amdtp.c 19.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/*
 * Audio and Music Data Transmission Protocol (IEC 61883-6) streams
 * with Common Isochronous Packet (IEC 61883-1) headers
 *
 * Copyright (c) Clemens Ladisch <clemens@ladisch.de>
 * Licensed under the terms of the GNU General Public License, version 2.
 */

#include <linux/device.h>
#include <linux/err.h>
#include <linux/firewire.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <sound/pcm.h>
#include "amdtp.h"

#define TICKS_PER_CYCLE		3072
#define CYCLES_PER_SECOND	8000
#define TICKS_PER_SECOND	(TICKS_PER_CYCLE * CYCLES_PER_SECOND)

#define TRANSFER_DELAY_TICKS	0x2e00 /* 479.17 µs */

23 24
/* isochronous header parameters */
#define ISO_DATA_LENGTH_SHIFT	16
25 26
#define TAG_CIP			1

27
/* common isochronous packet header parameters */
28
#define CIP_EOH			(1u << 31)
29
#define CIP_EOH_MASK		0x80000000
30
#define CIP_FMT_AM		(0x10 << 24)
31 32 33 34 35 36 37 38 39 40 41 42 43 44
#define CIP_FMT_MASK		0x3f000000
#define CIP_SYT_MASK		0x0000ffff
#define CIP_SYT_NO_INFO		0xffff
#define CIP_FDF_MASK		0x00ff0000
#define CIP_FDF_SFC_SHIFT	16

/*
 * Audio and Music transfer protocol specific parameters
 * only "Clock-based rate control mode" is supported
 */
#define AMDTP_FDF_AM824		(0 << (CIP_FDF_SFC_SHIFT + 3))
#define AMDTP_DBS_MASK		0x00ff0000
#define AMDTP_DBS_SHIFT		16
#define AMDTP_DBC_MASK		0x000000ff
45 46 47 48 49

/* TODO: make these configurable */
#define INTERRUPT_INTERVAL	16
#define QUEUE_LENGTH		48

50 51
#define OUT_PACKET_HEADER_SIZE	0

52 53
static void pcm_period_tasklet(unsigned long data);

54
/**
55 56
 * amdtp_stream_init - initialize an AMDTP stream structure
 * @s: the AMDTP stream to initialize
57
 * @unit: the target of the stream
58
 * @dir: the direction of stream
59 60
 * @flags: the packet transmission method to use
 */
61
int amdtp_stream_init(struct amdtp_stream *s, struct fw_unit *unit,
62
		      enum amdtp_stream_direction dir, enum cip_flags flags)
63 64
{
	s->unit = fw_unit_get(unit);
65
	s->direction = dir;
66 67 68
	s->flags = flags;
	s->context = ERR_PTR(-1);
	mutex_init(&s->mutex);
69
	tasklet_init(&s->period_tasklet, pcm_period_tasklet, (unsigned long)s);
70
	s->packet_index = 0;
71 72 73

	return 0;
}
74
EXPORT_SYMBOL(amdtp_stream_init);
75 76

/**
77 78
 * amdtp_stream_destroy - free stream resources
 * @s: the AMDTP stream to destroy
79
 */
80
void amdtp_stream_destroy(struct amdtp_stream *s)
81
{
82
	WARN_ON(amdtp_stream_running(s));
83 84 85
	mutex_destroy(&s->mutex);
	fw_unit_put(s->unit);
}
86
EXPORT_SYMBOL(amdtp_stream_destroy);
87

88
const unsigned int amdtp_syt_intervals[CIP_SFC_COUNT] = {
89 90 91 92 93 94 95 96 97 98
	[CIP_SFC_32000]  =  8,
	[CIP_SFC_44100]  =  8,
	[CIP_SFC_48000]  =  8,
	[CIP_SFC_88200]  = 16,
	[CIP_SFC_96000]  = 16,
	[CIP_SFC_176400] = 32,
	[CIP_SFC_192000] = 32,
};
EXPORT_SYMBOL(amdtp_syt_intervals);

99
/**
100 101
 * amdtp_stream_set_parameters - set stream parameters
 * @s: the AMDTP stream to configure
102
 * @rate: the sample rate
103 104 105
 * @pcm_channels: the number of PCM samples in each data block, to be encoded
 *                as AM824 multi-bit linear audio
 * @midi_ports: the number of MIDI ports (i.e., MPX-MIDI Data Channels)
106
 *
107
 * The parameters must be set before the stream is started, and must not be
108 109
 * changed while the stream is running.
 */
110 111 112 113
void amdtp_stream_set_parameters(struct amdtp_stream *s,
				 unsigned int rate,
				 unsigned int pcm_channels,
				 unsigned int midi_ports)
114
{
115 116 117 118 119 120 121 122
	static const unsigned int rates[] = {
		[CIP_SFC_32000]  =  32000,
		[CIP_SFC_44100]  =  44100,
		[CIP_SFC_48000]  =  48000,
		[CIP_SFC_88200]  =  88200,
		[CIP_SFC_96000]  =  96000,
		[CIP_SFC_176400] = 176400,
		[CIP_SFC_192000] = 192000,
123 124 125
	};
	unsigned int sfc;

126
	if (WARN_ON(amdtp_stream_running(s)))
127 128
		return;

129 130
	for (sfc = 0; sfc < CIP_SFC_COUNT; ++sfc)
		if (rates[sfc] == rate)
131
			goto sfc_found;
132
	WARN_ON(1);
133 134 135
	return;

sfc_found:
136 137 138 139 140 141
	s->dual_wire = (s->flags & CIP_HI_DUALWIRE) && sfc > CIP_SFC_96000;
	if (s->dual_wire) {
		sfc -= 2;
		rate /= 2;
		pcm_channels *= 2;
	}
142
	s->sfc = sfc;
143 144 145 146 147
	s->data_block_quadlets = pcm_channels + DIV_ROUND_UP(midi_ports, 8);
	s->pcm_channels = pcm_channels;
	s->midi_ports = midi_ports;

	s->syt_interval = amdtp_syt_intervals[sfc];
148 149 150 151 152 153

	/* default buffering in the device */
	s->transfer_delay = TRANSFER_DELAY_TICKS - TICKS_PER_CYCLE;
	if (s->flags & CIP_BLOCKING)
		/* additional buffering needed to adjust for no-data packets */
		s->transfer_delay += TICKS_PER_SECOND * s->syt_interval / rate;
154
}
155
EXPORT_SYMBOL(amdtp_stream_set_parameters);
156 157

/**
158 159
 * amdtp_stream_get_max_payload - get the stream's packet size
 * @s: the AMDTP stream
160 161
 *
 * This function must not be called before the stream has been configured
162
 * with amdtp_stream_set_parameters().
163
 */
164
unsigned int amdtp_stream_get_max_payload(struct amdtp_stream *s)
165
{
166
	return 8 + s->syt_interval * s->data_block_quadlets * 4;
167
}
168
EXPORT_SYMBOL(amdtp_stream_get_max_payload);
169

170
static void amdtp_write_s16(struct amdtp_stream *s,
171 172
			    struct snd_pcm_substream *pcm,
			    __be32 *buffer, unsigned int frames);
173
static void amdtp_write_s32(struct amdtp_stream *s,
174 175
			    struct snd_pcm_substream *pcm,
			    __be32 *buffer, unsigned int frames);
176
static void amdtp_write_s16_dualwire(struct amdtp_stream *s,
177 178
				     struct snd_pcm_substream *pcm,
				     __be32 *buffer, unsigned int frames);
179
static void amdtp_write_s32_dualwire(struct amdtp_stream *s,
180 181
				     struct snd_pcm_substream *pcm,
				     __be32 *buffer, unsigned int frames);
182 183

/**
184 185
 * amdtp_stream_set_pcm_format - set the PCM format
 * @s: the AMDTP stream to configure
186 187
 * @format: the format of the ALSA PCM device
 *
188 189 190
 * The sample format must be set after the other paramters (rate/PCM channels/
 * MIDI) and before the stream is started, and must not be changed while the
 * stream is running.
191
 */
192 193
void amdtp_stream_set_pcm_format(struct amdtp_stream *s,
				 snd_pcm_format_t format)
194
{
195
	if (WARN_ON(amdtp_stream_running(s)))
196 197 198 199 200 201 202
		return;

	switch (format) {
	default:
		WARN_ON(1);
		/* fall through */
	case SNDRV_PCM_FORMAT_S16:
203 204 205 206
		if (s->dual_wire)
			s->transfer_samples = amdtp_write_s16_dualwire;
		else
			s->transfer_samples = amdtp_write_s16;
207 208
		break;
	case SNDRV_PCM_FORMAT_S32:
209 210 211 212
		if (s->dual_wire)
			s->transfer_samples = amdtp_write_s32_dualwire;
		else
			s->transfer_samples = amdtp_write_s32;
213 214 215
		break;
	}
}
216
EXPORT_SYMBOL(amdtp_stream_set_pcm_format);
217

218
/**
219 220
 * amdtp_stream_pcm_prepare - prepare PCM device for running
 * @s: the AMDTP stream
221 222 223
 *
 * This function should be called from the PCM device's .prepare callback.
 */
224
void amdtp_stream_pcm_prepare(struct amdtp_stream *s)
225 226 227 228
{
	tasklet_kill(&s->period_tasklet);
	s->pcm_buffer_pointer = 0;
	s->pcm_period_pointer = 0;
229
	s->pointer_flush = true;
230
}
231
EXPORT_SYMBOL(amdtp_stream_pcm_prepare);
232

233
static unsigned int calculate_data_blocks(struct amdtp_stream *s)
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
{
	unsigned int phase, data_blocks;

	if (!cip_sfc_is_base_44100(s->sfc)) {
		/* Sample_rate / 8000 is an integer, and precomputed. */
		data_blocks = s->data_block_state;
	} else {
		phase = s->data_block_state;

		/*
		 * This calculates the number of data blocks per packet so that
		 * 1) the overall rate is correct and exactly synchronized to
		 *    the bus clock, and
		 * 2) packets with a rounded-up number of blocks occur as early
		 *    as possible in the sequence (to prevent underruns of the
		 *    device's buffer).
		 */
		if (s->sfc == CIP_SFC_44100)
			/* 6 6 5 6 5 6 5 ... */
			data_blocks = 5 + ((phase & 1) ^
					   (phase == 0 || phase >= 40));
		else
			/* 12 11 11 11 11 ... or 23 22 22 22 22 ... */
			data_blocks = 11 * (s->sfc >> 1) + (phase == 0);
		if (++phase >= (80 >> (s->sfc >> 1)))
			phase = 0;
		s->data_block_state = phase;
	}

	return data_blocks;
}

266
static unsigned int calculate_syt(struct amdtp_stream *s,
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
				  unsigned int cycle)
{
	unsigned int syt_offset, phase, index, syt;

	if (s->last_syt_offset < TICKS_PER_CYCLE) {
		if (!cip_sfc_is_base_44100(s->sfc))
			syt_offset = s->last_syt_offset + s->syt_offset_state;
		else {
		/*
		 * The time, in ticks, of the n'th SYT_INTERVAL sample is:
		 *   n * SYT_INTERVAL * 24576000 / sample_rate
		 * Modulo TICKS_PER_CYCLE, the difference between successive
		 * elements is about 1386.23.  Rounding the results of this
		 * formula to the SYT precision results in a sequence of
		 * differences that begins with:
		 *   1386 1386 1387 1386 1386 1386 1387 1386 1386 1386 1387 ...
		 * This code generates _exactly_ the same sequence.
		 */
			phase = s->syt_offset_state;
			index = phase % 13;
			syt_offset = s->last_syt_offset;
			syt_offset += 1386 + ((index && !(index & 3)) ||
					      phase == 146);
			if (++phase >= 147)
				phase = 0;
			s->syt_offset_state = phase;
		}
	} else
		syt_offset = s->last_syt_offset - TICKS_PER_CYCLE;
	s->last_syt_offset = syt_offset;

298
	if (syt_offset < TICKS_PER_CYCLE) {
299
		syt_offset += s->transfer_delay;
300 301
		syt = (cycle + syt_offset / TICKS_PER_CYCLE) << 12;
		syt += syt_offset % TICKS_PER_CYCLE;
302

303
		return syt & CIP_SYT_MASK;
304
	} else {
305
		return CIP_SYT_NO_INFO;
306
	}
307 308
}

309
static void amdtp_write_s32(struct amdtp_stream *s,
310 311 312 313 314 315 316 317 318
			    struct snd_pcm_substream *pcm,
			    __be32 *buffer, unsigned int frames)
{
	struct snd_pcm_runtime *runtime = pcm->runtime;
	unsigned int channels, remaining_frames, frame_step, i, c;
	const u32 *src;

	channels = s->pcm_channels;
	src = (void *)runtime->dma_area +
319
			frames_to_bytes(runtime, s->pcm_buffer_pointer);
320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
	remaining_frames = runtime->buffer_size - s->pcm_buffer_pointer;
	frame_step = s->data_block_quadlets - channels;

	for (i = 0; i < frames; ++i) {
		for (c = 0; c < channels; ++c) {
			*buffer = cpu_to_be32((*src >> 8) | 0x40000000);
			src++;
			buffer++;
		}
		buffer += frame_step;
		if (--remaining_frames == 0)
			src = (void *)runtime->dma_area;
	}
}

335
static void amdtp_write_s16(struct amdtp_stream *s,
336 337 338 339 340 341 342 343 344
			    struct snd_pcm_substream *pcm,
			    __be32 *buffer, unsigned int frames)
{
	struct snd_pcm_runtime *runtime = pcm->runtime;
	unsigned int channels, remaining_frames, frame_step, i, c;
	const u16 *src;

	channels = s->pcm_channels;
	src = (void *)runtime->dma_area +
345
			frames_to_bytes(runtime, s->pcm_buffer_pointer);
346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
	remaining_frames = runtime->buffer_size - s->pcm_buffer_pointer;
	frame_step = s->data_block_quadlets - channels;

	for (i = 0; i < frames; ++i) {
		for (c = 0; c < channels; ++c) {
			*buffer = cpu_to_be32((*src << 8) | 0x40000000);
			src++;
			buffer++;
		}
		buffer += frame_step;
		if (--remaining_frames == 0)
			src = (void *)runtime->dma_area;
	}
}

361
static void amdtp_write_s32_dualwire(struct amdtp_stream *s,
362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
				     struct snd_pcm_substream *pcm,
				     __be32 *buffer, unsigned int frames)
{
	struct snd_pcm_runtime *runtime = pcm->runtime;
	unsigned int channels, frame_adjust_1, frame_adjust_2, i, c;
	const u32 *src;

	channels = s->pcm_channels;
	src = (void *)runtime->dma_area +
			s->pcm_buffer_pointer * (runtime->frame_bits / 8);
	frame_adjust_1 = channels - 1;
	frame_adjust_2 = 1 - (s->data_block_quadlets - channels);

	channels /= 2;
	for (i = 0; i < frames; ++i) {
		for (c = 0; c < channels; ++c) {
			*buffer = cpu_to_be32((*src >> 8) | 0x40000000);
			src++;
			buffer += 2;
		}
		buffer -= frame_adjust_1;
		for (c = 0; c < channels; ++c) {
			*buffer = cpu_to_be32((*src >> 8) | 0x40000000);
			src++;
			buffer += 2;
		}
		buffer -= frame_adjust_2;
	}
}

392
static void amdtp_write_s16_dualwire(struct amdtp_stream *s,
393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
				     struct snd_pcm_substream *pcm,
				     __be32 *buffer, unsigned int frames)
{
	struct snd_pcm_runtime *runtime = pcm->runtime;
	unsigned int channels, frame_adjust_1, frame_adjust_2, i, c;
	const u16 *src;

	channels = s->pcm_channels;
	src = (void *)runtime->dma_area +
			s->pcm_buffer_pointer * (runtime->frame_bits / 8);
	frame_adjust_1 = channels - 1;
	frame_adjust_2 = 1 - (s->data_block_quadlets - channels);

	channels /= 2;
	for (i = 0; i < frames; ++i) {
		for (c = 0; c < channels; ++c) {
			*buffer = cpu_to_be32((*src << 8) | 0x40000000);
			src++;
			buffer += 2;
		}
		buffer -= frame_adjust_1;
		for (c = 0; c < channels; ++c) {
			*buffer = cpu_to_be32((*src << 8) | 0x40000000);
			src++;
			buffer += 2;
		}
		buffer -= frame_adjust_2;
	}
}

423
static void amdtp_fill_pcm_silence(struct amdtp_stream *s,
424 425 426 427 428 429 430 431 432 433 434
				   __be32 *buffer, unsigned int frames)
{
	unsigned int i, c;

	for (i = 0; i < frames; ++i) {
		for (c = 0; c < s->pcm_channels; ++c)
			buffer[c] = cpu_to_be32(0x40000000);
		buffer += s->data_block_quadlets;
	}
}

435
static void amdtp_fill_midi(struct amdtp_stream *s,
436 437 438 439 440 441 442 443 444
			    __be32 *buffer, unsigned int frames)
{
	unsigned int i;

	for (i = 0; i < frames; ++i)
		buffer[s->pcm_channels + i * s->data_block_quadlets] =
						cpu_to_be32(0x80000000);
}

445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
static void update_pcm_pointers(struct amdtp_stream *s,
				struct snd_pcm_substream *pcm,
				unsigned int frames)
{	unsigned int ptr;

	if (s->dual_wire)
		frames *= 2;

	ptr = s->pcm_buffer_pointer + frames;
	if (ptr >= pcm->runtime->buffer_size)
		ptr -= pcm->runtime->buffer_size;
	ACCESS_ONCE(s->pcm_buffer_pointer) = ptr;

	s->pcm_period_pointer += frames;
	if (s->pcm_period_pointer >= pcm->runtime->period_size) {
		s->pcm_period_pointer -= pcm->runtime->period_size;
		s->pointer_flush = false;
		tasklet_hi_schedule(&s->period_tasklet);
	}
}

static void pcm_period_tasklet(unsigned long data)
{
	struct amdtp_stream *s = (void *)data;
	struct snd_pcm_substream *pcm = ACCESS_ONCE(s->pcm);

	if (pcm)
		snd_pcm_period_elapsed(pcm);
}

static int queue_packet(struct amdtp_stream *s,
			unsigned int header_length,
			unsigned int payload_length, bool skip)
{
	struct fw_iso_packet p = {0};
	int err;

	p.interrupt = IS_ALIGNED(s->packet_index + 1, INTERRUPT_INTERVAL);
	p.tag = TAG_CIP;
	p.header_length = header_length;
	p.payload_length = (!skip) ? payload_length : 0;
	p.skip = skip;
	err = fw_iso_context_queue(s->context, &p, &s->buffer.iso_buffer,
				   s->buffer.packets[s->packet_index].offset);
	if (err < 0) {
		dev_err(&s->unit->device, "queueing error: %d\n", err);
		goto end;
	}

	if (++s->packet_index >= QUEUE_LENGTH)
		s->packet_index = 0;
end:
	return err;
}

static inline int queue_out_packet(struct amdtp_stream *s,
				   unsigned int payload_length, bool skip)
{
	return queue_packet(s, OUT_PACKET_HEADER_SIZE,
			    payload_length, skip);
}

static void handle_out_packet(struct amdtp_stream *s, unsigned int cycle)
508 509
{
	__be32 *buffer;
510
	unsigned int index, data_blocks, syt, payload_length;
511 512
	struct snd_pcm_substream *pcm;

513 514 515 516
	if (s->packet_index < 0)
		return;
	index = s->packet_index;

517
	/* this module generate empty packet for 'no data' */
518
	syt = calculate_syt(s, cycle);
519
	if (!(s->flags & CIP_BLOCKING))
520
		data_blocks = calculate_data_blocks(s);
521
	else if (syt != CIP_SYT_NO_INFO)
522 523 524
		data_blocks = s->syt_interval;
	else
		data_blocks = 0;
525

526
	buffer = s->buffer.packets[index].buffer;
527
	buffer[0] = cpu_to_be32(ACCESS_ONCE(s->source_node_id_field) |
528
				(s->data_block_quadlets << AMDTP_DBS_SHIFT) |
529 530
				s->data_block_counter);
	buffer[1] = cpu_to_be32(CIP_EOH | CIP_FMT_AM | AMDTP_FDF_AM824 |
531
				(s->sfc << CIP_FDF_SFC_SHIFT) | syt);
532 533 534 535 536 537 538 539 540 541 542 543
	buffer += 2;

	pcm = ACCESS_ONCE(s->pcm);
	if (pcm)
		s->transfer_samples(s, pcm, buffer, data_blocks);
	else
		amdtp_fill_pcm_silence(s, buffer, data_blocks);
	if (s->midi_ports)
		amdtp_fill_midi(s, buffer, data_blocks);

	s->data_block_counter = (s->data_block_counter + data_blocks) & 0xff;

544 545
	payload_length = 8 + data_blocks * 4 * s->data_block_quadlets;
	if (queue_out_packet(s, payload_length, false) < 0) {
546
		s->packet_index = -1;
547
		amdtp_stream_pcm_abort(s);
548 549
		return;
	}
550

551
	if (pcm)
552
		update_pcm_pointers(s, pcm, data_blocks);
553 554
}

555 556 557
static void out_stream_callback(struct fw_iso_context *context, u32 cycle,
				size_t header_length, void *header,
				void *private_data)
558
{
559
	struct amdtp_stream *s = private_data;
560 561 562 563 564 565 566 567 568 569
	unsigned int i, packets = header_length / 4;

	/*
	 * Compute the cycle of the last queued packet.
	 * (We need only the four lowest bits for the SYT, so we can ignore
	 * that bits 0-11 must wrap around at 3072.)
	 */
	cycle += QUEUE_LENGTH - packets;

	for (i = 0; i < packets; ++i)
570
		handle_out_packet(s, ++cycle);
571
	fw_iso_context_queue_flush(s->context);
572 573 574
}

/**
575 576
 * amdtp_stream_start - start transferring packets
 * @s: the AMDTP stream to start
577 578 579 580
 * @channel: the isochronous channel on the bus
 * @speed: firewire speed code
 *
 * The stream cannot be started until it has been configured with
581 582
 * amdtp_stream_set_parameters() and it must be started before any PCM or MIDI
 * device can be started.
583
 */
584
int amdtp_stream_start(struct amdtp_stream *s, int channel, int speed)
585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601
{
	static const struct {
		unsigned int data_block;
		unsigned int syt_offset;
	} initial_state[] = {
		[CIP_SFC_32000]  = {  4, 3072 },
		[CIP_SFC_48000]  = {  6, 1024 },
		[CIP_SFC_96000]  = { 12, 1024 },
		[CIP_SFC_192000] = { 24, 1024 },
		[CIP_SFC_44100]  = {  0,   67 },
		[CIP_SFC_88200]  = {  0,   67 },
		[CIP_SFC_176400] = {  0,   67 },
	};
	int err;

	mutex_lock(&s->mutex);

602
	if (WARN_ON(amdtp_stream_running(s) ||
603
		    (s->data_block_quadlets < 1))) {
604 605 606 607
		err = -EBADFD;
		goto err_unlock;
	}

608
	s->data_block_counter = 0;
609 610 611 612 613
	s->data_block_state = initial_state[s->sfc].data_block;
	s->syt_offset_state = initial_state[s->sfc].syt_offset;
	s->last_syt_offset = TICKS_PER_CYCLE;

	err = iso_packets_buffer_init(&s->buffer, s->unit, QUEUE_LENGTH,
614
				      amdtp_stream_get_max_payload(s),
615 616 617 618 619 620 621
				      DMA_TO_DEVICE);
	if (err < 0)
		goto err_unlock;

	s->context = fw_iso_context_create(fw_parent_device(s->unit)->card,
					   FW_ISO_CONTEXT_TRANSMIT,
					   channel, speed, 0,
622
					   out_stream_callback, s);
623 624 625 626
	if (IS_ERR(s->context)) {
		err = PTR_ERR(s->context);
		if (err == -EBUSY)
			dev_err(&s->unit->device,
627
				"no free stream on this controller\n");
628 629 630
		goto err_buffer;
	}

631
	amdtp_stream_update(s);
632

633
	s->packet_index = 0;
634 635 636 637 638
	do {
		err = queue_out_packet(s, 0, true);
		if (err < 0)
			goto err_context;
	} while (s->packet_index > 0);
639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657

	err = fw_iso_context_start(s->context, -1, 0, 0);
	if (err < 0)
		goto err_context;

	mutex_unlock(&s->mutex);

	return 0;

err_context:
	fw_iso_context_destroy(s->context);
	s->context = ERR_PTR(-1);
err_buffer:
	iso_packets_buffer_destroy(&s->buffer, s->unit);
err_unlock:
	mutex_unlock(&s->mutex);

	return err;
}
658
EXPORT_SYMBOL(amdtp_stream_start);
659

660
/**
661 662
 * amdtp_stream_pcm_pointer - get the PCM buffer position
 * @s: the AMDTP stream that transports the PCM data
663 664 665
 *
 * Returns the current buffer position, in frames.
 */
666
unsigned long amdtp_stream_pcm_pointer(struct amdtp_stream *s)
667
{
668 669 670 671 672
	/* this optimization is allowed to be racy */
	if (s->pointer_flush)
		fw_iso_context_flush_completions(s->context);
	else
		s->pointer_flush = true;
673 674 675

	return ACCESS_ONCE(s->pcm_buffer_pointer);
}
676
EXPORT_SYMBOL(amdtp_stream_pcm_pointer);
677

678
/**
679 680
 * amdtp_stream_update - update the stream after a bus reset
 * @s: the AMDTP stream
681
 */
682
void amdtp_stream_update(struct amdtp_stream *s)
683 684 685 686
{
	ACCESS_ONCE(s->source_node_id_field) =
		(fw_parent_device(s->unit)->card->node_id & 0x3f) << 24;
}
687
EXPORT_SYMBOL(amdtp_stream_update);
688 689

/**
690 691
 * amdtp_stream_stop - stop sending packets
 * @s: the AMDTP stream to stop
692 693 694 695
 *
 * All PCM and MIDI devices of the stream must be stopped before the stream
 * itself can be stopped.
 */
696
void amdtp_stream_stop(struct amdtp_stream *s)
697 698 699
{
	mutex_lock(&s->mutex);

700
	if (!amdtp_stream_running(s)) {
701 702 703 704
		mutex_unlock(&s->mutex);
		return;
	}

705
	tasklet_kill(&s->period_tasklet);
706 707 708 709 710 711 712
	fw_iso_context_stop(s->context);
	fw_iso_context_destroy(s->context);
	s->context = ERR_PTR(-1);
	iso_packets_buffer_destroy(&s->buffer, s->unit);

	mutex_unlock(&s->mutex);
}
713
EXPORT_SYMBOL(amdtp_stream_stop);
714 715

/**
716
 * amdtp_stream_pcm_abort - abort the running PCM device
717 718 719 720 721
 * @s: the AMDTP stream about to be stopped
 *
 * If the isochronous stream needs to be stopped asynchronously, call this
 * function first to stop the PCM device.
 */
722
void amdtp_stream_pcm_abort(struct amdtp_stream *s)
723 724 725 726 727 728 729 730 731 732 733
{
	struct snd_pcm_substream *pcm;

	pcm = ACCESS_ONCE(s->pcm);
	if (pcm) {
		snd_pcm_stream_lock_irq(pcm);
		if (snd_pcm_running(pcm))
			snd_pcm_stop(pcm, SNDRV_PCM_STATE_XRUN);
		snd_pcm_stream_unlock_irq(pcm);
	}
}
734
EXPORT_SYMBOL(amdtp_stream_pcm_abort);