vmstat.c 46.9 KB
Newer Older
1 2 3 4 5
/*
 *  linux/mm/vmstat.c
 *
 *  Manages VM statistics
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6 7 8 9
 *
 *  zoned VM statistics
 *  Copyright (C) 2006 Silicon Graphics, Inc.,
 *		Christoph Lameter <christoph@lameter.com>
10
 *  Copyright (C) 2008-2014 Christoph Lameter
11
 */
12
#include <linux/fs.h>
13
#include <linux/mm.h>
A
Alexey Dobriyan 已提交
14
#include <linux/err.h>
15
#include <linux/module.h>
16
#include <linux/slab.h>
17
#include <linux/cpu.h>
18
#include <linux/cpumask.h>
A
Adrian Bunk 已提交
19
#include <linux/vmstat.h>
A
Andrew Morton 已提交
20 21 22
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include <linux/debugfs.h>
A
Alexey Dobriyan 已提交
23
#include <linux/sched.h>
24
#include <linux/math64.h>
25
#include <linux/writeback.h>
26
#include <linux/compaction.h>
27
#include <linux/mm_inline.h>
28 29
#include <linux/page_ext.h>
#include <linux/page_owner.h>
30 31

#include "internal.h"
32

33 34 35 36
#ifdef CONFIG_VM_EVENT_COUNTERS
DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
EXPORT_PER_CPU_SYMBOL(vm_event_states);

37
static void sum_vm_events(unsigned long *ret)
38
{
C
Christoph Lameter 已提交
39
	int cpu;
40 41 42 43
	int i;

	memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));

44
	for_each_online_cpu(cpu) {
45 46 47 48 49 50 51 52 53 54 55 56 57 58
		struct vm_event_state *this = &per_cpu(vm_event_states, cpu);

		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
			ret[i] += this->event[i];
	}
}

/*
 * Accumulate the vm event counters across all CPUs.
 * The result is unavoidably approximate - it can change
 * during and after execution of this function.
*/
void all_vm_events(unsigned long *ret)
{
K
KOSAKI Motohiro 已提交
59
	get_online_cpus();
60
	sum_vm_events(ret);
K
KOSAKI Motohiro 已提交
61
	put_online_cpus();
62
}
63
EXPORT_SYMBOL_GPL(all_vm_events);
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83

/*
 * Fold the foreign cpu events into our own.
 *
 * This is adding to the events on one processor
 * but keeps the global counts constant.
 */
void vm_events_fold_cpu(int cpu)
{
	struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
	int i;

	for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
		count_vm_events(i, fold_state->event[i]);
		fold_state->event[i] = 0;
	}
}

#endif /* CONFIG_VM_EVENT_COUNTERS */

84 85 86 87 88
/*
 * Manage combined zone based / global counters
 *
 * vm_stat contains the global counters
 */
89 90 91 92
atomic_long_t vm_zone_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp;
atomic_long_t vm_node_stat[NR_VM_NODE_STAT_ITEMS] __cacheline_aligned_in_smp;
EXPORT_SYMBOL(vm_zone_stat);
EXPORT_SYMBOL(vm_node_stat);
93 94 95

#ifdef CONFIG_SMP

96
int calculate_pressure_threshold(struct zone *zone)
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
{
	int threshold;
	int watermark_distance;

	/*
	 * As vmstats are not up to date, there is drift between the estimated
	 * and real values. For high thresholds and a high number of CPUs, it
	 * is possible for the min watermark to be breached while the estimated
	 * value looks fine. The pressure threshold is a reduced value such
	 * that even the maximum amount of drift will not accidentally breach
	 * the min watermark
	 */
	watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
	threshold = max(1, (int)(watermark_distance / num_online_cpus()));

	/*
	 * Maximum threshold is 125
	 */
	threshold = min(125, threshold);

	return threshold;
}

120
int calculate_normal_threshold(struct zone *zone)
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
{
	int threshold;
	int mem;	/* memory in 128 MB units */

	/*
	 * The threshold scales with the number of processors and the amount
	 * of memory per zone. More memory means that we can defer updates for
	 * longer, more processors could lead to more contention.
 	 * fls() is used to have a cheap way of logarithmic scaling.
	 *
	 * Some sample thresholds:
	 *
	 * Threshold	Processors	(fls)	Zonesize	fls(mem+1)
	 * ------------------------------------------------------------------
	 * 8		1		1	0.9-1 GB	4
	 * 16		2		2	0.9-1 GB	4
	 * 20 		2		2	1-2 GB		5
	 * 24		2		2	2-4 GB		6
	 * 28		2		2	4-8 GB		7
	 * 32		2		2	8-16 GB		8
	 * 4		2		2	<128M		1
	 * 30		4		3	2-4 GB		5
	 * 48		4		3	8-16 GB		8
	 * 32		8		4	1-2 GB		4
	 * 32		8		4	0.9-1GB		4
	 * 10		16		5	<128M		1
	 * 40		16		5	900M		4
	 * 70		64		7	2-4 GB		5
	 * 84		64		7	4-8 GB		6
	 * 108		512		9	4-8 GB		6
	 * 125		1024		10	8-16 GB		8
	 * 125		1024		10	16-32 GB	9
	 */

155
	mem = zone->managed_pages >> (27 - PAGE_SHIFT);
156 157 158 159 160 161 162 163 164 165

	threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));

	/*
	 * Maximum threshold is 125
	 */
	threshold = min(125, threshold);

	return threshold;
}
166 167

/*
168
 * Refresh the thresholds for each zone.
169
 */
170
void refresh_zone_stat_thresholds(void)
171
{
172
	struct pglist_data *pgdat;
173 174 175 176
	struct zone *zone;
	int cpu;
	int threshold;

177 178 179 180 181 182 183
	/* Zero current pgdat thresholds */
	for_each_online_pgdat(pgdat) {
		for_each_online_cpu(cpu) {
			per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold = 0;
		}
	}

184
	for_each_populated_zone(zone) {
185
		struct pglist_data *pgdat = zone->zone_pgdat;
186 187
		unsigned long max_drift, tolerate_drift;

188
		threshold = calculate_normal_threshold(zone);
189

190 191 192
		for_each_online_cpu(cpu) {
			int pgdat_threshold;

193 194
			per_cpu_ptr(zone->pageset, cpu)->stat_threshold
							= threshold;
195

196 197 198 199 200 201
			/* Base nodestat threshold on the largest populated zone. */
			pgdat_threshold = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold;
			per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold
				= max(threshold, pgdat_threshold);
		}

202 203 204 205 206 207 208 209 210 211
		/*
		 * Only set percpu_drift_mark if there is a danger that
		 * NR_FREE_PAGES reports the low watermark is ok when in fact
		 * the min watermark could be breached by an allocation
		 */
		tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
		max_drift = num_online_cpus() * threshold;
		if (max_drift > tolerate_drift)
			zone->percpu_drift_mark = high_wmark_pages(zone) +
					max_drift;
212
	}
213 214
}

215 216
void set_pgdat_percpu_threshold(pg_data_t *pgdat,
				int (*calculate_pressure)(struct zone *))
217 218 219 220 221 222 223 224 225 226 227
{
	struct zone *zone;
	int cpu;
	int threshold;
	int i;

	for (i = 0; i < pgdat->nr_zones; i++) {
		zone = &pgdat->node_zones[i];
		if (!zone->percpu_drift_mark)
			continue;

228
		threshold = (*calculate_pressure)(zone);
229
		for_each_online_cpu(cpu)
230 231 232 233 234
			per_cpu_ptr(zone->pageset, cpu)->stat_threshold
							= threshold;
	}
}

235
/*
236 237 238
 * For use when we know that interrupts are disabled,
 * or when we know that preemption is disabled and that
 * particular counter cannot be updated from interrupt context.
239 240
 */
void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
241
			   long delta)
242
{
243 244
	struct per_cpu_pageset __percpu *pcp = zone->pageset;
	s8 __percpu *p = pcp->vm_stat_diff + item;
245
	long x;
246 247 248
	long t;

	x = delta + __this_cpu_read(*p);
249

250
	t = __this_cpu_read(pcp->stat_threshold);
251

252
	if (unlikely(x > t || x < -t)) {
253 254 255
		zone_page_state_add(x, zone, item);
		x = 0;
	}
256
	__this_cpu_write(*p, x);
257 258 259
}
EXPORT_SYMBOL(__mod_zone_page_state);

260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
void __mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
				long delta)
{
	struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
	s8 __percpu *p = pcp->vm_node_stat_diff + item;
	long x;
	long t;

	x = delta + __this_cpu_read(*p);

	t = __this_cpu_read(pcp->stat_threshold);

	if (unlikely(x > t || x < -t)) {
		node_page_state_add(x, pgdat, item);
		x = 0;
	}
	__this_cpu_write(*p, x);
}
EXPORT_SYMBOL(__mod_node_page_state);

280 281 282 283 284 285 286 287 288 289 290 291 292
/*
 * Optimized increment and decrement functions.
 *
 * These are only for a single page and therefore can take a struct page *
 * argument instead of struct zone *. This allows the inclusion of the code
 * generated for page_zone(page) into the optimized functions.
 *
 * No overflow check is necessary and therefore the differential can be
 * incremented or decremented in place which may allow the compilers to
 * generate better code.
 * The increment or decrement is known and therefore one boundary check can
 * be omitted.
 *
293 294 295
 * NOTE: These functions are very performance sensitive. Change only
 * with care.
 *
296 297 298 299 300 301 302
 * Some processors have inc/dec instructions that are atomic vs an interrupt.
 * However, the code must first determine the differential location in a zone
 * based on the processor number and then inc/dec the counter. There is no
 * guarantee without disabling preemption that the processor will not change
 * in between and therefore the atomicity vs. interrupt cannot be exploited
 * in a useful way here.
 */
303
void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
304
{
305 306 307
	struct per_cpu_pageset __percpu *pcp = zone->pageset;
	s8 __percpu *p = pcp->vm_stat_diff + item;
	s8 v, t;
308

309
	v = __this_cpu_inc_return(*p);
310 311 312
	t = __this_cpu_read(pcp->stat_threshold);
	if (unlikely(v > t)) {
		s8 overstep = t >> 1;
313

314 315
		zone_page_state_add(v + overstep, zone, item);
		__this_cpu_write(*p, -overstep);
316 317
	}
}
318

319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
void __inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
{
	struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
	s8 __percpu *p = pcp->vm_node_stat_diff + item;
	s8 v, t;

	v = __this_cpu_inc_return(*p);
	t = __this_cpu_read(pcp->stat_threshold);
	if (unlikely(v > t)) {
		s8 overstep = t >> 1;

		node_page_state_add(v + overstep, pgdat, item);
		__this_cpu_write(*p, -overstep);
	}
}

335 336 337 338
void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
{
	__inc_zone_state(page_zone(page), item);
}
339 340
EXPORT_SYMBOL(__inc_zone_page_state);

341 342 343 344 345 346
void __inc_node_page_state(struct page *page, enum node_stat_item item)
{
	__inc_node_state(page_pgdat(page), item);
}
EXPORT_SYMBOL(__inc_node_page_state);

347
void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
348
{
349 350 351
	struct per_cpu_pageset __percpu *pcp = zone->pageset;
	s8 __percpu *p = pcp->vm_stat_diff + item;
	s8 v, t;
352

353
	v = __this_cpu_dec_return(*p);
354 355 356
	t = __this_cpu_read(pcp->stat_threshold);
	if (unlikely(v < - t)) {
		s8 overstep = t >> 1;
357

358 359
		zone_page_state_add(v - overstep, zone, item);
		__this_cpu_write(*p, overstep);
360 361
	}
}
362

363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
void __dec_node_state(struct pglist_data *pgdat, enum node_stat_item item)
{
	struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
	s8 __percpu *p = pcp->vm_node_stat_diff + item;
	s8 v, t;

	v = __this_cpu_dec_return(*p);
	t = __this_cpu_read(pcp->stat_threshold);
	if (unlikely(v < - t)) {
		s8 overstep = t >> 1;

		node_page_state_add(v - overstep, pgdat, item);
		__this_cpu_write(*p, overstep);
	}
}

379 380 381 382
void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
{
	__dec_zone_state(page_zone(page), item);
}
383 384
EXPORT_SYMBOL(__dec_zone_page_state);

385 386 387 388 389 390
void __dec_node_page_state(struct page *page, enum node_stat_item item)
{
	__dec_node_state(page_pgdat(page), item);
}
EXPORT_SYMBOL(__dec_node_page_state);

391
#ifdef CONFIG_HAVE_CMPXCHG_LOCAL
392 393 394 395 396 397 398 399 400 401 402 403
/*
 * If we have cmpxchg_local support then we do not need to incur the overhead
 * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
 *
 * mod_state() modifies the zone counter state through atomic per cpu
 * operations.
 *
 * Overstep mode specifies how overstep should handled:
 *     0       No overstepping
 *     1       Overstepping half of threshold
 *     -1      Overstepping minus half of threshold
*/
404 405
static inline void mod_zone_state(struct zone *zone,
       enum zone_stat_item item, long delta, int overstep_mode)
406 407 408 409 410 411 412 413 414 415 416
{
	struct per_cpu_pageset __percpu *pcp = zone->pageset;
	s8 __percpu *p = pcp->vm_stat_diff + item;
	long o, n, t, z;

	do {
		z = 0;  /* overflow to zone counters */

		/*
		 * The fetching of the stat_threshold is racy. We may apply
		 * a counter threshold to the wrong the cpu if we get
417 418 419 420 421 422
		 * rescheduled while executing here. However, the next
		 * counter update will apply the threshold again and
		 * therefore bring the counter under the threshold again.
		 *
		 * Most of the time the thresholds are the same anyways
		 * for all cpus in a zone.
423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
		 */
		t = this_cpu_read(pcp->stat_threshold);

		o = this_cpu_read(*p);
		n = delta + o;

		if (n > t || n < -t) {
			int os = overstep_mode * (t >> 1) ;

			/* Overflow must be added to zone counters */
			z = n + os;
			n = -os;
		}
	} while (this_cpu_cmpxchg(*p, o, n) != o);

	if (z)
		zone_page_state_add(z, zone, item);
}

void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
443
			 long delta)
444
{
445
	mod_zone_state(zone, item, delta, 0);
446 447 448 449 450
}
EXPORT_SYMBOL(mod_zone_page_state);

void inc_zone_page_state(struct page *page, enum zone_stat_item item)
{
451
	mod_zone_state(page_zone(page), item, 1, 1);
452 453 454 455 456
}
EXPORT_SYMBOL(inc_zone_page_state);

void dec_zone_page_state(struct page *page, enum zone_stat_item item)
{
457
	mod_zone_state(page_zone(page), item, -1, -1);
458 459
}
EXPORT_SYMBOL(dec_zone_page_state);
460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521

static inline void mod_node_state(struct pglist_data *pgdat,
       enum node_stat_item item, int delta, int overstep_mode)
{
	struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
	s8 __percpu *p = pcp->vm_node_stat_diff + item;
	long o, n, t, z;

	do {
		z = 0;  /* overflow to node counters */

		/*
		 * The fetching of the stat_threshold is racy. We may apply
		 * a counter threshold to the wrong the cpu if we get
		 * rescheduled while executing here. However, the next
		 * counter update will apply the threshold again and
		 * therefore bring the counter under the threshold again.
		 *
		 * Most of the time the thresholds are the same anyways
		 * for all cpus in a node.
		 */
		t = this_cpu_read(pcp->stat_threshold);

		o = this_cpu_read(*p);
		n = delta + o;

		if (n > t || n < -t) {
			int os = overstep_mode * (t >> 1) ;

			/* Overflow must be added to node counters */
			z = n + os;
			n = -os;
		}
	} while (this_cpu_cmpxchg(*p, o, n) != o);

	if (z)
		node_page_state_add(z, pgdat, item);
}

void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
					long delta)
{
	mod_node_state(pgdat, item, delta, 0);
}
EXPORT_SYMBOL(mod_node_page_state);

void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
{
	mod_node_state(pgdat, item, 1, 1);
}

void inc_node_page_state(struct page *page, enum node_stat_item item)
{
	mod_node_state(page_pgdat(page), item, 1, 1);
}
EXPORT_SYMBOL(inc_node_page_state);

void dec_node_page_state(struct page *page, enum node_stat_item item)
{
	mod_node_state(page_pgdat(page), item, -1, -1);
}
EXPORT_SYMBOL(dec_node_page_state);
522 523 524 525 526
#else
/*
 * Use interrupt disable to serialize counter updates
 */
void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
527
			 long delta)
528 529 530 531 532 533 534 535 536
{
	unsigned long flags;

	local_irq_save(flags);
	__mod_zone_page_state(zone, item, delta);
	local_irq_restore(flags);
}
EXPORT_SYMBOL(mod_zone_page_state);

537 538 539 540 541 542 543
void inc_zone_page_state(struct page *page, enum zone_stat_item item)
{
	unsigned long flags;
	struct zone *zone;

	zone = page_zone(page);
	local_irq_save(flags);
544
	__inc_zone_state(zone, item);
545 546 547 548 549 550 551 552 553
	local_irq_restore(flags);
}
EXPORT_SYMBOL(inc_zone_page_state);

void dec_zone_page_state(struct page *page, enum zone_stat_item item)
{
	unsigned long flags;

	local_irq_save(flags);
554
	__dec_zone_page_state(page, item);
555 556 557 558
	local_irq_restore(flags);
}
EXPORT_SYMBOL(dec_zone_page_state);

559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601
void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
{
	unsigned long flags;

	local_irq_save(flags);
	__inc_node_state(pgdat, item);
	local_irq_restore(flags);
}
EXPORT_SYMBOL(inc_node_state);

void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
					long delta)
{
	unsigned long flags;

	local_irq_save(flags);
	__mod_node_page_state(pgdat, item, delta);
	local_irq_restore(flags);
}
EXPORT_SYMBOL(mod_node_page_state);

void inc_node_page_state(struct page *page, enum node_stat_item item)
{
	unsigned long flags;
	struct pglist_data *pgdat;

	pgdat = page_pgdat(page);
	local_irq_save(flags);
	__inc_node_state(pgdat, item);
	local_irq_restore(flags);
}
EXPORT_SYMBOL(inc_node_page_state);

void dec_node_page_state(struct page *page, enum node_stat_item item)
{
	unsigned long flags;

	local_irq_save(flags);
	__dec_node_page_state(page, item);
	local_irq_restore(flags);
}
EXPORT_SYMBOL(dec_node_page_state);
#endif
602 603 604 605 606

/*
 * Fold a differential into the global counters.
 * Returns the number of counters updated.
 */
607
static int fold_diff(int *zone_diff, int *node_diff)
C
Christoph Lameter 已提交
608 609
{
	int i;
610
	int changes = 0;
C
Christoph Lameter 已提交
611 612

	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
613 614 615 616 617 618 619 620
		if (zone_diff[i]) {
			atomic_long_add(zone_diff[i], &vm_zone_stat[i]);
			changes++;
	}

	for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
		if (node_diff[i]) {
			atomic_long_add(node_diff[i], &vm_node_stat[i]);
621 622 623
			changes++;
	}
	return changes;
C
Christoph Lameter 已提交
624 625
}

626
/*
627
 * Update the zone counters for the current cpu.
628
 *
629 630 631 632 633 634 635 636 637 638
 * Note that refresh_cpu_vm_stats strives to only access
 * node local memory. The per cpu pagesets on remote zones are placed
 * in the memory local to the processor using that pageset. So the
 * loop over all zones will access a series of cachelines local to
 * the processor.
 *
 * The call to zone_page_state_add updates the cachelines with the
 * statistics in the remote zone struct as well as the global cachelines
 * with the global counters. These could cause remote node cache line
 * bouncing and will have to be only done when necessary.
639 640
 *
 * The function returns the number of global counters updated.
641
 */
642
static int refresh_cpu_vm_stats(bool do_pagesets)
643
{
644
	struct pglist_data *pgdat;
645 646
	struct zone *zone;
	int i;
647 648
	int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
	int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
649
	int changes = 0;
650

651
	for_each_populated_zone(zone) {
652
		struct per_cpu_pageset __percpu *p = zone->pageset;
653

654 655
		for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
			int v;
656

657 658
			v = this_cpu_xchg(p->vm_stat_diff[i], 0);
			if (v) {
659 660

				atomic_long_add(v, &zone->vm_stat[i]);
661
				global_zone_diff[i] += v;
662 663
#ifdef CONFIG_NUMA
				/* 3 seconds idle till flush */
664
				__this_cpu_write(p->expire, 3);
665
#endif
666
			}
667
		}
668
#ifdef CONFIG_NUMA
669 670 671 672 673 674 675 676 677 678
		if (do_pagesets) {
			cond_resched();
			/*
			 * Deal with draining the remote pageset of this
			 * processor
			 *
			 * Check if there are pages remaining in this pageset
			 * if not then there is nothing to expire.
			 */
			if (!__this_cpu_read(p->expire) ||
679
			       !__this_cpu_read(p->pcp.count))
680
				continue;
681

682 683 684 685 686 687 688
			/*
			 * We never drain zones local to this processor.
			 */
			if (zone_to_nid(zone) == numa_node_id()) {
				__this_cpu_write(p->expire, 0);
				continue;
			}
689

690 691
			if (__this_cpu_dec_return(p->expire))
				continue;
692

693 694 695 696
			if (__this_cpu_read(p->pcp.count)) {
				drain_zone_pages(zone, this_cpu_ptr(&p->pcp));
				changes++;
			}
697
		}
698
#endif
699
	}
700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715

	for_each_online_pgdat(pgdat) {
		struct per_cpu_nodestat __percpu *p = pgdat->per_cpu_nodestats;

		for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
			int v;

			v = this_cpu_xchg(p->vm_node_stat_diff[i], 0);
			if (v) {
				atomic_long_add(v, &pgdat->vm_stat[i]);
				global_node_diff[i] += v;
			}
		}
	}

	changes += fold_diff(global_zone_diff, global_node_diff);
716
	return changes;
717 718
}

719 720 721 722 723 724 725
/*
 * Fold the data for an offline cpu into the global array.
 * There cannot be any access by the offline cpu and therefore
 * synchronization is simplified.
 */
void cpu_vm_stats_fold(int cpu)
{
726
	struct pglist_data *pgdat;
727 728
	struct zone *zone;
	int i;
729 730
	int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
	int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
731 732 733 734 735 736 737 738 739 740 741 742 743

	for_each_populated_zone(zone) {
		struct per_cpu_pageset *p;

		p = per_cpu_ptr(zone->pageset, cpu);

		for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
			if (p->vm_stat_diff[i]) {
				int v;

				v = p->vm_stat_diff[i];
				p->vm_stat_diff[i] = 0;
				atomic_long_add(v, &zone->vm_stat[i]);
744
				global_zone_diff[i] += v;
745 746 747
			}
	}

748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764
	for_each_online_pgdat(pgdat) {
		struct per_cpu_nodestat *p;

		p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);

		for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
			if (p->vm_node_stat_diff[i]) {
				int v;

				v = p->vm_node_stat_diff[i];
				p->vm_node_stat_diff[i] = 0;
				atomic_long_add(v, &pgdat->vm_stat[i]);
				global_node_diff[i] += v;
			}
	}

	fold_diff(global_zone_diff, global_node_diff);
765 766
}

767 768 769 770
/*
 * this is only called if !populated_zone(zone), which implies no other users of
 * pset->vm_stat_diff[] exsist.
 */
771 772 773 774 775 776 777 778 779
void drain_zonestat(struct zone *zone, struct per_cpu_pageset *pset)
{
	int i;

	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
		if (pset->vm_stat_diff[i]) {
			int v = pset->vm_stat_diff[i];
			pset->vm_stat_diff[i] = 0;
			atomic_long_add(v, &zone->vm_stat[i]);
780
			atomic_long_add(v, &vm_zone_stat[i]);
781 782
		}
}
783 784
#endif

785
#ifdef CONFIG_NUMA
786
/*
787 788 789
 * Determine the per node value of a stat item. This function
 * is called frequently in a NUMA machine, so try to be as
 * frugal as possible.
790
 */
791 792
unsigned long sum_zone_node_page_state(int node,
				 enum zone_stat_item item)
793 794
{
	struct zone *zones = NODE_DATA(node)->node_zones;
795 796
	int i;
	unsigned long count = 0;
797

798 799 800 801
	for (i = 0; i < MAX_NR_ZONES; i++)
		count += zone_page_state(zones + i, item);

	return count;
802 803
}

804 805 806 807 808 809 810 811 812 813 814 815 816
/*
 * Determine the per node value of a stat item.
 */
unsigned long node_page_state(struct pglist_data *pgdat,
				enum node_stat_item item)
{
	long x = atomic_long_read(&pgdat->vm_stat[item]);
#ifdef CONFIG_SMP
	if (x < 0)
		x = 0;
#endif
	return x;
}
817 818
#endif

819
#ifdef CONFIG_COMPACTION
820

821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860
struct contig_page_info {
	unsigned long free_pages;
	unsigned long free_blocks_total;
	unsigned long free_blocks_suitable;
};

/*
 * Calculate the number of free pages in a zone, how many contiguous
 * pages are free and how many are large enough to satisfy an allocation of
 * the target size. Note that this function makes no attempt to estimate
 * how many suitable free blocks there *might* be if MOVABLE pages were
 * migrated. Calculating that is possible, but expensive and can be
 * figured out from userspace
 */
static void fill_contig_page_info(struct zone *zone,
				unsigned int suitable_order,
				struct contig_page_info *info)
{
	unsigned int order;

	info->free_pages = 0;
	info->free_blocks_total = 0;
	info->free_blocks_suitable = 0;

	for (order = 0; order < MAX_ORDER; order++) {
		unsigned long blocks;

		/* Count number of free blocks */
		blocks = zone->free_area[order].nr_free;
		info->free_blocks_total += blocks;

		/* Count free base pages */
		info->free_pages += blocks << order;

		/* Count the suitable free blocks */
		if (order >= suitable_order)
			info->free_blocks_suitable += blocks <<
						(order - suitable_order);
	}
}
861 862 863 864 865 866 867 868

/*
 * A fragmentation index only makes sense if an allocation of a requested
 * size would fail. If that is true, the fragmentation index indicates
 * whether external fragmentation or a lack of memory was the problem.
 * The value can be used to determine if page reclaim or compaction
 * should be used
 */
869
static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887
{
	unsigned long requested = 1UL << order;

	if (!info->free_blocks_total)
		return 0;

	/* Fragmentation index only makes sense when a request would fail */
	if (info->free_blocks_suitable)
		return -1000;

	/*
	 * Index is between 0 and 1 so return within 3 decimal places
	 *
	 * 0 => allocation would fail due to lack of memory
	 * 1 => allocation would fail due to fragmentation
	 */
	return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
}
888 889 890 891 892 893 894 895 896

/* Same as __fragmentation index but allocs contig_page_info on stack */
int fragmentation_index(struct zone *zone, unsigned int order)
{
	struct contig_page_info info;

	fill_contig_page_info(zone, order, &info);
	return __fragmentation_index(order, &info);
}
897 898
#endif

899
#if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || defined(CONFIG_NUMA)
900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921
#ifdef CONFIG_ZONE_DMA
#define TEXT_FOR_DMA(xx) xx "_dma",
#else
#define TEXT_FOR_DMA(xx)
#endif

#ifdef CONFIG_ZONE_DMA32
#define TEXT_FOR_DMA32(xx) xx "_dma32",
#else
#define TEXT_FOR_DMA32(xx)
#endif

#ifdef CONFIG_HIGHMEM
#define TEXT_FOR_HIGHMEM(xx) xx "_high",
#else
#define TEXT_FOR_HIGHMEM(xx)
#endif

#define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
					TEXT_FOR_HIGHMEM(xx) xx "_movable",

const char * const vmstat_text[] = {
922
	/* enum zone_stat_item countes */
923
	"nr_free_pages",
M
Minchan Kim 已提交
924 925 926 927 928
	"nr_zone_inactive_anon",
	"nr_zone_active_anon",
	"nr_zone_inactive_file",
	"nr_zone_active_file",
	"nr_zone_unevictable",
929
	"nr_zone_write_pending",
930 931 932 933 934 935
	"nr_mlock",
	"nr_slab_reclaimable",
	"nr_slab_unreclaimable",
	"nr_page_table_pages",
	"nr_kernel_stack",
	"nr_bounce",
M
Minchan Kim 已提交
936 937 938
#if IS_ENABLED(CONFIG_ZSMALLOC)
	"nr_zspages",
#endif
939 940 941 942 943 944 945 946
#ifdef CONFIG_NUMA
	"numa_hit",
	"numa_miss",
	"numa_foreign",
	"numa_interleave",
	"numa_local",
	"numa_other",
#endif
947
	"nr_free_cma",
948

M
Mel Gorman 已提交
949 950 951 952 953 954 955 956
	/* Node-based counters */
	"nr_inactive_anon",
	"nr_active_anon",
	"nr_inactive_file",
	"nr_active_file",
	"nr_unevictable",
	"nr_isolated_anon",
	"nr_isolated_file",
957 958 959
	"workingset_refault",
	"workingset_activate",
	"workingset_nodereclaim",
960 961
	"nr_anon_pages",
	"nr_mapped",
962 963 964 965 966 967 968 969 970
	"nr_file_pages",
	"nr_dirty",
	"nr_writeback",
	"nr_writeback_temp",
	"nr_shmem",
	"nr_shmem_hugepages",
	"nr_shmem_pmdmapped",
	"nr_anon_transparent_hugepages",
	"nr_unstable",
971 972 973 974
	"nr_vmscan_write",
	"nr_vmscan_immediate_reclaim",
	"nr_dirtied",
	"nr_written",
M
Mel Gorman 已提交
975

976
	/* enum writeback_stat_item counters */
977 978 979 980
	"nr_dirty_threshold",
	"nr_dirty_background_threshold",

#ifdef CONFIG_VM_EVENT_COUNTERS
981
	/* enum vm_event_item counters */
982 983 984 985 986 987
	"pgpgin",
	"pgpgout",
	"pswpin",
	"pswpout",

	TEXTS_FOR_ZONES("pgalloc")
988 989
	TEXTS_FOR_ZONES("allocstall")
	TEXTS_FOR_ZONES("pgskip")
990 991 992 993 994 995 996

	"pgfree",
	"pgactivate",
	"pgdeactivate",

	"pgfault",
	"pgmajfault",
M
Minchan Kim 已提交
997
	"pglazyfreed",
998

M
Mel Gorman 已提交
999 1000 1001 1002 1003
	"pgrefill",
	"pgsteal_kswapd",
	"pgsteal_direct",
	"pgscan_kswapd",
	"pgscan_direct",
1004
	"pgscan_direct_throttle",
1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017

#ifdef CONFIG_NUMA
	"zone_reclaim_failed",
#endif
	"pginodesteal",
	"slabs_scanned",
	"kswapd_inodesteal",
	"kswapd_low_wmark_hit_quickly",
	"kswapd_high_wmark_hit_quickly",
	"pageoutrun",

	"pgrotated",

1018 1019 1020
	"drop_pagecache",
	"drop_slab",

1021 1022
#ifdef CONFIG_NUMA_BALANCING
	"numa_pte_updates",
1023
	"numa_huge_pte_updates",
1024 1025 1026 1027
	"numa_hint_faults",
	"numa_hint_faults_local",
	"numa_pages_migrated",
#endif
1028 1029 1030 1031
#ifdef CONFIG_MIGRATION
	"pgmigrate_success",
	"pgmigrate_fail",
#endif
1032
#ifdef CONFIG_COMPACTION
1033 1034 1035
	"compact_migrate_scanned",
	"compact_free_scanned",
	"compact_isolated",
1036 1037 1038
	"compact_stall",
	"compact_fail",
	"compact_success",
1039
	"compact_daemon_wake",
1040 1041
	"compact_daemon_migrate_scanned",
	"compact_daemon_free_scanned",
1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
#endif

#ifdef CONFIG_HUGETLB_PAGE
	"htlb_buddy_alloc_success",
	"htlb_buddy_alloc_fail",
#endif
	"unevictable_pgs_culled",
	"unevictable_pgs_scanned",
	"unevictable_pgs_rescued",
	"unevictable_pgs_mlocked",
	"unevictable_pgs_munlocked",
	"unevictable_pgs_cleared",
	"unevictable_pgs_stranded",

#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	"thp_fault_alloc",
	"thp_fault_fallback",
	"thp_collapse_alloc",
	"thp_collapse_alloc_failed",
1061 1062
	"thp_file_alloc",
	"thp_file_mapped",
1063 1064
	"thp_split_page",
	"thp_split_page_failed",
1065
	"thp_deferred_split_page",
1066
	"thp_split_pmd",
1067 1068 1069
#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
	"thp_split_pud",
#endif
1070 1071
	"thp_zero_page_alloc",
	"thp_zero_page_alloc_failed",
1072
#endif
1073 1074 1075 1076 1077 1078 1079
#ifdef CONFIG_MEMORY_BALLOON
	"balloon_inflate",
	"balloon_deflate",
#ifdef CONFIG_BALLOON_COMPACTION
	"balloon_migrate",
#endif
#endif /* CONFIG_MEMORY_BALLOON */
1080
#ifdef CONFIG_DEBUG_TLBFLUSH
1081
#ifdef CONFIG_SMP
D
Dave Hansen 已提交
1082 1083
	"nr_tlb_remote_flush",
	"nr_tlb_remote_flush_received",
1084
#endif /* CONFIG_SMP */
D
Dave Hansen 已提交
1085 1086
	"nr_tlb_local_flush_all",
	"nr_tlb_local_flush_one",
1087
#endif /* CONFIG_DEBUG_TLBFLUSH */
1088

D
Davidlohr Bueso 已提交
1089 1090 1091
#ifdef CONFIG_DEBUG_VM_VMACACHE
	"vmacache_find_calls",
	"vmacache_find_hits",
1092
	"vmacache_full_flushes",
D
Davidlohr Bueso 已提交
1093
#endif
1094 1095
#endif /* CONFIG_VM_EVENTS_COUNTERS */
};
1096
#endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA */
1097 1098


A
Andrew Morton 已提交
1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
#if (defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)) || \
     defined(CONFIG_PROC_FS)
static void *frag_start(struct seq_file *m, loff_t *pos)
{
	pg_data_t *pgdat;
	loff_t node = *pos;

	for (pgdat = first_online_pgdat();
	     pgdat && node;
	     pgdat = next_online_pgdat(pgdat))
		--node;

	return pgdat;
}

static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
{
	pg_data_t *pgdat = (pg_data_t *)arg;

	(*pos)++;
	return next_online_pgdat(pgdat);
}

static void frag_stop(struct seq_file *m, void *arg)
{
}

/* Walk all the zones in a node and print using a callback */
static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
		void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
{
	struct zone *zone;
	struct zone *node_zones = pgdat->node_zones;
	unsigned long flags;

	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
		if (!populated_zone(zone))
			continue;

		spin_lock_irqsave(&zone->lock, flags);
		print(m, pgdat, zone);
		spin_unlock_irqrestore(&zone->lock, flags);
	}
}
#endif

1145
#ifdef CONFIG_PROC_FS
1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
						struct zone *zone)
{
	int order;

	seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
	for (order = 0; order < MAX_ORDER; ++order)
		seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
	seq_putc(m, '\n');
}

/*
 * This walks the free areas for each zone.
 */
static int frag_show(struct seq_file *m, void *arg)
{
	pg_data_t *pgdat = (pg_data_t *)arg;
	walk_zones_in_node(m, pgdat, frag_show_print);
	return 0;
}

static void pagetypeinfo_showfree_print(struct seq_file *m,
					pg_data_t *pgdat, struct zone *zone)
{
	int order, mtype;

	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
		seq_printf(m, "Node %4d, zone %8s, type %12s ",
					pgdat->node_id,
					zone->name,
					migratetype_names[mtype]);
		for (order = 0; order < MAX_ORDER; ++order) {
			unsigned long freecount = 0;
			struct free_area *area;
			struct list_head *curr;

			area = &(zone->free_area[order]);

			list_for_each(curr, &area->free_list[mtype])
				freecount++;
			seq_printf(m, "%6lu ", freecount);
		}
1188 1189
		seq_putc(m, '\n');
	}
1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
}

/* Print out the free pages at each order for each migatetype */
static int pagetypeinfo_showfree(struct seq_file *m, void *arg)
{
	int order;
	pg_data_t *pgdat = (pg_data_t *)arg;

	/* Print header */
	seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
	for (order = 0; order < MAX_ORDER; ++order)
		seq_printf(m, "%6d ", order);
	seq_putc(m, '\n');

	walk_zones_in_node(m, pgdat, pagetypeinfo_showfree_print);

	return 0;
}

static void pagetypeinfo_showblockcount_print(struct seq_file *m,
					pg_data_t *pgdat, struct zone *zone)
{
	int mtype;
	unsigned long pfn;
	unsigned long start_pfn = zone->zone_start_pfn;
1215
	unsigned long end_pfn = zone_end_pfn(zone);
1216 1217 1218 1219 1220 1221 1222 1223 1224
	unsigned long count[MIGRATE_TYPES] = { 0, };

	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
		struct page *page;

		if (!pfn_valid(pfn))
			continue;

		page = pfn_to_page(pfn);
1225 1226 1227

		/* Watch for unexpected holes punched in the memmap */
		if (!memmap_valid_within(pfn, page, zone))
1228
			continue;
1229

1230 1231 1232
		if (page_zone(page) != zone)
			continue;

1233 1234
		mtype = get_pageblock_migratetype(page);

1235 1236
		if (mtype < MIGRATE_TYPES)
			count[mtype]++;
1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
	}

	/* Print counts */
	seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
		seq_printf(m, "%12lu ", count[mtype]);
	seq_putc(m, '\n');
}

/* Print out the free pages at each order for each migratetype */
static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
{
	int mtype;
	pg_data_t *pgdat = (pg_data_t *)arg;

	seq_printf(m, "\n%-23s", "Number of blocks type ");
	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
		seq_printf(m, "%12s ", migratetype_names[mtype]);
	seq_putc(m, '\n');
	walk_zones_in_node(m, pgdat, pagetypeinfo_showblockcount_print);

	return 0;
}

1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271
/*
 * Print out the number of pageblocks for each migratetype that contain pages
 * of other types. This gives an indication of how well fallbacks are being
 * contained by rmqueue_fallback(). It requires information from PAGE_OWNER
 * to determine what is going on
 */
static void pagetypeinfo_showmixedcount(struct seq_file *m, pg_data_t *pgdat)
{
#ifdef CONFIG_PAGE_OWNER
	int mtype;

1272
	if (!static_branch_unlikely(&page_owner_inited))
1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285
		return;

	drain_all_pages(NULL);

	seq_printf(m, "\n%-23s", "Number of mixed blocks ");
	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
		seq_printf(m, "%12s ", migratetype_names[mtype]);
	seq_putc(m, '\n');

	walk_zones_in_node(m, pgdat, pagetypeinfo_showmixedcount_print);
#endif /* CONFIG_PAGE_OWNER */
}

1286 1287 1288 1289 1290 1291 1292 1293
/*
 * This prints out statistics in relation to grouping pages by mobility.
 * It is expensive to collect so do not constantly read the file.
 */
static int pagetypeinfo_show(struct seq_file *m, void *arg)
{
	pg_data_t *pgdat = (pg_data_t *)arg;

1294
	/* check memoryless node */
1295
	if (!node_state(pgdat->node_id, N_MEMORY))
1296 1297
		return 0;

1298 1299 1300 1301 1302
	seq_printf(m, "Page block order: %d\n", pageblock_order);
	seq_printf(m, "Pages per block:  %lu\n", pageblock_nr_pages);
	seq_putc(m, '\n');
	pagetypeinfo_showfree(m, pgdat);
	pagetypeinfo_showblockcount(m, pgdat);
1303
	pagetypeinfo_showmixedcount(m, pgdat);
1304

1305 1306 1307
	return 0;
}

1308
static const struct seq_operations fragmentation_op = {
1309 1310 1311 1312 1313 1314
	.start	= frag_start,
	.next	= frag_next,
	.stop	= frag_stop,
	.show	= frag_show,
};

1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326
static int fragmentation_open(struct inode *inode, struct file *file)
{
	return seq_open(file, &fragmentation_op);
}

static const struct file_operations fragmentation_file_operations = {
	.open		= fragmentation_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= seq_release,
};

1327
static const struct seq_operations pagetypeinfo_op = {
1328 1329 1330 1331 1332 1333
	.start	= frag_start,
	.next	= frag_next,
	.stop	= frag_stop,
	.show	= pagetypeinfo_show,
};

1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345
static int pagetypeinfo_open(struct inode *inode, struct file *file)
{
	return seq_open(file, &pagetypeinfo_op);
}

static const struct file_operations pagetypeinfo_file_ops = {
	.open		= pagetypeinfo_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= seq_release,
};

1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
static bool is_zone_first_populated(pg_data_t *pgdat, struct zone *zone)
{
	int zid;

	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		struct zone *compare = &pgdat->node_zones[zid];

		if (populated_zone(compare))
			return zone == compare;
	}

	/* The zone must be somewhere! */
	WARN_ON_ONCE(1);
	return false;
}

1362 1363
static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
							struct zone *zone)
1364
{
1365 1366
	int i;
	seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
1367 1368 1369 1370 1371 1372 1373 1374
	if (is_zone_first_populated(pgdat, zone)) {
		seq_printf(m, "\n  per-node stats");
		for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
			seq_printf(m, "\n      %-12s %lu",
				vmstat_text[i + NR_VM_ZONE_STAT_ITEMS],
				node_page_state(pgdat, i));
		}
	}
1375 1376 1377 1378 1379 1380
	seq_printf(m,
		   "\n  pages free     %lu"
		   "\n        min      %lu"
		   "\n        low      %lu"
		   "\n        high     %lu"
		   "\n        spanned  %lu"
1381 1382
		   "\n        present  %lu"
		   "\n        managed  %lu",
1383
		   zone_page_state(zone, NR_FREE_PAGES),
1384 1385 1386
		   min_wmark_pages(zone),
		   low_wmark_pages(zone),
		   high_wmark_pages(zone),
1387
		   zone->spanned_pages,
1388 1389
		   zone->present_pages,
		   zone->managed_pages);
1390 1391

	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
M
Mel Gorman 已提交
1392
		seq_printf(m, "\n      %-12s %lu", vmstat_text[i],
1393 1394 1395
				zone_page_state(zone, i));

	seq_printf(m,
1396
		   "\n        protection: (%ld",
1397 1398
		   zone->lowmem_reserve[0]);
	for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
1399
		seq_printf(m, ", %ld", zone->lowmem_reserve[i]);
1400 1401 1402 1403 1404 1405
	seq_printf(m,
		   ")"
		   "\n  pagesets");
	for_each_online_cpu(i) {
		struct per_cpu_pageset *pageset;

1406
		pageset = per_cpu_ptr(zone->pageset, i);
1407 1408 1409 1410 1411 1412 1413 1414 1415
		seq_printf(m,
			   "\n    cpu: %i"
			   "\n              count: %i"
			   "\n              high:  %i"
			   "\n              batch: %i",
			   i,
			   pageset->pcp.count,
			   pageset->pcp.high,
			   pageset->pcp.batch);
1416
#ifdef CONFIG_SMP
1417 1418
		seq_printf(m, "\n  vm stats threshold: %d",
				pageset->stat_threshold);
1419
#endif
1420
	}
1421
	seq_printf(m,
M
Mel Gorman 已提交
1422 1423 1424
		   "\n  node_unreclaimable:  %u"
		   "\n  start_pfn:           %lu"
		   "\n  node_inactive_ratio: %u",
1425
		   pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES,
1426
		   zone->zone_start_pfn,
M
Mel Gorman 已提交
1427
		   zone->zone_pgdat->inactive_ratio);
1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
	seq_putc(m, '\n');
}

/*
 * Output information about zones in @pgdat.
 */
static int zoneinfo_show(struct seq_file *m, void *arg)
{
	pg_data_t *pgdat = (pg_data_t *)arg;
	walk_zones_in_node(m, pgdat, zoneinfo_show_print);
1438 1439 1440
	return 0;
}

1441
static const struct seq_operations zoneinfo_op = {
1442 1443 1444 1445 1446 1447 1448
	.start	= frag_start, /* iterate over all zones. The same as in
			       * fragmentation. */
	.next	= frag_next,
	.stop	= frag_stop,
	.show	= zoneinfo_show,
};

1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460
static int zoneinfo_open(struct inode *inode, struct file *file)
{
	return seq_open(file, &zoneinfo_op);
}

static const struct file_operations proc_zoneinfo_file_operations = {
	.open		= zoneinfo_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= seq_release,
};

1461 1462 1463 1464 1465 1466
enum writeback_stat_item {
	NR_DIRTY_THRESHOLD,
	NR_DIRTY_BG_THRESHOLD,
	NR_VM_WRITEBACK_STAT_ITEMS,
};

1467 1468
static void *vmstat_start(struct seq_file *m, loff_t *pos)
{
1469
	unsigned long *v;
1470
	int i, stat_items_size;
1471 1472 1473

	if (*pos >= ARRAY_SIZE(vmstat_text))
		return NULL;
1474
	stat_items_size = NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long) +
1475
			  NR_VM_NODE_STAT_ITEMS * sizeof(unsigned long) +
1476
			  NR_VM_WRITEBACK_STAT_ITEMS * sizeof(unsigned long);
1477

1478
#ifdef CONFIG_VM_EVENT_COUNTERS
1479
	stat_items_size += sizeof(struct vm_event_state);
1480
#endif
1481 1482

	v = kmalloc(stat_items_size, GFP_KERNEL);
1483 1484
	m->private = v;
	if (!v)
1485
		return ERR_PTR(-ENOMEM);
1486 1487
	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
		v[i] = global_page_state(i);
1488 1489
	v += NR_VM_ZONE_STAT_ITEMS;

1490 1491 1492 1493
	for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
		v[i] = global_node_page_state(i);
	v += NR_VM_NODE_STAT_ITEMS;

1494 1495 1496 1497
	global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
			    v + NR_DIRTY_THRESHOLD);
	v += NR_VM_WRITEBACK_STAT_ITEMS;

1498
#ifdef CONFIG_VM_EVENT_COUNTERS
1499 1500 1501
	all_vm_events(v);
	v[PGPGIN] /= 2;		/* sectors -> kbytes */
	v[PGPGOUT] /= 2;
1502
#endif
1503
	return (unsigned long *)m->private + *pos;
1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517
}

static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
{
	(*pos)++;
	if (*pos >= ARRAY_SIZE(vmstat_text))
		return NULL;
	return (unsigned long *)m->private + *pos;
}

static int vmstat_show(struct seq_file *m, void *arg)
{
	unsigned long *l = arg;
	unsigned long off = l - (unsigned long *)m->private;
A
Alexey Dobriyan 已提交
1518 1519

	seq_puts(m, vmstat_text[off]);
1520
	seq_put_decimal_ull(m, " ", *l);
A
Alexey Dobriyan 已提交
1521
	seq_putc(m, '\n');
1522 1523 1524 1525 1526 1527 1528 1529 1530
	return 0;
}

static void vmstat_stop(struct seq_file *m, void *arg)
{
	kfree(m->private);
	m->private = NULL;
}

1531
static const struct seq_operations vmstat_op = {
1532 1533 1534 1535 1536 1537
	.start	= vmstat_start,
	.next	= vmstat_next,
	.stop	= vmstat_stop,
	.show	= vmstat_show,
};

1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548
static int vmstat_open(struct inode *inode, struct file *file)
{
	return seq_open(file, &vmstat_op);
}

static const struct file_operations proc_vmstat_file_operations = {
	.open		= vmstat_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= seq_release,
};
1549 1550
#endif /* CONFIG_PROC_FS */

1551
#ifdef CONFIG_SMP
1552
static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
1553
int sysctl_stat_interval __read_mostly = HZ;
1554

1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
#ifdef CONFIG_PROC_FS
static void refresh_vm_stats(struct work_struct *work)
{
	refresh_cpu_vm_stats(true);
}

int vmstat_refresh(struct ctl_table *table, int write,
		   void __user *buffer, size_t *lenp, loff_t *ppos)
{
	long val;
	int err;
	int i;

	/*
	 * The regular update, every sysctl_stat_interval, may come later
	 * than expected: leaving a significant amount in per_cpu buckets.
	 * This is particularly misleading when checking a quantity of HUGE
	 * pages, immediately after running a test.  /proc/sys/vm/stat_refresh,
	 * which can equally be echo'ed to or cat'ted from (by root),
	 * can be used to update the stats just before reading them.
	 *
	 * Oh, and since global_page_state() etc. are so careful to hide
	 * transiently negative values, report an error here if any of
	 * the stats is negative, so we know to go looking for imbalance.
	 */
	err = schedule_on_each_cpu(refresh_vm_stats);
	if (err)
		return err;
	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
1584
		val = atomic_long_read(&vm_zone_stat[i]);
1585
		if (val < 0) {
1586 1587 1588
			pr_warn("%s: %s %ld\n",
				__func__, vmstat_text[i], val);
			err = -EINVAL;
1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600
		}
	}
	if (err)
		return err;
	if (write)
		*ppos += *lenp;
	else
		*lenp = 0;
	return 0;
}
#endif /* CONFIG_PROC_FS */

1601 1602
static void vmstat_update(struct work_struct *w)
{
1603
	if (refresh_cpu_vm_stats(true)) {
1604 1605 1606 1607 1608
		/*
		 * Counters were updated so we expect more updates
		 * to occur in the future. Keep on running the
		 * update worker thread.
		 */
1609
		queue_delayed_work_on(smp_processor_id(), mm_percpu_wq,
1610 1611
				this_cpu_ptr(&vmstat_work),
				round_jiffies_relative(sysctl_stat_interval));
1612 1613 1614
	}
}

1615 1616 1617 1618 1619
/*
 * Switch off vmstat processing and then fold all the remaining differentials
 * until the diffs stay at zero. The function is used by NOHZ and can only be
 * invoked when tick processing is not active.
 */
1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642
/*
 * Check if the diffs for a certain cpu indicate that
 * an update is needed.
 */
static bool need_update(int cpu)
{
	struct zone *zone;

	for_each_populated_zone(zone) {
		struct per_cpu_pageset *p = per_cpu_ptr(zone->pageset, cpu);

		BUILD_BUG_ON(sizeof(p->vm_stat_diff[0]) != 1);
		/*
		 * The fast way of checking if there are any vmstat diffs.
		 * This works because the diffs are byte sized items.
		 */
		if (memchr_inv(p->vm_stat_diff, 0, NR_VM_ZONE_STAT_ITEMS))
			return true;

	}
	return false;
}

1643 1644 1645 1646 1647
/*
 * Switch off vmstat processing and then fold all the remaining differentials
 * until the diffs stay at zero. The function is used by NOHZ and can only be
 * invoked when tick processing is not active.
 */
1648 1649 1650 1651 1652
void quiet_vmstat(void)
{
	if (system_state != SYSTEM_RUNNING)
		return;

1653
	if (!delayed_work_pending(this_cpu_ptr(&vmstat_work)))
1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667
		return;

	if (!need_update(smp_processor_id()))
		return;

	/*
	 * Just refresh counters and do not care about the pending delayed
	 * vmstat_update. It doesn't fire that often to matter and canceling
	 * it would be too expensive from this path.
	 * vmstat_shepherd will take care about that for us.
	 */
	refresh_cpu_vm_stats(false);
}

1668 1669 1670 1671 1672 1673 1674 1675
/*
 * Shepherd worker thread that checks the
 * differentials of processors that have their worker
 * threads for vm statistics updates disabled because of
 * inactivity.
 */
static void vmstat_shepherd(struct work_struct *w);

1676
static DECLARE_DEFERRABLE_WORK(shepherd, vmstat_shepherd);
1677 1678 1679 1680 1681 1682 1683

static void vmstat_shepherd(struct work_struct *w)
{
	int cpu;

	get_online_cpus();
	/* Check processors whose vmstat worker threads have been disabled */
1684
	for_each_online_cpu(cpu) {
1685
		struct delayed_work *dw = &per_cpu(vmstat_work, cpu);
1686

1687
		if (!delayed_work_pending(dw) && need_update(cpu))
1688
			queue_delayed_work_on(cpu, mm_percpu_wq, dw, 0);
1689
	}
1690 1691 1692
	put_online_cpus();

	schedule_delayed_work(&shepherd,
A
Anton Blanchard 已提交
1693
		round_jiffies_relative(sysctl_stat_interval));
1694 1695
}

1696
static void __init start_shepherd_timer(void)
1697
{
1698 1699 1700
	int cpu;

	for_each_possible_cpu(cpu)
1701
		INIT_DEFERRABLE_WORK(per_cpu_ptr(&vmstat_work, cpu),
1702 1703 1704 1705
			vmstat_update);

	schedule_delayed_work(&shepherd,
		round_jiffies_relative(sysctl_stat_interval));
1706 1707
}

1708 1709
static void __init init_cpu_node_state(void)
{
1710
	int node;
1711

1712 1713 1714 1715
	for_each_online_node(node) {
		if (cpumask_weight(cpumask_of_node(node)) > 0)
			node_set_state(node, N_CPU);
	}
1716 1717
}

1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731
static int vmstat_cpu_online(unsigned int cpu)
{
	refresh_zone_stat_thresholds();
	node_set_state(cpu_to_node(cpu), N_CPU);
	return 0;
}

static int vmstat_cpu_down_prep(unsigned int cpu)
{
	cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu));
	return 0;
}

static int vmstat_cpu_dead(unsigned int cpu)
1732
{
1733
	const struct cpumask *node_cpus;
1734
	int node;
1735

1736 1737 1738
	node = cpu_to_node(cpu);

	refresh_zone_stat_thresholds();
1739 1740
	node_cpus = cpumask_of_node(node);
	if (cpumask_weight(node_cpus) > 0)
1741
		return 0;
1742 1743

	node_clear_state(node, N_CPU);
1744
	return 0;
1745 1746
}

1747
#endif
1748

1749 1750
struct workqueue_struct *mm_percpu_wq;

1751
void __init init_mm_internals(void)
1752
{
1753
	int ret __maybe_unused;
1754

1755
	mm_percpu_wq = alloc_workqueue("mm_percpu_wq", WQ_MEM_RECLAIM, 0);
1756 1757

#ifdef CONFIG_SMP
1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769
	ret = cpuhp_setup_state_nocalls(CPUHP_MM_VMSTAT_DEAD, "mm/vmstat:dead",
					NULL, vmstat_cpu_dead);
	if (ret < 0)
		pr_err("vmstat: failed to register 'dead' hotplug state\n");

	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "mm/vmstat:online",
					vmstat_cpu_online,
					vmstat_cpu_down_prep);
	if (ret < 0)
		pr_err("vmstat: failed to register 'online' hotplug state\n");

	get_online_cpus();
1770
	init_cpu_node_state();
1771
	put_online_cpus();
1772

1773
	start_shepherd_timer();
1774 1775 1776
#endif
#ifdef CONFIG_PROC_FS
	proc_create("buddyinfo", S_IRUGO, NULL, &fragmentation_file_operations);
1777
	proc_create("pagetypeinfo", S_IRUGO, NULL, &pagetypeinfo_file_ops);
1778
	proc_create("vmstat", S_IRUGO, NULL, &proc_vmstat_file_operations);
1779
	proc_create("zoneinfo", S_IRUGO, NULL, &proc_zoneinfo_file_operations);
1780
#endif
1781
}
1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839

#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)

/*
 * Return an index indicating how much of the available free memory is
 * unusable for an allocation of the requested size.
 */
static int unusable_free_index(unsigned int order,
				struct contig_page_info *info)
{
	/* No free memory is interpreted as all free memory is unusable */
	if (info->free_pages == 0)
		return 1000;

	/*
	 * Index should be a value between 0 and 1. Return a value to 3
	 * decimal places.
	 *
	 * 0 => no fragmentation
	 * 1 => high fragmentation
	 */
	return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);

}

static void unusable_show_print(struct seq_file *m,
					pg_data_t *pgdat, struct zone *zone)
{
	unsigned int order;
	int index;
	struct contig_page_info info;

	seq_printf(m, "Node %d, zone %8s ",
				pgdat->node_id,
				zone->name);
	for (order = 0; order < MAX_ORDER; ++order) {
		fill_contig_page_info(zone, order, &info);
		index = unusable_free_index(order, &info);
		seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
	}

	seq_putc(m, '\n');
}

/*
 * Display unusable free space index
 *
 * The unusable free space index measures how much of the available free
 * memory cannot be used to satisfy an allocation of a given size and is a
 * value between 0 and 1. The higher the value, the more of free memory is
 * unusable and by implication, the worse the external fragmentation is. This
 * can be expressed as a percentage by multiplying by 100.
 */
static int unusable_show(struct seq_file *m, void *arg)
{
	pg_data_t *pgdat = (pg_data_t *)arg;

	/* check memoryless node */
1840
	if (!node_state(pgdat->node_id, N_MEMORY))
1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866
		return 0;

	walk_zones_in_node(m, pgdat, unusable_show_print);

	return 0;
}

static const struct seq_operations unusable_op = {
	.start	= frag_start,
	.next	= frag_next,
	.stop	= frag_stop,
	.show	= unusable_show,
};

static int unusable_open(struct inode *inode, struct file *file)
{
	return seq_open(file, &unusable_op);
}

static const struct file_operations unusable_file_ops = {
	.open		= unusable_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= seq_release,
};

1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880
static void extfrag_show_print(struct seq_file *m,
					pg_data_t *pgdat, struct zone *zone)
{
	unsigned int order;
	int index;

	/* Alloc on stack as interrupts are disabled for zone walk */
	struct contig_page_info info;

	seq_printf(m, "Node %d, zone %8s ",
				pgdat->node_id,
				zone->name);
	for (order = 0; order < MAX_ORDER; ++order) {
		fill_contig_page_info(zone, order, &info);
1881
		index = __fragmentation_index(order, &info);
1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918
		seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
	}

	seq_putc(m, '\n');
}

/*
 * Display fragmentation index for orders that allocations would fail for
 */
static int extfrag_show(struct seq_file *m, void *arg)
{
	pg_data_t *pgdat = (pg_data_t *)arg;

	walk_zones_in_node(m, pgdat, extfrag_show_print);

	return 0;
}

static const struct seq_operations extfrag_op = {
	.start	= frag_start,
	.next	= frag_next,
	.stop	= frag_stop,
	.show	= extfrag_show,
};

static int extfrag_open(struct inode *inode, struct file *file)
{
	return seq_open(file, &extfrag_op);
}

static const struct file_operations extfrag_file_ops = {
	.open		= extfrag_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= seq_release,
};

1919 1920
static int __init extfrag_debug_init(void)
{
1921 1922
	struct dentry *extfrag_debug_root;

1923 1924 1925 1926 1927 1928
	extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
	if (!extfrag_debug_root)
		return -ENOMEM;

	if (!debugfs_create_file("unusable_index", 0444,
			extfrag_debug_root, NULL, &unusable_file_ops))
1929
		goto fail;
1930

1931 1932
	if (!debugfs_create_file("extfrag_index", 0444,
			extfrag_debug_root, NULL, &extfrag_file_ops))
1933
		goto fail;
1934

1935
	return 0;
1936 1937 1938
fail:
	debugfs_remove_recursive(extfrag_debug_root);
	return -ENOMEM;
1939 1940 1941 1942
}

module_init(extfrag_debug_init);
#endif