vmstat.c 20.0 KB
Newer Older
1 2 3 4 5
/*
 *  linux/mm/vmstat.c
 *
 *  Manages VM statistics
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6 7 8 9
 *
 *  zoned VM statistics
 *  Copyright (C) 2006 Silicon Graphics, Inc.,
 *		Christoph Lameter <christoph@lameter.com>
10 11 12
 */

#include <linux/mm.h>
A
Alexey Dobriyan 已提交
13
#include <linux/err.h>
14
#include <linux/module.h>
15
#include <linux/cpu.h>
A
Alexey Dobriyan 已提交
16
#include <linux/sched.h>
17

18 19 20 21 22 23
#ifdef CONFIG_VM_EVENT_COUNTERS
DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
EXPORT_PER_CPU_SYMBOL(vm_event_states);

static void sum_vm_events(unsigned long *ret, cpumask_t *cpumask)
{
C
Christoph Lameter 已提交
24
	int cpu;
25 26 27 28
	int i;

	memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));

C
Christoph Lameter 已提交
29
	for_each_cpu_mask(cpu, *cpumask) {
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
		struct vm_event_state *this = &per_cpu(vm_event_states, cpu);

		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
			ret[i] += this->event[i];
	}
}

/*
 * Accumulate the vm event counters across all CPUs.
 * The result is unavoidably approximate - it can change
 * during and after execution of this function.
*/
void all_vm_events(unsigned long *ret)
{
	sum_vm_events(ret, &cpu_online_map);
}
46
EXPORT_SYMBOL_GPL(all_vm_events);
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68

#ifdef CONFIG_HOTPLUG
/*
 * Fold the foreign cpu events into our own.
 *
 * This is adding to the events on one processor
 * but keeps the global counts constant.
 */
void vm_events_fold_cpu(int cpu)
{
	struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
	int i;

	for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
		count_vm_events(i, fold_state->event[i]);
		fold_state->event[i] = 0;
	}
}
#endif /* CONFIG_HOTPLUG */

#endif /* CONFIG_VM_EVENT_COUNTERS */

69 70 71 72 73 74 75 76 77 78
/*
 * Manage combined zone based / global counters
 *
 * vm_stat contains the global counters
 */
atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
EXPORT_SYMBOL(vm_stat);

#ifdef CONFIG_SMP

79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
static int calculate_threshold(struct zone *zone)
{
	int threshold;
	int mem;	/* memory in 128 MB units */

	/*
	 * The threshold scales with the number of processors and the amount
	 * of memory per zone. More memory means that we can defer updates for
	 * longer, more processors could lead to more contention.
 	 * fls() is used to have a cheap way of logarithmic scaling.
	 *
	 * Some sample thresholds:
	 *
	 * Threshold	Processors	(fls)	Zonesize	fls(mem+1)
	 * ------------------------------------------------------------------
	 * 8		1		1	0.9-1 GB	4
	 * 16		2		2	0.9-1 GB	4
	 * 20 		2		2	1-2 GB		5
	 * 24		2		2	2-4 GB		6
	 * 28		2		2	4-8 GB		7
	 * 32		2		2	8-16 GB		8
	 * 4		2		2	<128M		1
	 * 30		4		3	2-4 GB		5
	 * 48		4		3	8-16 GB		8
	 * 32		8		4	1-2 GB		4
	 * 32		8		4	0.9-1GB		4
	 * 10		16		5	<128M		1
	 * 40		16		5	900M		4
	 * 70		64		7	2-4 GB		5
	 * 84		64		7	4-8 GB		6
	 * 108		512		9	4-8 GB		6
	 * 125		1024		10	8-16 GB		8
	 * 125		1024		10	16-32 GB	9
	 */

	mem = zone->present_pages >> (27 - PAGE_SHIFT);

	threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));

	/*
	 * Maximum threshold is 125
	 */
	threshold = min(125, threshold);

	return threshold;
}
125 126

/*
127
 * Refresh the thresholds for each zone.
128
 */
129
static void refresh_zone_stat_thresholds(void)
130
{
131 132 133 134 135 136 137 138 139 140 141 142 143 144
	struct zone *zone;
	int cpu;
	int threshold;

	for_each_zone(zone) {

		if (!zone->present_pages)
			continue;

		threshold = calculate_threshold(zone);

		for_each_online_cpu(cpu)
			zone_pcp(zone, cpu)->stat_threshold = threshold;
	}
145 146 147 148 149 150 151 152
}

/*
 * For use when we know that interrupts are disabled.
 */
void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
				int delta)
{
153 154
	struct per_cpu_pageset *pcp = zone_pcp(zone, smp_processor_id());
	s8 *p = pcp->vm_stat_diff + item;
155 156 157 158
	long x;

	x = delta + *p;

159
	if (unlikely(x > pcp->stat_threshold || x < -pcp->stat_threshold)) {
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
		zone_page_state_add(x, zone, item);
		x = 0;
	}
	*p = x;
}
EXPORT_SYMBOL(__mod_zone_page_state);

/*
 * For an unknown interrupt state
 */
void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
					int delta)
{
	unsigned long flags;

	local_irq_save(flags);
	__mod_zone_page_state(zone, item, delta);
	local_irq_restore(flags);
}
EXPORT_SYMBOL(mod_zone_page_state);

/*
 * Optimized increment and decrement functions.
 *
 * These are only for a single page and therefore can take a struct page *
 * argument instead of struct zone *. This allows the inclusion of the code
 * generated for page_zone(page) into the optimized functions.
 *
 * No overflow check is necessary and therefore the differential can be
 * incremented or decremented in place which may allow the compilers to
 * generate better code.
 * The increment or decrement is known and therefore one boundary check can
 * be omitted.
 *
194 195 196
 * NOTE: These functions are very performance sensitive. Change only
 * with care.
 *
197 198 199 200 201 202 203
 * Some processors have inc/dec instructions that are atomic vs an interrupt.
 * However, the code must first determine the differential location in a zone
 * based on the processor number and then inc/dec the counter. There is no
 * guarantee without disabling preemption that the processor will not change
 * in between and therefore the atomicity vs. interrupt cannot be exploited
 * in a useful way here.
 */
204
void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
205
{
206 207
	struct per_cpu_pageset *pcp = zone_pcp(zone, smp_processor_id());
	s8 *p = pcp->vm_stat_diff + item;
208 209 210

	(*p)++;

211 212 213 214 215
	if (unlikely(*p > pcp->stat_threshold)) {
		int overstep = pcp->stat_threshold / 2;

		zone_page_state_add(*p + overstep, zone, item);
		*p = -overstep;
216 217
	}
}
218 219 220 221 222

void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
{
	__inc_zone_state(page_zone(page), item);
}
223 224
EXPORT_SYMBOL(__inc_zone_page_state);

225
void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
226
{
227 228
	struct per_cpu_pageset *pcp = zone_pcp(zone, smp_processor_id());
	s8 *p = pcp->vm_stat_diff + item;
229 230 231

	(*p)--;

232 233 234 235 236
	if (unlikely(*p < - pcp->stat_threshold)) {
		int overstep = pcp->stat_threshold / 2;

		zone_page_state_add(*p - overstep, zone, item);
		*p = overstep;
237 238
	}
}
239 240 241 242 243

void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
{
	__dec_zone_state(page_zone(page), item);
}
244 245
EXPORT_SYMBOL(__dec_zone_page_state);

246 247 248 249 250 251 252 253 254
void inc_zone_state(struct zone *zone, enum zone_stat_item item)
{
	unsigned long flags;

	local_irq_save(flags);
	__inc_zone_state(zone, item);
	local_irq_restore(flags);
}

255 256 257 258 259 260 261
void inc_zone_page_state(struct page *page, enum zone_stat_item item)
{
	unsigned long flags;
	struct zone *zone;

	zone = page_zone(page);
	local_irq_save(flags);
262
	__inc_zone_state(zone, item);
263 264 265 266 267 268 269 270 271
	local_irq_restore(flags);
}
EXPORT_SYMBOL(inc_zone_page_state);

void dec_zone_page_state(struct page *page, enum zone_stat_item item)
{
	unsigned long flags;

	local_irq_save(flags);
272
	__dec_zone_page_state(page, item);
273 274 275 276 277 278
	local_irq_restore(flags);
}
EXPORT_SYMBOL(dec_zone_page_state);

/*
 * Update the zone counters for one cpu.
279
 *
280 281 282 283
 * The cpu specified must be either the current cpu or a processor that
 * is not online. If it is the current cpu then the execution thread must
 * be pinned to the current cpu.
 *
284 285 286 287 288 289 290 291 292 293
 * Note that refresh_cpu_vm_stats strives to only access
 * node local memory. The per cpu pagesets on remote zones are placed
 * in the memory local to the processor using that pageset. So the
 * loop over all zones will access a series of cachelines local to
 * the processor.
 *
 * The call to zone_page_state_add updates the cachelines with the
 * statistics in the remote zone struct as well as the global cachelines
 * with the global counters. These could cause remote node cache line
 * bouncing and will have to be only done when necessary.
294 295 296 297 298
 */
void refresh_cpu_vm_stats(int cpu)
{
	struct zone *zone;
	int i;
299
	int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
300 301

	for_each_zone(zone) {
302
		struct per_cpu_pageset *p;
303

304 305 306
		if (!populated_zone(zone))
			continue;

307
		p = zone_pcp(zone, cpu);
308 309

		for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
310
			if (p->vm_stat_diff[i]) {
311 312 313
				unsigned long flags;
				int v;

314
				local_irq_save(flags);
315
				v = p->vm_stat_diff[i];
316
				p->vm_stat_diff[i] = 0;
317 318 319
				local_irq_restore(flags);
				atomic_long_add(v, &zone->vm_stat[i]);
				global_diff[i] += v;
320 321 322 323
#ifdef CONFIG_NUMA
				/* 3 seconds idle till flush */
				p->expire = 3;
#endif
324
			}
325
		cond_resched();
326 327 328 329 330 331 332 333
#ifdef CONFIG_NUMA
		/*
		 * Deal with draining the remote pageset of this
		 * processor
		 *
		 * Check if there are pages remaining in this pageset
		 * if not then there is nothing to expire.
		 */
334
		if (!p->expire || !p->pcp.count)
335 336 337 338 339 340 341 342 343 344 345 346 347 348
			continue;

		/*
		 * We never drain zones local to this processor.
		 */
		if (zone_to_nid(zone) == numa_node_id()) {
			p->expire = 0;
			continue;
		}

		p->expire--;
		if (p->expire)
			continue;

349 350
		if (p->pcp.count)
			drain_zone_pages(zone, &p->pcp);
351
#endif
352
	}
353 354 355 356

	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
		if (global_diff[i])
			atomic_long_add(global_diff[i], &vm_stat[i]);
357 358 359 360
}

#endif

361 362 363 364 365 366 367
#ifdef CONFIG_NUMA
/*
 * zonelist = the list of zones passed to the allocator
 * z 	    = the zone from which the allocation occurred.
 *
 * Must be called with interrupts disabled.
 */
368
void zone_statistics(struct zone *preferred_zone, struct zone *z)
369
{
370
	if (z->zone_pgdat == preferred_zone->zone_pgdat) {
371 372 373
		__inc_zone_state(z, NUMA_HIT);
	} else {
		__inc_zone_state(z, NUMA_MISS);
374
		__inc_zone_state(preferred_zone, NUMA_FOREIGN);
375
	}
376
	if (z->node == numa_node_id())
377 378 379 380 381 382
		__inc_zone_state(z, NUMA_LOCAL);
	else
		__inc_zone_state(z, NUMA_OTHER);
}
#endif

383 384 385 386
#ifdef CONFIG_PROC_FS

#include <linux/seq_file.h>

387 388 389 390 391
static char * const migratetype_names[MIGRATE_TYPES] = {
	"Unmovable",
	"Reclaimable",
	"Movable",
	"Reserve",
392
	"Isolate",
393 394
};

395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
static void *frag_start(struct seq_file *m, loff_t *pos)
{
	pg_data_t *pgdat;
	loff_t node = *pos;
	for (pgdat = first_online_pgdat();
	     pgdat && node;
	     pgdat = next_online_pgdat(pgdat))
		--node;

	return pgdat;
}

static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
{
	pg_data_t *pgdat = (pg_data_t *)arg;

	(*pos)++;
	return next_online_pgdat(pgdat);
}

static void frag_stop(struct seq_file *m, void *arg)
{
}

419 420 421
/* Walk all the zones in a node and print using a callback */
static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
		void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
422 423 424 425 426 427 428 429 430 431
{
	struct zone *zone;
	struct zone *node_zones = pgdat->node_zones;
	unsigned long flags;

	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
		if (!populated_zone(zone))
			continue;

		spin_lock_irqsave(&zone->lock, flags);
432
		print(m, pgdat, zone);
433
		spin_unlock_irqrestore(&zone->lock, flags);
434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
	}
}

static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
						struct zone *zone)
{
	int order;

	seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
	for (order = 0; order < MAX_ORDER; ++order)
		seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
	seq_putc(m, '\n');
}

/*
 * This walks the free areas for each zone.
 */
static int frag_show(struct seq_file *m, void *arg)
{
	pg_data_t *pgdat = (pg_data_t *)arg;
	walk_zones_in_node(m, pgdat, frag_show_print);
	return 0;
}

static void pagetypeinfo_showfree_print(struct seq_file *m,
					pg_data_t *pgdat, struct zone *zone)
{
	int order, mtype;

	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
		seq_printf(m, "Node %4d, zone %8s, type %12s ",
					pgdat->node_id,
					zone->name,
					migratetype_names[mtype]);
		for (order = 0; order < MAX_ORDER; ++order) {
			unsigned long freecount = 0;
			struct free_area *area;
			struct list_head *curr;

			area = &(zone->free_area[order]);

			list_for_each(curr, &area->free_list[mtype])
				freecount++;
			seq_printf(m, "%6lu ", freecount);
		}
479 480
		seq_putc(m, '\n');
	}
481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550
}

/* Print out the free pages at each order for each migatetype */
static int pagetypeinfo_showfree(struct seq_file *m, void *arg)
{
	int order;
	pg_data_t *pgdat = (pg_data_t *)arg;

	/* Print header */
	seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
	for (order = 0; order < MAX_ORDER; ++order)
		seq_printf(m, "%6d ", order);
	seq_putc(m, '\n');

	walk_zones_in_node(m, pgdat, pagetypeinfo_showfree_print);

	return 0;
}

static void pagetypeinfo_showblockcount_print(struct seq_file *m,
					pg_data_t *pgdat, struct zone *zone)
{
	int mtype;
	unsigned long pfn;
	unsigned long start_pfn = zone->zone_start_pfn;
	unsigned long end_pfn = start_pfn + zone->spanned_pages;
	unsigned long count[MIGRATE_TYPES] = { 0, };

	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
		struct page *page;

		if (!pfn_valid(pfn))
			continue;

		page = pfn_to_page(pfn);
		mtype = get_pageblock_migratetype(page);

		count[mtype]++;
	}

	/* Print counts */
	seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
		seq_printf(m, "%12lu ", count[mtype]);
	seq_putc(m, '\n');
}

/* Print out the free pages at each order for each migratetype */
static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
{
	int mtype;
	pg_data_t *pgdat = (pg_data_t *)arg;

	seq_printf(m, "\n%-23s", "Number of blocks type ");
	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
		seq_printf(m, "%12s ", migratetype_names[mtype]);
	seq_putc(m, '\n');
	walk_zones_in_node(m, pgdat, pagetypeinfo_showblockcount_print);

	return 0;
}

/*
 * This prints out statistics in relation to grouping pages by mobility.
 * It is expensive to collect so do not constantly read the file.
 */
static int pagetypeinfo_show(struct seq_file *m, void *arg)
{
	pg_data_t *pgdat = (pg_data_t *)arg;

551 552 553 554
	/* check memoryless node */
	if (!node_state(pgdat->node_id, N_HIGH_MEMORY))
		return 0;

555 556 557 558 559 560
	seq_printf(m, "Page block order: %d\n", pageblock_order);
	seq_printf(m, "Pages per block:  %lu\n", pageblock_nr_pages);
	seq_putc(m, '\n');
	pagetypeinfo_showfree(m, pgdat);
	pagetypeinfo_showblockcount(m, pgdat);

561 562 563
	return 0;
}

564
const struct seq_operations fragmentation_op = {
565 566 567 568 569 570
	.start	= frag_start,
	.next	= frag_next,
	.stop	= frag_stop,
	.show	= frag_show,
};

571 572 573 574 575 576 577
const struct seq_operations pagetypeinfo_op = {
	.start	= frag_start,
	.next	= frag_next,
	.stop	= frag_stop,
	.show	= pagetypeinfo_show,
};

578 579 580 581 582 583
#ifdef CONFIG_ZONE_DMA
#define TEXT_FOR_DMA(xx) xx "_dma",
#else
#define TEXT_FOR_DMA(xx)
#endif

584 585 586 587 588 589 590 591 592 593 594 595
#ifdef CONFIG_ZONE_DMA32
#define TEXT_FOR_DMA32(xx) xx "_dma32",
#else
#define TEXT_FOR_DMA32(xx)
#endif

#ifdef CONFIG_HIGHMEM
#define TEXT_FOR_HIGHMEM(xx) xx "_high",
#else
#define TEXT_FOR_HIGHMEM(xx)
#endif

596
#define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
M
Mel Gorman 已提交
597
					TEXT_FOR_HIGHMEM(xx) xx "_movable",
598

599
static const char * const vmstat_text[] = {
600
	/* Zoned VM counters */
601
	"nr_free_pages",
602
	"nr_inactive",
P
Peter Zijlstra 已提交
603
	"nr_active",
604
	"nr_anon_pages",
605
	"nr_mapped",
606
	"nr_file_pages",
607 608
	"nr_dirty",
	"nr_writeback",
609 610
	"nr_slab_reclaimable",
	"nr_slab_unreclaimable",
611
	"nr_page_table_pages",
612
	"nr_unstable",
613
	"nr_bounce",
614
	"nr_vmscan_write",
615
	"nr_writeback_temp",
616

617 618 619 620 621 622 623 624 625
#ifdef CONFIG_NUMA
	"numa_hit",
	"numa_miss",
	"numa_foreign",
	"numa_interleave",
	"numa_local",
	"numa_other",
#endif

626
#ifdef CONFIG_VM_EVENT_COUNTERS
627 628 629 630 631
	"pgpgin",
	"pgpgout",
	"pswpin",
	"pswpout",

632
	TEXTS_FOR_ZONES("pgalloc")
633 634 635 636 637 638 639 640

	"pgfree",
	"pgactivate",
	"pgdeactivate",

	"pgfault",
	"pgmajfault",

641 642 643 644
	TEXTS_FOR_ZONES("pgrefill")
	TEXTS_FOR_ZONES("pgsteal")
	TEXTS_FOR_ZONES("pgscan_kswapd")
	TEXTS_FOR_ZONES("pgscan_direct")
645 646 647 648 649 650 651 652 653

	"pginodesteal",
	"slabs_scanned",
	"kswapd_steal",
	"kswapd_inodesteal",
	"pageoutrun",
	"allocstall",

	"pgrotated",
654 655 656 657
#ifdef CONFIG_HUGETLB_PAGE
	"htlb_buddy_alloc_success",
	"htlb_buddy_alloc_fail",
#endif
658
#endif
659 660
};

661 662
static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
							struct zone *zone)
663
{
664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698
	int i;
	seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
	seq_printf(m,
		   "\n  pages free     %lu"
		   "\n        min      %lu"
		   "\n        low      %lu"
		   "\n        high     %lu"
		   "\n        scanned  %lu (a: %lu i: %lu)"
		   "\n        spanned  %lu"
		   "\n        present  %lu",
		   zone_page_state(zone, NR_FREE_PAGES),
		   zone->pages_min,
		   zone->pages_low,
		   zone->pages_high,
		   zone->pages_scanned,
		   zone->nr_scan_active, zone->nr_scan_inactive,
		   zone->spanned_pages,
		   zone->present_pages);

	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
		seq_printf(m, "\n    %-12s %lu", vmstat_text[i],
				zone_page_state(zone, i));

	seq_printf(m,
		   "\n        protection: (%lu",
		   zone->lowmem_reserve[0]);
	for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
		seq_printf(m, ", %lu", zone->lowmem_reserve[i]);
	seq_printf(m,
		   ")"
		   "\n  pagesets");
	for_each_online_cpu(i) {
		struct per_cpu_pageset *pageset;

		pageset = zone_pcp(zone, i);
699 700 701 702 703 704 705 706 707
		seq_printf(m,
			   "\n    cpu: %i"
			   "\n              count: %i"
			   "\n              high:  %i"
			   "\n              batch: %i",
			   i,
			   pageset->pcp.count,
			   pageset->pcp.high,
			   pageset->pcp.batch);
708
#ifdef CONFIG_SMP
709 710
		seq_printf(m, "\n  vm stats threshold: %d",
				pageset->stat_threshold);
711
#endif
712
	}
713 714 715 716
	seq_printf(m,
		   "\n  all_unreclaimable: %u"
		   "\n  prev_priority:     %i"
		   "\n  start_pfn:         %lu",
717
			   zone_is_all_unreclaimable(zone),
718 719 720 721 722 723 724 725 726 727 728 729
		   zone->prev_priority,
		   zone->zone_start_pfn);
	seq_putc(m, '\n');
}

/*
 * Output information about zones in @pgdat.
 */
static int zoneinfo_show(struct seq_file *m, void *arg)
{
	pg_data_t *pgdat = (pg_data_t *)arg;
	walk_zones_in_node(m, pgdat, zoneinfo_show_print);
730 731 732
	return 0;
}

733
const struct seq_operations zoneinfo_op = {
734 735 736 737 738 739 740 741 742
	.start	= frag_start, /* iterate over all zones. The same as in
			       * fragmentation. */
	.next	= frag_next,
	.stop	= frag_stop,
	.show	= zoneinfo_show,
};

static void *vmstat_start(struct seq_file *m, loff_t *pos)
{
743
	unsigned long *v;
744 745 746
#ifdef CONFIG_VM_EVENT_COUNTERS
	unsigned long *e;
#endif
747
	int i;
748 749 750 751

	if (*pos >= ARRAY_SIZE(vmstat_text))
		return NULL;

752
#ifdef CONFIG_VM_EVENT_COUNTERS
753
	v = kmalloc(NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long)
754 755 756 757 758
			+ sizeof(struct vm_event_state), GFP_KERNEL);
#else
	v = kmalloc(NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long),
			GFP_KERNEL);
#endif
759 760
	m->private = v;
	if (!v)
761
		return ERR_PTR(-ENOMEM);
762 763
	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
		v[i] = global_page_state(i);
764 765 766 767 768 769
#ifdef CONFIG_VM_EVENT_COUNTERS
	e = v + NR_VM_ZONE_STAT_ITEMS;
	all_vm_events(e);
	e[PGPGIN] /= 2;		/* sectors -> kbytes */
	e[PGPGOUT] /= 2;
#endif
770
	return v + *pos;
771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795
}

static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
{
	(*pos)++;
	if (*pos >= ARRAY_SIZE(vmstat_text))
		return NULL;
	return (unsigned long *)m->private + *pos;
}

static int vmstat_show(struct seq_file *m, void *arg)
{
	unsigned long *l = arg;
	unsigned long off = l - (unsigned long *)m->private;

	seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
	return 0;
}

static void vmstat_stop(struct seq_file *m, void *arg)
{
	kfree(m->private);
	m->private = NULL;
}

796
const struct seq_operations vmstat_op = {
797 798 799 800 801 802 803 804
	.start	= vmstat_start,
	.next	= vmstat_next,
	.stop	= vmstat_stop,
	.show	= vmstat_show,
};

#endif /* CONFIG_PROC_FS */

805
#ifdef CONFIG_SMP
806
static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
807
int sysctl_stat_interval __read_mostly = HZ;
808 809 810 811

static void vmstat_update(struct work_struct *w)
{
	refresh_cpu_vm_stats(smp_processor_id());
812 813
	schedule_delayed_work(&__get_cpu_var(vmstat_work),
		sysctl_stat_interval);
814 815
}

816
static void __cpuinit start_cpu_timer(int cpu)
817 818 819
{
	struct delayed_work *vmstat_work = &per_cpu(vmstat_work, cpu);

820
	INIT_DELAYED_WORK_DEFERRABLE(vmstat_work, vmstat_update);
821 822 823
	schedule_delayed_work_on(cpu, vmstat_work, HZ + cpu);
}

824 825 826 827 828 829 830 831
/*
 * Use the cpu notifier to insure that the thresholds are recalculated
 * when necessary.
 */
static int __cpuinit vmstat_cpuup_callback(struct notifier_block *nfb,
		unsigned long action,
		void *hcpu)
{
832 833
	long cpu = (long)hcpu;

834
	switch (action) {
835 836 837 838 839 840 841 842 843 844 845 846 847
	case CPU_ONLINE:
	case CPU_ONLINE_FROZEN:
		start_cpu_timer(cpu);
		break;
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
		cancel_rearming_delayed_work(&per_cpu(vmstat_work, cpu));
		per_cpu(vmstat_work, cpu).work.func = NULL;
		break;
	case CPU_DOWN_FAILED:
	case CPU_DOWN_FAILED_FROZEN:
		start_cpu_timer(cpu);
		break;
848
	case CPU_DEAD:
849
	case CPU_DEAD_FROZEN:
850 851 852 853
		refresh_zone_stat_thresholds();
		break;
	default:
		break;
854 855 856 857 858 859 860
	}
	return NOTIFY_OK;
}

static struct notifier_block __cpuinitdata vmstat_notifier =
	{ &vmstat_cpuup_callback, NULL, 0 };

A
Adrian Bunk 已提交
861
static int __init setup_vmstat(void)
862
{
863 864
	int cpu;

865 866
	refresh_zone_stat_thresholds();
	register_cpu_notifier(&vmstat_notifier);
867 868 869

	for_each_online_cpu(cpu)
		start_cpu_timer(cpu);
870 871 872 873
	return 0;
}
module_init(setup_vmstat)
#endif