xfs_file.c 39.4 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2 3
 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
 * All Rights Reserved.
L
Linus Torvalds 已提交
4
 *
5 6
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
L
Linus Torvalds 已提交
7 8
 * published by the Free Software Foundation.
 *
9 10 11 12
 * This program is distributed in the hope that it would be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
L
Linus Torvalds 已提交
13
 *
14 15 16
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write the Free Software Foundation,
 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
L
Linus Torvalds 已提交
17 18
 */
#include "xfs.h"
19
#include "xfs_fs.h"
20
#include "xfs_shared.h"
21
#include "xfs_format.h"
22 23
#include "xfs_log_format.h"
#include "xfs_trans_resv.h"
L
Linus Torvalds 已提交
24
#include "xfs_mount.h"
25 26
#include "xfs_da_format.h"
#include "xfs_da_btree.h"
L
Linus Torvalds 已提交
27
#include "xfs_inode.h"
28
#include "xfs_trans.h"
29
#include "xfs_inode_item.h"
30
#include "xfs_bmap.h"
D
Dave Chinner 已提交
31
#include "xfs_bmap_util.h"
L
Linus Torvalds 已提交
32
#include "xfs_error.h"
33
#include "xfs_dir2.h"
D
Dave Chinner 已提交
34
#include "xfs_dir2_priv.h"
35
#include "xfs_ioctl.h"
36
#include "xfs_trace.h"
37
#include "xfs_log.h"
38
#include "xfs_icache.h"
39
#include "xfs_pnfs.h"
L
Linus Torvalds 已提交
40 41

#include <linux/dcache.h>
42
#include <linux/falloc.h>
43
#include <linux/pagevec.h>
L
Linus Torvalds 已提交
44

45
static const struct vm_operations_struct xfs_file_vm_ops;
L
Linus Torvalds 已提交
46

47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
/*
 * Locking primitives for read and write IO paths to ensure we consistently use
 * and order the inode->i_mutex, ip->i_lock and ip->i_iolock.
 */
static inline void
xfs_rw_ilock(
	struct xfs_inode	*ip,
	int			type)
{
	if (type & XFS_IOLOCK_EXCL)
		mutex_lock(&VFS_I(ip)->i_mutex);
	xfs_ilock(ip, type);
}

static inline void
xfs_rw_iunlock(
	struct xfs_inode	*ip,
	int			type)
{
	xfs_iunlock(ip, type);
	if (type & XFS_IOLOCK_EXCL)
		mutex_unlock(&VFS_I(ip)->i_mutex);
}

static inline void
xfs_rw_ilock_demote(
	struct xfs_inode	*ip,
	int			type)
{
	xfs_ilock_demote(ip, type);
	if (type & XFS_IOLOCK_EXCL)
		mutex_unlock(&VFS_I(ip)->i_mutex);
}

81 82 83 84 85 86 87 88 89 90
/*
 *	xfs_iozero
 *
 *	xfs_iozero clears the specified range of buffer supplied,
 *	and marks all the affected blocks as valid and modified.  If
 *	an affected block is not allocated, it will be allocated.  If
 *	an affected block is not completely overwritten, and is not
 *	valid before the operation, it will be read from disk before
 *	being partially zeroed.
 */
91
int
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
xfs_iozero(
	struct xfs_inode	*ip,	/* inode			*/
	loff_t			pos,	/* offset in file		*/
	size_t			count)	/* size of data to zero		*/
{
	struct page		*page;
	struct address_space	*mapping;
	int			status;

	mapping = VFS_I(ip)->i_mapping;
	do {
		unsigned offset, bytes;
		void *fsdata;

		offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
		bytes = PAGE_CACHE_SIZE - offset;
		if (bytes > count)
			bytes = count;

		status = pagecache_write_begin(NULL, mapping, pos, bytes,
					AOP_FLAG_UNINTERRUPTIBLE,
					&page, &fsdata);
		if (status)
			break;

		zero_user(page, offset, bytes);

		status = pagecache_write_end(NULL, mapping, pos, bytes, bytes,
					page, fsdata);
		WARN_ON(status <= 0); /* can't return less than zero! */
		pos += bytes;
		count -= bytes;
		status = 0;
	} while (count);

	return (-status);
}

130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
int
xfs_update_prealloc_flags(
	struct xfs_inode	*ip,
	enum xfs_prealloc_flags	flags)
{
	struct xfs_trans	*tp;
	int			error;

	tp = xfs_trans_alloc(ip->i_mount, XFS_TRANS_WRITEID);
	error = xfs_trans_reserve(tp, &M_RES(ip->i_mount)->tr_writeid, 0, 0);
	if (error) {
		xfs_trans_cancel(tp, 0);
		return error;
	}

	xfs_ilock(ip, XFS_ILOCK_EXCL);
	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);

	if (!(flags & XFS_PREALLOC_INVISIBLE)) {
		ip->i_d.di_mode &= ~S_ISUID;
		if (ip->i_d.di_mode & S_IXGRP)
			ip->i_d.di_mode &= ~S_ISGID;
		xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
	}

	if (flags & XFS_PREALLOC_SET)
		ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC;
	if (flags & XFS_PREALLOC_CLEAR)
		ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC;

	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
	if (flags & XFS_PREALLOC_SYNC)
		xfs_trans_set_sync(tp);
	return xfs_trans_commit(tp, 0);
}

166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
/*
 * Fsync operations on directories are much simpler than on regular files,
 * as there is no file data to flush, and thus also no need for explicit
 * cache flush operations, and there are no non-transaction metadata updates
 * on directories either.
 */
STATIC int
xfs_dir_fsync(
	struct file		*file,
	loff_t			start,
	loff_t			end,
	int			datasync)
{
	struct xfs_inode	*ip = XFS_I(file->f_mapping->host);
	struct xfs_mount	*mp = ip->i_mount;
	xfs_lsn_t		lsn = 0;

	trace_xfs_dir_fsync(ip);

	xfs_ilock(ip, XFS_ILOCK_SHARED);
	if (xfs_ipincount(ip))
		lsn = ip->i_itemp->ili_last_lsn;
	xfs_iunlock(ip, XFS_ILOCK_SHARED);

	if (!lsn)
		return 0;
D
Dave Chinner 已提交
192
	return _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL);
193 194
}

195 196 197
STATIC int
xfs_file_fsync(
	struct file		*file,
198 199
	loff_t			start,
	loff_t			end,
200 201
	int			datasync)
{
202 203
	struct inode		*inode = file->f_mapping->host;
	struct xfs_inode	*ip = XFS_I(inode);
204
	struct xfs_mount	*mp = ip->i_mount;
205 206
	int			error = 0;
	int			log_flushed = 0;
207
	xfs_lsn_t		lsn = 0;
208

C
Christoph Hellwig 已提交
209
	trace_xfs_file_fsync(ip);
210

211 212 213 214
	error = filemap_write_and_wait_range(inode->i_mapping, start, end);
	if (error)
		return error;

215
	if (XFS_FORCED_SHUTDOWN(mp))
E
Eric Sandeen 已提交
216
		return -EIO;
217 218 219

	xfs_iflags_clear(ip, XFS_ITRUNCATED);

220 221 222 223 224 225 226 227 228 229 230 231 232 233
	if (mp->m_flags & XFS_MOUNT_BARRIER) {
		/*
		 * If we have an RT and/or log subvolume we need to make sure
		 * to flush the write cache the device used for file data
		 * first.  This is to ensure newly written file data make
		 * it to disk before logging the new inode size in case of
		 * an extending write.
		 */
		if (XFS_IS_REALTIME_INODE(ip))
			xfs_blkdev_issue_flush(mp->m_rtdev_targp);
		else if (mp->m_logdev_targp != mp->m_ddev_targp)
			xfs_blkdev_issue_flush(mp->m_ddev_targp);
	}

234
	/*
C
Christoph Hellwig 已提交
235 236
	 * All metadata updates are logged, which means that we just have
	 * to flush the log up to the latest LSN that touched the inode.
237 238
	 */
	xfs_ilock(ip, XFS_ILOCK_SHARED);
239 240 241 242 243
	if (xfs_ipincount(ip)) {
		if (!datasync ||
		    (ip->i_itemp->ili_fields & ~XFS_ILOG_TIMESTAMP))
			lsn = ip->i_itemp->ili_last_lsn;
	}
C
Christoph Hellwig 已提交
244
	xfs_iunlock(ip, XFS_ILOCK_SHARED);
245

C
Christoph Hellwig 已提交
246
	if (lsn)
247 248
		error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);

249 250 251 252 253 254 255 256 257 258 259 260
	/*
	 * If we only have a single device, and the log force about was
	 * a no-op we might have to flush the data device cache here.
	 * This can only happen for fdatasync/O_DSYNC if we were overwriting
	 * an already allocated file and thus do not have any metadata to
	 * commit.
	 */
	if ((mp->m_flags & XFS_MOUNT_BARRIER) &&
	    mp->m_logdev_targp == mp->m_ddev_targp &&
	    !XFS_IS_REALTIME_INODE(ip) &&
	    !log_flushed)
		xfs_blkdev_issue_flush(mp->m_ddev_targp);
261

D
Dave Chinner 已提交
262
	return error;
263 264
}

265
STATIC ssize_t
A
Al Viro 已提交
266
xfs_file_read_iter(
267
	struct kiocb		*iocb,
A
Al Viro 已提交
268
	struct iov_iter		*to)
269 270 271
{
	struct file		*file = iocb->ki_filp;
	struct inode		*inode = file->f_mapping->host;
272 273
	struct xfs_inode	*ip = XFS_I(inode);
	struct xfs_mount	*mp = ip->i_mount;
A
Al Viro 已提交
274
	size_t			size = iov_iter_count(to);
275
	ssize_t			ret = 0;
276
	int			ioflags = 0;
277
	xfs_fsize_t		n;
A
Al Viro 已提交
278
	loff_t			pos = iocb->ki_pos;
279 280 281

	XFS_STATS_INC(xs_read_calls);

282
	if (unlikely(iocb->ki_flags & IOCB_DIRECT))
D
Dave Chinner 已提交
283
		ioflags |= XFS_IO_ISDIRECT;
284
	if (file->f_mode & FMODE_NOCMTIME)
D
Dave Chinner 已提交
285
		ioflags |= XFS_IO_INVIS;
286

D
Dave Chinner 已提交
287
	if (unlikely(ioflags & XFS_IO_ISDIRECT)) {
288 289 290
		xfs_buftarg_t	*target =
			XFS_IS_REALTIME_INODE(ip) ?
				mp->m_rtdev_targp : mp->m_ddev_targp;
291 292
		/* DIO must be aligned to device logical sector size */
		if ((pos | size) & target->bt_logical_sectormask) {
D
Dave Chinner 已提交
293
			if (pos == i_size_read(inode))
294
				return 0;
E
Eric Sandeen 已提交
295
			return -EINVAL;
296 297 298
		}
	}

D
Dave Chinner 已提交
299
	n = mp->m_super->s_maxbytes - pos;
300
	if (n <= 0 || size == 0)
301 302 303 304 305 306 307 308
		return 0;

	if (n < size)
		size = n;

	if (XFS_FORCED_SHUTDOWN(mp))
		return -EIO;

309 310 311 312 313 314 315 316 317 318 319
	/*
	 * Locking is a bit tricky here. If we take an exclusive lock
	 * for direct IO, we effectively serialise all new concurrent
	 * read IO to this file and block it behind IO that is currently in
	 * progress because IO in progress holds the IO lock shared. We only
	 * need to hold the lock exclusive to blow away the page cache, so
	 * only take lock exclusively if the page cache needs invalidation.
	 * This allows the normal direct IO case of no page cache pages to
	 * proceeed concurrently without serialisation.
	 */
	xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
D
Dave Chinner 已提交
320
	if ((ioflags & XFS_IO_ISDIRECT) && inode->i_mapping->nrpages) {
321
		xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
322 323
		xfs_rw_ilock(ip, XFS_IOLOCK_EXCL);

324
		if (inode->i_mapping->nrpages) {
325
			ret = filemap_write_and_wait_range(
D
Dave Chinner 已提交
326
							VFS_I(ip)->i_mapping,
327
							pos, pos + size - 1);
328 329 330 331
			if (ret) {
				xfs_rw_iunlock(ip, XFS_IOLOCK_EXCL);
				return ret;
			}
332 333 334 335 336 337 338

			/*
			 * Invalidate whole pages. This can return an error if
			 * we fail to invalidate a page, but this should never
			 * happen on XFS. Warn if it does fail.
			 */
			ret = invalidate_inode_pages2_range(VFS_I(ip)->i_mapping,
339 340
					pos >> PAGE_CACHE_SHIFT,
					(pos + size - 1) >> PAGE_CACHE_SHIFT);
341 342
			WARN_ON_ONCE(ret);
			ret = 0;
343
		}
344
		xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
345
	}
346

D
Dave Chinner 已提交
347
	trace_xfs_file_read(ip, size, pos, ioflags);
348

A
Al Viro 已提交
349
	ret = generic_file_read_iter(iocb, to);
350 351 352
	if (ret > 0)
		XFS_STATS_ADD(xs_read_bytes, ret);

353
	xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
354 355 356
	return ret;
}

357 358
STATIC ssize_t
xfs_file_splice_read(
359 360 361 362
	struct file		*infilp,
	loff_t			*ppos,
	struct pipe_inode_info	*pipe,
	size_t			count,
363
	unsigned int		flags)
364
{
365 366
	struct xfs_inode	*ip = XFS_I(infilp->f_mapping->host);
	int			ioflags = 0;
367 368 369
	ssize_t			ret;

	XFS_STATS_INC(xs_read_calls);
370 371

	if (infilp->f_mode & FMODE_NOCMTIME)
D
Dave Chinner 已提交
372
		ioflags |= XFS_IO_INVIS;
373

374 375 376
	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
		return -EIO;

377
	xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
378 379 380 381 382 383 384

	trace_xfs_file_splice_read(ip, count, *ppos, ioflags);

	ret = generic_file_splice_read(infilp, ppos, pipe, count, flags);
	if (ret > 0)
		XFS_STATS_ADD(xs_read_bytes, ret);

385
	xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
386 387 388 389
	return ret;
}

/*
390 391 392 393
 * This routine is called to handle zeroing any space in the last block of the
 * file that is beyond the EOF.  We do this since the size is being increased
 * without writing anything to that block and we don't want to read the
 * garbage on the disk.
394 395 396
 */
STATIC int				/* error (positive) */
xfs_zero_last_block(
397 398
	struct xfs_inode	*ip,
	xfs_fsize_t		offset,
399 400
	xfs_fsize_t		isize,
	bool			*did_zeroing)
401
{
402 403 404 405 406 407 408
	struct xfs_mount	*mp = ip->i_mount;
	xfs_fileoff_t		last_fsb = XFS_B_TO_FSBT(mp, isize);
	int			zero_offset = XFS_B_FSB_OFFSET(mp, isize);
	int			zero_len;
	int			nimaps = 1;
	int			error = 0;
	struct xfs_bmbt_irec	imap;
409

410
	xfs_ilock(ip, XFS_ILOCK_EXCL);
D
Dave Chinner 已提交
411
	error = xfs_bmapi_read(ip, last_fsb, 1, &imap, &nimaps, 0);
412
	xfs_iunlock(ip, XFS_ILOCK_EXCL);
D
Dave Chinner 已提交
413
	if (error)
414
		return error;
415

416
	ASSERT(nimaps > 0);
417

418 419 420 421
	/*
	 * If the block underlying isize is just a hole, then there
	 * is nothing to zero.
	 */
422
	if (imap.br_startblock == HOLESTARTBLOCK)
423 424 425 426 427
		return 0;

	zero_len = mp->m_sb.sb_blocksize - zero_offset;
	if (isize + zero_len > offset)
		zero_len = offset - isize;
428
	*did_zeroing = true;
429
	return xfs_iozero(ip, isize, zero_len);
430 431 432
}

/*
433 434 435 436 437 438 439 440 441
 * Zero any on disk space between the current EOF and the new, larger EOF.
 *
 * This handles the normal case of zeroing the remainder of the last block in
 * the file and the unusual case of zeroing blocks out beyond the size of the
 * file.  This second case only happens with fixed size extents and when the
 * system crashes before the inode size was updated but after blocks were
 * allocated.
 *
 * Expects the iolock to be held exclusive, and will take the ilock internally.
442 443 444
 */
int					/* error (positive) */
xfs_zero_eof(
445 446
	struct xfs_inode	*ip,
	xfs_off_t		offset,		/* starting I/O offset */
447 448
	xfs_fsize_t		isize,		/* current inode size */
	bool			*did_zeroing)
449
{
450 451 452 453 454 455 456 457 458 459 460 461
	struct xfs_mount	*mp = ip->i_mount;
	xfs_fileoff_t		start_zero_fsb;
	xfs_fileoff_t		end_zero_fsb;
	xfs_fileoff_t		zero_count_fsb;
	xfs_fileoff_t		last_fsb;
	xfs_fileoff_t		zero_off;
	xfs_fsize_t		zero_len;
	int			nimaps;
	int			error = 0;
	struct xfs_bmbt_irec	imap;

	ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
462 463 464 465
	ASSERT(offset > isize);

	/*
	 * First handle zeroing the block on which isize resides.
466
	 *
467 468
	 * We only zero a part of that block so it is handled specially.
	 */
469
	if (XFS_B_FSB_OFFSET(mp, isize) != 0) {
470
		error = xfs_zero_last_block(ip, offset, isize, did_zeroing);
471 472
		if (error)
			return error;
473 474 475
	}

	/*
476 477 478 479 480 481 482
	 * Calculate the range between the new size and the old where blocks
	 * needing to be zeroed may exist.
	 *
	 * To get the block where the last byte in the file currently resides,
	 * we need to subtract one from the size and truncate back to a block
	 * boundary.  We subtract 1 in case the size is exactly on a block
	 * boundary.
483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
	 */
	last_fsb = isize ? XFS_B_TO_FSBT(mp, isize - 1) : (xfs_fileoff_t)-1;
	start_zero_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
	end_zero_fsb = XFS_B_TO_FSBT(mp, offset - 1);
	ASSERT((xfs_sfiloff_t)last_fsb < (xfs_sfiloff_t)start_zero_fsb);
	if (last_fsb == end_zero_fsb) {
		/*
		 * The size was only incremented on its last block.
		 * We took care of that above, so just return.
		 */
		return 0;
	}

	ASSERT(start_zero_fsb <= end_zero_fsb);
	while (start_zero_fsb <= end_zero_fsb) {
		nimaps = 1;
		zero_count_fsb = end_zero_fsb - start_zero_fsb + 1;
500 501

		xfs_ilock(ip, XFS_ILOCK_EXCL);
D
Dave Chinner 已提交
502 503
		error = xfs_bmapi_read(ip, start_zero_fsb, zero_count_fsb,
					  &imap, &nimaps, 0);
504 505
		xfs_iunlock(ip, XFS_ILOCK_EXCL);
		if (error)
506
			return error;
507

508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
		ASSERT(nimaps > 0);

		if (imap.br_state == XFS_EXT_UNWRITTEN ||
		    imap.br_startblock == HOLESTARTBLOCK) {
			start_zero_fsb = imap.br_startoff + imap.br_blockcount;
			ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
			continue;
		}

		/*
		 * There are blocks we need to zero.
		 */
		zero_off = XFS_FSB_TO_B(mp, start_zero_fsb);
		zero_len = XFS_FSB_TO_B(mp, imap.br_blockcount);

		if ((zero_off + zero_len) > offset)
			zero_len = offset - zero_off;

		error = xfs_iozero(ip, zero_off, zero_len);
527 528
		if (error)
			return error;
529

530
		*did_zeroing = true;
531 532 533 534 535 536 537
		start_zero_fsb = imap.br_startoff + imap.br_blockcount;
		ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
	}

	return 0;
}

538 539 540
/*
 * Common pre-write limit and setup checks.
 *
541 542 543
 * Called with the iolocked held either shared and exclusive according to
 * @iolock, and returns with it held.  Might upgrade the iolock to exclusive
 * if called for a direct write beyond i_size.
544 545 546
 */
STATIC ssize_t
xfs_file_aio_write_checks(
547 548
	struct kiocb		*iocb,
	struct iov_iter		*from,
549 550
	int			*iolock)
{
551
	struct file		*file = iocb->ki_filp;
552 553
	struct inode		*inode = file->f_mapping->host;
	struct xfs_inode	*ip = XFS_I(inode);
554
	ssize_t			error = 0;
555
	size_t			count = iov_iter_count(from);
556

557
restart:
558 559
	error = generic_write_checks(iocb, from);
	if (error <= 0)
560 561
		return error;

562
	error = xfs_break_layouts(inode, iolock, true);
563 564 565
	if (error)
		return error;

566 567 568
	/*
	 * If the offset is beyond the size of the file, we need to zero any
	 * blocks that fall between the existing EOF and the start of this
569
	 * write.  If zeroing is needed and we are currently holding the
570 571
	 * iolock shared, we need to update it to exclusive which implies
	 * having to redo all checks before.
572 573 574 575 576 577 578 579
	 *
	 * We need to serialise against EOF updates that occur in IO
	 * completions here. We want to make sure that nobody is changing the
	 * size while we do this check until we have placed an IO barrier (i.e.
	 * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched.
	 * The spinlock effectively forms a memory barrier once we have the
	 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value
	 * and hence be able to correctly determine if we need to run zeroing.
580
	 */
581
	spin_lock(&ip->i_flags_lock);
582
	if (iocb->ki_pos > i_size_read(inode)) {
583 584
		bool	zero = false;

585
		spin_unlock(&ip->i_flags_lock);
586
		if (*iolock == XFS_IOLOCK_SHARED) {
587
			xfs_rw_iunlock(ip, *iolock);
588
			*iolock = XFS_IOLOCK_EXCL;
589
			xfs_rw_ilock(ip, *iolock);
590
			iov_iter_reexpand(from, count);
591 592 593 594 595 596 597 598 599 600

			/*
			 * We now have an IO submission barrier in place, but
			 * AIO can do EOF updates during IO completion and hence
			 * we now need to wait for all of them to drain. Non-AIO
			 * DIO will have drained before we are given the
			 * XFS_IOLOCK_EXCL, and so for most cases this wait is a
			 * no-op.
			 */
			inode_dio_wait(inode);
601 602
			goto restart;
		}
603
		error = xfs_zero_eof(ip, iocb->ki_pos, i_size_read(inode), &zero);
604 605
		if (error)
			return error;
606 607
	} else
		spin_unlock(&ip->i_flags_lock);
608

C
Christoph Hellwig 已提交
609 610 611 612 613 614
	/*
	 * Updating the timestamps will grab the ilock again from
	 * xfs_fs_dirty_inode, so we have to call it after dropping the
	 * lock above.  Eventually we should look into a way to avoid
	 * the pointless lock roundtrip.
	 */
615 616 617 618 619
	if (likely(!(file->f_mode & FMODE_NOCMTIME))) {
		error = file_update_time(file);
		if (error)
			return error;
	}
C
Christoph Hellwig 已提交
620

621 622 623 624 625 626 627 628
	/*
	 * If we're writing the file then make sure to clear the setuid and
	 * setgid bits if the process is not being run by root.  This keeps
	 * people from modifying setuid and setgid binaries.
	 */
	return file_remove_suid(file);
}

629 630 631 632
/*
 * xfs_file_dio_aio_write - handle direct IO writes
 *
 * Lock the inode appropriately to prepare for and issue a direct IO write.
633
 * By separating it from the buffered write path we remove all the tricky to
634 635
 * follow locking changes and looping.
 *
636 637 638 639 640 641 642 643 644 645 646 647 648
 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
 * until we're sure the bytes at the new EOF have been zeroed and/or the cached
 * pages are flushed out.
 *
 * In most cases the direct IO writes will be done holding IOLOCK_SHARED
 * allowing them to be done in parallel with reads and other direct IO writes.
 * However, if the IO is not aligned to filesystem blocks, the direct IO layer
 * needs to do sub-block zeroing and that requires serialisation against other
 * direct IOs to the same block. In this case we need to serialise the
 * submission of the unaligned IOs so that we don't get racing block zeroing in
 * the dio layer.  To avoid the problem with aio, we also need to wait for
 * outstanding IOs to complete so that unwritten extent conversion is completed
 * before we try to map the overlapping block. This is currently implemented by
C
Christoph Hellwig 已提交
649
 * hitting it with a big hammer (i.e. inode_dio_wait()).
650
 *
651 652 653 654 655 656
 * Returns with locks held indicated by @iolock and errors indicated by
 * negative return values.
 */
STATIC ssize_t
xfs_file_dio_aio_write(
	struct kiocb		*iocb,
657
	struct iov_iter		*from)
658 659 660 661 662 663 664
{
	struct file		*file = iocb->ki_filp;
	struct address_space	*mapping = file->f_mapping;
	struct inode		*inode = mapping->host;
	struct xfs_inode	*ip = XFS_I(inode);
	struct xfs_mount	*mp = ip->i_mount;
	ssize_t			ret = 0;
665
	int			unaligned_io = 0;
666
	int			iolock;
667 668
	size_t			count = iov_iter_count(from);
	loff_t			pos = iocb->ki_pos;
669 670
	loff_t			end;
	struct iov_iter		data;
671 672 673
	struct xfs_buftarg	*target = XFS_IS_REALTIME_INODE(ip) ?
					mp->m_rtdev_targp : mp->m_ddev_targp;

674 675
	/* DIO must be aligned to device logical sector size */
	if ((pos | count) & target->bt_logical_sectormask)
E
Eric Sandeen 已提交
676
		return -EINVAL;
677

678
	/* "unaligned" here means not aligned to a filesystem block */
679 680 681
	if ((pos & mp->m_blockmask) || ((pos + count) & mp->m_blockmask))
		unaligned_io = 1;

682 683 684 685 686 687 688 689
	/*
	 * We don't need to take an exclusive lock unless there page cache needs
	 * to be invalidated or unaligned IO is being executed. We don't need to
	 * consider the EOF extension case here because
	 * xfs_file_aio_write_checks() will relock the inode as necessary for
	 * EOF zeroing cases and fill out the new inode size as appropriate.
	 */
	if (unaligned_io || mapping->nrpages)
690
		iolock = XFS_IOLOCK_EXCL;
691
	else
692 693
		iolock = XFS_IOLOCK_SHARED;
	xfs_rw_ilock(ip, iolock);
694 695 696 697 698 699

	/*
	 * Recheck if there are cached pages that need invalidate after we got
	 * the iolock to protect against other threads adding new pages while
	 * we were waiting for the iolock.
	 */
700 701 702 703
	if (mapping->nrpages && iolock == XFS_IOLOCK_SHARED) {
		xfs_rw_iunlock(ip, iolock);
		iolock = XFS_IOLOCK_EXCL;
		xfs_rw_ilock(ip, iolock);
704
	}
705

706
	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
707
	if (ret)
708
		goto out;
709 710
	count = iov_iter_count(from);
	pos = iocb->ki_pos;
711
	end = pos + count - 1;
712 713

	if (mapping->nrpages) {
714
		ret = filemap_write_and_wait_range(VFS_I(ip)->i_mapping,
715
						   pos, end);
716
		if (ret)
717
			goto out;
718 719 720 721 722 723
		/*
		 * Invalidate whole pages. This can return an error if
		 * we fail to invalidate a page, but this should never
		 * happen on XFS. Warn if it does fail.
		 */
		ret = invalidate_inode_pages2_range(VFS_I(ip)->i_mapping,
724
					pos >> PAGE_CACHE_SHIFT,
725
					end >> PAGE_CACHE_SHIFT);
726 727
		WARN_ON_ONCE(ret);
		ret = 0;
728 729
	}

730 731 732 733 734
	/*
	 * If we are doing unaligned IO, wait for all other IO to drain,
	 * otherwise demote the lock if we had to flush cached pages
	 */
	if (unaligned_io)
C
Christoph Hellwig 已提交
735
		inode_dio_wait(inode);
736
	else if (iolock == XFS_IOLOCK_EXCL) {
737
		xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
738
		iolock = XFS_IOLOCK_SHARED;
739 740 741 742
	}

	trace_xfs_file_direct_write(ip, count, iocb->ki_pos, 0);

743
	data = *from;
744
	ret = mapping->a_ops->direct_IO(iocb, &data, pos);
745 746 747 748 749 750 751 752 753 754 755 756 757

	/* see generic_file_direct_write() for why this is necessary */
	if (mapping->nrpages) {
		invalidate_inode_pages2_range(mapping,
					      pos >> PAGE_CACHE_SHIFT,
					      end >> PAGE_CACHE_SHIFT);
	}

	if (ret > 0) {
		pos += ret;
		iov_iter_advance(from, ret);
		iocb->ki_pos = pos;
	}
758 759 760
out:
	xfs_rw_iunlock(ip, iolock);

761 762 763 764 765
	/* No fallback to buffered IO on errors for XFS. */
	ASSERT(ret < 0 || ret == count);
	return ret;
}

766
STATIC ssize_t
767
xfs_file_buffered_aio_write(
768
	struct kiocb		*iocb,
769
	struct iov_iter		*from)
770 771 772 773
{
	struct file		*file = iocb->ki_filp;
	struct address_space	*mapping = file->f_mapping;
	struct inode		*inode = mapping->host;
774
	struct xfs_inode	*ip = XFS_I(inode);
775 776
	ssize_t			ret;
	int			enospc = 0;
777
	int			iolock = XFS_IOLOCK_EXCL;
778

779
	xfs_rw_ilock(ip, iolock);
780

781
	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
782
	if (ret)
783
		goto out;
784 785

	/* We can write back this queue in page reclaim */
786
	current->backing_dev_info = inode_to_bdi(inode);
787 788

write_retry:
789 790 791
	trace_xfs_file_buffered_write(ip, iov_iter_count(from),
				      iocb->ki_pos, 0);
	ret = generic_perform_write(file, from, iocb->ki_pos);
792
	if (likely(ret >= 0))
793
		iocb->ki_pos += ret;
794

795
	/*
796 797 798 799 800 801 802
	 * If we hit a space limit, try to free up some lingering preallocated
	 * space before returning an error. In the case of ENOSPC, first try to
	 * write back all dirty inodes to free up some of the excess reserved
	 * metadata space. This reduces the chances that the eofblocks scan
	 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
	 * also behaves as a filter to prevent too many eofblocks scans from
	 * running at the same time.
803
	 */
804 805 806 807 808 809 810
	if (ret == -EDQUOT && !enospc) {
		enospc = xfs_inode_free_quota_eofblocks(ip);
		if (enospc)
			goto write_retry;
	} else if (ret == -ENOSPC && !enospc) {
		struct xfs_eofblocks eofb = {0};

811
		enospc = 1;
D
Dave Chinner 已提交
812
		xfs_flush_inodes(ip->i_mount);
813 814 815
		eofb.eof_scan_owner = ip->i_ino; /* for locking */
		eofb.eof_flags = XFS_EOF_FLAGS_SYNC;
		xfs_icache_free_eofblocks(ip->i_mount, &eofb);
D
Dave Chinner 已提交
816
		goto write_retry;
817
	}
818

819
	current->backing_dev_info = NULL;
820 821
out:
	xfs_rw_iunlock(ip, iolock);
822 823 824 825
	return ret;
}

STATIC ssize_t
A
Al Viro 已提交
826
xfs_file_write_iter(
827
	struct kiocb		*iocb,
A
Al Viro 已提交
828
	struct iov_iter		*from)
829 830 831 832 833 834
{
	struct file		*file = iocb->ki_filp;
	struct address_space	*mapping = file->f_mapping;
	struct inode		*inode = mapping->host;
	struct xfs_inode	*ip = XFS_I(inode);
	ssize_t			ret;
A
Al Viro 已提交
835
	size_t			ocount = iov_iter_count(from);
836 837 838 839 840 841

	XFS_STATS_INC(xs_write_calls);

	if (ocount == 0)
		return 0;

A
Al Viro 已提交
842 843
	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
		return -EIO;
844

845
	if (unlikely(iocb->ki_flags & IOCB_DIRECT))
A
Al Viro 已提交
846
		ret = xfs_file_dio_aio_write(iocb, from);
847
	else
A
Al Viro 已提交
848
		ret = xfs_file_buffered_aio_write(iocb, from);
849

850 851
	if (ret > 0) {
		ssize_t err;
852

853
		XFS_STATS_ADD(xs_write_bytes, ret);
854

855
		/* Handle various SYNC-type writes */
856
		err = generic_write_sync(file, iocb->ki_pos - ret, ret);
857 858
		if (err < 0)
			ret = err;
859
	}
860
	return ret;
861 862
}

863 864 865 866 867
#define	XFS_FALLOC_FL_SUPPORTED						\
		(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |		\
		 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |	\
		 FALLOC_FL_INSERT_RANGE)

868 869
STATIC long
xfs_file_fallocate(
870 871 872 873
	struct file		*file,
	int			mode,
	loff_t			offset,
	loff_t			len)
874
{
875 876 877
	struct inode		*inode = file_inode(file);
	struct xfs_inode	*ip = XFS_I(inode);
	long			error;
878
	enum xfs_prealloc_flags	flags = 0;
879
	uint			iolock = XFS_IOLOCK_EXCL;
880
	loff_t			new_size = 0;
881
	bool			do_file_insert = 0;
882

883 884
	if (!S_ISREG(inode->i_mode))
		return -EINVAL;
885
	if (mode & ~XFS_FALLOC_FL_SUPPORTED)
886 887
		return -EOPNOTSUPP;

888
	xfs_ilock(ip, iolock);
889
	error = xfs_break_layouts(inode, &iolock, false);
890 891 892
	if (error)
		goto out_unlock;

893 894 895
	xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
	iolock |= XFS_MMAPLOCK_EXCL;

896 897 898 899
	if (mode & FALLOC_FL_PUNCH_HOLE) {
		error = xfs_free_file_space(ip, offset, len);
		if (error)
			goto out_unlock;
900 901 902 903
	} else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
		unsigned blksize_mask = (1 << inode->i_blkbits) - 1;

		if (offset & blksize_mask || len & blksize_mask) {
D
Dave Chinner 已提交
904
			error = -EINVAL;
905 906 907
			goto out_unlock;
		}

908 909 910 911 912
		/*
		 * There is no need to overlap collapse range with EOF,
		 * in which case it is effectively a truncate operation
		 */
		if (offset + len >= i_size_read(inode)) {
D
Dave Chinner 已提交
913
			error = -EINVAL;
914 915 916
			goto out_unlock;
		}

917 918 919 920 921
		new_size = i_size_read(inode) - len;

		error = xfs_collapse_file_space(ip, offset, len);
		if (error)
			goto out_unlock;
922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942
	} else if (mode & FALLOC_FL_INSERT_RANGE) {
		unsigned blksize_mask = (1 << inode->i_blkbits) - 1;

		new_size = i_size_read(inode) + len;
		if (offset & blksize_mask || len & blksize_mask) {
			error = -EINVAL;
			goto out_unlock;
		}

		/* check the new inode size does not wrap through zero */
		if (new_size > inode->i_sb->s_maxbytes) {
			error = -EFBIG;
			goto out_unlock;
		}

		/* Offset should be less than i_size */
		if (offset >= i_size_read(inode)) {
			error = -EINVAL;
			goto out_unlock;
		}
		do_file_insert = 1;
943
	} else {
944 945
		flags |= XFS_PREALLOC_SET;

946 947 948
		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
		    offset + len > i_size_read(inode)) {
			new_size = offset + len;
D
Dave Chinner 已提交
949
			error = inode_newsize_ok(inode, new_size);
950 951 952
			if (error)
				goto out_unlock;
		}
953

954 955 956 957 958
		if (mode & FALLOC_FL_ZERO_RANGE)
			error = xfs_zero_file_space(ip, offset, len);
		else
			error = xfs_alloc_file_space(ip, offset, len,
						     XFS_BMAPI_PREALLOC);
959 960 961 962
		if (error)
			goto out_unlock;
	}

963
	if (file->f_flags & O_DSYNC)
964 965 966
		flags |= XFS_PREALLOC_SYNC;

	error = xfs_update_prealloc_flags(ip, flags);
967 968 969 970 971 972 973 974 975
	if (error)
		goto out_unlock;

	/* Change file size if needed */
	if (new_size) {
		struct iattr iattr;

		iattr.ia_valid = ATTR_SIZE;
		iattr.ia_size = new_size;
976
		error = xfs_setattr_size(ip, &iattr);
977 978
		if (error)
			goto out_unlock;
979 980
	}

981 982 983 984 985 986 987 988 989
	/*
	 * Perform hole insertion now that the file size has been
	 * updated so that if we crash during the operation we don't
	 * leave shifted extents past EOF and hence losing access to
	 * the data that is contained within them.
	 */
	if (do_file_insert)
		error = xfs_insert_file_space(ip, offset, len);

990
out_unlock:
991
	xfs_iunlock(ip, iolock);
D
Dave Chinner 已提交
992
	return error;
993 994 995
}


L
Linus Torvalds 已提交
996
STATIC int
997
xfs_file_open(
L
Linus Torvalds 已提交
998
	struct inode	*inode,
999
	struct file	*file)
L
Linus Torvalds 已提交
1000
{
1001
	if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
L
Linus Torvalds 已提交
1002
		return -EFBIG;
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
	if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
		return -EIO;
	return 0;
}

STATIC int
xfs_dir_open(
	struct inode	*inode,
	struct file	*file)
{
	struct xfs_inode *ip = XFS_I(inode);
	int		mode;
	int		error;

	error = xfs_file_open(inode, file);
	if (error)
		return error;

	/*
	 * If there are any blocks, read-ahead block 0 as we're almost
	 * certain to have the next operation be a read there.
	 */
1025
	mode = xfs_ilock_data_map_shared(ip);
1026
	if (ip->i_d.di_nextents > 0)
1027
		xfs_dir3_data_readahead(ip, 0, -1);
1028 1029
	xfs_iunlock(ip, mode);
	return 0;
L
Linus Torvalds 已提交
1030 1031 1032
}

STATIC int
1033
xfs_file_release(
L
Linus Torvalds 已提交
1034 1035 1036
	struct inode	*inode,
	struct file	*filp)
{
D
Dave Chinner 已提交
1037
	return xfs_release(XFS_I(inode));
L
Linus Torvalds 已提交
1038 1039 1040
}

STATIC int
1041
xfs_file_readdir(
A
Al Viro 已提交
1042 1043
	struct file	*file,
	struct dir_context *ctx)
L
Linus Torvalds 已提交
1044
{
A
Al Viro 已提交
1045
	struct inode	*inode = file_inode(file);
1046
	xfs_inode_t	*ip = XFS_I(inode);
C
Christoph Hellwig 已提交
1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
	size_t		bufsize;

	/*
	 * The Linux API doesn't pass down the total size of the buffer
	 * we read into down to the filesystem.  With the filldir concept
	 * it's not needed for correct information, but the XFS dir2 leaf
	 * code wants an estimate of the buffer size to calculate it's
	 * readahead window and size the buffers used for mapping to
	 * physical blocks.
	 *
	 * Try to give it an estimate that's good enough, maybe at some
	 * point we can change the ->readdir prototype to include the
E
Eric Sandeen 已提交
1059
	 * buffer size.  For now we use the current glibc buffer size.
C
Christoph Hellwig 已提交
1060
	 */
E
Eric Sandeen 已提交
1061
	bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size);
C
Christoph Hellwig 已提交
1062

1063
	return xfs_readdir(ip, ctx, bufsize);
L
Linus Torvalds 已提交
1064 1065 1066
}

STATIC int
1067
xfs_file_mmap(
L
Linus Torvalds 已提交
1068 1069 1070
	struct file	*filp,
	struct vm_area_struct *vma)
{
1071
	vma->vm_ops = &xfs_file_vm_ops;
1072

1073
	file_accessed(filp);
L
Linus Torvalds 已提交
1074 1075 1076
	return 0;
}

1077 1078
/*
 * This type is designed to indicate the type of offset we would like
1079
 * to search from page cache for xfs_seek_hole_data().
1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
 */
enum {
	HOLE_OFF = 0,
	DATA_OFF,
};

/*
 * Lookup the desired type of offset from the given page.
 *
 * On success, return true and the offset argument will point to the
 * start of the region that was found.  Otherwise this function will
 * return false and keep the offset argument unchanged.
 */
STATIC bool
xfs_lookup_buffer_offset(
	struct page		*page,
	loff_t			*offset,
	unsigned int		type)
{
	loff_t			lastoff = page_offset(page);
	bool			found = false;
	struct buffer_head	*bh, *head;

	bh = head = page_buffers(page);
	do {
		/*
		 * Unwritten extents that have data in the page
		 * cache covering them can be identified by the
		 * BH_Unwritten state flag.  Pages with multiple
		 * buffers might have a mix of holes, data and
		 * unwritten extents - any buffer with valid
		 * data in it should have BH_Uptodate flag set
		 * on it.
		 */
		if (buffer_unwritten(bh) ||
		    buffer_uptodate(bh)) {
			if (type == DATA_OFF)
				found = true;
		} else {
			if (type == HOLE_OFF)
				found = true;
		}

		if (found) {
			*offset = lastoff;
			break;
		}
		lastoff += bh->b_size;
	} while ((bh = bh->b_this_page) != head);

	return found;
}

/*
 * This routine is called to find out and return a data or hole offset
 * from the page cache for unwritten extents according to the desired
1136
 * type for xfs_seek_hole_data().
1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294
 *
 * The argument offset is used to tell where we start to search from the
 * page cache.  Map is used to figure out the end points of the range to
 * lookup pages.
 *
 * Return true if the desired type of offset was found, and the argument
 * offset is filled with that address.  Otherwise, return false and keep
 * offset unchanged.
 */
STATIC bool
xfs_find_get_desired_pgoff(
	struct inode		*inode,
	struct xfs_bmbt_irec	*map,
	unsigned int		type,
	loff_t			*offset)
{
	struct xfs_inode	*ip = XFS_I(inode);
	struct xfs_mount	*mp = ip->i_mount;
	struct pagevec		pvec;
	pgoff_t			index;
	pgoff_t			end;
	loff_t			endoff;
	loff_t			startoff = *offset;
	loff_t			lastoff = startoff;
	bool			found = false;

	pagevec_init(&pvec, 0);

	index = startoff >> PAGE_CACHE_SHIFT;
	endoff = XFS_FSB_TO_B(mp, map->br_startoff + map->br_blockcount);
	end = endoff >> PAGE_CACHE_SHIFT;
	do {
		int		want;
		unsigned	nr_pages;
		unsigned int	i;

		want = min_t(pgoff_t, end - index, PAGEVEC_SIZE);
		nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index,
					  want);
		/*
		 * No page mapped into given range.  If we are searching holes
		 * and if this is the first time we got into the loop, it means
		 * that the given offset is landed in a hole, return it.
		 *
		 * If we have already stepped through some block buffers to find
		 * holes but they all contains data.  In this case, the last
		 * offset is already updated and pointed to the end of the last
		 * mapped page, if it does not reach the endpoint to search,
		 * that means there should be a hole between them.
		 */
		if (nr_pages == 0) {
			/* Data search found nothing */
			if (type == DATA_OFF)
				break;

			ASSERT(type == HOLE_OFF);
			if (lastoff == startoff || lastoff < endoff) {
				found = true;
				*offset = lastoff;
			}
			break;
		}

		/*
		 * At lease we found one page.  If this is the first time we
		 * step into the loop, and if the first page index offset is
		 * greater than the given search offset, a hole was found.
		 */
		if (type == HOLE_OFF && lastoff == startoff &&
		    lastoff < page_offset(pvec.pages[0])) {
			found = true;
			break;
		}

		for (i = 0; i < nr_pages; i++) {
			struct page	*page = pvec.pages[i];
			loff_t		b_offset;

			/*
			 * At this point, the page may be truncated or
			 * invalidated (changing page->mapping to NULL),
			 * or even swizzled back from swapper_space to tmpfs
			 * file mapping. However, page->index will not change
			 * because we have a reference on the page.
			 *
			 * Searching done if the page index is out of range.
			 * If the current offset is not reaches the end of
			 * the specified search range, there should be a hole
			 * between them.
			 */
			if (page->index > end) {
				if (type == HOLE_OFF && lastoff < endoff) {
					*offset = lastoff;
					found = true;
				}
				goto out;
			}

			lock_page(page);
			/*
			 * Page truncated or invalidated(page->mapping == NULL).
			 * We can freely skip it and proceed to check the next
			 * page.
			 */
			if (unlikely(page->mapping != inode->i_mapping)) {
				unlock_page(page);
				continue;
			}

			if (!page_has_buffers(page)) {
				unlock_page(page);
				continue;
			}

			found = xfs_lookup_buffer_offset(page, &b_offset, type);
			if (found) {
				/*
				 * The found offset may be less than the start
				 * point to search if this is the first time to
				 * come here.
				 */
				*offset = max_t(loff_t, startoff, b_offset);
				unlock_page(page);
				goto out;
			}

			/*
			 * We either searching data but nothing was found, or
			 * searching hole but found a data buffer.  In either
			 * case, probably the next page contains the desired
			 * things, update the last offset to it so.
			 */
			lastoff = page_offset(page) + PAGE_SIZE;
			unlock_page(page);
		}

		/*
		 * The number of returned pages less than our desired, search
		 * done.  In this case, nothing was found for searching data,
		 * but we found a hole behind the last offset.
		 */
		if (nr_pages < want) {
			if (type == HOLE_OFF) {
				*offset = lastoff;
				found = true;
			}
			break;
		}

		index = pvec.pages[i - 1]->index + 1;
		pagevec_release(&pvec);
	} while (index <= end);

out:
	pagevec_release(&pvec);
	return found;
}

1295
STATIC loff_t
1296
xfs_seek_hole_data(
1297
	struct file		*file,
1298 1299
	loff_t			start,
	int			whence)
1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310
{
	struct inode		*inode = file->f_mapping->host;
	struct xfs_inode	*ip = XFS_I(inode);
	struct xfs_mount	*mp = ip->i_mount;
	loff_t			uninitialized_var(offset);
	xfs_fsize_t		isize;
	xfs_fileoff_t		fsbno;
	xfs_filblks_t		end;
	uint			lock;
	int			error;

1311 1312 1313
	if (XFS_FORCED_SHUTDOWN(mp))
		return -EIO;

1314
	lock = xfs_ilock_data_map_shared(ip);
1315 1316 1317

	isize = i_size_read(inode);
	if (start >= isize) {
D
Dave Chinner 已提交
1318
		error = -ENXIO;
1319 1320 1321 1322 1323 1324 1325
		goto out_unlock;
	}

	/*
	 * Try to read extents from the first block indicated
	 * by fsbno to the end block of the file.
	 */
1326
	fsbno = XFS_B_TO_FSBT(mp, start);
1327
	end = XFS_B_TO_FSB(mp, isize);
1328

1329 1330 1331 1332
	for (;;) {
		struct xfs_bmbt_irec	map[2];
		int			nmap = 2;
		unsigned int		i;
1333

1334 1335 1336 1337
		error = xfs_bmapi_read(ip, fsbno, end - fsbno, map, &nmap,
				       XFS_BMAPI_ENTIRE);
		if (error)
			goto out_unlock;
1338

1339 1340
		/* No extents at given offset, must be beyond EOF */
		if (nmap == 0) {
D
Dave Chinner 已提交
1341
			error = -ENXIO;
1342 1343 1344 1345 1346 1347 1348
			goto out_unlock;
		}

		for (i = 0; i < nmap; i++) {
			offset = max_t(loff_t, start,
				       XFS_FSB_TO_B(mp, map[i].br_startoff));

1349 1350 1351 1352 1353 1354 1355 1356 1357 1358
			/* Landed in the hole we wanted? */
			if (whence == SEEK_HOLE &&
			    map[i].br_startblock == HOLESTARTBLOCK)
				goto out;

			/* Landed in the data extent we wanted? */
			if (whence == SEEK_DATA &&
			    (map[i].br_startblock == DELAYSTARTBLOCK ||
			     (map[i].br_state == XFS_EXT_NORM &&
			      !isnullstartblock(map[i].br_startblock))))
1359 1360 1361
				goto out;

			/*
1362 1363
			 * Landed in an unwritten extent, try to search
			 * for hole or data from page cache.
1364 1365 1366
			 */
			if (map[i].br_state == XFS_EXT_UNWRITTEN) {
				if (xfs_find_get_desired_pgoff(inode, &map[i],
1367 1368
				      whence == SEEK_HOLE ? HOLE_OFF : DATA_OFF,
							&offset))
1369 1370 1371 1372 1373
					goto out;
			}
		}

		/*
1374 1375
		 * We only received one extent out of the two requested. This
		 * means we've hit EOF and didn't find what we are looking for.
1376
		 */
1377
		if (nmap == 1) {
1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390
			/*
			 * If we were looking for a hole, set offset to
			 * the end of the file (i.e., there is an implicit
			 * hole at the end of any file).
		 	 */
			if (whence == SEEK_HOLE) {
				offset = isize;
				break;
			}
			/*
			 * If we were looking for data, it's nowhere to be found
			 */
			ASSERT(whence == SEEK_DATA);
D
Dave Chinner 已提交
1391
			error = -ENXIO;
1392 1393 1394
			goto out_unlock;
		}

1395 1396 1397 1398
		ASSERT(i > 1);

		/*
		 * Nothing was found, proceed to the next round of search
1399
		 * if the next reading offset is not at or beyond EOF.
1400 1401 1402 1403
		 */
		fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount;
		start = XFS_FSB_TO_B(mp, fsbno);
		if (start >= isize) {
1404 1405 1406 1407 1408
			if (whence == SEEK_HOLE) {
				offset = isize;
				break;
			}
			ASSERT(whence == SEEK_DATA);
D
Dave Chinner 已提交
1409
			error = -ENXIO;
1410 1411
			goto out_unlock;
		}
1412 1413
	}

1414 1415
out:
	/*
1416
	 * If at this point we have found the hole we wanted, the returned
1417
	 * offset may be bigger than the file size as it may be aligned to
1418
	 * page boundary for unwritten extents.  We need to deal with this
1419 1420
	 * situation in particular.
	 */
1421 1422
	if (whence == SEEK_HOLE)
		offset = min_t(loff_t, offset, isize);
J
Jie Liu 已提交
1423
	offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
1424 1425

out_unlock:
1426
	xfs_iunlock(ip, lock);
1427 1428

	if (error)
D
Dave Chinner 已提交
1429
		return error;
1430 1431 1432 1433 1434 1435 1436
	return offset;
}

STATIC loff_t
xfs_file_llseek(
	struct file	*file,
	loff_t		offset,
1437
	int		whence)
1438
{
1439
	switch (whence) {
1440 1441 1442
	case SEEK_END:
	case SEEK_CUR:
	case SEEK_SET:
1443
		return generic_file_llseek(file, offset, whence);
1444
	case SEEK_HOLE:
1445
	case SEEK_DATA:
1446
		return xfs_seek_hole_data(file, offset, whence);
1447 1448 1449 1450 1451
	default:
		return -EINVAL;
	}
}

1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477
/*
 * Locking for serialisation of IO during page faults. This results in a lock
 * ordering of:
 *
 * mmap_sem (MM)
 *   i_mmap_lock (XFS - truncate serialisation)
 *     page_lock (MM)
 *       i_lock (XFS - extent map serialisation)
 */
STATIC int
xfs_filemap_fault(
	struct vm_area_struct	*vma,
	struct vm_fault		*vmf)
{
	struct xfs_inode	*ip = XFS_I(vma->vm_file->f_mapping->host);
	int			error;

	trace_xfs_filemap_fault(ip);

	xfs_ilock(ip, XFS_MMAPLOCK_SHARED);
	error = filemap_fault(vma, vmf);
	xfs_iunlock(ip, XFS_MMAPLOCK_SHARED);

	return error;
}

1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489
/*
 * mmap()d file has taken write protection fault and is being made writable. We
 * can set the page state up correctly for a writable page, which means we can
 * do correct delalloc accounting (ENOSPC checking!) and unwritten extent
 * mapping.
 */
STATIC int
xfs_filemap_page_mkwrite(
	struct vm_area_struct	*vma,
	struct vm_fault		*vmf)
{
	struct xfs_inode	*ip = XFS_I(vma->vm_file->f_mapping->host);
1490
	int			ret;
1491 1492 1493

	trace_xfs_filemap_page_mkwrite(ip);

1494 1495
	sb_start_pagefault(VFS_I(ip)->i_sb);
	file_update_time(vma->vm_file);
1496
	xfs_ilock(ip, XFS_MMAPLOCK_SHARED);
1497 1498 1499

	ret = __block_page_mkwrite(vma, vmf, xfs_get_blocks);

1500
	xfs_iunlock(ip, XFS_MMAPLOCK_SHARED);
1501
	sb_end_pagefault(VFS_I(ip)->i_sb);
1502

1503
	return block_page_mkwrite_return(ret);
1504 1505
}

1506
const struct file_operations xfs_file_operations = {
1507
	.llseek		= xfs_file_llseek,
A
Al Viro 已提交
1508
	.read_iter	= xfs_file_read_iter,
A
Al Viro 已提交
1509
	.write_iter	= xfs_file_write_iter,
1510
	.splice_read	= xfs_file_splice_read,
A
Al Viro 已提交
1511
	.splice_write	= iter_file_splice_write,
1512
	.unlocked_ioctl	= xfs_file_ioctl,
L
Linus Torvalds 已提交
1513
#ifdef CONFIG_COMPAT
1514
	.compat_ioctl	= xfs_file_compat_ioctl,
L
Linus Torvalds 已提交
1515
#endif
1516 1517 1518 1519
	.mmap		= xfs_file_mmap,
	.open		= xfs_file_open,
	.release	= xfs_file_release,
	.fsync		= xfs_file_fsync,
1520
	.fallocate	= xfs_file_fallocate,
L
Linus Torvalds 已提交
1521 1522
};

1523
const struct file_operations xfs_dir_file_operations = {
1524
	.open		= xfs_dir_open,
L
Linus Torvalds 已提交
1525
	.read		= generic_read_dir,
A
Al Viro 已提交
1526
	.iterate	= xfs_file_readdir,
1527
	.llseek		= generic_file_llseek,
1528
	.unlocked_ioctl	= xfs_file_ioctl,
1529
#ifdef CONFIG_COMPAT
1530
	.compat_ioctl	= xfs_file_compat_ioctl,
1531
#endif
1532
	.fsync		= xfs_dir_fsync,
L
Linus Torvalds 已提交
1533 1534
};

1535
static const struct vm_operations_struct xfs_file_vm_ops = {
1536
	.fault		= xfs_filemap_fault,
1537
	.map_pages	= filemap_map_pages,
1538
	.page_mkwrite	= xfs_filemap_page_mkwrite,
1539
};