amdtp.c 29.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
/*
 * Audio and Music Data Transmission Protocol (IEC 61883-6) streams
 * with Common Isochronous Packet (IEC 61883-1) headers
 *
 * Copyright (c) Clemens Ladisch <clemens@ladisch.de>
 * Licensed under the terms of the GNU General Public License, version 2.
 */

#include <linux/device.h>
#include <linux/err.h>
#include <linux/firewire.h>
#include <linux/module.h>
#include <linux/slab.h>
14
#include <linux/sched.h>
15
#include <sound/pcm.h>
16
#include <sound/pcm_params.h>
17
#include <sound/rawmidi.h>
18 19 20 21 22 23
#include "amdtp.h"

#define TICKS_PER_CYCLE		3072
#define CYCLES_PER_SECOND	8000
#define TICKS_PER_SECOND	(TICKS_PER_CYCLE * CYCLES_PER_SECOND)

24 25 26 27 28 29
/*
 * Nominally 3125 bytes/second, but the MIDI port's clock might be
 * 1% too slow, and the bus clock 100 ppm too fast.
 */
#define MIDI_BYTES_PER_SECOND	3093

30 31 32 33 34 35
/*
 * Several devices look only at the first eight data blocks.
 * In any case, this is more than enough for the MIDI data rate.
 */
#define MAX_MIDI_RX_BLOCKS	8

36
#define TRANSFER_DELAY_TICKS	0x2e00 /* 479.17 microseconds */
37

38 39
/* isochronous header parameters */
#define ISO_DATA_LENGTH_SHIFT	16
40 41
#define TAG_CIP			1

42
/* common isochronous packet header parameters */
43
#define CIP_EOH			(1u << 31)
44
#define CIP_EOH_MASK		0x80000000
45
#define CIP_FMT_AM		(0x10 << 24)
46 47 48 49 50 51 52 53 54 55 56
#define CIP_FMT_MASK		0x3f000000
#define CIP_SYT_MASK		0x0000ffff
#define CIP_SYT_NO_INFO		0xffff
#define CIP_FDF_MASK		0x00ff0000
#define CIP_FDF_SFC_SHIFT	16

/*
 * Audio and Music transfer protocol specific parameters
 * only "Clock-based rate control mode" is supported
 */
#define AMDTP_FDF_AM824		(0 << (CIP_FDF_SFC_SHIFT + 3))
57
#define AMDTP_FDF_NO_DATA	0xff
58 59 60
#define AMDTP_DBS_MASK		0x00ff0000
#define AMDTP_DBS_SHIFT		16
#define AMDTP_DBC_MASK		0x000000ff
61 62 63 64 65

/* TODO: make these configurable */
#define INTERRUPT_INTERVAL	16
#define QUEUE_LENGTH		48

66
#define IN_PACKET_HEADER_SIZE	4
67 68
#define OUT_PACKET_HEADER_SIZE	0

69 70
static void pcm_period_tasklet(unsigned long data);

71
/**
72 73
 * amdtp_stream_init - initialize an AMDTP stream structure
 * @s: the AMDTP stream to initialize
74
 * @unit: the target of the stream
75
 * @dir: the direction of stream
76 77
 * @flags: the packet transmission method to use
 */
78
int amdtp_stream_init(struct amdtp_stream *s, struct fw_unit *unit,
79
		      enum amdtp_stream_direction dir, enum cip_flags flags)
80
{
81
	s->unit = unit;
82
	s->direction = dir;
83 84 85
	s->flags = flags;
	s->context = ERR_PTR(-1);
	mutex_init(&s->mutex);
86
	tasklet_init(&s->period_tasklet, pcm_period_tasklet, (unsigned long)s);
87
	s->packet_index = 0;
88

89 90 91 92
	init_waitqueue_head(&s->callback_wait);
	s->callbacked = false;
	s->sync_slave = NULL;

93 94
	return 0;
}
95
EXPORT_SYMBOL(amdtp_stream_init);
96 97

/**
98 99
 * amdtp_stream_destroy - free stream resources
 * @s: the AMDTP stream to destroy
100
 */
101
void amdtp_stream_destroy(struct amdtp_stream *s)
102
{
103
	WARN_ON(amdtp_stream_running(s));
104 105
	mutex_destroy(&s->mutex);
}
106
EXPORT_SYMBOL(amdtp_stream_destroy);
107

108
const unsigned int amdtp_syt_intervals[CIP_SFC_COUNT] = {
109 110 111 112 113 114 115 116 117 118
	[CIP_SFC_32000]  =  8,
	[CIP_SFC_44100]  =  8,
	[CIP_SFC_48000]  =  8,
	[CIP_SFC_88200]  = 16,
	[CIP_SFC_96000]  = 16,
	[CIP_SFC_176400] = 32,
	[CIP_SFC_192000] = 32,
};
EXPORT_SYMBOL(amdtp_syt_intervals);

119
const unsigned int amdtp_rate_table[CIP_SFC_COUNT] = {
120 121 122 123 124 125 126 127 128 129
	[CIP_SFC_32000]  =  32000,
	[CIP_SFC_44100]  =  44100,
	[CIP_SFC_48000]  =  48000,
	[CIP_SFC_88200]  =  88200,
	[CIP_SFC_96000]  =  96000,
	[CIP_SFC_176400] = 176400,
	[CIP_SFC_192000] = 192000,
};
EXPORT_SYMBOL(amdtp_rate_table);

130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
/**
 * amdtp_stream_add_pcm_hw_constraints - add hw constraints for PCM substream
 * @s:		the AMDTP stream, which must be initialized.
 * @runtime:	the PCM substream runtime
 */
int amdtp_stream_add_pcm_hw_constraints(struct amdtp_stream *s,
					struct snd_pcm_runtime *runtime)
{
	int err;

	/* AM824 in IEC 61883-6 can deliver 24bit data */
	err = snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24);
	if (err < 0)
		goto end;

	/*
	 * Currently firewire-lib processes 16 packets in one software
	 * interrupt callback. This equals to 2msec but actually the
	 * interval of the interrupts has a jitter.
	 * Additionally, even if adding a constraint to fit period size to
	 * 2msec, actual calculated frames per period doesn't equal to 2msec,
	 * depending on sampling rate.
	 * Anyway, the interval to call snd_pcm_period_elapsed() cannot 2msec.
	 * Here let us use 5msec for safe period interrupt.
	 */
	err = snd_pcm_hw_constraint_minmax(runtime,
					   SNDRV_PCM_HW_PARAM_PERIOD_TIME,
					   5000, UINT_MAX);
	if (err < 0)
		goto end;

	/* Non-Blocking stream has no more constraints */
	if (!(s->flags & CIP_BLOCKING))
		goto end;

	/*
	 * One AMDTP packet can include some frames. In blocking mode, the
	 * number equals to SYT_INTERVAL. So the number is 8, 16 or 32,
	 * depending on its sampling rate. For accurate period interrupt, it's
169
	 * preferrable to align period/buffer sizes to current SYT_INTERVAL.
170
	 *
171 172
	 * TODO: These constraints can be improved with proper rules.
	 * Currently apply LCM of SYT_INTERVALs.
173 174 175 176 177 178 179 180 181 182 183 184
	 */
	err = snd_pcm_hw_constraint_step(runtime, 0,
					 SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 32);
	if (err < 0)
		goto end;
	err = snd_pcm_hw_constraint_step(runtime, 0,
					 SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 32);
end:
	return err;
}
EXPORT_SYMBOL(amdtp_stream_add_pcm_hw_constraints);

185
/**
186 187
 * amdtp_stream_set_parameters - set stream parameters
 * @s: the AMDTP stream to configure
188
 * @rate: the sample rate
189 190 191
 * @pcm_channels: the number of PCM samples in each data block, to be encoded
 *                as AM824 multi-bit linear audio
 * @midi_ports: the number of MIDI ports (i.e., MPX-MIDI Data Channels)
192
 *
193
 * The parameters must be set before the stream is started, and must not be
194 195
 * changed while the stream is running.
 */
196 197 198 199
void amdtp_stream_set_parameters(struct amdtp_stream *s,
				 unsigned int rate,
				 unsigned int pcm_channels,
				 unsigned int midi_ports)
200
{
201
	unsigned int i, sfc, midi_channels;
202

203 204
	midi_channels = DIV_ROUND_UP(midi_ports, 8);

205 206
	if (WARN_ON(amdtp_stream_running(s)) |
	    WARN_ON(pcm_channels > AMDTP_MAX_CHANNELS_FOR_PCM) |
207
	    WARN_ON(midi_channels > AMDTP_MAX_CHANNELS_FOR_MIDI))
208 209
		return;

210
	for (sfc = 0; sfc < ARRAY_SIZE(amdtp_rate_table); ++sfc)
211
		if (amdtp_rate_table[sfc] == rate)
212
			goto sfc_found;
213
	WARN_ON(1);
214 215 216
	return;

sfc_found:
217
	s->pcm_channels = pcm_channels;
218
	s->sfc = sfc;
219
	s->data_block_quadlets = s->pcm_channels + midi_channels;
220 221 222
	s->midi_ports = midi_ports;

	s->syt_interval = amdtp_syt_intervals[sfc];
223 224 225 226 227 228

	/* default buffering in the device */
	s->transfer_delay = TRANSFER_DELAY_TICKS - TICKS_PER_CYCLE;
	if (s->flags & CIP_BLOCKING)
		/* additional buffering needed to adjust for no-data packets */
		s->transfer_delay += TICKS_PER_SECOND * s->syt_interval / rate;
229 230 231 232 233

	/* init the position map for PCM and MIDI channels */
	for (i = 0; i < pcm_channels; i++)
		s->pcm_positions[i] = i;
	s->midi_position = s->pcm_channels;
234 235 236 237 238 239 240 241

	/*
	 * We do not know the actual MIDI FIFO size of most devices.  Just
	 * assume two bytes, i.e., one byte can be received over the bus while
	 * the previous one is transmitted over MIDI.
	 * (The value here is adjusted for midi_ratelimit_per_packet().)
	 */
	s->midi_fifo_limit = rate - MIDI_BYTES_PER_SECOND * s->syt_interval + 1;
242
}
243
EXPORT_SYMBOL(amdtp_stream_set_parameters);
244 245

/**
246 247
 * amdtp_stream_get_max_payload - get the stream's packet size
 * @s: the AMDTP stream
248 249
 *
 * This function must not be called before the stream has been configured
250
 * with amdtp_stream_set_parameters().
251
 */
252
unsigned int amdtp_stream_get_max_payload(struct amdtp_stream *s)
253
{
254 255 256 257 258 259
	unsigned int multiplier = 1;

	if (s->flags & CIP_JUMBO_PAYLOAD)
		multiplier = 5;

	return 8 + s->syt_interval * s->data_block_quadlets * 4 * multiplier;
260
}
261
EXPORT_SYMBOL(amdtp_stream_get_max_payload);
262

263
static void amdtp_write_s16(struct amdtp_stream *s,
264 265
			    struct snd_pcm_substream *pcm,
			    __be32 *buffer, unsigned int frames);
266
static void amdtp_write_s32(struct amdtp_stream *s,
267 268
			    struct snd_pcm_substream *pcm,
			    __be32 *buffer, unsigned int frames);
269 270 271
static void amdtp_read_s32(struct amdtp_stream *s,
			   struct snd_pcm_substream *pcm,
			   __be32 *buffer, unsigned int frames);
272 273

/**
274 275
 * amdtp_stream_set_pcm_format - set the PCM format
 * @s: the AMDTP stream to configure
276 277
 * @format: the format of the ALSA PCM device
 *
278
 * The sample format must be set after the other parameters (rate/PCM channels/
279 280
 * MIDI) and before the stream is started, and must not be changed while the
 * stream is running.
281
 */
282 283
void amdtp_stream_set_pcm_format(struct amdtp_stream *s,
				 snd_pcm_format_t format)
284
{
285
	if (WARN_ON(amdtp_stream_pcm_running(s)))
286 287 288 289 290 291 292
		return;

	switch (format) {
	default:
		WARN_ON(1);
		/* fall through */
	case SNDRV_PCM_FORMAT_S16:
293
		if (s->direction == AMDTP_OUT_STREAM) {
294
			s->transfer_samples = amdtp_write_s16;
295 296 297 298
			break;
		}
		WARN_ON(1);
		/* fall through */
299
	case SNDRV_PCM_FORMAT_S32:
300 301 302 303
		if (s->direction == AMDTP_OUT_STREAM)
			s->transfer_samples = amdtp_write_s32;
		else
			s->transfer_samples = amdtp_read_s32;
304 305 306
		break;
	}
}
307
EXPORT_SYMBOL(amdtp_stream_set_pcm_format);
308

309
/**
310 311
 * amdtp_stream_pcm_prepare - prepare PCM device for running
 * @s: the AMDTP stream
312 313 314
 *
 * This function should be called from the PCM device's .prepare callback.
 */
315
void amdtp_stream_pcm_prepare(struct amdtp_stream *s)
316 317 318 319
{
	tasklet_kill(&s->period_tasklet);
	s->pcm_buffer_pointer = 0;
	s->pcm_period_pointer = 0;
320
	s->pointer_flush = true;
321
}
322
EXPORT_SYMBOL(amdtp_stream_pcm_prepare);
323

324
static unsigned int calculate_data_blocks(struct amdtp_stream *s)
325 326 327
{
	unsigned int phase, data_blocks;

328 329 330
	if (s->flags & CIP_BLOCKING)
		data_blocks = s->syt_interval;
	else if (!cip_sfc_is_base_44100(s->sfc)) {
331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
		/* Sample_rate / 8000 is an integer, and precomputed. */
		data_blocks = s->data_block_state;
	} else {
		phase = s->data_block_state;

		/*
		 * This calculates the number of data blocks per packet so that
		 * 1) the overall rate is correct and exactly synchronized to
		 *    the bus clock, and
		 * 2) packets with a rounded-up number of blocks occur as early
		 *    as possible in the sequence (to prevent underruns of the
		 *    device's buffer).
		 */
		if (s->sfc == CIP_SFC_44100)
			/* 6 6 5 6 5 6 5 ... */
			data_blocks = 5 + ((phase & 1) ^
					   (phase == 0 || phase >= 40));
		else
			/* 12 11 11 11 11 ... or 23 22 22 22 22 ... */
			data_blocks = 11 * (s->sfc >> 1) + (phase == 0);
		if (++phase >= (80 >> (s->sfc >> 1)))
			phase = 0;
		s->data_block_state = phase;
	}

	return data_blocks;
}

359
static unsigned int calculate_syt(struct amdtp_stream *s,
360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
				  unsigned int cycle)
{
	unsigned int syt_offset, phase, index, syt;

	if (s->last_syt_offset < TICKS_PER_CYCLE) {
		if (!cip_sfc_is_base_44100(s->sfc))
			syt_offset = s->last_syt_offset + s->syt_offset_state;
		else {
		/*
		 * The time, in ticks, of the n'th SYT_INTERVAL sample is:
		 *   n * SYT_INTERVAL * 24576000 / sample_rate
		 * Modulo TICKS_PER_CYCLE, the difference between successive
		 * elements is about 1386.23.  Rounding the results of this
		 * formula to the SYT precision results in a sequence of
		 * differences that begins with:
		 *   1386 1386 1387 1386 1386 1386 1387 1386 1386 1386 1387 ...
		 * This code generates _exactly_ the same sequence.
		 */
			phase = s->syt_offset_state;
			index = phase % 13;
			syt_offset = s->last_syt_offset;
			syt_offset += 1386 + ((index && !(index & 3)) ||
					      phase == 146);
			if (++phase >= 147)
				phase = 0;
			s->syt_offset_state = phase;
		}
	} else
		syt_offset = s->last_syt_offset - TICKS_PER_CYCLE;
	s->last_syt_offset = syt_offset;

391
	if (syt_offset < TICKS_PER_CYCLE) {
392
		syt_offset += s->transfer_delay;
393 394
		syt = (cycle + syt_offset / TICKS_PER_CYCLE) << 12;
		syt += syt_offset % TICKS_PER_CYCLE;
395

396
		return syt & CIP_SYT_MASK;
397
	} else {
398
		return CIP_SYT_NO_INFO;
399
	}
400 401
}

402
static void amdtp_write_s32(struct amdtp_stream *s,
403 404 405 406
			    struct snd_pcm_substream *pcm,
			    __be32 *buffer, unsigned int frames)
{
	struct snd_pcm_runtime *runtime = pcm->runtime;
407
	unsigned int channels, remaining_frames, i, c;
408 409 410 411
	const u32 *src;

	channels = s->pcm_channels;
	src = (void *)runtime->dma_area +
412
			frames_to_bytes(runtime, s->pcm_buffer_pointer);
413 414 415 416
	remaining_frames = runtime->buffer_size - s->pcm_buffer_pointer;

	for (i = 0; i < frames; ++i) {
		for (c = 0; c < channels; ++c) {
417 418
			buffer[s->pcm_positions[c]] =
					cpu_to_be32((*src >> 8) | 0x40000000);
419 420
			src++;
		}
421
		buffer += s->data_block_quadlets;
422 423 424 425 426
		if (--remaining_frames == 0)
			src = (void *)runtime->dma_area;
	}
}

427
static void amdtp_write_s16(struct amdtp_stream *s,
428 429 430 431
			    struct snd_pcm_substream *pcm,
			    __be32 *buffer, unsigned int frames)
{
	struct snd_pcm_runtime *runtime = pcm->runtime;
432
	unsigned int channels, remaining_frames, i, c;
433 434 435 436
	const u16 *src;

	channels = s->pcm_channels;
	src = (void *)runtime->dma_area +
437
			frames_to_bytes(runtime, s->pcm_buffer_pointer);
438 439 440 441
	remaining_frames = runtime->buffer_size - s->pcm_buffer_pointer;

	for (i = 0; i < frames; ++i) {
		for (c = 0; c < channels; ++c) {
442
			buffer[s->pcm_positions[c]] =
443
					cpu_to_be32((*src << 8) | 0x42000000);
444 445
			src++;
		}
446
		buffer += s->data_block_quadlets;
447 448 449 450 451
		if (--remaining_frames == 0)
			src = (void *)runtime->dma_area;
	}
}

452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
static void amdtp_read_s32(struct amdtp_stream *s,
			   struct snd_pcm_substream *pcm,
			   __be32 *buffer, unsigned int frames)
{
	struct snd_pcm_runtime *runtime = pcm->runtime;
	unsigned int channels, remaining_frames, i, c;
	u32 *dst;

	channels = s->pcm_channels;
	dst  = (void *)runtime->dma_area +
			frames_to_bytes(runtime, s->pcm_buffer_pointer);
	remaining_frames = runtime->buffer_size - s->pcm_buffer_pointer;

	for (i = 0; i < frames; ++i) {
		for (c = 0; c < channels; ++c) {
467
			*dst = be32_to_cpu(buffer[s->pcm_positions[c]]) << 8;
468 469 470 471 472 473 474 475
			dst++;
		}
		buffer += s->data_block_quadlets;
		if (--remaining_frames == 0)
			dst = (void *)runtime->dma_area;
	}
}

476
static void amdtp_fill_pcm_silence(struct amdtp_stream *s,
477 478 479 480 481 482
				   __be32 *buffer, unsigned int frames)
{
	unsigned int i, c;

	for (i = 0; i < frames; ++i) {
		for (c = 0; c < s->pcm_channels; ++c)
483
			buffer[s->pcm_positions[c]] = cpu_to_be32(0x40000000);
484 485 486 487
		buffer += s->data_block_quadlets;
	}
}

488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
/*
 * To avoid sending MIDI bytes at too high a rate, assume that the receiving
 * device has a FIFO, and track how much it is filled.  This values increases
 * by one whenever we send one byte in a packet, but the FIFO empties at
 * a constant rate independent of our packet rate.  One packet has syt_interval
 * samples, so the number of bytes that empty out of the FIFO, per packet(!),
 * is MIDI_BYTES_PER_SECOND * syt_interval / sample_rate.  To avoid storing
 * fractional values, the values in midi_fifo_used[] are measured in bytes
 * multiplied by the sample rate.
 */
static bool midi_ratelimit_per_packet(struct amdtp_stream *s, unsigned int port)
{
	int used;

	used = s->midi_fifo_used[port];
	if (used == 0) /* common shortcut */
		return true;

	used -= MIDI_BYTES_PER_SECOND * s->syt_interval;
	used = max(used, 0);
	s->midi_fifo_used[port] = used;

	return used < s->midi_fifo_limit;
}

static void midi_rate_use_one_byte(struct amdtp_stream *s, unsigned int port)
{
	s->midi_fifo_used[port] += amdtp_rate_table[s->sfc];
}

518
static void amdtp_fill_midi(struct amdtp_stream *s,
519 520
			    __be32 *buffer, unsigned int frames)
{
521 522 523 524
	unsigned int f, port;
	u8 *b;

	for (f = 0; f < frames; f++) {
525
		b = (u8 *)&buffer[s->midi_position];
526 527

		port = (s->data_block_counter + f) % 8;
528 529 530 531 532
		if (f < MAX_MIDI_RX_BLOCKS &&
		    midi_ratelimit_per_packet(s, port) &&
		    s->midi[port] != NULL &&
		    snd_rawmidi_transmit(s->midi[port], &b[1], 1) == 1) {
			midi_rate_use_one_byte(s, port);
533
			b[0] = 0x81;
534 535 536 537 538 539
		} else {
			b[0] = 0x80;
			b[1] = 0;
		}
		b[2] = 0;
		b[3] = 0;
540 541 542 543 544 545 546 547 548 549 550 551 552 553

		buffer += s->data_block_quadlets;
	}
}

static void amdtp_pull_midi(struct amdtp_stream *s,
			    __be32 *buffer, unsigned int frames)
{
	unsigned int f, port;
	int len;
	u8 *b;

	for (f = 0; f < frames; f++) {
		port = (s->data_block_counter + f) % 8;
554
		b = (u8 *)&buffer[s->midi_position];
555

556 557 558 559 560 561
		len = b[0] - 0x80;
		if ((1 <= len) &&  (len <= 3) && (s->midi[port]))
			snd_rawmidi_receive(s->midi[port], b + 1, len);

		buffer += s->data_block_quadlets;
	}
562 563
}

564 565 566
static void update_pcm_pointers(struct amdtp_stream *s,
				struct snd_pcm_substream *pcm,
				unsigned int frames)
567 568 569 570 571 572 573 574 575 576
{
	unsigned int ptr;

	/*
	 * In IEC 61883-6, one data block represents one event. In ALSA, one
	 * event equals to one PCM frame. But Dice has a quirk to transfer
	 * two PCM frames in one data block.
	 */
	if (s->double_pcm_frames)
		frames *= 2;
577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604

	ptr = s->pcm_buffer_pointer + frames;
	if (ptr >= pcm->runtime->buffer_size)
		ptr -= pcm->runtime->buffer_size;
	ACCESS_ONCE(s->pcm_buffer_pointer) = ptr;

	s->pcm_period_pointer += frames;
	if (s->pcm_period_pointer >= pcm->runtime->period_size) {
		s->pcm_period_pointer -= pcm->runtime->period_size;
		s->pointer_flush = false;
		tasklet_hi_schedule(&s->period_tasklet);
	}
}

static void pcm_period_tasklet(unsigned long data)
{
	struct amdtp_stream *s = (void *)data;
	struct snd_pcm_substream *pcm = ACCESS_ONCE(s->pcm);

	if (pcm)
		snd_pcm_period_elapsed(pcm);
}

static int queue_packet(struct amdtp_stream *s,
			unsigned int header_length,
			unsigned int payload_length, bool skip)
{
	struct fw_iso_packet p = {0};
605 606 607 608
	int err = 0;

	if (IS_ERR(s->context))
		goto end;
609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634

	p.interrupt = IS_ALIGNED(s->packet_index + 1, INTERRUPT_INTERVAL);
	p.tag = TAG_CIP;
	p.header_length = header_length;
	p.payload_length = (!skip) ? payload_length : 0;
	p.skip = skip;
	err = fw_iso_context_queue(s->context, &p, &s->buffer.iso_buffer,
				   s->buffer.packets[s->packet_index].offset);
	if (err < 0) {
		dev_err(&s->unit->device, "queueing error: %d\n", err);
		goto end;
	}

	if (++s->packet_index >= QUEUE_LENGTH)
		s->packet_index = 0;
end:
	return err;
}

static inline int queue_out_packet(struct amdtp_stream *s,
				   unsigned int payload_length, bool skip)
{
	return queue_packet(s, OUT_PACKET_HEADER_SIZE,
			    payload_length, skip);
}

635 636 637 638 639 640
static inline int queue_in_packet(struct amdtp_stream *s)
{
	return queue_packet(s, IN_PACKET_HEADER_SIZE,
			    amdtp_stream_get_max_payload(s), false);
}

641
static void handle_out_packet(struct amdtp_stream *s, unsigned int syt)
642 643
{
	__be32 *buffer;
644
	unsigned int data_blocks, payload_length;
645 646
	struct snd_pcm_substream *pcm;

647 648 649
	if (s->packet_index < 0)
		return;

650
	/* this module generate empty packet for 'no data' */
651
	if (!(s->flags & CIP_BLOCKING) || (syt != CIP_SYT_NO_INFO))
652
		data_blocks = calculate_data_blocks(s);
653 654
	else
		data_blocks = 0;
655

656
	buffer = s->buffer.packets[s->packet_index].buffer;
657
	buffer[0] = cpu_to_be32(ACCESS_ONCE(s->source_node_id_field) |
658
				(s->data_block_quadlets << AMDTP_DBS_SHIFT) |
659 660
				s->data_block_counter);
	buffer[1] = cpu_to_be32(CIP_EOH | CIP_FMT_AM | AMDTP_FDF_AM824 |
661
				(s->sfc << CIP_FDF_SFC_SHIFT) | syt);
662 663 664 665 666 667 668 669 670 671 672 673
	buffer += 2;

	pcm = ACCESS_ONCE(s->pcm);
	if (pcm)
		s->transfer_samples(s, pcm, buffer, data_blocks);
	else
		amdtp_fill_pcm_silence(s, buffer, data_blocks);
	if (s->midi_ports)
		amdtp_fill_midi(s, buffer, data_blocks);

	s->data_block_counter = (s->data_block_counter + data_blocks) & 0xff;

674 675
	payload_length = 8 + data_blocks * 4 * s->data_block_quadlets;
	if (queue_out_packet(s, payload_length, false) < 0) {
676
		s->packet_index = -1;
677
		amdtp_stream_pcm_abort(s);
678 679
		return;
	}
680

681
	if (pcm)
682
		update_pcm_pointers(s, pcm, data_blocks);
683 684
}

685 686 687 688 689
static void handle_in_packet(struct amdtp_stream *s,
			     unsigned int payload_quadlets,
			     __be32 *buffer)
{
	u32 cip_header[2];
690 691
	unsigned int data_blocks, data_block_quadlets, data_block_counter,
		     dbc_interval;
692
	struct snd_pcm_substream *pcm = NULL;
693
	bool lost;
694 695 696 697 698 699

	cip_header[0] = be32_to_cpu(buffer[0]);
	cip_header[1] = be32_to_cpu(buffer[1]);

	/*
	 * This module supports 'Two-quadlet CIP header with SYT field'.
700
	 * For convenience, also check FMT field is AM824 or not.
701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725
	 */
	if (((cip_header[0] & CIP_EOH_MASK) == CIP_EOH) ||
	    ((cip_header[1] & CIP_EOH_MASK) != CIP_EOH) ||
	    ((cip_header[1] & CIP_FMT_MASK) != CIP_FMT_AM)) {
		dev_info_ratelimited(&s->unit->device,
				"Invalid CIP header for AMDTP: %08X:%08X\n",
				cip_header[0], cip_header[1]);
		goto end;
	}

	/* Calculate data blocks */
	if (payload_quadlets < 3 ||
	    ((cip_header[1] & CIP_FDF_MASK) ==
				(AMDTP_FDF_NO_DATA << CIP_FDF_SFC_SHIFT))) {
		data_blocks = 0;
	} else {
		data_block_quadlets =
			(cip_header[0] & AMDTP_DBS_MASK) >> AMDTP_DBS_SHIFT;
		/* avoid division by zero */
		if (data_block_quadlets == 0) {
			dev_info_ratelimited(&s->unit->device,
				"Detect invalid value in dbs field: %08X\n",
				cip_header[0]);
			goto err;
		}
726 727
		if (s->flags & CIP_WRONG_DBS)
			data_block_quadlets = s->data_block_quadlets;
728 729 730 731 732 733

		data_blocks = (payload_quadlets - 2) / data_block_quadlets;
	}

	/* Check data block counter continuity */
	data_block_counter = cip_header[0] & AMDTP_DBC_MASK;
734 735 736 737
	if (data_blocks == 0 && (s->flags & CIP_EMPTY_HAS_WRONG_DBC) &&
	    s->data_block_counter != UINT_MAX)
		data_block_counter = s->data_block_counter;

738 739
	if (((s->flags & CIP_SKIP_DBC_ZERO_CHECK) && data_block_counter == 0) ||
	    (s->data_block_counter == UINT_MAX)) {
740 741
		lost = false;
	} else if (!(s->flags & CIP_DBC_IS_END_EVENT)) {
742
		lost = data_block_counter != s->data_block_counter;
743 744 745 746 747 748
	} else {
		if ((data_blocks > 0) && (s->tx_dbc_interval > 0))
			dbc_interval = s->tx_dbc_interval;
		else
			dbc_interval = data_blocks;

749
		lost = data_block_counter !=
750 751
		       ((s->data_block_counter + dbc_interval) & 0xff);
	}
752 753

	if (lost) {
754 755 756 757 758 759 760 761 762 763 764 765
		dev_info(&s->unit->device,
			 "Detect discontinuity of CIP: %02X %02X\n",
			 s->data_block_counter, data_block_counter);
		goto err;
	}

	if (data_blocks > 0) {
		buffer += 2;

		pcm = ACCESS_ONCE(s->pcm);
		if (pcm)
			s->transfer_samples(s, pcm, buffer, data_blocks);
766 767 768

		if (s->midi_ports)
			amdtp_pull_midi(s, buffer, data_blocks);
769 770
	}

771 772 773 774 775
	if (s->flags & CIP_DBC_IS_END_EVENT)
		s->data_block_counter = data_block_counter;
	else
		s->data_block_counter =
				(data_block_counter + data_blocks) & 0xff;
776 777 778 779 780 781 782 783 784 785 786 787 788
end:
	if (queue_in_packet(s) < 0)
		goto err;

	if (pcm)
		update_pcm_pointers(s, pcm, data_blocks);

	return;
err:
	s->packet_index = -1;
	amdtp_stream_pcm_abort(s);
}

789 790 791
static void out_stream_callback(struct fw_iso_context *context, u32 cycle,
				size_t header_length, void *header,
				void *private_data)
792
{
793
	struct amdtp_stream *s = private_data;
794
	unsigned int i, syt, packets = header_length / 4;
795 796 797 798 799 800 801 802

	/*
	 * Compute the cycle of the last queued packet.
	 * (We need only the four lowest bits for the SYT, so we can ignore
	 * that bits 0-11 must wrap around at 3072.)
	 */
	cycle += QUEUE_LENGTH - packets;

803 804 805 806
	for (i = 0; i < packets; ++i) {
		syt = calculate_syt(s, ++cycle);
		handle_out_packet(s, syt);
	}
807
	fw_iso_context_queue_flush(s->context);
808 809
}

810 811 812 813 814
static void in_stream_callback(struct fw_iso_context *context, u32 cycle,
			       size_t header_length, void *header,
			       void *private_data)
{
	struct amdtp_stream *s = private_data;
815 816
	unsigned int p, syt, packets;
	unsigned int payload_quadlets, max_payload_quadlets;
817 818 819 820 821
	__be32 *buffer, *headers = header;

	/* The number of packets in buffer */
	packets = header_length / IN_PACKET_HEADER_SIZE;

822 823 824
	/* For buffer-over-run prevention. */
	max_payload_quadlets = amdtp_stream_get_max_payload(s) / 4;

825 826
	for (p = 0; p < packets; p++) {
		if (s->packet_index < 0)
827 828
			break;

829 830
		buffer = s->buffer.packets[s->packet_index].buffer;

831 832 833 834 835 836
		/* Process sync slave stream */
		if (s->sync_slave && s->sync_slave->callbacked) {
			syt = be32_to_cpu(buffer[1]) & CIP_SYT_MASK;
			handle_out_packet(s->sync_slave, syt);
		}

837 838 839
		/* The number of quadlets in this packet */
		payload_quadlets =
			(be32_to_cpu(headers[p]) >> ISO_DATA_LENGTH_SHIFT) / 4;
840 841 842 843 844 845 846 847
		if (payload_quadlets > max_payload_quadlets) {
			dev_err(&s->unit->device,
				"Detect jumbo payload: %02x %02x\n",
				payload_quadlets, max_payload_quadlets);
			s->packet_index = -1;
			break;
		}

848 849 850
		handle_in_packet(s, payload_quadlets, buffer);
	}

851 852 853 854 855 856 857 858 859 860 861 862 863 864
	/* Queueing error or detecting discontinuity */
	if (s->packet_index < 0) {
		/* Abort sync slave. */
		if (s->sync_slave) {
			s->sync_slave->packet_index = -1;
			amdtp_stream_pcm_abort(s->sync_slave);
		}
		return;
	}

	/* when sync to device, flush the packets for slave stream */
	if (s->sync_slave && s->sync_slave->callbacked)
		fw_iso_context_queue_flush(s->sync_slave->context);

865 866 867
	fw_iso_context_queue_flush(s->context);
}

868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899
/* processing is done by master callback */
static void slave_stream_callback(struct fw_iso_context *context, u32 cycle,
				  size_t header_length, void *header,
				  void *private_data)
{
	return;
}

/* this is executed one time */
static void amdtp_stream_first_callback(struct fw_iso_context *context,
					u32 cycle, size_t header_length,
					void *header, void *private_data)
{
	struct amdtp_stream *s = private_data;

	/*
	 * For in-stream, first packet has come.
	 * For out-stream, prepared to transmit first packet
	 */
	s->callbacked = true;
	wake_up(&s->callback_wait);

	if (s->direction == AMDTP_IN_STREAM)
		context->callback.sc = in_stream_callback;
	else if ((s->flags & CIP_BLOCKING) && (s->flags & CIP_SYNC_TO_DEVICE))
		context->callback.sc = slave_stream_callback;
	else
		context->callback.sc = out_stream_callback;

	context->callback.sc(context, cycle, header_length, header, s);
}

900
/**
901 902
 * amdtp_stream_start - start transferring packets
 * @s: the AMDTP stream to start
903 904 905 906
 * @channel: the isochronous channel on the bus
 * @speed: firewire speed code
 *
 * The stream cannot be started until it has been configured with
907 908
 * amdtp_stream_set_parameters() and it must be started before any PCM or MIDI
 * device can be started.
909
 */
910
int amdtp_stream_start(struct amdtp_stream *s, int channel, int speed)
911 912 913 914 915 916 917 918 919 920 921 922 923
{
	static const struct {
		unsigned int data_block;
		unsigned int syt_offset;
	} initial_state[] = {
		[CIP_SFC_32000]  = {  4, 3072 },
		[CIP_SFC_48000]  = {  6, 1024 },
		[CIP_SFC_96000]  = { 12, 1024 },
		[CIP_SFC_192000] = { 24, 1024 },
		[CIP_SFC_44100]  = {  0,   67 },
		[CIP_SFC_88200]  = {  0,   67 },
		[CIP_SFC_176400] = {  0,   67 },
	};
924 925
	unsigned int header_size;
	enum dma_data_direction dir;
926
	int type, tag, err;
927 928 929

	mutex_lock(&s->mutex);

930
	if (WARN_ON(amdtp_stream_running(s) ||
931
		    (s->data_block_quadlets < 1))) {
932 933 934 935
		err = -EBADFD;
		goto err_unlock;
	}

936 937 938 939 940
	if (s->direction == AMDTP_IN_STREAM &&
	    s->flags & CIP_SKIP_INIT_DBC_CHECK)
		s->data_block_counter = UINT_MAX;
	else
		s->data_block_counter = 0;
941 942 943 944
	s->data_block_state = initial_state[s->sfc].data_block;
	s->syt_offset_state = initial_state[s->sfc].syt_offset;
	s->last_syt_offset = TICKS_PER_CYCLE;

945 946 947 948 949 950 951 952 953 954
	/* initialize packet buffer */
	if (s->direction == AMDTP_IN_STREAM) {
		dir = DMA_FROM_DEVICE;
		type = FW_ISO_CONTEXT_RECEIVE;
		header_size = IN_PACKET_HEADER_SIZE;
	} else {
		dir = DMA_TO_DEVICE;
		type = FW_ISO_CONTEXT_TRANSMIT;
		header_size = OUT_PACKET_HEADER_SIZE;
	}
955
	err = iso_packets_buffer_init(&s->buffer, s->unit, QUEUE_LENGTH,
956
				      amdtp_stream_get_max_payload(s), dir);
957 958 959 960
	if (err < 0)
		goto err_unlock;

	s->context = fw_iso_context_create(fw_parent_device(s->unit)->card,
961
					   type, channel, speed, header_size,
962
					   amdtp_stream_first_callback, s);
963 964 965 966
	if (IS_ERR(s->context)) {
		err = PTR_ERR(s->context);
		if (err == -EBUSY)
			dev_err(&s->unit->device,
967
				"no free stream on this controller\n");
968 969 970
		goto err_buffer;
	}

971
	amdtp_stream_update(s);
972

973
	s->packet_index = 0;
974
	do {
975 976 977 978
		if (s->direction == AMDTP_IN_STREAM)
			err = queue_in_packet(s);
		else
			err = queue_out_packet(s, 0, true);
979 980 981
		if (err < 0)
			goto err_context;
	} while (s->packet_index > 0);
982

983
	/* NOTE: TAG1 matches CIP. This just affects in stream. */
984 985 986 987
	tag = FW_ISO_CONTEXT_MATCH_TAG1;
	if (s->flags & CIP_EMPTY_WITH_TAG0)
		tag |= FW_ISO_CONTEXT_MATCH_TAG0;

988
	s->callbacked = false;
989
	err = fw_iso_context_start(s->context, -1, 0, tag);
990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006
	if (err < 0)
		goto err_context;

	mutex_unlock(&s->mutex);

	return 0;

err_context:
	fw_iso_context_destroy(s->context);
	s->context = ERR_PTR(-1);
err_buffer:
	iso_packets_buffer_destroy(&s->buffer, s->unit);
err_unlock:
	mutex_unlock(&s->mutex);

	return err;
}
1007
EXPORT_SYMBOL(amdtp_stream_start);
1008

1009
/**
1010 1011
 * amdtp_stream_pcm_pointer - get the PCM buffer position
 * @s: the AMDTP stream that transports the PCM data
1012 1013 1014
 *
 * Returns the current buffer position, in frames.
 */
1015
unsigned long amdtp_stream_pcm_pointer(struct amdtp_stream *s)
1016
{
1017
	/* this optimization is allowed to be racy */
1018
	if (s->pointer_flush && amdtp_stream_running(s))
1019 1020 1021
		fw_iso_context_flush_completions(s->context);
	else
		s->pointer_flush = true;
1022 1023 1024

	return ACCESS_ONCE(s->pcm_buffer_pointer);
}
1025
EXPORT_SYMBOL(amdtp_stream_pcm_pointer);
1026

1027
/**
1028 1029
 * amdtp_stream_update - update the stream after a bus reset
 * @s: the AMDTP stream
1030
 */
1031
void amdtp_stream_update(struct amdtp_stream *s)
1032 1033 1034 1035
{
	ACCESS_ONCE(s->source_node_id_field) =
		(fw_parent_device(s->unit)->card->node_id & 0x3f) << 24;
}
1036
EXPORT_SYMBOL(amdtp_stream_update);
1037 1038

/**
1039 1040
 * amdtp_stream_stop - stop sending packets
 * @s: the AMDTP stream to stop
1041 1042 1043 1044
 *
 * All PCM and MIDI devices of the stream must be stopped before the stream
 * itself can be stopped.
 */
1045
void amdtp_stream_stop(struct amdtp_stream *s)
1046 1047 1048
{
	mutex_lock(&s->mutex);

1049
	if (!amdtp_stream_running(s)) {
1050 1051 1052 1053
		mutex_unlock(&s->mutex);
		return;
	}

1054
	tasklet_kill(&s->period_tasklet);
1055 1056 1057 1058 1059
	fw_iso_context_stop(s->context);
	fw_iso_context_destroy(s->context);
	s->context = ERR_PTR(-1);
	iso_packets_buffer_destroy(&s->buffer, s->unit);

1060 1061
	s->callbacked = false;

1062 1063
	mutex_unlock(&s->mutex);
}
1064
EXPORT_SYMBOL(amdtp_stream_stop);
1065 1066

/**
1067
 * amdtp_stream_pcm_abort - abort the running PCM device
1068 1069 1070 1071 1072
 * @s: the AMDTP stream about to be stopped
 *
 * If the isochronous stream needs to be stopped asynchronously, call this
 * function first to stop the PCM device.
 */
1073
void amdtp_stream_pcm_abort(struct amdtp_stream *s)
1074 1075 1076 1077
{
	struct snd_pcm_substream *pcm;

	pcm = ACCESS_ONCE(s->pcm);
1078 1079
	if (pcm)
		snd_pcm_stop_xrun(pcm);
1080
}
1081
EXPORT_SYMBOL(amdtp_stream_pcm_abort);