vmstat.c 16.9 KB
Newer Older
1 2 3 4 5
/*
 *  linux/mm/vmstat.c
 *
 *  Manages VM statistics
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6 7 8 9
 *
 *  zoned VM statistics
 *  Copyright (C) 2006 Silicon Graphics, Inc.,
 *		Christoph Lameter <christoph@lameter.com>
10 11 12
 */

#include <linux/mm.h>
A
Alexey Dobriyan 已提交
13
#include <linux/err.h>
14
#include <linux/module.h>
15
#include <linux/cpu.h>
A
Alexey Dobriyan 已提交
16
#include <linux/sched.h>
17

18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
#ifdef CONFIG_VM_EVENT_COUNTERS
DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
EXPORT_PER_CPU_SYMBOL(vm_event_states);

static void sum_vm_events(unsigned long *ret, cpumask_t *cpumask)
{
	int cpu = 0;
	int i;

	memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));

	cpu = first_cpu(*cpumask);
	while (cpu < NR_CPUS) {
		struct vm_event_state *this = &per_cpu(vm_event_states, cpu);

		cpu = next_cpu(cpu, *cpumask);

		if (cpu < NR_CPUS)
			prefetch(&per_cpu(vm_event_states, cpu));


		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
			ret[i] += this->event[i];
	}
}

/*
 * Accumulate the vm event counters across all CPUs.
 * The result is unavoidably approximate - it can change
 * during and after execution of this function.
*/
void all_vm_events(unsigned long *ret)
{
	sum_vm_events(ret, &cpu_online_map);
}
53
EXPORT_SYMBOL_GPL(all_vm_events);
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75

#ifdef CONFIG_HOTPLUG
/*
 * Fold the foreign cpu events into our own.
 *
 * This is adding to the events on one processor
 * but keeps the global counts constant.
 */
void vm_events_fold_cpu(int cpu)
{
	struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
	int i;

	for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
		count_vm_events(i, fold_state->event[i]);
		fold_state->event[i] = 0;
	}
}
#endif /* CONFIG_HOTPLUG */

#endif /* CONFIG_VM_EVENT_COUNTERS */

76 77 78 79 80 81 82 83 84 85
/*
 * Manage combined zone based / global counters
 *
 * vm_stat contains the global counters
 */
atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
EXPORT_SYMBOL(vm_stat);

#ifdef CONFIG_SMP

86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
static int calculate_threshold(struct zone *zone)
{
	int threshold;
	int mem;	/* memory in 128 MB units */

	/*
	 * The threshold scales with the number of processors and the amount
	 * of memory per zone. More memory means that we can defer updates for
	 * longer, more processors could lead to more contention.
 	 * fls() is used to have a cheap way of logarithmic scaling.
	 *
	 * Some sample thresholds:
	 *
	 * Threshold	Processors	(fls)	Zonesize	fls(mem+1)
	 * ------------------------------------------------------------------
	 * 8		1		1	0.9-1 GB	4
	 * 16		2		2	0.9-1 GB	4
	 * 20 		2		2	1-2 GB		5
	 * 24		2		2	2-4 GB		6
	 * 28		2		2	4-8 GB		7
	 * 32		2		2	8-16 GB		8
	 * 4		2		2	<128M		1
	 * 30		4		3	2-4 GB		5
	 * 48		4		3	8-16 GB		8
	 * 32		8		4	1-2 GB		4
	 * 32		8		4	0.9-1GB		4
	 * 10		16		5	<128M		1
	 * 40		16		5	900M		4
	 * 70		64		7	2-4 GB		5
	 * 84		64		7	4-8 GB		6
	 * 108		512		9	4-8 GB		6
	 * 125		1024		10	8-16 GB		8
	 * 125		1024		10	16-32 GB	9
	 */

	mem = zone->present_pages >> (27 - PAGE_SHIFT);

	threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));

	/*
	 * Maximum threshold is 125
	 */
	threshold = min(125, threshold);

	return threshold;
}
132 133

/*
134
 * Refresh the thresholds for each zone.
135
 */
136
static void refresh_zone_stat_thresholds(void)
137
{
138 139 140 141 142 143 144 145 146 147 148 149 150 151
	struct zone *zone;
	int cpu;
	int threshold;

	for_each_zone(zone) {

		if (!zone->present_pages)
			continue;

		threshold = calculate_threshold(zone);

		for_each_online_cpu(cpu)
			zone_pcp(zone, cpu)->stat_threshold = threshold;
	}
152 153 154 155 156 157 158 159
}

/*
 * For use when we know that interrupts are disabled.
 */
void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
				int delta)
{
160 161
	struct per_cpu_pageset *pcp = zone_pcp(zone, smp_processor_id());
	s8 *p = pcp->vm_stat_diff + item;
162 163 164 165
	long x;

	x = delta + *p;

166
	if (unlikely(x > pcp->stat_threshold || x < -pcp->stat_threshold)) {
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
		zone_page_state_add(x, zone, item);
		x = 0;
	}
	*p = x;
}
EXPORT_SYMBOL(__mod_zone_page_state);

/*
 * For an unknown interrupt state
 */
void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
					int delta)
{
	unsigned long flags;

	local_irq_save(flags);
	__mod_zone_page_state(zone, item, delta);
	local_irq_restore(flags);
}
EXPORT_SYMBOL(mod_zone_page_state);

/*
 * Optimized increment and decrement functions.
 *
 * These are only for a single page and therefore can take a struct page *
 * argument instead of struct zone *. This allows the inclusion of the code
 * generated for page_zone(page) into the optimized functions.
 *
 * No overflow check is necessary and therefore the differential can be
 * incremented or decremented in place which may allow the compilers to
 * generate better code.
 * The increment or decrement is known and therefore one boundary check can
 * be omitted.
 *
201 202 203
 * NOTE: These functions are very performance sensitive. Change only
 * with care.
 *
204 205 206 207 208 209 210
 * Some processors have inc/dec instructions that are atomic vs an interrupt.
 * However, the code must first determine the differential location in a zone
 * based on the processor number and then inc/dec the counter. There is no
 * guarantee without disabling preemption that the processor will not change
 * in between and therefore the atomicity vs. interrupt cannot be exploited
 * in a useful way here.
 */
211
void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
212
{
213 214
	struct per_cpu_pageset *pcp = zone_pcp(zone, smp_processor_id());
	s8 *p = pcp->vm_stat_diff + item;
215 216 217

	(*p)++;

218 219 220 221 222
	if (unlikely(*p > pcp->stat_threshold)) {
		int overstep = pcp->stat_threshold / 2;

		zone_page_state_add(*p + overstep, zone, item);
		*p = -overstep;
223 224
	}
}
225 226 227 228 229

void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
{
	__inc_zone_state(page_zone(page), item);
}
230 231
EXPORT_SYMBOL(__inc_zone_page_state);

232
void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
233
{
234 235
	struct per_cpu_pageset *pcp = zone_pcp(zone, smp_processor_id());
	s8 *p = pcp->vm_stat_diff + item;
236 237 238

	(*p)--;

239 240 241 242 243
	if (unlikely(*p < - pcp->stat_threshold)) {
		int overstep = pcp->stat_threshold / 2;

		zone_page_state_add(*p - overstep, zone, item);
		*p = overstep;
244 245
	}
}
246 247 248 249 250

void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
{
	__dec_zone_state(page_zone(page), item);
}
251 252
EXPORT_SYMBOL(__dec_zone_page_state);

253 254 255 256 257 258 259 260 261
void inc_zone_state(struct zone *zone, enum zone_stat_item item)
{
	unsigned long flags;

	local_irq_save(flags);
	__inc_zone_state(zone, item);
	local_irq_restore(flags);
}

262 263 264 265 266 267 268
void inc_zone_page_state(struct page *page, enum zone_stat_item item)
{
	unsigned long flags;
	struct zone *zone;

	zone = page_zone(page);
	local_irq_save(flags);
269
	__inc_zone_state(zone, item);
270 271 272 273 274 275 276 277 278
	local_irq_restore(flags);
}
EXPORT_SYMBOL(inc_zone_page_state);

void dec_zone_page_state(struct page *page, enum zone_stat_item item)
{
	unsigned long flags;

	local_irq_save(flags);
279
	__dec_zone_page_state(page, item);
280 281 282 283 284 285
	local_irq_restore(flags);
}
EXPORT_SYMBOL(dec_zone_page_state);

/*
 * Update the zone counters for one cpu.
286 287 288 289 290 291 292 293 294 295 296
 *
 * Note that refresh_cpu_vm_stats strives to only access
 * node local memory. The per cpu pagesets on remote zones are placed
 * in the memory local to the processor using that pageset. So the
 * loop over all zones will access a series of cachelines local to
 * the processor.
 *
 * The call to zone_page_state_add updates the cachelines with the
 * statistics in the remote zone struct as well as the global cachelines
 * with the global counters. These could cause remote node cache line
 * bouncing and will have to be only done when necessary.
297 298 299 300 301 302 303 304
 */
void refresh_cpu_vm_stats(int cpu)
{
	struct zone *zone;
	int i;
	unsigned long flags;

	for_each_zone(zone) {
305
		struct per_cpu_pageset *p;
306

307 308 309
		if (!populated_zone(zone))
			continue;

310
		p = zone_pcp(zone, cpu);
311 312

		for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
313
			if (p->vm_stat_diff[i]) {
314
				local_irq_save(flags);
315
				zone_page_state_add(p->vm_stat_diff[i],
316
					zone, i);
317 318 319 320 321
				p->vm_stat_diff[i] = 0;
#ifdef CONFIG_NUMA
				/* 3 seconds idle till flush */
				p->expire = 3;
#endif
322 323
				local_irq_restore(flags);
			}
324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
#ifdef CONFIG_NUMA
		/*
		 * Deal with draining the remote pageset of this
		 * processor
		 *
		 * Check if there are pages remaining in this pageset
		 * if not then there is nothing to expire.
		 */
		if (!p->expire || (!p->pcp[0].count && !p->pcp[1].count))
			continue;

		/*
		 * We never drain zones local to this processor.
		 */
		if (zone_to_nid(zone) == numa_node_id()) {
			p->expire = 0;
			continue;
		}

		p->expire--;
		if (p->expire)
			continue;

		if (p->pcp[0].count)
			drain_zone_pages(zone, p->pcp + 0);

		if (p->pcp[1].count)
			drain_zone_pages(zone, p->pcp + 1);
#endif
353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
	}
}

static void __refresh_cpu_vm_stats(void *dummy)
{
	refresh_cpu_vm_stats(smp_processor_id());
}

/*
 * Consolidate all counters.
 *
 * Note that the result is less inaccurate but still inaccurate
 * if concurrent processes are allowed to run.
 */
void refresh_vm_stats(void)
{
	on_each_cpu(__refresh_cpu_vm_stats, NULL, 0, 1);
}
EXPORT_SYMBOL(refresh_vm_stats);

#endif

375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
#ifdef CONFIG_NUMA
/*
 * zonelist = the list of zones passed to the allocator
 * z 	    = the zone from which the allocation occurred.
 *
 * Must be called with interrupts disabled.
 */
void zone_statistics(struct zonelist *zonelist, struct zone *z)
{
	if (z->zone_pgdat == zonelist->zones[0]->zone_pgdat) {
		__inc_zone_state(z, NUMA_HIT);
	} else {
		__inc_zone_state(z, NUMA_MISS);
		__inc_zone_state(zonelist->zones[0], NUMA_FOREIGN);
	}
390
	if (z->node == numa_node_id())
391 392 393 394 395 396
		__inc_zone_state(z, NUMA_LOCAL);
	else
		__inc_zone_state(z, NUMA_OTHER);
}
#endif

397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
#ifdef CONFIG_PROC_FS

#include <linux/seq_file.h>

static void *frag_start(struct seq_file *m, loff_t *pos)
{
	pg_data_t *pgdat;
	loff_t node = *pos;
	for (pgdat = first_online_pgdat();
	     pgdat && node;
	     pgdat = next_online_pgdat(pgdat))
		--node;

	return pgdat;
}

static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
{
	pg_data_t *pgdat = (pg_data_t *)arg;

	(*pos)++;
	return next_online_pgdat(pgdat);
}

static void frag_stop(struct seq_file *m, void *arg)
{
}

/*
 * This walks the free areas for each zone.
 */
static int frag_show(struct seq_file *m, void *arg)
{
	pg_data_t *pgdat = (pg_data_t *)arg;
	struct zone *zone;
	struct zone *node_zones = pgdat->node_zones;
	unsigned long flags;
	int order;

	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
		if (!populated_zone(zone))
			continue;

		spin_lock_irqsave(&zone->lock, flags);
		seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
		for (order = 0; order < MAX_ORDER; ++order)
			seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
		spin_unlock_irqrestore(&zone->lock, flags);
		seq_putc(m, '\n');
	}
	return 0;
}

450
const struct seq_operations fragmentation_op = {
451 452 453 454 455 456
	.start	= frag_start,
	.next	= frag_next,
	.stop	= frag_stop,
	.show	= frag_show,
};

457 458 459 460 461 462
#ifdef CONFIG_ZONE_DMA
#define TEXT_FOR_DMA(xx) xx "_dma",
#else
#define TEXT_FOR_DMA(xx)
#endif

463 464 465 466 467 468 469 470 471 472 473 474
#ifdef CONFIG_ZONE_DMA32
#define TEXT_FOR_DMA32(xx) xx "_dma32",
#else
#define TEXT_FOR_DMA32(xx)
#endif

#ifdef CONFIG_HIGHMEM
#define TEXT_FOR_HIGHMEM(xx) xx "_high",
#else
#define TEXT_FOR_HIGHMEM(xx)
#endif

475
#define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
M
Mel Gorman 已提交
476
					TEXT_FOR_HIGHMEM(xx) xx "_movable",
477

478
static const char * const vmstat_text[] = {
479
	/* Zoned VM counters */
480
	"nr_free_pages",
481
	"nr_inactive",
P
Peter Zijlstra 已提交
482
	"nr_active",
483
	"nr_anon_pages",
484
	"nr_mapped",
485
	"nr_file_pages",
486 487
	"nr_dirty",
	"nr_writeback",
488 489
	"nr_slab_reclaimable",
	"nr_slab_unreclaimable",
490
	"nr_page_table_pages",
491
	"nr_unstable",
492
	"nr_bounce",
493
	"nr_vmscan_write",
494

495 496 497 498 499 500 501 502 503
#ifdef CONFIG_NUMA
	"numa_hit",
	"numa_miss",
	"numa_foreign",
	"numa_interleave",
	"numa_local",
	"numa_other",
#endif

504
#ifdef CONFIG_VM_EVENT_COUNTERS
505 506 507 508 509
	"pgpgin",
	"pgpgout",
	"pswpin",
	"pswpout",

510
	TEXTS_FOR_ZONES("pgalloc")
511 512 513 514 515 516 517 518

	"pgfree",
	"pgactivate",
	"pgdeactivate",

	"pgfault",
	"pgmajfault",

519 520 521 522
	TEXTS_FOR_ZONES("pgrefill")
	TEXTS_FOR_ZONES("pgsteal")
	TEXTS_FOR_ZONES("pgscan_kswapd")
	TEXTS_FOR_ZONES("pgscan_direct")
523 524 525 526 527 528 529 530 531

	"pginodesteal",
	"slabs_scanned",
	"kswapd_steal",
	"kswapd_inodesteal",
	"pageoutrun",
	"allocstall",

	"pgrotated",
532
#endif
533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
};

/*
 * Output information about zones in @pgdat.
 */
static int zoneinfo_show(struct seq_file *m, void *arg)
{
	pg_data_t *pgdat = arg;
	struct zone *zone;
	struct zone *node_zones = pgdat->node_zones;
	unsigned long flags;

	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; zone++) {
		int i;

		if (!populated_zone(zone))
			continue;

		spin_lock_irqsave(&zone->lock, flags);
		seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
		seq_printf(m,
			   "\n  pages free     %lu"
			   "\n        min      %lu"
			   "\n        low      %lu"
			   "\n        high     %lu"
			   "\n        scanned  %lu (a: %lu i: %lu)"
			   "\n        spanned  %lu"
			   "\n        present  %lu",
561
			   zone_page_state(zone, NR_FREE_PAGES),
562 563 564 565 566 567 568
			   zone->pages_min,
			   zone->pages_low,
			   zone->pages_high,
			   zone->pages_scanned,
			   zone->nr_scan_active, zone->nr_scan_inactive,
			   zone->spanned_pages,
			   zone->present_pages);
569 570 571 572 573

		for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
			seq_printf(m, "\n    %-12s %lu", vmstat_text[i],
					zone_page_state(zone, i));

574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597
		seq_printf(m,
			   "\n        protection: (%lu",
			   zone->lowmem_reserve[0]);
		for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
			seq_printf(m, ", %lu", zone->lowmem_reserve[i]);
		seq_printf(m,
			   ")"
			   "\n  pagesets");
		for_each_online_cpu(i) {
			struct per_cpu_pageset *pageset;
			int j;

			pageset = zone_pcp(zone, i);
			for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
				seq_printf(m,
					   "\n    cpu: %i pcp: %i"
					   "\n              count: %i"
					   "\n              high:  %i"
					   "\n              batch: %i",
					   i, j,
					   pageset->pcp[j].count,
					   pageset->pcp[j].high,
					   pageset->pcp[j].batch);
			}
598 599 600 601
#ifdef CONFIG_SMP
			seq_printf(m, "\n  vm stats threshold: %d",
					pageset->stat_threshold);
#endif
602 603 604 605 606 607 608 609 610 611 612 613 614 615
		}
		seq_printf(m,
			   "\n  all_unreclaimable: %u"
			   "\n  prev_priority:     %i"
			   "\n  start_pfn:         %lu",
			   zone->all_unreclaimable,
			   zone->prev_priority,
			   zone->zone_start_pfn);
		spin_unlock_irqrestore(&zone->lock, flags);
		seq_putc(m, '\n');
	}
	return 0;
}

616
const struct seq_operations zoneinfo_op = {
617 618 619 620 621 622 623 624 625
	.start	= frag_start, /* iterate over all zones. The same as in
			       * fragmentation. */
	.next	= frag_next,
	.stop	= frag_stop,
	.show	= zoneinfo_show,
};

static void *vmstat_start(struct seq_file *m, loff_t *pos)
{
626
	unsigned long *v;
627 628 629
#ifdef CONFIG_VM_EVENT_COUNTERS
	unsigned long *e;
#endif
630
	int i;
631 632 633 634

	if (*pos >= ARRAY_SIZE(vmstat_text))
		return NULL;

635
#ifdef CONFIG_VM_EVENT_COUNTERS
636
	v = kmalloc(NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long)
637 638 639 640 641
			+ sizeof(struct vm_event_state), GFP_KERNEL);
#else
	v = kmalloc(NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long),
			GFP_KERNEL);
#endif
642 643
	m->private = v;
	if (!v)
644
		return ERR_PTR(-ENOMEM);
645 646
	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
		v[i] = global_page_state(i);
647 648 649 650 651 652
#ifdef CONFIG_VM_EVENT_COUNTERS
	e = v + NR_VM_ZONE_STAT_ITEMS;
	all_vm_events(e);
	e[PGPGIN] /= 2;		/* sectors -> kbytes */
	e[PGPGOUT] /= 2;
#endif
653
	return v + *pos;
654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678
}

static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
{
	(*pos)++;
	if (*pos >= ARRAY_SIZE(vmstat_text))
		return NULL;
	return (unsigned long *)m->private + *pos;
}

static int vmstat_show(struct seq_file *m, void *arg)
{
	unsigned long *l = arg;
	unsigned long off = l - (unsigned long *)m->private;

	seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
	return 0;
}

static void vmstat_stop(struct seq_file *m, void *arg)
{
	kfree(m->private);
	m->private = NULL;
}

679
const struct seq_operations vmstat_op = {
680 681 682 683 684 685 686 687
	.start	= vmstat_start,
	.next	= vmstat_next,
	.stop	= vmstat_stop,
	.show	= vmstat_show,
};

#endif /* CONFIG_PROC_FS */

688
#ifdef CONFIG_SMP
689
static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
690
int sysctl_stat_interval __read_mostly = HZ;
691 692 693 694

static void vmstat_update(struct work_struct *w)
{
	refresh_cpu_vm_stats(smp_processor_id());
695 696
	schedule_delayed_work(&__get_cpu_var(vmstat_work),
		sysctl_stat_interval);
697 698 699 700 701 702
}

static void __devinit start_cpu_timer(int cpu)
{
	struct delayed_work *vmstat_work = &per_cpu(vmstat_work, cpu);

703
	INIT_DELAYED_WORK_DEFERRABLE(vmstat_work, vmstat_update);
704 705 706
	schedule_delayed_work_on(cpu, vmstat_work, HZ + cpu);
}

707 708 709 710 711 712 713 714
/*
 * Use the cpu notifier to insure that the thresholds are recalculated
 * when necessary.
 */
static int __cpuinit vmstat_cpuup_callback(struct notifier_block *nfb,
		unsigned long action,
		void *hcpu)
{
715 716
	long cpu = (long)hcpu;

717
	switch (action) {
718 719 720 721 722 723 724 725 726 727 728 729 730
	case CPU_ONLINE:
	case CPU_ONLINE_FROZEN:
		start_cpu_timer(cpu);
		break;
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
		cancel_rearming_delayed_work(&per_cpu(vmstat_work, cpu));
		per_cpu(vmstat_work, cpu).work.func = NULL;
		break;
	case CPU_DOWN_FAILED:
	case CPU_DOWN_FAILED_FROZEN:
		start_cpu_timer(cpu);
		break;
731
	case CPU_DEAD:
732
	case CPU_DEAD_FROZEN:
733 734 735 736
		refresh_zone_stat_thresholds();
		break;
	default:
		break;
737 738 739 740 741 742 743 744 745
	}
	return NOTIFY_OK;
}

static struct notifier_block __cpuinitdata vmstat_notifier =
	{ &vmstat_cpuup_callback, NULL, 0 };

int __init setup_vmstat(void)
{
746 747
	int cpu;

748 749
	refresh_zone_stat_thresholds();
	register_cpu_notifier(&vmstat_notifier);
750 751 752

	for_each_online_cpu(cpu)
		start_cpu_timer(cpu);
753 754 755 756
	return 0;
}
module_init(setup_vmstat)
#endif