xfs_file.c 30.3 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2 3
 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
 * All Rights Reserved.
L
Linus Torvalds 已提交
4
 *
5 6
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
L
Linus Torvalds 已提交
7 8
 * published by the Free Software Foundation.
 *
9 10 11 12
 * This program is distributed in the hope that it would be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
L
Linus Torvalds 已提交
13
 *
14 15 16
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write the Free Software Foundation,
 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
L
Linus Torvalds 已提交
17 18
 */
#include "xfs.h"
19
#include "xfs_fs.h"
20
#include "xfs_bit.h"
L
Linus Torvalds 已提交
21
#include "xfs_log.h"
22
#include "xfs_inum.h"
L
Linus Torvalds 已提交
23
#include "xfs_sb.h"
24
#include "xfs_ag.h"
L
Linus Torvalds 已提交
25 26 27 28 29 30
#include "xfs_trans.h"
#include "xfs_mount.h"
#include "xfs_bmap_btree.h"
#include "xfs_alloc.h"
#include "xfs_dinode.h"
#include "xfs_inode.h"
31
#include "xfs_inode_item.h"
32
#include "xfs_bmap.h"
L
Linus Torvalds 已提交
33
#include "xfs_error.h"
34
#include "xfs_vnodeops.h"
35
#include "xfs_da_btree.h"
36
#include "xfs_ioctl.h"
37
#include "xfs_trace.h"
L
Linus Torvalds 已提交
38 39

#include <linux/dcache.h>
40
#include <linux/falloc.h>
L
Linus Torvalds 已提交
41

42
static const struct vm_operations_struct xfs_file_vm_ops;
L
Linus Torvalds 已提交
43

44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
/*
 * Locking primitives for read and write IO paths to ensure we consistently use
 * and order the inode->i_mutex, ip->i_lock and ip->i_iolock.
 */
static inline void
xfs_rw_ilock(
	struct xfs_inode	*ip,
	int			type)
{
	if (type & XFS_IOLOCK_EXCL)
		mutex_lock(&VFS_I(ip)->i_mutex);
	xfs_ilock(ip, type);
}

static inline void
xfs_rw_iunlock(
	struct xfs_inode	*ip,
	int			type)
{
	xfs_iunlock(ip, type);
	if (type & XFS_IOLOCK_EXCL)
		mutex_unlock(&VFS_I(ip)->i_mutex);
}

static inline void
xfs_rw_ilock_demote(
	struct xfs_inode	*ip,
	int			type)
{
	xfs_ilock_demote(ip, type);
	if (type & XFS_IOLOCK_EXCL)
		mutex_unlock(&VFS_I(ip)->i_mutex);
}

78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
/*
 *	xfs_iozero
 *
 *	xfs_iozero clears the specified range of buffer supplied,
 *	and marks all the affected blocks as valid and modified.  If
 *	an affected block is not allocated, it will be allocated.  If
 *	an affected block is not completely overwritten, and is not
 *	valid before the operation, it will be read from disk before
 *	being partially zeroed.
 */
STATIC int
xfs_iozero(
	struct xfs_inode	*ip,	/* inode			*/
	loff_t			pos,	/* offset in file		*/
	size_t			count)	/* size of data to zero		*/
{
	struct page		*page;
	struct address_space	*mapping;
	int			status;

	mapping = VFS_I(ip)->i_mapping;
	do {
		unsigned offset, bytes;
		void *fsdata;

		offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
		bytes = PAGE_CACHE_SIZE - offset;
		if (bytes > count)
			bytes = count;

		status = pagecache_write_begin(NULL, mapping, pos, bytes,
					AOP_FLAG_UNINTERRUPTIBLE,
					&page, &fsdata);
		if (status)
			break;

		zero_user(page, offset, bytes);

		status = pagecache_write_end(NULL, mapping, pos, bytes, bytes,
					page, fsdata);
		WARN_ON(status <= 0); /* can't return less than zero! */
		pos += bytes;
		count -= bytes;
		status = 0;
	} while (count);

	return (-status);
}

127 128 129
STATIC int
xfs_file_fsync(
	struct file		*file,
130 131
	loff_t			start,
	loff_t			end,
132 133
	int			datasync)
{
134 135
	struct inode		*inode = file->f_mapping->host;
	struct xfs_inode	*ip = XFS_I(inode);
136
	struct xfs_mount	*mp = ip->i_mount;
137 138 139 140
	struct xfs_trans	*tp;
	int			error = 0;
	int			log_flushed = 0;

C
Christoph Hellwig 已提交
141
	trace_xfs_file_fsync(ip);
142

143 144 145 146
	error = filemap_write_and_wait_range(inode->i_mapping, start, end);
	if (error)
		return error;

147
	if (XFS_FORCED_SHUTDOWN(mp))
148 149 150 151
		return -XFS_ERROR(EIO);

	xfs_iflags_clear(ip, XFS_ITRUNCATED);

152
	xfs_ilock(ip, XFS_IOLOCK_SHARED);
153
	xfs_ioend_wait(ip);
154
	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
155

156 157 158 159 160 161 162 163 164 165 166 167 168 169
	if (mp->m_flags & XFS_MOUNT_BARRIER) {
		/*
		 * If we have an RT and/or log subvolume we need to make sure
		 * to flush the write cache the device used for file data
		 * first.  This is to ensure newly written file data make
		 * it to disk before logging the new inode size in case of
		 * an extending write.
		 */
		if (XFS_IS_REALTIME_INODE(ip))
			xfs_blkdev_issue_flush(mp->m_rtdev_targp);
		else if (mp->m_logdev_targp != mp->m_ddev_targp)
			xfs_blkdev_issue_flush(mp->m_ddev_targp);
	}

170 171 172 173 174 175 176 177 178 179 180 181 182 183
	/*
	 * We always need to make sure that the required inode state is safe on
	 * disk.  The inode might be clean but we still might need to force the
	 * log because of committed transactions that haven't hit the disk yet.
	 * Likewise, there could be unflushed non-transactional changes to the
	 * inode core that have to go to disk and this requires us to issue
	 * a synchronous transaction to capture these changes correctly.
	 *
	 * This code relies on the assumption that if the i_update_core field
	 * of the inode is clear and the inode is unpinned then it is clean
	 * and no action is required.
	 */
	xfs_ilock(ip, XFS_ILOCK_SHARED);

184 185 186 187 188 189 190 191 192
	/*
	 * First check if the VFS inode is marked dirty.  All the dirtying
	 * of non-transactional updates no goes through mark_inode_dirty*,
	 * which allows us to distinguish beteeen pure timestamp updates
	 * and i_size updates which need to be caught for fdatasync.
	 * After that also theck for the dirty state in the XFS inode, which
	 * might gets cleared when the inode gets written out via the AIL
	 * or xfs_iflush_cluster.
	 */
193 194
	if (((inode->i_state & I_DIRTY_DATASYNC) ||
	    ((inode->i_state & I_DIRTY_SYNC) && !datasync)) &&
195
	    ip->i_update_core) {
196 197 198 199 200
		/*
		 * Kick off a transaction to log the inode core to get the
		 * updates.  The sync transaction will also force the log.
		 */
		xfs_iunlock(ip, XFS_ILOCK_SHARED);
201
		tp = xfs_trans_alloc(mp, XFS_TRANS_FSYNC_TS);
202
		error = xfs_trans_reserve(tp, 0,
203
				XFS_FSYNC_TS_LOG_RES(mp), 0, 0, 0);
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
		if (error) {
			xfs_trans_cancel(tp, 0);
			return -error;
		}
		xfs_ilock(ip, XFS_ILOCK_EXCL);

		/*
		 * Note - it's possible that we might have pushed ourselves out
		 * of the way during trans_reserve which would flush the inode.
		 * But there's no guarantee that the inode buffer has actually
		 * gone out yet (it's delwri).	Plus the buffer could be pinned
		 * anyway if it's part of an inode in another recent
		 * transaction.	 So we play it safe and fire off the
		 * transaction anyway.
		 */
219
		xfs_trans_ijoin(tp, ip);
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
		xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
		xfs_trans_set_sync(tp);
		error = _xfs_trans_commit(tp, 0, &log_flushed);

		xfs_iunlock(ip, XFS_ILOCK_EXCL);
	} else {
		/*
		 * Timestamps/size haven't changed since last inode flush or
		 * inode transaction commit.  That means either nothing got
		 * written or a transaction committed which caught the updates.
		 * If the latter happened and the transaction hasn't hit the
		 * disk yet, the inode will be still be pinned.  If it is,
		 * force the log.
		 */
		if (xfs_ipincount(ip)) {
235
			error = _xfs_log_force_lsn(mp,
236 237
					ip->i_itemp->ili_last_lsn,
					XFS_LOG_SYNC, &log_flushed);
238
		}
239
		xfs_iunlock(ip, XFS_ILOCK_SHARED);
240 241
	}

242 243 244 245 246 247 248 249 250 251 252 253
	/*
	 * If we only have a single device, and the log force about was
	 * a no-op we might have to flush the data device cache here.
	 * This can only happen for fdatasync/O_DSYNC if we were overwriting
	 * an already allocated file and thus do not have any metadata to
	 * commit.
	 */
	if ((mp->m_flags & XFS_MOUNT_BARRIER) &&
	    mp->m_logdev_targp == mp->m_ddev_targp &&
	    !XFS_IS_REALTIME_INODE(ip) &&
	    !log_flushed)
		xfs_blkdev_issue_flush(mp->m_ddev_targp);
254 255 256 257

	return -error;
}

258 259
STATIC ssize_t
xfs_file_aio_read(
260 261
	struct kiocb		*iocb,
	const struct iovec	*iovp,
262 263
	unsigned long		nr_segs,
	loff_t			pos)
264 265 266
{
	struct file		*file = iocb->ki_filp;
	struct inode		*inode = file->f_mapping->host;
267 268
	struct xfs_inode	*ip = XFS_I(inode);
	struct xfs_mount	*mp = ip->i_mount;
269 270
	size_t			size = 0;
	ssize_t			ret = 0;
271
	int			ioflags = 0;
272 273 274 275 276
	xfs_fsize_t		n;
	unsigned long		seg;

	XFS_STATS_INC(xs_read_calls);

277 278 279 280 281 282 283
	BUG_ON(iocb->ki_pos != pos);

	if (unlikely(file->f_flags & O_DIRECT))
		ioflags |= IO_ISDIRECT;
	if (file->f_mode & FMODE_NOCMTIME)
		ioflags |= IO_INVIS;

284
	/* START copy & waste from filemap.c */
285
	for (seg = 0; seg < nr_segs; seg++) {
286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
		const struct iovec *iv = &iovp[seg];

		/*
		 * If any segment has a negative length, or the cumulative
		 * length ever wraps negative then return -EINVAL.
		 */
		size += iv->iov_len;
		if (unlikely((ssize_t)(size|iv->iov_len) < 0))
			return XFS_ERROR(-EINVAL);
	}
	/* END copy & waste from filemap.c */

	if (unlikely(ioflags & IO_ISDIRECT)) {
		xfs_buftarg_t	*target =
			XFS_IS_REALTIME_INODE(ip) ?
				mp->m_rtdev_targp : mp->m_ddev_targp;
302
		if ((iocb->ki_pos & target->bt_smask) ||
303
		    (size & target->bt_smask)) {
304 305
			if (iocb->ki_pos == ip->i_size)
				return 0;
306 307 308 309
			return -XFS_ERROR(EINVAL);
		}
	}

310 311
	n = XFS_MAXIOFFSET(mp) - iocb->ki_pos;
	if (n <= 0 || size == 0)
312 313 314 315 316 317 318 319
		return 0;

	if (n < size)
		size = n;

	if (XFS_FORCED_SHUTDOWN(mp))
		return -EIO;

320 321 322 323 324 325 326 327 328 329 330 331 332
	/*
	 * Locking is a bit tricky here. If we take an exclusive lock
	 * for direct IO, we effectively serialise all new concurrent
	 * read IO to this file and block it behind IO that is currently in
	 * progress because IO in progress holds the IO lock shared. We only
	 * need to hold the lock exclusive to blow away the page cache, so
	 * only take lock exclusively if the page cache needs invalidation.
	 * This allows the normal direct IO case of no page cache pages to
	 * proceeed concurrently without serialisation.
	 */
	xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
	if ((ioflags & IO_ISDIRECT) && inode->i_mapping->nrpages) {
		xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
333 334
		xfs_rw_ilock(ip, XFS_IOLOCK_EXCL);

335 336 337 338
		if (inode->i_mapping->nrpages) {
			ret = -xfs_flushinval_pages(ip,
					(iocb->ki_pos & PAGE_CACHE_MASK),
					-1, FI_REMAPF_LOCKED);
339 340 341 342
			if (ret) {
				xfs_rw_iunlock(ip, XFS_IOLOCK_EXCL);
				return ret;
			}
343
		}
344
		xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
345
	}
346

347
	trace_xfs_file_read(ip, size, iocb->ki_pos, ioflags);
348

349
	ret = generic_file_aio_read(iocb, iovp, nr_segs, iocb->ki_pos);
350 351 352
	if (ret > 0)
		XFS_STATS_ADD(xs_read_bytes, ret);

353
	xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
354 355 356
	return ret;
}

357 358
STATIC ssize_t
xfs_file_splice_read(
359 360 361 362
	struct file		*infilp,
	loff_t			*ppos,
	struct pipe_inode_info	*pipe,
	size_t			count,
363
	unsigned int		flags)
364
{
365 366
	struct xfs_inode	*ip = XFS_I(infilp->f_mapping->host);
	int			ioflags = 0;
367 368 369
	ssize_t			ret;

	XFS_STATS_INC(xs_read_calls);
370 371 372 373

	if (infilp->f_mode & FMODE_NOCMTIME)
		ioflags |= IO_INVIS;

374 375 376
	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
		return -EIO;

377
	xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
378 379 380 381 382 383 384

	trace_xfs_file_splice_read(ip, count, *ppos, ioflags);

	ret = generic_file_splice_read(infilp, ppos, pipe, count, flags);
	if (ret > 0)
		XFS_STATS_ADD(xs_read_bytes, ret);

385
	xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
386 387 388
	return ret;
}

389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
STATIC void
xfs_aio_write_isize_update(
	struct inode	*inode,
	loff_t		*ppos,
	ssize_t		bytes_written)
{
	struct xfs_inode	*ip = XFS_I(inode);
	xfs_fsize_t		isize = i_size_read(inode);

	if (bytes_written > 0)
		XFS_STATS_ADD(xs_write_bytes, bytes_written);

	if (unlikely(bytes_written < 0 && bytes_written != -EFAULT &&
					*ppos > isize))
		*ppos = isize;

	if (*ppos > ip->i_size) {
406
		xfs_rw_ilock(ip, XFS_ILOCK_EXCL);
407 408
		if (*ppos > ip->i_size)
			ip->i_size = *ppos;
409
		xfs_rw_iunlock(ip, XFS_ILOCK_EXCL);
410 411 412
	}
}

413 414
/*
 * If this was a direct or synchronous I/O that failed (such as ENOSPC) then
L
Lucas De Marchi 已提交
415
 * part of the I/O may have been written to disk before the error occurred.  In
416 417 418 419 420
 * this case the on-disk file size may have been adjusted beyond the in-memory
 * file size and now needs to be truncated back.
 */
STATIC void
xfs_aio_write_newsize_update(
421 422
	struct xfs_inode	*ip,
	xfs_fsize_t		new_size)
423
{
424
	if (new_size == ip->i_new_size) {
425
		xfs_rw_ilock(ip, XFS_ILOCK_EXCL);
426 427
		if (new_size == ip->i_new_size)
			ip->i_new_size = 0;
428 429
		if (ip->i_d.di_size > ip->i_size)
			ip->i_d.di_size = ip->i_size;
430
		xfs_rw_iunlock(ip, XFS_ILOCK_EXCL);
431 432 433
	}
}

434 435 436 437 438 439 440 441
/*
 * xfs_file_splice_write() does not use xfs_rw_ilock() because
 * generic_file_splice_write() takes the i_mutex itself. This, in theory,
 * couuld cause lock inversions between the aio_write path and the splice path
 * if someone is doing concurrent splice(2) based writes and write(2) based
 * writes to the same inode. The only real way to fix this is to re-implement
 * the generic code here with correct locking orders.
 */
442 443
STATIC ssize_t
xfs_file_splice_write(
444 445 446 447
	struct pipe_inode_info	*pipe,
	struct file		*outfilp,
	loff_t			*ppos,
	size_t			count,
448
	unsigned int		flags)
449 450
{
	struct inode		*inode = outfilp->f_mapping->host;
451
	struct xfs_inode	*ip = XFS_I(inode);
452
	xfs_fsize_t		new_size;
453 454
	int			ioflags = 0;
	ssize_t			ret;
455 456

	XFS_STATS_INC(xs_write_calls);
457 458 459 460

	if (outfilp->f_mode & FMODE_NOCMTIME)
		ioflags |= IO_INVIS;

461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
		return -EIO;

	xfs_ilock(ip, XFS_IOLOCK_EXCL);

	new_size = *ppos + count;

	xfs_ilock(ip, XFS_ILOCK_EXCL);
	if (new_size > ip->i_size)
		ip->i_new_size = new_size;
	xfs_iunlock(ip, XFS_ILOCK_EXCL);

	trace_xfs_file_splice_write(ip, count, *ppos, ioflags);

	ret = generic_file_splice_write(pipe, outfilp, ppos, count, flags);

477
	xfs_aio_write_isize_update(inode, ppos, ret);
478
	xfs_aio_write_newsize_update(ip, new_size);
479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
	xfs_iunlock(ip, XFS_IOLOCK_EXCL);
	return ret;
}

/*
 * This routine is called to handle zeroing any space in the last
 * block of the file that is beyond the EOF.  We do this since the
 * size is being increased without writing anything to that block
 * and we don't want anyone to read the garbage on the disk.
 */
STATIC int				/* error (positive) */
xfs_zero_last_block(
	xfs_inode_t	*ip,
	xfs_fsize_t	offset,
	xfs_fsize_t	isize)
{
	xfs_fileoff_t	last_fsb;
	xfs_mount_t	*mp = ip->i_mount;
	int		nimaps;
	int		zero_offset;
	int		zero_len;
	int		error = 0;
	xfs_bmbt_irec_t	imap;

	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));

	zero_offset = XFS_B_FSB_OFFSET(mp, isize);
	if (zero_offset == 0) {
		/*
		 * There are no extra bytes in the last block on disk to
		 * zero, so return.
		 */
		return 0;
	}

	last_fsb = XFS_B_TO_FSBT(mp, isize);
	nimaps = 1;
	error = xfs_bmapi(NULL, ip, last_fsb, 1, 0, NULL, 0, &imap,
517
			  &nimaps, NULL);
518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611
	if (error) {
		return error;
	}
	ASSERT(nimaps > 0);
	/*
	 * If the block underlying isize is just a hole, then there
	 * is nothing to zero.
	 */
	if (imap.br_startblock == HOLESTARTBLOCK) {
		return 0;
	}
	/*
	 * Zero the part of the last block beyond the EOF, and write it
	 * out sync.  We need to drop the ilock while we do this so we
	 * don't deadlock when the buffer cache calls back to us.
	 */
	xfs_iunlock(ip, XFS_ILOCK_EXCL);

	zero_len = mp->m_sb.sb_blocksize - zero_offset;
	if (isize + zero_len > offset)
		zero_len = offset - isize;
	error = xfs_iozero(ip, isize, zero_len);

	xfs_ilock(ip, XFS_ILOCK_EXCL);
	ASSERT(error >= 0);
	return error;
}

/*
 * Zero any on disk space between the current EOF and the new,
 * larger EOF.  This handles the normal case of zeroing the remainder
 * of the last block in the file and the unusual case of zeroing blocks
 * out beyond the size of the file.  This second case only happens
 * with fixed size extents and when the system crashes before the inode
 * size was updated but after blocks were allocated.  If fill is set,
 * then any holes in the range are filled and zeroed.  If not, the holes
 * are left alone as holes.
 */

int					/* error (positive) */
xfs_zero_eof(
	xfs_inode_t	*ip,
	xfs_off_t	offset,		/* starting I/O offset */
	xfs_fsize_t	isize)		/* current inode size */
{
	xfs_mount_t	*mp = ip->i_mount;
	xfs_fileoff_t	start_zero_fsb;
	xfs_fileoff_t	end_zero_fsb;
	xfs_fileoff_t	zero_count_fsb;
	xfs_fileoff_t	last_fsb;
	xfs_fileoff_t	zero_off;
	xfs_fsize_t	zero_len;
	int		nimaps;
	int		error = 0;
	xfs_bmbt_irec_t	imap;

	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
	ASSERT(offset > isize);

	/*
	 * First handle zeroing the block on which isize resides.
	 * We only zero a part of that block so it is handled specially.
	 */
	error = xfs_zero_last_block(ip, offset, isize);
	if (error) {
		ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
		return error;
	}

	/*
	 * Calculate the range between the new size and the old
	 * where blocks needing to be zeroed may exist.  To get the
	 * block where the last byte in the file currently resides,
	 * we need to subtract one from the size and truncate back
	 * to a block boundary.  We subtract 1 in case the size is
	 * exactly on a block boundary.
	 */
	last_fsb = isize ? XFS_B_TO_FSBT(mp, isize - 1) : (xfs_fileoff_t)-1;
	start_zero_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
	end_zero_fsb = XFS_B_TO_FSBT(mp, offset - 1);
	ASSERT((xfs_sfiloff_t)last_fsb < (xfs_sfiloff_t)start_zero_fsb);
	if (last_fsb == end_zero_fsb) {
		/*
		 * The size was only incremented on its last block.
		 * We took care of that above, so just return.
		 */
		return 0;
	}

	ASSERT(start_zero_fsb <= end_zero_fsb);
	while (start_zero_fsb <= end_zero_fsb) {
		nimaps = 1;
		zero_count_fsb = end_zero_fsb - start_zero_fsb + 1;
		error = xfs_bmapi(NULL, ip, start_zero_fsb, zero_count_fsb,
612
				  0, NULL, 0, &imap, &nimaps, NULL);
613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664
		if (error) {
			ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
			return error;
		}
		ASSERT(nimaps > 0);

		if (imap.br_state == XFS_EXT_UNWRITTEN ||
		    imap.br_startblock == HOLESTARTBLOCK) {
			/*
			 * This loop handles initializing pages that were
			 * partially initialized by the code below this
			 * loop. It basically zeroes the part of the page
			 * that sits on a hole and sets the page as P_HOLE
			 * and calls remapf if it is a mapped file.
			 */
			start_zero_fsb = imap.br_startoff + imap.br_blockcount;
			ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
			continue;
		}

		/*
		 * There are blocks we need to zero.
		 * Drop the inode lock while we're doing the I/O.
		 * We'll still have the iolock to protect us.
		 */
		xfs_iunlock(ip, XFS_ILOCK_EXCL);

		zero_off = XFS_FSB_TO_B(mp, start_zero_fsb);
		zero_len = XFS_FSB_TO_B(mp, imap.br_blockcount);

		if ((zero_off + zero_len) > offset)
			zero_len = offset - zero_off;

		error = xfs_iozero(ip, zero_off, zero_len);
		if (error) {
			goto out_lock;
		}

		start_zero_fsb = imap.br_startoff + imap.br_blockcount;
		ASSERT(start_zero_fsb <= (end_zero_fsb + 1));

		xfs_ilock(ip, XFS_ILOCK_EXCL);
	}

	return 0;

out_lock:
	xfs_ilock(ip, XFS_ILOCK_EXCL);
	ASSERT(error >= 0);
	return error;
}

665 666 667 668 669 670 671 672 673 674
/*
 * Common pre-write limit and setup checks.
 *
 * Returns with iolock held according to @iolock.
 */
STATIC ssize_t
xfs_file_aio_write_checks(
	struct file		*file,
	loff_t			*pos,
	size_t			*count,
675
	xfs_fsize_t		*new_sizep,
676 677 678 679 680 681 682
	int			*iolock)
{
	struct inode		*inode = file->f_mapping->host;
	struct xfs_inode	*ip = XFS_I(inode);
	xfs_fsize_t		new_size;
	int			error = 0;

683 684
	*new_sizep = 0;
restart:
685 686 687 688 689 690 691 692 693 694 695 696 697
	error = generic_write_checks(file, pos, count, S_ISBLK(inode->i_mode));
	if (error) {
		xfs_rw_iunlock(ip, XFS_ILOCK_EXCL | *iolock);
		*iolock = 0;
		return error;
	}

	if (likely(!(file->f_mode & FMODE_NOCMTIME)))
		file_update_time(file);

	/*
	 * If the offset is beyond the size of the file, we need to zero any
	 * blocks that fall between the existing EOF and the start of this
698 699 700 701 702 703
	 * write. There is no need to issue zeroing if another in-flght IO ends
	 * at or before this one If zeronig is needed and we are currently
	 * holding the iolock shared, we need to update it to exclusive which
	 * involves dropping all locks and relocking to maintain correct locking
	 * order. If we do this, restart the function to ensure all checks and
	 * values are still valid.
704
	 */
705 706 707 708 709 710 711 712
	if ((ip->i_new_size && *pos > ip->i_new_size) ||
	    (!ip->i_new_size && *pos > ip->i_size)) {
		if (*iolock == XFS_IOLOCK_SHARED) {
			xfs_rw_iunlock(ip, XFS_ILOCK_EXCL | *iolock);
			*iolock = XFS_IOLOCK_EXCL;
			xfs_rw_ilock(ip, XFS_ILOCK_EXCL | *iolock);
			goto restart;
		}
713
		error = -xfs_zero_eof(ip, *pos, ip->i_size);
714 715 716 717 718 719 720 721 722 723 724 725 726
	}

	/*
	 * If this IO extends beyond EOF, we may need to update ip->i_new_size.
	 * We have already zeroed space beyond EOF (if necessary).  Only update
	 * ip->i_new_size if this IO ends beyond any other in-flight writes.
	 */
	new_size = *pos + *count;
	if (new_size > ip->i_size) {
		if (new_size > ip->i_new_size)
			ip->i_new_size = new_size;
		*new_sizep = new_size;
	}
727 728 729 730 731 732 733 734 735 736 737 738 739 740

	xfs_rw_iunlock(ip, XFS_ILOCK_EXCL);
	if (error)
		return error;

	/*
	 * If we're writing the file then make sure to clear the setuid and
	 * setgid bits if the process is not being run by root.  This keeps
	 * people from modifying setuid and setgid binaries.
	 */
	return file_remove_suid(file);

}

741 742 743 744
/*
 * xfs_file_dio_aio_write - handle direct IO writes
 *
 * Lock the inode appropriately to prepare for and issue a direct IO write.
745
 * By separating it from the buffered write path we remove all the tricky to
746 747
 * follow locking changes and looping.
 *
748 749 750 751 752 753 754 755 756 757 758 759 760 761 762
 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
 * until we're sure the bytes at the new EOF have been zeroed and/or the cached
 * pages are flushed out.
 *
 * In most cases the direct IO writes will be done holding IOLOCK_SHARED
 * allowing them to be done in parallel with reads and other direct IO writes.
 * However, if the IO is not aligned to filesystem blocks, the direct IO layer
 * needs to do sub-block zeroing and that requires serialisation against other
 * direct IOs to the same block. In this case we need to serialise the
 * submission of the unaligned IOs so that we don't get racing block zeroing in
 * the dio layer.  To avoid the problem with aio, we also need to wait for
 * outstanding IOs to complete so that unwritten extent conversion is completed
 * before we try to map the overlapping block. This is currently implemented by
 * hitting it with a big hammer (i.e. xfs_ioend_wait()).
 *
763 764 765 766 767 768 769 770 771 772
 * Returns with locks held indicated by @iolock and errors indicated by
 * negative return values.
 */
STATIC ssize_t
xfs_file_dio_aio_write(
	struct kiocb		*iocb,
	const struct iovec	*iovp,
	unsigned long		nr_segs,
	loff_t			pos,
	size_t			ocount,
773
	xfs_fsize_t		*new_size,
774 775 776 777 778 779 780 781 782
	int			*iolock)
{
	struct file		*file = iocb->ki_filp;
	struct address_space	*mapping = file->f_mapping;
	struct inode		*inode = mapping->host;
	struct xfs_inode	*ip = XFS_I(inode);
	struct xfs_mount	*mp = ip->i_mount;
	ssize_t			ret = 0;
	size_t			count = ocount;
783
	int			unaligned_io = 0;
784 785 786 787 788 789 790
	struct xfs_buftarg	*target = XFS_IS_REALTIME_INODE(ip) ?
					mp->m_rtdev_targp : mp->m_ddev_targp;

	*iolock = 0;
	if ((pos & target->bt_smask) || (count & target->bt_smask))
		return -XFS_ERROR(EINVAL);

791 792 793
	if ((pos & mp->m_blockmask) || ((pos + count) & mp->m_blockmask))
		unaligned_io = 1;

794 795 796 797 798 799 800 801
	/*
	 * We don't need to take an exclusive lock unless there page cache needs
	 * to be invalidated or unaligned IO is being executed. We don't need to
	 * consider the EOF extension case here because
	 * xfs_file_aio_write_checks() will relock the inode as necessary for
	 * EOF zeroing cases and fill out the new inode size as appropriate.
	 */
	if (unaligned_io || mapping->nrpages)
802 803 804 805 806
		*iolock = XFS_IOLOCK_EXCL;
	else
		*iolock = XFS_IOLOCK_SHARED;
	xfs_rw_ilock(ip, XFS_ILOCK_EXCL | *iolock);

807
	ret = xfs_file_aio_write_checks(file, &pos, &count, new_size, iolock);
808
	if (ret)
809 810 811 812 813 814 815 816 817 818
		return ret;

	if (mapping->nrpages) {
		WARN_ON(*iolock != XFS_IOLOCK_EXCL);
		ret = -xfs_flushinval_pages(ip, (pos & PAGE_CACHE_MASK), -1,
							FI_REMAPF_LOCKED);
		if (ret)
			return ret;
	}

819 820 821 822 823 824 825
	/*
	 * If we are doing unaligned IO, wait for all other IO to drain,
	 * otherwise demote the lock if we had to flush cached pages
	 */
	if (unaligned_io)
		xfs_ioend_wait(ip);
	else if (*iolock == XFS_IOLOCK_EXCL) {
826 827 828 829 830 831 832 833 834 835 836 837 838
		xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
		*iolock = XFS_IOLOCK_SHARED;
	}

	trace_xfs_file_direct_write(ip, count, iocb->ki_pos, 0);
	ret = generic_file_direct_write(iocb, iovp,
			&nr_segs, pos, &iocb->ki_pos, count, ocount);

	/* No fallback to buffered IO on errors for XFS. */
	ASSERT(ret < 0 || ret == count);
	return ret;
}

839
STATIC ssize_t
840
xfs_file_buffered_aio_write(
841 842
	struct kiocb		*iocb,
	const struct iovec	*iovp,
843
	unsigned long		nr_segs,
844 845
	loff_t			pos,
	size_t			ocount,
846
	xfs_fsize_t		*new_size,
847
	int			*iolock)
848 849 850 851
{
	struct file		*file = iocb->ki_filp;
	struct address_space	*mapping = file->f_mapping;
	struct inode		*inode = mapping->host;
852
	struct xfs_inode	*ip = XFS_I(inode);
853 854 855
	ssize_t			ret;
	int			enospc = 0;
	size_t			count = ocount;
856

857 858
	*iolock = XFS_IOLOCK_EXCL;
	xfs_rw_ilock(ip, XFS_ILOCK_EXCL | *iolock);
859

860
	ret = xfs_file_aio_write_checks(file, &pos, &count, new_size, iolock);
861
	if (ret)
862
		return ret;
863 864 865 866 867

	/* We can write back this queue in page reclaim */
	current->backing_dev_info = mapping->backing_dev_info;

write_retry:
868 869 870 871 872 873 874 875 876 877 878 879 880
	trace_xfs_file_buffered_write(ip, count, iocb->ki_pos, 0);
	ret = generic_file_buffered_write(iocb, iovp, nr_segs,
			pos, &iocb->ki_pos, count, ret);
	/*
	 * if we just got an ENOSPC, flush the inode now we aren't holding any
	 * page locks and retry *once*
	 */
	if (ret == -ENOSPC && !enospc) {
		ret = -xfs_flush_pages(ip, 0, -1, 0, FI_NONE);
		if (ret)
			return ret;
		enospc = 1;
		goto write_retry;
881 882
	}
	current->backing_dev_info = NULL;
883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899
	return ret;
}

STATIC ssize_t
xfs_file_aio_write(
	struct kiocb		*iocb,
	const struct iovec	*iovp,
	unsigned long		nr_segs,
	loff_t			pos)
{
	struct file		*file = iocb->ki_filp;
	struct address_space	*mapping = file->f_mapping;
	struct inode		*inode = mapping->host;
	struct xfs_inode	*ip = XFS_I(inode);
	ssize_t			ret;
	int			iolock;
	size_t			ocount = 0;
900
	xfs_fsize_t		new_size = 0;
901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919

	XFS_STATS_INC(xs_write_calls);

	BUG_ON(iocb->ki_pos != pos);

	ret = generic_segment_checks(iovp, &nr_segs, &ocount, VERIFY_READ);
	if (ret)
		return ret;

	if (ocount == 0)
		return 0;

	xfs_wait_for_freeze(ip->i_mount, SB_FREEZE_WRITE);

	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
		return -EIO;

	if (unlikely(file->f_flags & O_DIRECT))
		ret = xfs_file_dio_aio_write(iocb, iovp, nr_segs, pos,
920
						ocount, &new_size, &iolock);
921 922
	else
		ret = xfs_file_buffered_aio_write(iocb, iovp, nr_segs, pos,
923
						ocount, &new_size, &iolock);
924

925
	xfs_aio_write_isize_update(inode, &iocb->ki_pos, ret);
926 927

	if (ret <= 0)
928
		goto out_unlock;
929 930 931 932

	/* Handle various SYNC-type writes */
	if ((file->f_flags & O_DSYNC) || IS_SYNC(inode)) {
		loff_t end = pos + ret - 1;
933
		int error;
934

935
		xfs_rw_iunlock(ip, iolock);
936
		error = xfs_file_fsync(file, pos, end,
937
				      (file->f_flags & __O_SYNC) ? 0 : 1);
938
		xfs_rw_ilock(ip, iolock);
939 940
		if (error)
			ret = error;
941 942
	}

943
out_unlock:
944
	xfs_aio_write_newsize_update(ip, new_size);
945
	xfs_rw_iunlock(ip, iolock);
946
	return ret;
947 948
}

949 950 951 952 953 954 955 956 957 958 959 960 961
STATIC long
xfs_file_fallocate(
	struct file	*file,
	int		mode,
	loff_t		offset,
	loff_t		len)
{
	struct inode	*inode = file->f_path.dentry->d_inode;
	long		error;
	loff_t		new_size = 0;
	xfs_flock64_t	bf;
	xfs_inode_t	*ip = XFS_I(inode);
	int		cmd = XFS_IOC_RESVSP;
962
	int		attr_flags = XFS_ATTR_NOLOCK;
963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984

	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
		return -EOPNOTSUPP;

	bf.l_whence = 0;
	bf.l_start = offset;
	bf.l_len = len;

	xfs_ilock(ip, XFS_IOLOCK_EXCL);

	if (mode & FALLOC_FL_PUNCH_HOLE)
		cmd = XFS_IOC_UNRESVSP;

	/* check the new inode size is valid before allocating */
	if (!(mode & FALLOC_FL_KEEP_SIZE) &&
	    offset + len > i_size_read(inode)) {
		new_size = offset + len;
		error = inode_newsize_ok(inode, new_size);
		if (error)
			goto out_unlock;
	}

985 986 987 988
	if (file->f_flags & O_DSYNC)
		attr_flags |= XFS_ATTR_SYNC;

	error = -xfs_change_file_space(ip, cmd, &bf, 0, attr_flags);
989 990 991 992 993 994 995 996 997
	if (error)
		goto out_unlock;

	/* Change file size if needed */
	if (new_size) {
		struct iattr iattr;

		iattr.ia_valid = ATTR_SIZE;
		iattr.ia_size = new_size;
C
Christoph Hellwig 已提交
998
		error = -xfs_setattr_size(ip, &iattr, XFS_ATTR_NOLOCK);
999 1000 1001 1002 1003 1004 1005 1006
	}

out_unlock:
	xfs_iunlock(ip, XFS_IOLOCK_EXCL);
	return error;
}


L
Linus Torvalds 已提交
1007
STATIC int
1008
xfs_file_open(
L
Linus Torvalds 已提交
1009
	struct inode	*inode,
1010
	struct file	*file)
L
Linus Torvalds 已提交
1011
{
1012
	if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
L
Linus Torvalds 已提交
1013
		return -EFBIG;
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
	if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
		return -EIO;
	return 0;
}

STATIC int
xfs_dir_open(
	struct inode	*inode,
	struct file	*file)
{
	struct xfs_inode *ip = XFS_I(inode);
	int		mode;
	int		error;

	error = xfs_file_open(inode, file);
	if (error)
		return error;

	/*
	 * If there are any blocks, read-ahead block 0 as we're almost
	 * certain to have the next operation be a read there.
	 */
	mode = xfs_ilock_map_shared(ip);
	if (ip->i_d.di_nextents > 0)
		xfs_da_reada_buf(NULL, ip, 0, XFS_DATA_FORK);
	xfs_iunlock(ip, mode);
	return 0;
L
Linus Torvalds 已提交
1041 1042 1043
}

STATIC int
1044
xfs_file_release(
L
Linus Torvalds 已提交
1045 1046 1047
	struct inode	*inode,
	struct file	*filp)
{
1048
	return -xfs_release(XFS_I(inode));
L
Linus Torvalds 已提交
1049 1050 1051
}

STATIC int
1052
xfs_file_readdir(
L
Linus Torvalds 已提交
1053 1054 1055 1056
	struct file	*filp,
	void		*dirent,
	filldir_t	filldir)
{
C
Christoph Hellwig 已提交
1057
	struct inode	*inode = filp->f_path.dentry->d_inode;
1058
	xfs_inode_t	*ip = XFS_I(inode);
C
Christoph Hellwig 已提交
1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
	int		error;
	size_t		bufsize;

	/*
	 * The Linux API doesn't pass down the total size of the buffer
	 * we read into down to the filesystem.  With the filldir concept
	 * it's not needed for correct information, but the XFS dir2 leaf
	 * code wants an estimate of the buffer size to calculate it's
	 * readahead window and size the buffers used for mapping to
	 * physical blocks.
	 *
	 * Try to give it an estimate that's good enough, maybe at some
	 * point we can change the ->readdir prototype to include the
E
Eric Sandeen 已提交
1072
	 * buffer size.  For now we use the current glibc buffer size.
C
Christoph Hellwig 已提交
1073
	 */
E
Eric Sandeen 已提交
1074
	bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size);
C
Christoph Hellwig 已提交
1075

1076
	error = xfs_readdir(ip, dirent, bufsize,
C
Christoph Hellwig 已提交
1077 1078 1079 1080
				(xfs_off_t *)&filp->f_pos, filldir);
	if (error)
		return -error;
	return 0;
L
Linus Torvalds 已提交
1081 1082 1083
}

STATIC int
1084
xfs_file_mmap(
L
Linus Torvalds 已提交
1085 1086 1087
	struct file	*filp,
	struct vm_area_struct *vma)
{
1088
	vma->vm_ops = &xfs_file_vm_ops;
N
Nick Piggin 已提交
1089
	vma->vm_flags |= VM_CAN_NONLINEAR;
1090

1091
	file_accessed(filp);
L
Linus Torvalds 已提交
1092 1093 1094
	return 0;
}

1095 1096 1097 1098 1099 1100 1101 1102 1103
/*
 * mmap()d file has taken write protection fault and is being made
 * writable. We can set the page state up correctly for a writable
 * page, which means we can do correct delalloc accounting (ENOSPC
 * checking!) and unwritten extent mapping.
 */
STATIC int
xfs_vm_page_mkwrite(
	struct vm_area_struct	*vma,
1104
	struct vm_fault		*vmf)
1105
{
1106
	return block_page_mkwrite(vma, vmf, xfs_get_blocks);
1107 1108
}

1109
const struct file_operations xfs_file_operations = {
L
Linus Torvalds 已提交
1110 1111
	.llseek		= generic_file_llseek,
	.read		= do_sync_read,
1112
	.write		= do_sync_write,
1113 1114
	.aio_read	= xfs_file_aio_read,
	.aio_write	= xfs_file_aio_write,
1115 1116
	.splice_read	= xfs_file_splice_read,
	.splice_write	= xfs_file_splice_write,
1117
	.unlocked_ioctl	= xfs_file_ioctl,
L
Linus Torvalds 已提交
1118
#ifdef CONFIG_COMPAT
1119
	.compat_ioctl	= xfs_file_compat_ioctl,
L
Linus Torvalds 已提交
1120
#endif
1121 1122 1123 1124
	.mmap		= xfs_file_mmap,
	.open		= xfs_file_open,
	.release	= xfs_file_release,
	.fsync		= xfs_file_fsync,
1125
	.fallocate	= xfs_file_fallocate,
L
Linus Torvalds 已提交
1126 1127
};

1128
const struct file_operations xfs_dir_file_operations = {
1129
	.open		= xfs_dir_open,
L
Linus Torvalds 已提交
1130
	.read		= generic_read_dir,
1131
	.readdir	= xfs_file_readdir,
1132
	.llseek		= generic_file_llseek,
1133
	.unlocked_ioctl	= xfs_file_ioctl,
1134
#ifdef CONFIG_COMPAT
1135
	.compat_ioctl	= xfs_file_compat_ioctl,
1136
#endif
1137
	.fsync		= xfs_file_fsync,
L
Linus Torvalds 已提交
1138 1139
};

1140
static const struct vm_operations_struct xfs_file_vm_ops = {
1141
	.fault		= filemap_fault,
1142
	.page_mkwrite	= xfs_vm_page_mkwrite,
1143
};