);
	d_off = obj_idx_to_offset(d_page, d_objidx, class->size);

	if (s_off + class->size > PAGE_SIZE)
		s_size = PAGE_SIZE - s_off;

	if (d_off + class->size > PAGE_SIZE)
		d_size = PAGE_SIZE - d_off;

	s_addr = kmap_atomic(s_page);
	d_addr = kmap_atomic(d_page);

	while (1) {
		size = min(s_size, d_size);
		memcpy(d_addr + d_off, s_addr + s_off, size);
		written += size;

		if (written == class->size)
			break;

		if (s_off + size >= PAGE_SIZE) {
			kunmap_atomic(d_addr);
			kunmap_atomic(s_addr);
			s_page = get_next_page(s_page);
			BUG_ON(!s_page);
			s_addr = kmap_atomic(s_page);
			d_addr = kmap_atomic(d_page);
			s_size = class->size - written;
			s_off = 0;
		} else {
			s_off += size;
			s_size -= size;
		}

		if (d_off + size >= PAGE_SIZE) {
			kunmap_atomic(d_addr);
			d_page = get_next_page(d_page);
			BUG_ON(!d_page);
			d_addr = kmap_atomic(d_page);
			d_size = class->size - written;
			d_off = 0;
		} else {
			d_off += size;
			d_size -= size;
		}
	}

	kunmap_atomic(d_addr);
	kunmap_atomic(s_addr);
}

/*
 * Find alloced object in zspage from index object and
 * return handle.
 */
static unsigned long find_alloced_obj(struct page *page, int index,
					struct size_class *class)
{
	unsigned long head;
	int offset = 0;
	unsigned long handle = 0;
	void *addr = kmap_atomic(page);

	if (!is_first_page(page))
		offset = page->index;
	offset += class->size * index;

	while (offset < PAGE_SIZE) {
1588
		head = obj_to_head(class, page, addr + offset);
M
Minchan Kim 已提交
1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689
		if (head & OBJ_ALLOCATED_TAG) {
			handle = head & ~OBJ_ALLOCATED_TAG;
			if (trypin_tag(handle))
				break;
			handle = 0;
		}

		offset += class->size;
		index++;
	}

	kunmap_atomic(addr);
	return handle;
}

struct zs_compact_control {
	/* Source page for migration which could be a subpage of zspage. */
	struct page *s_page;
	/* Destination page for migration which should be a first page
	 * of zspage. */
	struct page *d_page;
	 /* Starting object index within @s_page which used for live object
	  * in the subpage. */
	int index;
	/* how many of objects are migrated */
	int nr_migrated;
};

static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
				struct zs_compact_control *cc)
{
	unsigned long used_obj, free_obj;
	unsigned long handle;
	struct page *s_page = cc->s_page;
	struct page *d_page = cc->d_page;
	unsigned long index = cc->index;
	int nr_migrated = 0;
	int ret = 0;

	while (1) {
		handle = find_alloced_obj(s_page, index, class);
		if (!handle) {
			s_page = get_next_page(s_page);
			if (!s_page)
				break;
			index = 0;
			continue;
		}

		/* Stop if there is no more space */
		if (zspage_full(d_page)) {
			unpin_tag(handle);
			ret = -ENOMEM;
			break;
		}

		used_obj = handle_to_obj(handle);
		free_obj = obj_malloc(d_page, class, handle);
		zs_object_copy(used_obj, free_obj, class);
		index++;
		record_obj(handle, free_obj);
		unpin_tag(handle);
		obj_free(pool, class, used_obj);
		nr_migrated++;
	}

	/* Remember last position in this iteration */
	cc->s_page = s_page;
	cc->index = index;
	cc->nr_migrated = nr_migrated;

	return ret;
}

static struct page *alloc_target_page(struct size_class *class)
{
	int i;
	struct page *page;

	for (i = 0; i < _ZS_NR_FULLNESS_GROUPS; i++) {
		page = class->fullness_list[i];
		if (page) {
			remove_zspage(page, class, i);
			break;
		}
	}

	return page;
}

static void putback_zspage(struct zs_pool *pool, struct size_class *class,
				struct page *first_page)
{
	int class_idx;
	enum fullness_group fullness;

	BUG_ON(!is_first_page(first_page));

	get_zspage_mapping(first_page, &class_idx, &fullness);
	insert_zspage(first_page, class, fullness);
	fullness = fix_fullness_group(class, first_page);
1690
	if (fullness == ZS_EMPTY) {
M
Minchan Kim 已提交
1691 1692
		zs_stat_dec(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
			class->size, class->pages_per_zspage));
1693 1694
		atomic_long_sub(class->pages_per_zspage,
				&pool->pages_allocated);
M
Minchan Kim 已提交
1695

1696
		free_zspage(first_page);
1697
	}
1698
}
M
Minchan Kim 已提交
1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783

static struct page *isolate_source_page(struct size_class *class)
{
	struct page *page;

	page = class->fullness_list[ZS_ALMOST_EMPTY];
	if (page)
		remove_zspage(page, class, ZS_ALMOST_EMPTY);

	return page;
}

static unsigned long __zs_compact(struct zs_pool *pool,
				struct size_class *class)
{
	int nr_to_migrate;
	struct zs_compact_control cc;
	struct page *src_page;
	struct page *dst_page = NULL;
	unsigned long nr_total_migrated = 0;

	cond_resched();

	spin_lock(&class->lock);
	while ((src_page = isolate_source_page(class))) {

		BUG_ON(!is_first_page(src_page));

		/* The goal is to migrate all live objects in source page */
		nr_to_migrate = src_page->inuse;
		cc.index = 0;
		cc.s_page = src_page;

		while ((dst_page = alloc_target_page(class))) {
			cc.d_page = dst_page;
			/*
			 * If there is no more space in dst_page, try to
			 * allocate another zspage.
			 */
			if (!migrate_zspage(pool, class, &cc))
				break;

			putback_zspage(pool, class, dst_page);
			nr_total_migrated += cc.nr_migrated;
			nr_to_migrate -= cc.nr_migrated;
		}

		/* Stop if we couldn't find slot */
		if (dst_page == NULL)
			break;

		putback_zspage(pool, class, dst_page);
		putback_zspage(pool, class, src_page);
		spin_unlock(&class->lock);
		nr_total_migrated += cc.nr_migrated;
		cond_resched();
		spin_lock(&class->lock);
	}

	if (src_page)
		putback_zspage(pool, class, src_page);

	spin_unlock(&class->lock);

	return nr_total_migrated;
}

unsigned long zs_compact(struct zs_pool *pool)
{
	int i;
	unsigned long nr_migrated = 0;
	struct size_class *class;

	for (i = zs_size_classes - 1; i >= 0; i--) {
		class = pool->size_class[i];
		if (!class)
			continue;
		if (class->index != i)
			continue;
		nr_migrated += __zs_compact(pool, class);
	}

	return nr_migrated;
}
EXPORT_SYMBOL_GPL(zs_compact);
1784

1785
/**
1786 1787
 * zs_create_pool - Creates an allocation pool to work from.
 * @flags: allocation flags used to allocate pool metadata
1788
 *
1789 1790
 * This function must be called before anything when using
 * the zsmalloc allocator.
1791
 *
1792 1793
 * On success, a pointer to the newly created pool is returned,
 * otherwise NULL.
1794
 */
1795
struct zs_pool *zs_create_pool(char *name, gfp_t flags)
1796
{
1797 1798 1799
	int i;
	struct zs_pool *pool;
	struct size_class *prev_class = NULL;
1800

1801 1802 1803
	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
	if (!pool)
		return NULL;
1804

1805 1806 1807 1808 1809 1810
	pool->size_class = kcalloc(zs_size_classes, sizeof(struct size_class *),
			GFP_KERNEL);
	if (!pool->size_class) {
		kfree(pool);
		return NULL;
	}
1811

1812 1813 1814 1815 1816 1817 1818
	pool->name = kstrdup(name, GFP_KERNEL);
	if (!pool->name)
		goto err;

	if (create_handle_cache(pool))
		goto err;

1819
	/*
1820 1821
	 * Iterate reversly, because, size of size_class that we want to use
	 * for merging should be larger or equal to current size.
1822
	 */
1823 1824 1825 1826
	for (i = zs_size_classes - 1; i >= 0; i--) {
		int size;
		int pages_per_zspage;
		struct size_class *class;
1827

1828 1829 1830 1831
		size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
		if (size > ZS_MAX_ALLOC_SIZE)
			size = ZS_MAX_ALLOC_SIZE;
		pages_per_zspage = get_pages_per_zspage(size);
1832

1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855
		/*
		 * size_class is used for normal zsmalloc operation such
		 * as alloc/free for that size. Although it is natural that we
		 * have one size_class for each size, there is a chance that we
		 * can get more memory utilization if we use one size_class for
		 * many different sizes whose size_class have same
		 * characteristics. So, we makes size_class point to
		 * previous size_class if possible.
		 */
		if (prev_class) {
			if (can_merge(prev_class, size, pages_per_zspage)) {
				pool->size_class[i] = prev_class;
				continue;
			}
		}

		class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
		if (!class)
			goto err;

		class->size = size;
		class->index = i;
		class->pages_per_zspage = pages_per_zspage;
1856 1857 1858
		if (pages_per_zspage == 1 &&
			get_maxobj_per_zspage(size, pages_per_zspage) == 1)
			class->huge = true;
1859 1860 1861 1862
		spin_lock_init(&class->lock);
		pool->size_class[i] = class;

		prev_class = class;
1863 1864
	}

1865
	pool->flags = flags;
1866

1867 1868 1869
	if (zs_pool_stat_create(name, pool))
		goto err;

1870 1871 1872 1873 1874
	return pool;

err:
	zs_destroy_pool(pool);
	return NULL;
1875
}
1876
EXPORT_SYMBOL_GPL(zs_create_pool);
1877

1878
void zs_destroy_pool(struct zs_pool *pool)
1879
{
1880
	int i;
1881

1882 1883
	zs_pool_stat_destroy(pool);

1884 1885 1886
	for (i = 0; i < zs_size_classes; i++) {
		int fg;
		struct size_class *class = pool->size_class[i];
1887

1888 1889
		if (!class)
			continue;
1890

1891 1892
		if (class->index != i)
			continue;
1893

1894 1895 1896 1897 1898 1899 1900 1901
		for (fg = 0; fg < _ZS_NR_FULLNESS_GROUPS; fg++) {
			if (class->fullness_list[fg]) {
				pr_info("Freeing non-empty class with size %db, fullness group %d\n",
					class->size, fg);
			}
		}
		kfree(class);
	}
1902

1903
	destroy_handle_cache(pool);
1904
	kfree(pool->size_class);
1905
	kfree(pool->name);
1906 1907 1908
	kfree(pool);
}
EXPORT_SYMBOL_GPL(zs_destroy_pool);
1909

1910 1911 1912 1913
static int __init zs_init(void)
{
	int ret = zs_register_cpu_notifier();

1914 1915
	if (ret)
		goto notifier_fail;
1916 1917 1918 1919 1920 1921

	init_zs_size_classes();

#ifdef CONFIG_ZPOOL
	zpool_register_driver(&zs_zpool_driver);
#endif
1922 1923 1924 1925 1926 1927

	ret = zs_stat_init();
	if (ret) {
		pr_err("zs stat initialization failed\n");
		goto stat_fail;
	}
1928
	return 0;
1929 1930 1931 1932 1933 1934 1935 1936 1937

stat_fail:
#ifdef CONFIG_ZPOOL
	zpool_unregister_driver(&zs_zpool_driver);
#endif
notifier_fail:
	zs_unregister_cpu_notifier();

	return ret;
1938 1939
}

1940
static void __exit zs_exit(void)
1941
{
1942 1943 1944 1945
#ifdef CONFIG_ZPOOL
	zpool_unregister_driver(&zs_zpool_driver);
#endif
	zs_unregister_cpu_notifier();
1946 1947

	zs_stat_exit();
1948
}
1949 1950 1951 1952 1953 1954

module_init(zs_init);
module_exit(zs_exit);

MODULE_LICENSE("Dual BSD/GPL");
MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");