amdtp.c 29.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
/*
 * Audio and Music Data Transmission Protocol (IEC 61883-6) streams
 * with Common Isochronous Packet (IEC 61883-1) headers
 *
 * Copyright (c) Clemens Ladisch <clemens@ladisch.de>
 * Licensed under the terms of the GNU General Public License, version 2.
 */

#include <linux/device.h>
#include <linux/err.h>
#include <linux/firewire.h>
#include <linux/module.h>
#include <linux/slab.h>
14
#include <linux/sched.h>
15
#include <sound/pcm.h>
16
#include <sound/pcm_params.h>
17
#include <sound/rawmidi.h>
18 19 20 21 22 23
#include "amdtp.h"

#define TICKS_PER_CYCLE		3072
#define CYCLES_PER_SECOND	8000
#define TICKS_PER_SECOND	(TICKS_PER_CYCLE * CYCLES_PER_SECOND)

24 25 26 27 28 29
/*
 * Nominally 3125 bytes/second, but the MIDI port's clock might be
 * 1% too slow, and the bus clock 100 ppm too fast.
 */
#define MIDI_BYTES_PER_SECOND	3093

30 31 32 33 34 35
/*
 * Several devices look only at the first eight data blocks.
 * In any case, this is more than enough for the MIDI data rate.
 */
#define MAX_MIDI_RX_BLOCKS	8

36
#define TRANSFER_DELAY_TICKS	0x2e00 /* 479.17 microseconds */
37

38 39
/* isochronous header parameters */
#define ISO_DATA_LENGTH_SHIFT	16
40 41
#define TAG_CIP			1

42
/* common isochronous packet header parameters */
43 44
#define CIP_EOH_SHIFT		31
#define CIP_EOH			(1u << CIP_EOH_SHIFT)
45
#define CIP_EOH_MASK		0x80000000
46 47 48 49 50 51
#define CIP_SID_SHIFT		24
#define CIP_SID_MASK		0x3f000000
#define CIP_DBS_MASK		0x00ff0000
#define CIP_DBS_SHIFT		16
#define CIP_DBC_MASK		0x000000ff
#define CIP_FMT_SHIFT		24
52
#define CIP_FMT_MASK		0x3f000000
53 54
#define CIP_FDF_MASK		0x00ff0000
#define CIP_FDF_SHIFT		16
55 56 57 58 59 60 61
#define CIP_SYT_MASK		0x0000ffff
#define CIP_SYT_NO_INFO		0xffff

/*
 * Audio and Music transfer protocol specific parameters
 * only "Clock-based rate control mode" is supported
 */
62 63
#define CIP_FMT_AM		(0x10 << CIP_FMT_SHIFT)
#define AMDTP_FDF_AM824		(0 << (CIP_FDF_SHIFT + 3))
64
#define AMDTP_FDF_NO_DATA	0xff
65 66 67 68 69

/* TODO: make these configurable */
#define INTERRUPT_INTERVAL	16
#define QUEUE_LENGTH		48

70
#define IN_PACKET_HEADER_SIZE	4
71 72
#define OUT_PACKET_HEADER_SIZE	0

73 74
static void pcm_period_tasklet(unsigned long data);

75
/**
76 77
 * amdtp_stream_init - initialize an AMDTP stream structure
 * @s: the AMDTP stream to initialize
78
 * @unit: the target of the stream
79
 * @dir: the direction of stream
80 81
 * @flags: the packet transmission method to use
 */
82
int amdtp_stream_init(struct amdtp_stream *s, struct fw_unit *unit,
83
		      enum amdtp_stream_direction dir, enum cip_flags flags)
84
{
85
	s->unit = unit;
86
	s->direction = dir;
87 88 89
	s->flags = flags;
	s->context = ERR_PTR(-1);
	mutex_init(&s->mutex);
90
	tasklet_init(&s->period_tasklet, pcm_period_tasklet, (unsigned long)s);
91
	s->packet_index = 0;
92

93 94 95 96
	init_waitqueue_head(&s->callback_wait);
	s->callbacked = false;
	s->sync_slave = NULL;

97 98
	return 0;
}
99
EXPORT_SYMBOL(amdtp_stream_init);
100 101

/**
102 103
 * amdtp_stream_destroy - free stream resources
 * @s: the AMDTP stream to destroy
104
 */
105
void amdtp_stream_destroy(struct amdtp_stream *s)
106
{
107
	WARN_ON(amdtp_stream_running(s));
108 109
	mutex_destroy(&s->mutex);
}
110
EXPORT_SYMBOL(amdtp_stream_destroy);
111

112
const unsigned int amdtp_syt_intervals[CIP_SFC_COUNT] = {
113 114 115 116 117 118 119 120 121 122
	[CIP_SFC_32000]  =  8,
	[CIP_SFC_44100]  =  8,
	[CIP_SFC_48000]  =  8,
	[CIP_SFC_88200]  = 16,
	[CIP_SFC_96000]  = 16,
	[CIP_SFC_176400] = 32,
	[CIP_SFC_192000] = 32,
};
EXPORT_SYMBOL(amdtp_syt_intervals);

123
const unsigned int amdtp_rate_table[CIP_SFC_COUNT] = {
124 125 126 127 128 129 130 131 132 133
	[CIP_SFC_32000]  =  32000,
	[CIP_SFC_44100]  =  44100,
	[CIP_SFC_48000]  =  48000,
	[CIP_SFC_88200]  =  88200,
	[CIP_SFC_96000]  =  96000,
	[CIP_SFC_176400] = 176400,
	[CIP_SFC_192000] = 192000,
};
EXPORT_SYMBOL(amdtp_rate_table);

134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
/**
 * amdtp_stream_add_pcm_hw_constraints - add hw constraints for PCM substream
 * @s:		the AMDTP stream, which must be initialized.
 * @runtime:	the PCM substream runtime
 */
int amdtp_stream_add_pcm_hw_constraints(struct amdtp_stream *s,
					struct snd_pcm_runtime *runtime)
{
	int err;

	/* AM824 in IEC 61883-6 can deliver 24bit data */
	err = snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24);
	if (err < 0)
		goto end;

	/*
	 * Currently firewire-lib processes 16 packets in one software
	 * interrupt callback. This equals to 2msec but actually the
	 * interval of the interrupts has a jitter.
	 * Additionally, even if adding a constraint to fit period size to
	 * 2msec, actual calculated frames per period doesn't equal to 2msec,
	 * depending on sampling rate.
	 * Anyway, the interval to call snd_pcm_period_elapsed() cannot 2msec.
	 * Here let us use 5msec for safe period interrupt.
	 */
	err = snd_pcm_hw_constraint_minmax(runtime,
					   SNDRV_PCM_HW_PARAM_PERIOD_TIME,
					   5000, UINT_MAX);
	if (err < 0)
		goto end;

	/* Non-Blocking stream has no more constraints */
	if (!(s->flags & CIP_BLOCKING))
		goto end;

	/*
	 * One AMDTP packet can include some frames. In blocking mode, the
	 * number equals to SYT_INTERVAL. So the number is 8, 16 or 32,
	 * depending on its sampling rate. For accurate period interrupt, it's
173
	 * preferrable to align period/buffer sizes to current SYT_INTERVAL.
174
	 *
175 176
	 * TODO: These constraints can be improved with proper rules.
	 * Currently apply LCM of SYT_INTERVALs.
177 178 179 180 181 182 183 184 185 186 187 188
	 */
	err = snd_pcm_hw_constraint_step(runtime, 0,
					 SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 32);
	if (err < 0)
		goto end;
	err = snd_pcm_hw_constraint_step(runtime, 0,
					 SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 32);
end:
	return err;
}
EXPORT_SYMBOL(amdtp_stream_add_pcm_hw_constraints);

189
/**
190 191
 * amdtp_stream_set_parameters - set stream parameters
 * @s: the AMDTP stream to configure
192
 * @rate: the sample rate
193 194 195
 * @pcm_channels: the number of PCM samples in each data block, to be encoded
 *                as AM824 multi-bit linear audio
 * @midi_ports: the number of MIDI ports (i.e., MPX-MIDI Data Channels)
196
 *
197
 * The parameters must be set before the stream is started, and must not be
198 199
 * changed while the stream is running.
 */
200 201 202 203
void amdtp_stream_set_parameters(struct amdtp_stream *s,
				 unsigned int rate,
				 unsigned int pcm_channels,
				 unsigned int midi_ports)
204
{
205
	unsigned int i, sfc, midi_channels;
206

207 208
	midi_channels = DIV_ROUND_UP(midi_ports, 8);

209 210
	if (WARN_ON(amdtp_stream_running(s)) |
	    WARN_ON(pcm_channels > AMDTP_MAX_CHANNELS_FOR_PCM) |
211
	    WARN_ON(midi_channels > AMDTP_MAX_CHANNELS_FOR_MIDI))
212 213
		return;

214
	for (sfc = 0; sfc < ARRAY_SIZE(amdtp_rate_table); ++sfc)
215
		if (amdtp_rate_table[sfc] == rate)
216
			goto sfc_found;
217
	WARN_ON(1);
218 219 220
	return;

sfc_found:
221
	s->pcm_channels = pcm_channels;
222
	s->sfc = sfc;
223
	s->data_block_quadlets = s->pcm_channels + midi_channels;
224 225 226
	s->midi_ports = midi_ports;

	s->syt_interval = amdtp_syt_intervals[sfc];
227 228 229 230 231 232

	/* default buffering in the device */
	s->transfer_delay = TRANSFER_DELAY_TICKS - TICKS_PER_CYCLE;
	if (s->flags & CIP_BLOCKING)
		/* additional buffering needed to adjust for no-data packets */
		s->transfer_delay += TICKS_PER_SECOND * s->syt_interval / rate;
233 234 235 236 237

	/* init the position map for PCM and MIDI channels */
	for (i = 0; i < pcm_channels; i++)
		s->pcm_positions[i] = i;
	s->midi_position = s->pcm_channels;
238 239 240 241 242 243 244 245

	/*
	 * We do not know the actual MIDI FIFO size of most devices.  Just
	 * assume two bytes, i.e., one byte can be received over the bus while
	 * the previous one is transmitted over MIDI.
	 * (The value here is adjusted for midi_ratelimit_per_packet().)
	 */
	s->midi_fifo_limit = rate - MIDI_BYTES_PER_SECOND * s->syt_interval + 1;
246
}
247
EXPORT_SYMBOL(amdtp_stream_set_parameters);
248 249

/**
250 251
 * amdtp_stream_get_max_payload - get the stream's packet size
 * @s: the AMDTP stream
252 253
 *
 * This function must not be called before the stream has been configured
254
 * with amdtp_stream_set_parameters().
255
 */
256
unsigned int amdtp_stream_get_max_payload(struct amdtp_stream *s)
257
{
258 259 260 261 262 263
	unsigned int multiplier = 1;

	if (s->flags & CIP_JUMBO_PAYLOAD)
		multiplier = 5;

	return 8 + s->syt_interval * s->data_block_quadlets * 4 * multiplier;
264
}
265
EXPORT_SYMBOL(amdtp_stream_get_max_payload);
266

267 268 269 270 271 272 273 274 275
static void write_pcm_s16(struct amdtp_stream *s,
			  struct snd_pcm_substream *pcm,
			  __be32 *buffer, unsigned int frames);
static void write_pcm_s32(struct amdtp_stream *s,
			  struct snd_pcm_substream *pcm,
			  __be32 *buffer, unsigned int frames);
static void read_pcm_s32(struct amdtp_stream *s,
			 struct snd_pcm_substream *pcm,
			 __be32 *buffer, unsigned int frames);
276 277

/**
278 279
 * amdtp_stream_set_pcm_format - set the PCM format
 * @s: the AMDTP stream to configure
280 281
 * @format: the format of the ALSA PCM device
 *
282
 * The sample format must be set after the other parameters (rate/PCM channels/
283 284
 * MIDI) and before the stream is started, and must not be changed while the
 * stream is running.
285
 */
286 287
void amdtp_stream_set_pcm_format(struct amdtp_stream *s,
				 snd_pcm_format_t format)
288
{
289
	if (WARN_ON(amdtp_stream_pcm_running(s)))
290 291 292 293 294 295 296
		return;

	switch (format) {
	default:
		WARN_ON(1);
		/* fall through */
	case SNDRV_PCM_FORMAT_S16:
297
		if (s->direction == AMDTP_OUT_STREAM) {
298
			s->transfer_samples = write_pcm_s16;
299 300 301 302
			break;
		}
		WARN_ON(1);
		/* fall through */
303
	case SNDRV_PCM_FORMAT_S32:
304
		if (s->direction == AMDTP_OUT_STREAM)
305
			s->transfer_samples = write_pcm_s32;
306
		else
307
			s->transfer_samples = read_pcm_s32;
308 309 310
		break;
	}
}
311
EXPORT_SYMBOL(amdtp_stream_set_pcm_format);
312

313
/**
314 315
 * amdtp_stream_pcm_prepare - prepare PCM device for running
 * @s: the AMDTP stream
316 317 318
 *
 * This function should be called from the PCM device's .prepare callback.
 */
319
void amdtp_stream_pcm_prepare(struct amdtp_stream *s)
320 321 322 323
{
	tasklet_kill(&s->period_tasklet);
	s->pcm_buffer_pointer = 0;
	s->pcm_period_pointer = 0;
324
	s->pointer_flush = true;
325
}
326
EXPORT_SYMBOL(amdtp_stream_pcm_prepare);
327

328 329
static unsigned int calculate_data_blocks(struct amdtp_stream *s,
					  unsigned int syt)
330 331 332
{
	unsigned int phase, data_blocks;

333 334 335 336 337 338 339 340
	/* Blocking mode. */
	if (s->flags & CIP_BLOCKING) {
		/* This module generate empty packet for 'no data'. */
		if (syt == CIP_SYT_NO_INFO)
			data_blocks = 0;
		else
			data_blocks = s->syt_interval;
	/* Non-blocking mode. */
341
	} else {
342 343 344 345 346
		if (!cip_sfc_is_base_44100(s->sfc)) {
			/* Sample_rate / 8000 is an integer, and precomputed. */
			data_blocks = s->data_block_state;
		} else {
			phase = s->data_block_state;
347 348 349 350 351 352 353 354 355

		/*
		 * This calculates the number of data blocks per packet so that
		 * 1) the overall rate is correct and exactly synchronized to
		 *    the bus clock, and
		 * 2) packets with a rounded-up number of blocks occur as early
		 *    as possible in the sequence (to prevent underruns of the
		 *    device's buffer).
		 */
356 357 358 359 360 361 362 363 364 365 366
			if (s->sfc == CIP_SFC_44100)
				/* 6 6 5 6 5 6 5 ... */
				data_blocks = 5 + ((phase & 1) ^
						   (phase == 0 || phase >= 40));
			else
				/* 12 11 11 11 11 ... or 23 22 22 22 22 ... */
				data_blocks = 11 * (s->sfc >> 1) + (phase == 0);
			if (++phase >= (80 >> (s->sfc >> 1)))
				phase = 0;
			s->data_block_state = phase;
		}
367 368 369 370 371
	}

	return data_blocks;
}

372
static unsigned int calculate_syt(struct amdtp_stream *s,
373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
				  unsigned int cycle)
{
	unsigned int syt_offset, phase, index, syt;

	if (s->last_syt_offset < TICKS_PER_CYCLE) {
		if (!cip_sfc_is_base_44100(s->sfc))
			syt_offset = s->last_syt_offset + s->syt_offset_state;
		else {
		/*
		 * The time, in ticks, of the n'th SYT_INTERVAL sample is:
		 *   n * SYT_INTERVAL * 24576000 / sample_rate
		 * Modulo TICKS_PER_CYCLE, the difference between successive
		 * elements is about 1386.23.  Rounding the results of this
		 * formula to the SYT precision results in a sequence of
		 * differences that begins with:
		 *   1386 1386 1387 1386 1386 1386 1387 1386 1386 1386 1387 ...
		 * This code generates _exactly_ the same sequence.
		 */
			phase = s->syt_offset_state;
			index = phase % 13;
			syt_offset = s->last_syt_offset;
			syt_offset += 1386 + ((index && !(index & 3)) ||
					      phase == 146);
			if (++phase >= 147)
				phase = 0;
			s->syt_offset_state = phase;
		}
	} else
		syt_offset = s->last_syt_offset - TICKS_PER_CYCLE;
	s->last_syt_offset = syt_offset;

404
	if (syt_offset < TICKS_PER_CYCLE) {
405
		syt_offset += s->transfer_delay;
406 407
		syt = (cycle + syt_offset / TICKS_PER_CYCLE) << 12;
		syt += syt_offset % TICKS_PER_CYCLE;
408

409
		return syt & CIP_SYT_MASK;
410
	} else {
411
		return CIP_SYT_NO_INFO;
412
	}
413 414
}

415 416 417
static void write_pcm_s32(struct amdtp_stream *s,
			  struct snd_pcm_substream *pcm,
			  __be32 *buffer, unsigned int frames)
418 419
{
	struct snd_pcm_runtime *runtime = pcm->runtime;
420
	unsigned int channels, remaining_frames, i, c;
421 422 423 424
	const u32 *src;

	channels = s->pcm_channels;
	src = (void *)runtime->dma_area +
425
			frames_to_bytes(runtime, s->pcm_buffer_pointer);
426 427 428 429
	remaining_frames = runtime->buffer_size - s->pcm_buffer_pointer;

	for (i = 0; i < frames; ++i) {
		for (c = 0; c < channels; ++c) {
430 431
			buffer[s->pcm_positions[c]] =
					cpu_to_be32((*src >> 8) | 0x40000000);
432 433
			src++;
		}
434
		buffer += s->data_block_quadlets;
435 436 437 438 439
		if (--remaining_frames == 0)
			src = (void *)runtime->dma_area;
	}
}

440 441 442
static void write_pcm_s16(struct amdtp_stream *s,
			  struct snd_pcm_substream *pcm,
			  __be32 *buffer, unsigned int frames)
443 444
{
	struct snd_pcm_runtime *runtime = pcm->runtime;
445
	unsigned int channels, remaining_frames, i, c;
446 447 448 449
	const u16 *src;

	channels = s->pcm_channels;
	src = (void *)runtime->dma_area +
450
			frames_to_bytes(runtime, s->pcm_buffer_pointer);
451 452 453 454
	remaining_frames = runtime->buffer_size - s->pcm_buffer_pointer;

	for (i = 0; i < frames; ++i) {
		for (c = 0; c < channels; ++c) {
455
			buffer[s->pcm_positions[c]] =
456
					cpu_to_be32((*src << 8) | 0x42000000);
457 458
			src++;
		}
459
		buffer += s->data_block_quadlets;
460 461 462 463 464
		if (--remaining_frames == 0)
			src = (void *)runtime->dma_area;
	}
}

465 466 467
static void read_pcm_s32(struct amdtp_stream *s,
			 struct snd_pcm_substream *pcm,
			 __be32 *buffer, unsigned int frames)
468 469 470 471 472 473 474 475 476 477 478 479
{
	struct snd_pcm_runtime *runtime = pcm->runtime;
	unsigned int channels, remaining_frames, i, c;
	u32 *dst;

	channels = s->pcm_channels;
	dst  = (void *)runtime->dma_area +
			frames_to_bytes(runtime, s->pcm_buffer_pointer);
	remaining_frames = runtime->buffer_size - s->pcm_buffer_pointer;

	for (i = 0; i < frames; ++i) {
		for (c = 0; c < channels; ++c) {
480
			*dst = be32_to_cpu(buffer[s->pcm_positions[c]]) << 8;
481 482 483 484 485 486 487 488
			dst++;
		}
		buffer += s->data_block_quadlets;
		if (--remaining_frames == 0)
			dst = (void *)runtime->dma_area;
	}
}

489 490
static void write_pcm_silence(struct amdtp_stream *s,
			      __be32 *buffer, unsigned int frames)
491 492 493 494 495
{
	unsigned int i, c;

	for (i = 0; i < frames; ++i) {
		for (c = 0; c < s->pcm_channels; ++c)
496
			buffer[s->pcm_positions[c]] = cpu_to_be32(0x40000000);
497 498 499 500
		buffer += s->data_block_quadlets;
	}
}

501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
/*
 * To avoid sending MIDI bytes at too high a rate, assume that the receiving
 * device has a FIFO, and track how much it is filled.  This values increases
 * by one whenever we send one byte in a packet, but the FIFO empties at
 * a constant rate independent of our packet rate.  One packet has syt_interval
 * samples, so the number of bytes that empty out of the FIFO, per packet(!),
 * is MIDI_BYTES_PER_SECOND * syt_interval / sample_rate.  To avoid storing
 * fractional values, the values in midi_fifo_used[] are measured in bytes
 * multiplied by the sample rate.
 */
static bool midi_ratelimit_per_packet(struct amdtp_stream *s, unsigned int port)
{
	int used;

	used = s->midi_fifo_used[port];
	if (used == 0) /* common shortcut */
		return true;

	used -= MIDI_BYTES_PER_SECOND * s->syt_interval;
	used = max(used, 0);
	s->midi_fifo_used[port] = used;

	return used < s->midi_fifo_limit;
}

static void midi_rate_use_one_byte(struct amdtp_stream *s, unsigned int port)
{
	s->midi_fifo_used[port] += amdtp_rate_table[s->sfc];
}

531 532
static void write_midi_messages(struct amdtp_stream *s,
				__be32 *buffer, unsigned int frames)
533
{
534 535 536 537
	unsigned int f, port;
	u8 *b;

	for (f = 0; f < frames; f++) {
538
		b = (u8 *)&buffer[s->midi_position];
539 540

		port = (s->data_block_counter + f) % 8;
541 542 543 544 545
		if (f < MAX_MIDI_RX_BLOCKS &&
		    midi_ratelimit_per_packet(s, port) &&
		    s->midi[port] != NULL &&
		    snd_rawmidi_transmit(s->midi[port], &b[1], 1) == 1) {
			midi_rate_use_one_byte(s, port);
546
			b[0] = 0x81;
547 548 549 550 551 552
		} else {
			b[0] = 0x80;
			b[1] = 0;
		}
		b[2] = 0;
		b[3] = 0;
553 554 555 556 557

		buffer += s->data_block_quadlets;
	}
}

558 559
static void read_midi_messages(struct amdtp_stream *s,
			       __be32 *buffer, unsigned int frames)
560 561 562 563 564 565 566
{
	unsigned int f, port;
	int len;
	u8 *b;

	for (f = 0; f < frames; f++) {
		port = (s->data_block_counter + f) % 8;
567
		b = (u8 *)&buffer[s->midi_position];
568

569 570 571 572 573 574
		len = b[0] - 0x80;
		if ((1 <= len) &&  (len <= 3) && (s->midi[port]))
			snd_rawmidi_receive(s->midi[port], b + 1, len);

		buffer += s->data_block_quadlets;
	}
575 576
}

577 578 579
static void update_pcm_pointers(struct amdtp_stream *s,
				struct snd_pcm_substream *pcm,
				unsigned int frames)
580 581 582 583 584 585 586 587 588 589
{
	unsigned int ptr;

	/*
	 * In IEC 61883-6, one data block represents one event. In ALSA, one
	 * event equals to one PCM frame. But Dice has a quirk to transfer
	 * two PCM frames in one data block.
	 */
	if (s->double_pcm_frames)
		frames *= 2;
590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617

	ptr = s->pcm_buffer_pointer + frames;
	if (ptr >= pcm->runtime->buffer_size)
		ptr -= pcm->runtime->buffer_size;
	ACCESS_ONCE(s->pcm_buffer_pointer) = ptr;

	s->pcm_period_pointer += frames;
	if (s->pcm_period_pointer >= pcm->runtime->period_size) {
		s->pcm_period_pointer -= pcm->runtime->period_size;
		s->pointer_flush = false;
		tasklet_hi_schedule(&s->period_tasklet);
	}
}

static void pcm_period_tasklet(unsigned long data)
{
	struct amdtp_stream *s = (void *)data;
	struct snd_pcm_substream *pcm = ACCESS_ONCE(s->pcm);

	if (pcm)
		snd_pcm_period_elapsed(pcm);
}

static int queue_packet(struct amdtp_stream *s,
			unsigned int header_length,
			unsigned int payload_length, bool skip)
{
	struct fw_iso_packet p = {0};
618 619 620 621
	int err = 0;

	if (IS_ERR(s->context))
		goto end;
622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647

	p.interrupt = IS_ALIGNED(s->packet_index + 1, INTERRUPT_INTERVAL);
	p.tag = TAG_CIP;
	p.header_length = header_length;
	p.payload_length = (!skip) ? payload_length : 0;
	p.skip = skip;
	err = fw_iso_context_queue(s->context, &p, &s->buffer.iso_buffer,
				   s->buffer.packets[s->packet_index].offset);
	if (err < 0) {
		dev_err(&s->unit->device, "queueing error: %d\n", err);
		goto end;
	}

	if (++s->packet_index >= QUEUE_LENGTH)
		s->packet_index = 0;
end:
	return err;
}

static inline int queue_out_packet(struct amdtp_stream *s,
				   unsigned int payload_length, bool skip)
{
	return queue_packet(s, OUT_PACKET_HEADER_SIZE,
			    payload_length, skip);
}

648 649 650 651 652 653
static inline int queue_in_packet(struct amdtp_stream *s)
{
	return queue_packet(s, IN_PACKET_HEADER_SIZE,
			    amdtp_stream_get_max_payload(s), false);
}

654 655
static int handle_out_packet(struct amdtp_stream *s, unsigned int data_blocks,
			     unsigned int syt)
656 657
{
	__be32 *buffer;
658
	unsigned int payload_length;
659 660
	struct snd_pcm_substream *pcm;

661
	buffer = s->buffer.packets[s->packet_index].buffer;
662
	buffer[0] = cpu_to_be32(ACCESS_ONCE(s->source_node_id_field) |
663
				(s->data_block_quadlets << CIP_DBS_SHIFT) |
664 665
				s->data_block_counter);
	buffer[1] = cpu_to_be32(CIP_EOH | CIP_FMT_AM | AMDTP_FDF_AM824 |
666
				(s->sfc << CIP_FDF_SHIFT) | syt);
667 668 669 670 671 672
	buffer += 2;

	pcm = ACCESS_ONCE(s->pcm);
	if (pcm)
		s->transfer_samples(s, pcm, buffer, data_blocks);
	else
673
		write_pcm_silence(s, buffer, data_blocks);
674
	if (s->midi_ports)
675
		write_midi_messages(s, buffer, data_blocks);
676 677 678

	s->data_block_counter = (s->data_block_counter + data_blocks) & 0xff;

679
	payload_length = 8 + data_blocks * 4 * s->data_block_quadlets;
680 681
	if (queue_out_packet(s, payload_length, false) < 0)
		return -EIO;
682

683
	if (pcm)
684
		update_pcm_pointers(s, pcm, data_blocks);
685 686 687

	/* No need to return the number of handled data blocks. */
	return 0;
688 689
}

690
static int handle_in_packet(struct amdtp_stream *s,
691 692
			    unsigned int payload_quadlets, __be32 *buffer,
			    unsigned int *data_blocks)
693 694
{
	u32 cip_header[2];
695
	unsigned int data_block_quadlets, data_block_counter, dbc_interval;
696
	struct snd_pcm_substream *pcm = NULL;
697
	bool lost;
698 699 700 701 702 703

	cip_header[0] = be32_to_cpu(buffer[0]);
	cip_header[1] = be32_to_cpu(buffer[1]);

	/*
	 * This module supports 'Two-quadlet CIP header with SYT field'.
704
	 * For convenience, also check FMT field is AM824 or not.
705 706 707 708 709 710 711
	 */
	if (((cip_header[0] & CIP_EOH_MASK) == CIP_EOH) ||
	    ((cip_header[1] & CIP_EOH_MASK) != CIP_EOH) ||
	    ((cip_header[1] & CIP_FMT_MASK) != CIP_FMT_AM)) {
		dev_info_ratelimited(&s->unit->device,
				"Invalid CIP header for AMDTP: %08X:%08X\n",
				cip_header[0], cip_header[1]);
712
		*data_blocks = 0;
713 714 715 716 717 718
		goto end;
	}

	/* Calculate data blocks */
	if (payload_quadlets < 3 ||
	    ((cip_header[1] & CIP_FDF_MASK) ==
719
				(AMDTP_FDF_NO_DATA << CIP_FDF_SHIFT))) {
720
		*data_blocks = 0;
721 722
	} else {
		data_block_quadlets =
723
			(cip_header[0] & CIP_DBS_MASK) >> CIP_DBS_SHIFT;
724 725
		/* avoid division by zero */
		if (data_block_quadlets == 0) {
726
			dev_err(&s->unit->device,
727 728
				"Detect invalid value in dbs field: %08X\n",
				cip_header[0]);
729
			return -EPROTO;
730
		}
731 732
		if (s->flags & CIP_WRONG_DBS)
			data_block_quadlets = s->data_block_quadlets;
733

734
		*data_blocks = (payload_quadlets - 2) / data_block_quadlets;
735 736 737
	}

	/* Check data block counter continuity */
738
	data_block_counter = cip_header[0] & CIP_DBC_MASK;
739
	if (*data_blocks == 0 && (s->flags & CIP_EMPTY_HAS_WRONG_DBC) &&
740 741 742
	    s->data_block_counter != UINT_MAX)
		data_block_counter = s->data_block_counter;

743 744
	if (((s->flags & CIP_SKIP_DBC_ZERO_CHECK) && data_block_counter == 0) ||
	    (s->data_block_counter == UINT_MAX)) {
745 746
		lost = false;
	} else if (!(s->flags & CIP_DBC_IS_END_EVENT)) {
747
		lost = data_block_counter != s->data_block_counter;
748
	} else {
749
		if ((*data_blocks > 0) && (s->tx_dbc_interval > 0))
750 751
			dbc_interval = s->tx_dbc_interval;
		else
752
			dbc_interval = *data_blocks;
753

754
		lost = data_block_counter !=
755 756
		       ((s->data_block_counter + dbc_interval) & 0xff);
	}
757 758

	if (lost) {
759 760 761
		dev_err(&s->unit->device,
			"Detect discontinuity of CIP: %02X %02X\n",
			s->data_block_counter, data_block_counter);
762
		return -EIO;
763 764
	}

765
	if (*data_blocks > 0) {
766 767 768 769
		buffer += 2;

		pcm = ACCESS_ONCE(s->pcm);
		if (pcm)
770
			s->transfer_samples(s, pcm, buffer, *data_blocks);
771 772

		if (s->midi_ports)
773
			read_midi_messages(s, buffer, *data_blocks);
774 775
	}

776 777 778 779
	if (s->flags & CIP_DBC_IS_END_EVENT)
		s->data_block_counter = data_block_counter;
	else
		s->data_block_counter =
780
				(data_block_counter + *data_blocks) & 0xff;
781 782
end:
	if (queue_in_packet(s) < 0)
783
		return -EIO;
784 785

	if (pcm)
786
		update_pcm_pointers(s, pcm, *data_blocks);
787

788
	return 0;
789 790
}

791 792 793
static void out_stream_callback(struct fw_iso_context *context, u32 cycle,
				size_t header_length, void *header,
				void *private_data)
794
{
795
	struct amdtp_stream *s = private_data;
796
	unsigned int i, syt, packets = header_length / 4;
797
	unsigned int data_blocks;
798

799 800 801
	if (s->packet_index < 0)
		return;

802 803 804 805 806 807 808
	/*
	 * Compute the cycle of the last queued packet.
	 * (We need only the four lowest bits for the SYT, so we can ignore
	 * that bits 0-11 must wrap around at 3072.)
	 */
	cycle += QUEUE_LENGTH - packets;

809 810
	for (i = 0; i < packets; ++i) {
		syt = calculate_syt(s, ++cycle);
811 812
		data_blocks = calculate_data_blocks(s, syt);

813 814 815 816 817
		if (handle_out_packet(s, data_blocks, syt) < 0) {
			s->packet_index = -1;
			amdtp_stream_pcm_abort(s);
			return;
		}
818
	}
819

820
	fw_iso_context_queue_flush(s->context);
821 822
}

823 824 825 826 827
static void in_stream_callback(struct fw_iso_context *context, u32 cycle,
			       size_t header_length, void *header,
			       void *private_data)
{
	struct amdtp_stream *s = private_data;
828 829
	unsigned int p, syt, packets;
	unsigned int payload_quadlets, max_payload_quadlets;
830
	unsigned int data_blocks;
831 832
	__be32 *buffer, *headers = header;

833 834 835
	if (s->packet_index < 0)
		return;

836 837 838
	/* The number of packets in buffer */
	packets = header_length / IN_PACKET_HEADER_SIZE;

839 840 841
	/* For buffer-over-run prevention. */
	max_payload_quadlets = amdtp_stream_get_max_payload(s) / 4;

842 843 844 845 846 847
	for (p = 0; p < packets; p++) {
		buffer = s->buffer.packets[s->packet_index].buffer;

		/* The number of quadlets in this packet */
		payload_quadlets =
			(be32_to_cpu(headers[p]) >> ISO_DATA_LENGTH_SHIFT) / 4;
848 849 850 851 852 853 854 855
		if (payload_quadlets > max_payload_quadlets) {
			dev_err(&s->unit->device,
				"Detect jumbo payload: %02x %02x\n",
				payload_quadlets, max_payload_quadlets);
			s->packet_index = -1;
			break;
		}

856 857
		if (handle_in_packet(s, payload_quadlets, buffer,
							&data_blocks) < 0) {
858 859 860 861 862 863 864
			s->packet_index = -1;
			break;
		}

		/* Process sync slave stream */
		if (s->sync_slave && s->sync_slave->callbacked) {
			syt = be32_to_cpu(buffer[1]) & CIP_SYT_MASK;
865 866 867 868 869
			if (handle_out_packet(s->sync_slave,
					      data_blocks, syt) < 0) {
				s->packet_index = -1;
				break;
			}
870
		}
871 872
	}

873 874
	/* Queueing error or detecting discontinuity */
	if (s->packet_index < 0) {
875 876
		amdtp_stream_pcm_abort(s);

877 878 879 880 881 882 883 884 885 886 887 888
		/* Abort sync slave. */
		if (s->sync_slave) {
			s->sync_slave->packet_index = -1;
			amdtp_stream_pcm_abort(s->sync_slave);
		}
		return;
	}

	/* when sync to device, flush the packets for slave stream */
	if (s->sync_slave && s->sync_slave->callbacked)
		fw_iso_context_queue_flush(s->sync_slave->context);

889 890 891
	fw_iso_context_queue_flush(s->context);
}

892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915
/* processing is done by master callback */
static void slave_stream_callback(struct fw_iso_context *context, u32 cycle,
				  size_t header_length, void *header,
				  void *private_data)
{
	return;
}

/* this is executed one time */
static void amdtp_stream_first_callback(struct fw_iso_context *context,
					u32 cycle, size_t header_length,
					void *header, void *private_data)
{
	struct amdtp_stream *s = private_data;

	/*
	 * For in-stream, first packet has come.
	 * For out-stream, prepared to transmit first packet
	 */
	s->callbacked = true;
	wake_up(&s->callback_wait);

	if (s->direction == AMDTP_IN_STREAM)
		context->callback.sc = in_stream_callback;
916
	else if (s->flags & CIP_SYNC_TO_DEVICE)
917 918 919 920 921 922 923
		context->callback.sc = slave_stream_callback;
	else
		context->callback.sc = out_stream_callback;

	context->callback.sc(context, cycle, header_length, header, s);
}

924
/**
925 926
 * amdtp_stream_start - start transferring packets
 * @s: the AMDTP stream to start
927 928 929 930
 * @channel: the isochronous channel on the bus
 * @speed: firewire speed code
 *
 * The stream cannot be started until it has been configured with
931 932
 * amdtp_stream_set_parameters() and it must be started before any PCM or MIDI
 * device can be started.
933
 */
934
int amdtp_stream_start(struct amdtp_stream *s, int channel, int speed)
935 936 937 938 939 940 941 942 943 944 945 946 947
{
	static const struct {
		unsigned int data_block;
		unsigned int syt_offset;
	} initial_state[] = {
		[CIP_SFC_32000]  = {  4, 3072 },
		[CIP_SFC_48000]  = {  6, 1024 },
		[CIP_SFC_96000]  = { 12, 1024 },
		[CIP_SFC_192000] = { 24, 1024 },
		[CIP_SFC_44100]  = {  0,   67 },
		[CIP_SFC_88200]  = {  0,   67 },
		[CIP_SFC_176400] = {  0,   67 },
	};
948 949
	unsigned int header_size;
	enum dma_data_direction dir;
950
	int type, tag, err;
951 952 953

	mutex_lock(&s->mutex);

954
	if (WARN_ON(amdtp_stream_running(s) ||
955
		    (s->data_block_quadlets < 1))) {
956 957 958 959
		err = -EBADFD;
		goto err_unlock;
	}

960 961 962 963 964
	if (s->direction == AMDTP_IN_STREAM &&
	    s->flags & CIP_SKIP_INIT_DBC_CHECK)
		s->data_block_counter = UINT_MAX;
	else
		s->data_block_counter = 0;
965 966 967 968
	s->data_block_state = initial_state[s->sfc].data_block;
	s->syt_offset_state = initial_state[s->sfc].syt_offset;
	s->last_syt_offset = TICKS_PER_CYCLE;

969 970 971 972 973 974 975 976 977 978
	/* initialize packet buffer */
	if (s->direction == AMDTP_IN_STREAM) {
		dir = DMA_FROM_DEVICE;
		type = FW_ISO_CONTEXT_RECEIVE;
		header_size = IN_PACKET_HEADER_SIZE;
	} else {
		dir = DMA_TO_DEVICE;
		type = FW_ISO_CONTEXT_TRANSMIT;
		header_size = OUT_PACKET_HEADER_SIZE;
	}
979
	err = iso_packets_buffer_init(&s->buffer, s->unit, QUEUE_LENGTH,
980
				      amdtp_stream_get_max_payload(s), dir);
981 982 983 984
	if (err < 0)
		goto err_unlock;

	s->context = fw_iso_context_create(fw_parent_device(s->unit)->card,
985
					   type, channel, speed, header_size,
986
					   amdtp_stream_first_callback, s);
987 988 989 990
	if (IS_ERR(s->context)) {
		err = PTR_ERR(s->context);
		if (err == -EBUSY)
			dev_err(&s->unit->device,
991
				"no free stream on this controller\n");
992 993 994
		goto err_buffer;
	}

995
	amdtp_stream_update(s);
996

997
	s->packet_index = 0;
998
	do {
999 1000 1001 1002
		if (s->direction == AMDTP_IN_STREAM)
			err = queue_in_packet(s);
		else
			err = queue_out_packet(s, 0, true);
1003 1004 1005
		if (err < 0)
			goto err_context;
	} while (s->packet_index > 0);
1006

1007
	/* NOTE: TAG1 matches CIP. This just affects in stream. */
1008 1009 1010 1011
	tag = FW_ISO_CONTEXT_MATCH_TAG1;
	if (s->flags & CIP_EMPTY_WITH_TAG0)
		tag |= FW_ISO_CONTEXT_MATCH_TAG0;

1012
	s->callbacked = false;
1013
	err = fw_iso_context_start(s->context, -1, 0, tag);
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
	if (err < 0)
		goto err_context;

	mutex_unlock(&s->mutex);

	return 0;

err_context:
	fw_iso_context_destroy(s->context);
	s->context = ERR_PTR(-1);
err_buffer:
	iso_packets_buffer_destroy(&s->buffer, s->unit);
err_unlock:
	mutex_unlock(&s->mutex);

	return err;
}
1031
EXPORT_SYMBOL(amdtp_stream_start);
1032

1033
/**
1034 1035
 * amdtp_stream_pcm_pointer - get the PCM buffer position
 * @s: the AMDTP stream that transports the PCM data
1036 1037 1038
 *
 * Returns the current buffer position, in frames.
 */
1039
unsigned long amdtp_stream_pcm_pointer(struct amdtp_stream *s)
1040
{
1041
	/* this optimization is allowed to be racy */
1042
	if (s->pointer_flush && amdtp_stream_running(s))
1043 1044 1045
		fw_iso_context_flush_completions(s->context);
	else
		s->pointer_flush = true;
1046 1047 1048

	return ACCESS_ONCE(s->pcm_buffer_pointer);
}
1049
EXPORT_SYMBOL(amdtp_stream_pcm_pointer);
1050

1051
/**
1052 1053
 * amdtp_stream_update - update the stream after a bus reset
 * @s: the AMDTP stream
1054
 */
1055
void amdtp_stream_update(struct amdtp_stream *s)
1056
{
1057
	/* Precomputing. */
1058
	ACCESS_ONCE(s->source_node_id_field) =
1059 1060
		(fw_parent_device(s->unit)->card->node_id << CIP_SID_SHIFT) &
								CIP_SID_MASK;
1061
}
1062
EXPORT_SYMBOL(amdtp_stream_update);
1063 1064

/**
1065 1066
 * amdtp_stream_stop - stop sending packets
 * @s: the AMDTP stream to stop
1067 1068 1069 1070
 *
 * All PCM and MIDI devices of the stream must be stopped before the stream
 * itself can be stopped.
 */
1071
void amdtp_stream_stop(struct amdtp_stream *s)
1072 1073 1074
{
	mutex_lock(&s->mutex);

1075
	if (!amdtp_stream_running(s)) {
1076 1077 1078 1079
		mutex_unlock(&s->mutex);
		return;
	}

1080
	tasklet_kill(&s->period_tasklet);
1081 1082 1083 1084 1085
	fw_iso_context_stop(s->context);
	fw_iso_context_destroy(s->context);
	s->context = ERR_PTR(-1);
	iso_packets_buffer_destroy(&s->buffer, s->unit);

1086 1087
	s->callbacked = false;

1088 1089
	mutex_unlock(&s->mutex);
}
1090
EXPORT_SYMBOL(amdtp_stream_stop);
1091 1092

/**
1093
 * amdtp_stream_pcm_abort - abort the running PCM device
1094 1095 1096 1097 1098
 * @s: the AMDTP stream about to be stopped
 *
 * If the isochronous stream needs to be stopped asynchronously, call this
 * function first to stop the PCM device.
 */
1099
void amdtp_stream_pcm_abort(struct amdtp_stream *s)
1100 1101 1102 1103
{
	struct snd_pcm_substream *pcm;

	pcm = ACCESS_ONCE(s->pcm);
1104 1105
	if (pcm)
		snd_pcm_stop_xrun(pcm);
1106
}
1107
EXPORT_SYMBOL(amdtp_stream_pcm_abort);