ctree.c 146.9 KB
Newer Older
C
Chris Mason 已提交
1
/*
C
Chris Mason 已提交
2
 * Copyright (C) 2007,2008 Oracle.  All rights reserved.
C
Chris Mason 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public
 * License v2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public
 * License along with this program; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 021110-1307, USA.
 */

19
#include <linux/sched.h>
20
#include <linux/slab.h>
21
#include <linux/rbtree.h>
22 23
#include "ctree.h"
#include "disk-io.h"
24
#include "transaction.h"
25
#include "print-tree.h"
26
#include "locking.h"
27

28 29 30
static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
		      *root, struct btrfs_path *path, int level);
static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
31
		      *root, struct btrfs_key *ins_key,
32
		      struct btrfs_path *path, int data_size, int extend);
33 34
static int push_node_left(struct btrfs_trans_handle *trans,
			  struct btrfs_root *root, struct extent_buffer *dst,
35
			  struct extent_buffer *src, int empty);
36 37 38 39
static int balance_node_right(struct btrfs_trans_handle *trans,
			      struct btrfs_root *root,
			      struct extent_buffer *dst_buf,
			      struct extent_buffer *src_buf);
40
static void del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
41 42
		    struct btrfs_path *path, int level, int slot,
		    int tree_mod_log);
43 44 45 46 47 48 49 50
static void tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
				 struct extent_buffer *eb);
struct extent_buffer *read_old_tree_block(struct btrfs_root *root, u64 bytenr,
					  u32 blocksize, u64 parent_transid,
					  u64 time_seq);
struct extent_buffer *btrfs_find_old_tree_block(struct btrfs_root *root,
						u64 bytenr, u32 blocksize,
						u64 time_seq);
51

C
Chris Mason 已提交
52
struct btrfs_path *btrfs_alloc_path(void)
C
Chris Mason 已提交
53
{
C
Chris Mason 已提交
54
	struct btrfs_path *path;
J
Jeff Mahoney 已提交
55
	path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
C
Chris Mason 已提交
56
	return path;
C
Chris Mason 已提交
57 58
}

59 60 61 62 63 64 65 66
/*
 * set all locked nodes in the path to blocking locks.  This should
 * be done before scheduling
 */
noinline void btrfs_set_path_blocking(struct btrfs_path *p)
{
	int i;
	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
67 68 69 70 71 72 73
		if (!p->nodes[i] || !p->locks[i])
			continue;
		btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
		if (p->locks[i] == BTRFS_READ_LOCK)
			p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
		else if (p->locks[i] == BTRFS_WRITE_LOCK)
			p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
74 75 76 77 78
	}
}

/*
 * reset all the locked nodes in the patch to spinning locks.
79 80 81 82 83
 *
 * held is used to keep lockdep happy, when lockdep is enabled
 * we set held to a blocking lock before we go around and
 * retake all the spinlocks in the path.  You can safely use NULL
 * for held
84
 */
85
noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
86
					struct extent_buffer *held, int held_rw)
87 88
{
	int i;
89 90 91 92 93 94 95 96

#ifdef CONFIG_DEBUG_LOCK_ALLOC
	/* lockdep really cares that we take all of these spinlocks
	 * in the right order.  If any of the locks in the path are not
	 * currently blocking, it is going to complain.  So, make really
	 * really sure by forcing the path to blocking before we clear
	 * the path blocking.
	 */
97 98 99 100 101 102 103
	if (held) {
		btrfs_set_lock_blocking_rw(held, held_rw);
		if (held_rw == BTRFS_WRITE_LOCK)
			held_rw = BTRFS_WRITE_LOCK_BLOCKING;
		else if (held_rw == BTRFS_READ_LOCK)
			held_rw = BTRFS_READ_LOCK_BLOCKING;
	}
104 105 106 107
	btrfs_set_path_blocking(p);
#endif

	for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
108 109 110 111 112 113 114
		if (p->nodes[i] && p->locks[i]) {
			btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
			if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
				p->locks[i] = BTRFS_WRITE_LOCK;
			else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
				p->locks[i] = BTRFS_READ_LOCK;
		}
115
	}
116 117 118

#ifdef CONFIG_DEBUG_LOCK_ALLOC
	if (held)
119
		btrfs_clear_lock_blocking_rw(held, held_rw);
120
#endif
121 122
}

C
Chris Mason 已提交
123
/* this also releases the path */
C
Chris Mason 已提交
124
void btrfs_free_path(struct btrfs_path *p)
125
{
126 127
	if (!p)
		return;
128
	btrfs_release_path(p);
C
Chris Mason 已提交
129
	kmem_cache_free(btrfs_path_cachep, p);
130 131
}

C
Chris Mason 已提交
132 133 134 135 136 137
/*
 * path release drops references on the extent buffers in the path
 * and it drops any locks held by this path
 *
 * It is safe to call this on paths that no locks or extent buffers held.
 */
138
noinline void btrfs_release_path(struct btrfs_path *p)
139 140
{
	int i;
141

C
Chris Mason 已提交
142
	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
143
		p->slots[i] = 0;
144
		if (!p->nodes[i])
145 146
			continue;
		if (p->locks[i]) {
147
			btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
148 149
			p->locks[i] = 0;
		}
150
		free_extent_buffer(p->nodes[i]);
151
		p->nodes[i] = NULL;
152 153 154
	}
}

C
Chris Mason 已提交
155 156 157 158 159 160 161 162 163 164
/*
 * safely gets a reference on the root node of a tree.  A lock
 * is not taken, so a concurrent writer may put a different node
 * at the root of the tree.  See btrfs_lock_root_node for the
 * looping required.
 *
 * The extent buffer returned by this has a reference taken, so
 * it won't disappear.  It may stop being the root of the tree
 * at any time because there are no locks held.
 */
165 166 167
struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
{
	struct extent_buffer *eb;
168

169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
	while (1) {
		rcu_read_lock();
		eb = rcu_dereference(root->node);

		/*
		 * RCU really hurts here, we could free up the root node because
		 * it was cow'ed but we may not get the new root node yet so do
		 * the inc_not_zero dance and if it doesn't work then
		 * synchronize_rcu and try again.
		 */
		if (atomic_inc_not_zero(&eb->refs)) {
			rcu_read_unlock();
			break;
		}
		rcu_read_unlock();
		synchronize_rcu();
	}
186 187 188
	return eb;
}

C
Chris Mason 已提交
189 190 191 192
/* loop around taking references on and locking the root node of the
 * tree until you end up with a lock on the root.  A locked buffer
 * is returned, with a reference held.
 */
193 194 195 196
struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
{
	struct extent_buffer *eb;

C
Chris Mason 已提交
197
	while (1) {
198 199
		eb = btrfs_root_node(root);
		btrfs_tree_lock(eb);
200
		if (eb == root->node)
201 202 203 204 205 206 207
			break;
		btrfs_tree_unlock(eb);
		free_extent_buffer(eb);
	}
	return eb;
}

208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
/* loop around taking references on and locking the root node of the
 * tree until you end up with a lock on the root.  A locked buffer
 * is returned, with a reference held.
 */
struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
{
	struct extent_buffer *eb;

	while (1) {
		eb = btrfs_root_node(root);
		btrfs_tree_read_lock(eb);
		if (eb == root->node)
			break;
		btrfs_tree_read_unlock(eb);
		free_extent_buffer(eb);
	}
	return eb;
}

C
Chris Mason 已提交
227 228 229 230
/* cowonly root (everything not a reference counted cow subvolume), just get
 * put onto a simple dirty list.  transaction.c walks this to make sure they
 * get properly updated on disk.
 */
231 232
static void add_root_to_dirty_list(struct btrfs_root *root)
{
233
	spin_lock(&root->fs_info->trans_lock);
234 235 236 237
	if (root->track_dirty && list_empty(&root->dirty_list)) {
		list_add(&root->dirty_list,
			 &root->fs_info->dirty_cowonly_roots);
	}
238
	spin_unlock(&root->fs_info->trans_lock);
239 240
}

C
Chris Mason 已提交
241 242 243 244 245
/*
 * used by snapshot creation to make a copy of a root for a tree with
 * a given objectid.  The buffer with the new root node is returned in
 * cow_ret, and this func returns zero on success or a negative error code.
 */
246 247 248 249 250 251 252 253
int btrfs_copy_root(struct btrfs_trans_handle *trans,
		      struct btrfs_root *root,
		      struct extent_buffer *buf,
		      struct extent_buffer **cow_ret, u64 new_root_objectid)
{
	struct extent_buffer *cow;
	int ret = 0;
	int level;
254
	struct btrfs_disk_key disk_key;
255 256 257 258 259 260

	WARN_ON(root->ref_cows && trans->transid !=
		root->fs_info->running_transaction->transid);
	WARN_ON(root->ref_cows && trans->transid != root->last_trans);

	level = btrfs_header_level(buf);
261 262 263 264
	if (level == 0)
		btrfs_item_key(buf, &disk_key, 0);
	else
		btrfs_node_key(buf, &disk_key, 0);
Z
Zheng Yan 已提交
265

266 267
	cow = btrfs_alloc_free_block(trans, root, buf->len, 0,
				     new_root_objectid, &disk_key, level,
268
				     buf->start, 0);
269
	if (IS_ERR(cow))
270 271 272 273 274
		return PTR_ERR(cow);

	copy_extent_buffer(cow, buf, 0, 0, cow->len);
	btrfs_set_header_bytenr(cow, cow->start);
	btrfs_set_header_generation(cow, trans->transid);
275 276 277 278 279 280 281
	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
				     BTRFS_HEADER_FLAG_RELOC);
	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
	else
		btrfs_set_header_owner(cow, new_root_objectid);
282

Y
Yan Zheng 已提交
283 284 285 286
	write_extent_buffer(cow, root->fs_info->fsid,
			    (unsigned long)btrfs_header_fsid(cow),
			    BTRFS_FSID_SIZE);

287
	WARN_ON(btrfs_header_generation(buf) > trans->transid);
288
	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
A
Arne Jansen 已提交
289
		ret = btrfs_inc_ref(trans, root, cow, 1, 1);
290
	else
A
Arne Jansen 已提交
291
		ret = btrfs_inc_ref(trans, root, cow, 0, 1);
292

293 294 295 296 297 298 299 300
	if (ret)
		return ret;

	btrfs_mark_buffer_dirty(cow);
	*cow_ret = cow;
	return 0;
}

301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
enum mod_log_op {
	MOD_LOG_KEY_REPLACE,
	MOD_LOG_KEY_ADD,
	MOD_LOG_KEY_REMOVE,
	MOD_LOG_KEY_REMOVE_WHILE_FREEING,
	MOD_LOG_KEY_REMOVE_WHILE_MOVING,
	MOD_LOG_MOVE_KEYS,
	MOD_LOG_ROOT_REPLACE,
};

struct tree_mod_move {
	int dst_slot;
	int nr_items;
};

struct tree_mod_root {
	u64 logical;
	u8 level;
};

struct tree_mod_elem {
	struct rb_node node;
	u64 index;		/* shifted logical */
324
	u64 seq;
325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
	enum mod_log_op op;

	/* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
	int slot;

	/* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
	u64 generation;

	/* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
	struct btrfs_disk_key key;
	u64 blockptr;

	/* this is used for op == MOD_LOG_MOVE_KEYS */
	struct tree_mod_move move;

	/* this is used for op == MOD_LOG_ROOT_REPLACE */
	struct tree_mod_root old_root;
};

344
static inline void tree_mod_log_read_lock(struct btrfs_fs_info *fs_info)
345
{
346
	read_lock(&fs_info->tree_mod_log_lock);
347 348
}

349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
static inline void tree_mod_log_read_unlock(struct btrfs_fs_info *fs_info)
{
	read_unlock(&fs_info->tree_mod_log_lock);
}

static inline void tree_mod_log_write_lock(struct btrfs_fs_info *fs_info)
{
	write_lock(&fs_info->tree_mod_log_lock);
}

static inline void tree_mod_log_write_unlock(struct btrfs_fs_info *fs_info)
{
	write_unlock(&fs_info->tree_mod_log_lock);
}

/*
 * This adds a new blocker to the tree mod log's blocker list if the @elem
 * passed does not already have a sequence number set. So when a caller expects
 * to record tree modifications, it should ensure to set elem->seq to zero
 * before calling btrfs_get_tree_mod_seq.
 * Returns a fresh, unused tree log modification sequence number, even if no new
 * blocker was added.
 */
u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
			   struct seq_list *elem)
374
{
375 376 377
	u64 seq;

	tree_mod_log_write_lock(fs_info);
378
	spin_lock(&fs_info->tree_mod_seq_lock);
379 380 381 382 383
	if (!elem->seq) {
		elem->seq = btrfs_inc_tree_mod_seq(fs_info);
		list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
	}
	seq = btrfs_inc_tree_mod_seq(fs_info);
384
	spin_unlock(&fs_info->tree_mod_seq_lock);
385 386 387
	tree_mod_log_write_unlock(fs_info);

	return seq;
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
}

void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
			    struct seq_list *elem)
{
	struct rb_root *tm_root;
	struct rb_node *node;
	struct rb_node *next;
	struct seq_list *cur_elem;
	struct tree_mod_elem *tm;
	u64 min_seq = (u64)-1;
	u64 seq_putting = elem->seq;

	if (!seq_putting)
		return;

	spin_lock(&fs_info->tree_mod_seq_lock);
	list_del(&elem->list);
406
	elem->seq = 0;
407 408

	list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
409
		if (cur_elem->seq < min_seq) {
410 411 412 413 414
			if (seq_putting > cur_elem->seq) {
				/*
				 * blocker with lower sequence number exists, we
				 * cannot remove anything from the log
				 */
415 416
				spin_unlock(&fs_info->tree_mod_seq_lock);
				return;
417 418 419 420
			}
			min_seq = cur_elem->seq;
		}
	}
421 422
	spin_unlock(&fs_info->tree_mod_seq_lock);

423 424 425 426
	/*
	 * anything that's lower than the lowest existing (read: blocked)
	 * sequence number can be removed from the tree.
	 */
427
	tree_mod_log_write_lock(fs_info);
428 429 430 431
	tm_root = &fs_info->tree_mod_log;
	for (node = rb_first(tm_root); node; node = next) {
		next = rb_next(node);
		tm = container_of(node, struct tree_mod_elem, node);
432
		if (tm->seq > min_seq)
433 434 435 436
			continue;
		rb_erase(node, tm_root);
		kfree(tm);
	}
437
	tree_mod_log_write_unlock(fs_info);
438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
}

/*
 * key order of the log:
 *       index -> sequence
 *
 * the index is the shifted logical of the *new* root node for root replace
 * operations, or the shifted logical of the affected block for all other
 * operations.
 */
static noinline int
__tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
{
	struct rb_root *tm_root;
	struct rb_node **new;
	struct rb_node *parent = NULL;
	struct tree_mod_elem *cur;

456
	BUG_ON(!tm || !tm->seq);
457 458 459 460 461 462 463 464 465 466

	tm_root = &fs_info->tree_mod_log;
	new = &tm_root->rb_node;
	while (*new) {
		cur = container_of(*new, struct tree_mod_elem, node);
		parent = *new;
		if (cur->index < tm->index)
			new = &((*new)->rb_left);
		else if (cur->index > tm->index)
			new = &((*new)->rb_right);
467
		else if (cur->seq < tm->seq)
468
			new = &((*new)->rb_left);
469
		else if (cur->seq > tm->seq)
470 471 472
			new = &((*new)->rb_right);
		else {
			kfree(tm);
473
			return -EEXIST;
474 475 476 477 478
		}
	}

	rb_link_node(&tm->node, parent, new);
	rb_insert_color(&tm->node, tm_root);
479
	return 0;
480 481
}

482 483 484 485 486 487
/*
 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
 * returns zero with the tree_mod_log_lock acquired. The caller must hold
 * this until all tree mod log insertions are recorded in the rb tree and then
 * call tree_mod_log_write_unlock() to release.
 */
488 489 490 491 492
static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
				    struct extent_buffer *eb) {
	smp_mb();
	if (list_empty(&(fs_info)->tree_mod_seq_list))
		return 1;
493 494 495 496 497 498 499 500 501 502
	if (eb && btrfs_header_level(eb) == 0)
		return 1;

	tree_mod_log_write_lock(fs_info);
	if (list_empty(&fs_info->tree_mod_seq_list)) {
		/*
		 * someone emptied the list while we were waiting for the lock.
		 * we must not add to the list when no blocker exists.
		 */
		tree_mod_log_write_unlock(fs_info);
503
		return 1;
504 505
	}

506 507 508
	return 0;
}

509
/*
510
 * This allocates memory and gets a tree modification sequence number.
511
 *
512 513
 * Returns <0 on error.
 * Returns >0 (the added sequence number) on success.
514
 */
515 516
static inline int tree_mod_alloc(struct btrfs_fs_info *fs_info, gfp_t flags,
				 struct tree_mod_elem **tm_ret)
517 518 519
{
	struct tree_mod_elem *tm;

520 521 522 523 524
	/*
	 * once we switch from spin locks to something different, we should
	 * honor the flags parameter here.
	 */
	tm = *tm_ret = kzalloc(sizeof(*tm), GFP_ATOMIC);
525 526 527
	if (!tm)
		return -ENOMEM;

528 529
	tm->seq = btrfs_inc_tree_mod_seq(fs_info);
	return tm->seq;
530 531
}

532 533 534 535
static inline int
__tree_mod_log_insert_key(struct btrfs_fs_info *fs_info,
			  struct extent_buffer *eb, int slot,
			  enum mod_log_op op, gfp_t flags)
536 537
{
	int ret;
538
	struct tree_mod_elem *tm;
539 540

	ret = tree_mod_alloc(fs_info, flags, &tm);
541
	if (ret < 0)
542 543 544 545 546 547 548 549 550 551 552
		return ret;

	tm->index = eb->start >> PAGE_CACHE_SHIFT;
	if (op != MOD_LOG_KEY_ADD) {
		btrfs_node_key(eb, &tm->key, slot);
		tm->blockptr = btrfs_node_blockptr(eb, slot);
	}
	tm->op = op;
	tm->slot = slot;
	tm->generation = btrfs_node_ptr_generation(eb, slot);

553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
	return __tree_mod_log_insert(fs_info, tm);
}

static noinline int
tree_mod_log_insert_key_mask(struct btrfs_fs_info *fs_info,
			     struct extent_buffer *eb, int slot,
			     enum mod_log_op op, gfp_t flags)
{
	int ret;

	if (tree_mod_dont_log(fs_info, eb))
		return 0;

	ret = __tree_mod_log_insert_key(fs_info, eb, slot, op, flags);

	tree_mod_log_write_unlock(fs_info);
569
	return ret;
570 571 572 573 574 575 576 577 578
}

static noinline int
tree_mod_log_insert_key(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
			int slot, enum mod_log_op op)
{
	return tree_mod_log_insert_key_mask(fs_info, eb, slot, op, GFP_NOFS);
}

579 580 581 582 583 584 585 586
static noinline int
tree_mod_log_insert_key_locked(struct btrfs_fs_info *fs_info,
			     struct extent_buffer *eb, int slot,
			     enum mod_log_op op)
{
	return __tree_mod_log_insert_key(fs_info, eb, slot, op, GFP_NOFS);
}

587 588 589 590 591 592 593 594 595
static noinline int
tree_mod_log_insert_move(struct btrfs_fs_info *fs_info,
			 struct extent_buffer *eb, int dst_slot, int src_slot,
			 int nr_items, gfp_t flags)
{
	struct tree_mod_elem *tm;
	int ret;
	int i;

J
Jan Schmidt 已提交
596 597
	if (tree_mod_dont_log(fs_info, eb))
		return 0;
598

599 600 601 602 603
	/*
	 * When we override something during the move, we log these removals.
	 * This can only happen when we move towards the beginning of the
	 * buffer, i.e. dst_slot < src_slot.
	 */
604
	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
605
		ret = tree_mod_log_insert_key_locked(fs_info, eb, i + dst_slot,
606 607 608 609
					      MOD_LOG_KEY_REMOVE_WHILE_MOVING);
		BUG_ON(ret < 0);
	}

J
Jan Schmidt 已提交
610
	ret = tree_mod_alloc(fs_info, flags, &tm);
611 612
	if (ret < 0)
		goto out;
J
Jan Schmidt 已提交
613

614 615 616 617 618 619
	tm->index = eb->start >> PAGE_CACHE_SHIFT;
	tm->slot = src_slot;
	tm->move.dst_slot = dst_slot;
	tm->move.nr_items = nr_items;
	tm->op = MOD_LOG_MOVE_KEYS;

620
	ret = __tree_mod_log_insert(fs_info, tm);
621 622
out:
	tree_mod_log_write_unlock(fs_info);
623
	return ret;
624 625
}

626 627 628 629 630 631 632
static inline void
__tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
{
	int i;
	u32 nritems;
	int ret;

633 634 635
	if (btrfs_header_level(eb) == 0)
		return;

636 637 638 639 640 641 642 643
	nritems = btrfs_header_nritems(eb);
	for (i = nritems - 1; i >= 0; i--) {
		ret = tree_mod_log_insert_key_locked(fs_info, eb, i,
					      MOD_LOG_KEY_REMOVE_WHILE_FREEING);
		BUG_ON(ret < 0);
	}
}

644 645 646 647 648 649 650 651
static noinline int
tree_mod_log_insert_root(struct btrfs_fs_info *fs_info,
			 struct extent_buffer *old_root,
			 struct extent_buffer *new_root, gfp_t flags)
{
	struct tree_mod_elem *tm;
	int ret;

652 653 654
	if (tree_mod_dont_log(fs_info, NULL))
		return 0;

655
	ret = tree_mod_alloc(fs_info, flags, &tm);
656 657
	if (ret < 0)
		goto out;
658 659 660 661 662 663 664

	tm->index = new_root->start >> PAGE_CACHE_SHIFT;
	tm->old_root.logical = old_root->start;
	tm->old_root.level = btrfs_header_level(old_root);
	tm->generation = btrfs_header_generation(old_root);
	tm->op = MOD_LOG_ROOT_REPLACE;

665
	ret = __tree_mod_log_insert(fs_info, tm);
666 667
out:
	tree_mod_log_write_unlock(fs_info);
668
	return ret;
669 670 671 672 673 674 675 676 677 678 679 680
}

static struct tree_mod_elem *
__tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
		      int smallest)
{
	struct rb_root *tm_root;
	struct rb_node *node;
	struct tree_mod_elem *cur = NULL;
	struct tree_mod_elem *found = NULL;
	u64 index = start >> PAGE_CACHE_SHIFT;

681
	tree_mod_log_read_lock(fs_info);
682 683 684 685 686 687 688 689
	tm_root = &fs_info->tree_mod_log;
	node = tm_root->rb_node;
	while (node) {
		cur = container_of(node, struct tree_mod_elem, node);
		if (cur->index < index) {
			node = node->rb_left;
		} else if (cur->index > index) {
			node = node->rb_right;
690
		} else if (cur->seq < min_seq) {
691 692 693 694
			node = node->rb_left;
		} else if (!smallest) {
			/* we want the node with the highest seq */
			if (found)
695
				BUG_ON(found->seq > cur->seq);
696 697
			found = cur;
			node = node->rb_left;
698
		} else if (cur->seq > min_seq) {
699 700
			/* we want the node with the smallest seq */
			if (found)
701
				BUG_ON(found->seq < cur->seq);
702 703 704 705 706 707 708
			found = cur;
			node = node->rb_right;
		} else {
			found = cur;
			break;
		}
	}
709
	tree_mod_log_read_unlock(fs_info);
710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736

	return found;
}

/*
 * this returns the element from the log with the smallest time sequence
 * value that's in the log (the oldest log item). any element with a time
 * sequence lower than min_seq will be ignored.
 */
static struct tree_mod_elem *
tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
			   u64 min_seq)
{
	return __tree_mod_log_search(fs_info, start, min_seq, 1);
}

/*
 * this returns the element from the log with the largest time sequence
 * value that's in the log (the most recent log item). any element with
 * a time sequence lower than min_seq will be ignored.
 */
static struct tree_mod_elem *
tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
{
	return __tree_mod_log_search(fs_info, start, min_seq, 0);
}

737
static noinline void
738 739 740 741 742 743 744
tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
		     struct extent_buffer *src, unsigned long dst_offset,
		     unsigned long src_offset, int nr_items)
{
	int ret;
	int i;

745
	if (tree_mod_dont_log(fs_info, NULL))
746 747
		return;

748 749
	if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0) {
		tree_mod_log_write_unlock(fs_info);
750
		return;
751
	}
752 753

	for (i = 0; i < nr_items; i++) {
754 755 756
		ret = tree_mod_log_insert_key_locked(fs_info, src,
						     i + src_offset,
						     MOD_LOG_KEY_REMOVE);
757
		BUG_ON(ret < 0);
758 759 760
		ret = tree_mod_log_insert_key_locked(fs_info, dst,
						     i + dst_offset,
						     MOD_LOG_KEY_ADD);
761 762
		BUG_ON(ret < 0);
	}
763 764

	tree_mod_log_write_unlock(fs_info);
765 766 767 768 769 770 771 772 773 774 775 776
}

static inline void
tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
		     int dst_offset, int src_offset, int nr_items)
{
	int ret;
	ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset,
				       nr_items, GFP_NOFS);
	BUG_ON(ret < 0);
}

777
static noinline void
778 779 780 781 782 783 784 785 786 787 788 789
tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info,
			  struct extent_buffer *eb,
			  struct btrfs_disk_key *disk_key, int slot, int atomic)
{
	int ret;

	ret = tree_mod_log_insert_key_mask(fs_info, eb, slot,
					   MOD_LOG_KEY_REPLACE,
					   atomic ? GFP_ATOMIC : GFP_NOFS);
	BUG_ON(ret < 0);
}

790 791
static noinline void
tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
792
{
793
	if (tree_mod_dont_log(fs_info, eb))
794 795
		return;

796 797 798
	__tree_mod_log_free_eb(fs_info, eb);

	tree_mod_log_write_unlock(fs_info);
799 800
}

801
static noinline void
802 803 804 805 806 807 808 809 810
tree_mod_log_set_root_pointer(struct btrfs_root *root,
			      struct extent_buffer *new_root_node)
{
	int ret;
	ret = tree_mod_log_insert_root(root->fs_info, root->node,
				       new_root_node, GFP_NOFS);
	BUG_ON(ret < 0);
}

811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839
/*
 * check if the tree block can be shared by multiple trees
 */
int btrfs_block_can_be_shared(struct btrfs_root *root,
			      struct extent_buffer *buf)
{
	/*
	 * Tree blocks not in refernece counted trees and tree roots
	 * are never shared. If a block was allocated after the last
	 * snapshot and the block was not allocated by tree relocation,
	 * we know the block is not shared.
	 */
	if (root->ref_cows &&
	    buf != root->node && buf != root->commit_root &&
	    (btrfs_header_generation(buf) <=
	     btrfs_root_last_snapshot(&root->root_item) ||
	     btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
		return 1;
#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
	if (root->ref_cows &&
	    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
		return 1;
#endif
	return 0;
}

static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
				       struct btrfs_root *root,
				       struct extent_buffer *buf,
840 841
				       struct extent_buffer *cow,
				       int *last_ref)
842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868
{
	u64 refs;
	u64 owner;
	u64 flags;
	u64 new_flags = 0;
	int ret;

	/*
	 * Backrefs update rules:
	 *
	 * Always use full backrefs for extent pointers in tree block
	 * allocated by tree relocation.
	 *
	 * If a shared tree block is no longer referenced by its owner
	 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
	 * use full backrefs for extent pointers in tree block.
	 *
	 * If a tree block is been relocating
	 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
	 * use full backrefs for extent pointers in tree block.
	 * The reason for this is some operations (such as drop tree)
	 * are only allowed for blocks use full backrefs.
	 */

	if (btrfs_block_can_be_shared(root, buf)) {
		ret = btrfs_lookup_extent_info(trans, root, buf->start,
					       buf->len, &refs, &flags);
869 870
		if (ret)
			return ret;
871 872 873 874 875
		if (refs == 0) {
			ret = -EROFS;
			btrfs_std_error(root->fs_info, ret);
			return ret;
		}
876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892
	} else {
		refs = 1;
		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
			flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
		else
			flags = 0;
	}

	owner = btrfs_header_owner(buf);
	BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
	       !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));

	if (refs > 1) {
		if ((owner == root->root_key.objectid ||
		     root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
		    !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
A
Arne Jansen 已提交
893
			ret = btrfs_inc_ref(trans, root, buf, 1, 1);
894
			BUG_ON(ret); /* -ENOMEM */
895 896 897

			if (root->root_key.objectid ==
			    BTRFS_TREE_RELOC_OBJECTID) {
A
Arne Jansen 已提交
898
				ret = btrfs_dec_ref(trans, root, buf, 0, 1);
899
				BUG_ON(ret); /* -ENOMEM */
A
Arne Jansen 已提交
900
				ret = btrfs_inc_ref(trans, root, cow, 1, 1);
901
				BUG_ON(ret); /* -ENOMEM */
902 903 904 905 906 907
			}
			new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
		} else {

			if (root->root_key.objectid ==
			    BTRFS_TREE_RELOC_OBJECTID)
A
Arne Jansen 已提交
908
				ret = btrfs_inc_ref(trans, root, cow, 1, 1);
909
			else
A
Arne Jansen 已提交
910
				ret = btrfs_inc_ref(trans, root, cow, 0, 1);
911
			BUG_ON(ret); /* -ENOMEM */
912 913 914 915 916 917
		}
		if (new_flags != 0) {
			ret = btrfs_set_disk_extent_flags(trans, root,
							  buf->start,
							  buf->len,
							  new_flags, 0);
918 919
			if (ret)
				return ret;
920 921 922 923 924
		}
	} else {
		if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
			if (root->root_key.objectid ==
			    BTRFS_TREE_RELOC_OBJECTID)
A
Arne Jansen 已提交
925
				ret = btrfs_inc_ref(trans, root, cow, 1, 1);
926
			else
A
Arne Jansen 已提交
927
				ret = btrfs_inc_ref(trans, root, cow, 0, 1);
928
			BUG_ON(ret); /* -ENOMEM */
A
Arne Jansen 已提交
929
			ret = btrfs_dec_ref(trans, root, buf, 1, 1);
930
			BUG_ON(ret); /* -ENOMEM */
931
		}
932
		tree_mod_log_free_eb(root->fs_info, buf);
933
		clean_tree_block(trans, root, buf);
934
		*last_ref = 1;
935 936 937 938
	}
	return 0;
}

C
Chris Mason 已提交
939
/*
C
Chris Mason 已提交
940 941 942 943
 * does the dirty work in cow of a single block.  The parent block (if
 * supplied) is updated to point to the new cow copy.  The new buffer is marked
 * dirty and returned locked.  If you modify the block it needs to be marked
 * dirty again.
C
Chris Mason 已提交
944 945 946
 *
 * search_start -- an allocation hint for the new block
 *
C
Chris Mason 已提交
947 948 949
 * empty_size -- a hint that you plan on doing more cow.  This is the size in
 * bytes the allocator should try to find free next to the block it returns.
 * This is just a hint and may be ignored by the allocator.
C
Chris Mason 已提交
950
 */
C
Chris Mason 已提交
951
static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
952 953 954 955
			     struct btrfs_root *root,
			     struct extent_buffer *buf,
			     struct extent_buffer *parent, int parent_slot,
			     struct extent_buffer **cow_ret,
956
			     u64 search_start, u64 empty_size)
C
Chris Mason 已提交
957
{
958
	struct btrfs_disk_key disk_key;
959
	struct extent_buffer *cow;
960
	int level, ret;
961
	int last_ref = 0;
962
	int unlock_orig = 0;
963
	u64 parent_start;
964

965 966 967
	if (*cow_ret == buf)
		unlock_orig = 1;

968
	btrfs_assert_tree_locked(buf);
969

970 971
	WARN_ON(root->ref_cows && trans->transid !=
		root->fs_info->running_transaction->transid);
972
	WARN_ON(root->ref_cows && trans->transid != root->last_trans);
973

974
	level = btrfs_header_level(buf);
Z
Zheng Yan 已提交
975

976 977 978 979 980 981 982 983 984 985 986 987 988 989 990
	if (level == 0)
		btrfs_item_key(buf, &disk_key, 0);
	else
		btrfs_node_key(buf, &disk_key, 0);

	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
		if (parent)
			parent_start = parent->start;
		else
			parent_start = 0;
	} else
		parent_start = 0;

	cow = btrfs_alloc_free_block(trans, root, buf->len, parent_start,
				     root->root_key.objectid, &disk_key,
991
				     level, search_start, empty_size);
992 993
	if (IS_ERR(cow))
		return PTR_ERR(cow);
994

995 996
	/* cow is set to blocking by btrfs_init_new_buffer */

997
	copy_extent_buffer(cow, buf, 0, 0, cow->len);
998
	btrfs_set_header_bytenr(cow, cow->start);
999
	btrfs_set_header_generation(cow, trans->transid);
1000 1001 1002 1003 1004 1005 1006
	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
				     BTRFS_HEADER_FLAG_RELOC);
	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
	else
		btrfs_set_header_owner(cow, root->root_key.objectid);
1007

Y
Yan Zheng 已提交
1008 1009 1010 1011
	write_extent_buffer(cow, root->fs_info->fsid,
			    (unsigned long)btrfs_header_fsid(cow),
			    BTRFS_FSID_SIZE);

1012
	ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1013
	if (ret) {
1014
		btrfs_abort_transaction(trans, root, ret);
1015 1016
		return ret;
	}
Z
Zheng Yan 已提交
1017

1018 1019 1020
	if (root->ref_cows)
		btrfs_reloc_cow_block(trans, root, buf, cow);

C
Chris Mason 已提交
1021
	if (buf == root->node) {
1022
		WARN_ON(parent && parent != buf);
1023 1024 1025 1026 1027
		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
			parent_start = buf->start;
		else
			parent_start = 0;
1028

1029
		extent_buffer_get(cow);
1030
		tree_mod_log_set_root_pointer(root, cow);
1031
		rcu_assign_pointer(root->node, cow);
1032

1033
		btrfs_free_tree_block(trans, root, buf, parent_start,
1034
				      last_ref);
1035
		free_extent_buffer(buf);
1036
		add_root_to_dirty_list(root);
C
Chris Mason 已提交
1037
	} else {
1038 1039 1040 1041 1042 1043
		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
			parent_start = parent->start;
		else
			parent_start = 0;

		WARN_ON(trans->transid != btrfs_header_generation(parent));
1044 1045
		tree_mod_log_insert_key(root->fs_info, parent, parent_slot,
					MOD_LOG_KEY_REPLACE);
1046
		btrfs_set_node_blockptr(parent, parent_slot,
1047
					cow->start);
1048 1049
		btrfs_set_node_ptr_generation(parent, parent_slot,
					      trans->transid);
C
Chris Mason 已提交
1050
		btrfs_mark_buffer_dirty(parent);
1051
		btrfs_free_tree_block(trans, root, buf, parent_start,
1052
				      last_ref);
C
Chris Mason 已提交
1053
	}
1054 1055
	if (unlock_orig)
		btrfs_tree_unlock(buf);
1056
	free_extent_buffer_stale(buf);
C
Chris Mason 已提交
1057
	btrfs_mark_buffer_dirty(cow);
C
Chris Mason 已提交
1058
	*cow_ret = cow;
C
Chris Mason 已提交
1059 1060 1061
	return 0;
}

J
Jan Schmidt 已提交
1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
/*
 * returns the logical address of the oldest predecessor of the given root.
 * entries older than time_seq are ignored.
 */
static struct tree_mod_elem *
__tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info,
			   struct btrfs_root *root, u64 time_seq)
{
	struct tree_mod_elem *tm;
	struct tree_mod_elem *found = NULL;
	u64 root_logical = root->node->start;
	int looped = 0;

	if (!time_seq)
		return 0;

	/*
	 * the very last operation that's logged for a root is the replacement
	 * operation (if it is replaced at all). this has the index of the *new*
	 * root, making it the very first operation that's logged for this root.
	 */
	while (1) {
		tm = tree_mod_log_search_oldest(fs_info, root_logical,
						time_seq);
		if (!looped && !tm)
			return 0;
		/*
1089 1090 1091
		 * if there are no tree operation for the oldest root, we simply
		 * return it. this should only happen if that (old) root is at
		 * level 0.
J
Jan Schmidt 已提交
1092
		 */
1093 1094
		if (!tm)
			break;
J
Jan Schmidt 已提交
1095

1096 1097 1098 1099 1100
		/*
		 * if there's an operation that's not a root replacement, we
		 * found the oldest version of our root. normally, we'll find a
		 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
		 */
J
Jan Schmidt 已提交
1101 1102 1103 1104 1105 1106 1107 1108 1109
		if (tm->op != MOD_LOG_ROOT_REPLACE)
			break;

		found = tm;
		root_logical = tm->old_root.logical;
		BUG_ON(root_logical == root->node->start);
		looped = 1;
	}

1110 1111 1112 1113
	/* if there's no old root to return, return what we found instead */
	if (!found)
		found = tm;

J
Jan Schmidt 已提交
1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
	return found;
}

/*
 * tm is a pointer to the first operation to rewind within eb. then, all
 * previous operations will be rewinded (until we reach something older than
 * time_seq).
 */
static void
__tree_mod_log_rewind(struct extent_buffer *eb, u64 time_seq,
		      struct tree_mod_elem *first_tm)
{
	u32 n;
	struct rb_node *next;
	struct tree_mod_elem *tm = first_tm;
	unsigned long o_dst;
	unsigned long o_src;
	unsigned long p_size = sizeof(struct btrfs_key_ptr);

	n = btrfs_header_nritems(eb);
1134
	while (tm && tm->seq >= time_seq) {
J
Jan Schmidt 已提交
1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
		/*
		 * all the operations are recorded with the operator used for
		 * the modification. as we're going backwards, we do the
		 * opposite of each operation here.
		 */
		switch (tm->op) {
		case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
			BUG_ON(tm->slot < n);
		case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
		case MOD_LOG_KEY_REMOVE:
			btrfs_set_node_key(eb, &tm->key, tm->slot);
			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
			btrfs_set_node_ptr_generation(eb, tm->slot,
						      tm->generation);
			n++;
			break;
		case MOD_LOG_KEY_REPLACE:
			BUG_ON(tm->slot >= n);
			btrfs_set_node_key(eb, &tm->key, tm->slot);
			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
			btrfs_set_node_ptr_generation(eb, tm->slot,
						      tm->generation);
			break;
		case MOD_LOG_KEY_ADD:
1159
			/* if a move operation is needed it's in the log */
J
Jan Schmidt 已提交
1160 1161 1162
			n--;
			break;
		case MOD_LOG_MOVE_KEYS:
1163 1164 1165
			o_dst = btrfs_node_key_ptr_offset(tm->slot);
			o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
			memmove_extent_buffer(eb, o_dst, o_src,
J
Jan Schmidt 已提交
1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
					      tm->move.nr_items * p_size);
			break;
		case MOD_LOG_ROOT_REPLACE:
			/*
			 * this operation is special. for roots, this must be
			 * handled explicitly before rewinding.
			 * for non-roots, this operation may exist if the node
			 * was a root: root A -> child B; then A gets empty and
			 * B is promoted to the new root. in the mod log, we'll
			 * have a root-replace operation for B, a tree block
			 * that is no root. we simply ignore that operation.
			 */
			break;
		}
		next = rb_next(&tm->node);
		if (!next)
			break;
		tm = container_of(next, struct tree_mod_elem, node);
		if (tm->index != first_tm->index)
			break;
	}
	btrfs_set_header_nritems(eb, n);
}

static struct extent_buffer *
tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
		    u64 time_seq)
{
	struct extent_buffer *eb_rewin;
	struct tree_mod_elem *tm;

	if (!time_seq)
		return eb;

	if (btrfs_header_level(eb) == 0)
		return eb;

	tm = tree_mod_log_search(fs_info, eb->start, time_seq);
	if (!tm)
		return eb;

	if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
		BUG_ON(tm->slot != 0);
		eb_rewin = alloc_dummy_extent_buffer(eb->start,
						fs_info->tree_root->nodesize);
		BUG_ON(!eb_rewin);
		btrfs_set_header_bytenr(eb_rewin, eb->start);
		btrfs_set_header_backref_rev(eb_rewin,
					     btrfs_header_backref_rev(eb));
		btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1216
		btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
J
Jan Schmidt 已提交
1217 1218 1219 1220 1221 1222 1223 1224 1225
	} else {
		eb_rewin = btrfs_clone_extent_buffer(eb);
		BUG_ON(!eb_rewin);
	}

	extent_buffer_get(eb_rewin);
	free_extent_buffer(eb);

	__tree_mod_log_rewind(eb_rewin, time_seq, tm);
1226 1227
	WARN_ON(btrfs_header_nritems(eb_rewin) >
		BTRFS_NODEPTRS_PER_BLOCK(fs_info->fs_root));
J
Jan Schmidt 已提交
1228 1229 1230 1231

	return eb_rewin;
}

1232 1233 1234 1235 1236 1237 1238
/*
 * get_old_root() rewinds the state of @root's root node to the given @time_seq
 * value. If there are no changes, the current root->root_node is returned. If
 * anything changed in between, there's a fresh buffer allocated on which the
 * rewind operations are done. In any case, the returned buffer is read locked.
 * Returns NULL on error (with no locks held).
 */
J
Jan Schmidt 已提交
1239 1240 1241 1242 1243
static inline struct extent_buffer *
get_old_root(struct btrfs_root *root, u64 time_seq)
{
	struct tree_mod_elem *tm;
	struct extent_buffer *eb;
1244
	struct tree_mod_root *old_root = NULL;
1245
	u64 old_generation = 0;
1246
	u64 logical;
1247
	u32 blocksize;
J
Jan Schmidt 已提交
1248

1249
	eb = btrfs_read_lock_root_node(root);
J
Jan Schmidt 已提交
1250 1251 1252 1253
	tm = __tree_mod_log_oldest_root(root->fs_info, root, time_seq);
	if (!tm)
		return root->node;

1254 1255 1256 1257 1258 1259 1260
	if (tm->op == MOD_LOG_ROOT_REPLACE) {
		old_root = &tm->old_root;
		old_generation = tm->generation;
		logical = old_root->logical;
	} else {
		logical = root->node->start;
	}
J
Jan Schmidt 已提交
1261

1262
	tm = tree_mod_log_search(root->fs_info, logical, time_seq);
1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277
	if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
		btrfs_tree_read_unlock(root->node);
		free_extent_buffer(root->node);
		blocksize = btrfs_level_size(root, old_root->level);
		eb = read_tree_block(root, logical, blocksize, 0);
		if (!eb) {
			pr_warn("btrfs: failed to read tree block %llu from get_old_root\n",
				logical);
			WARN_ON(1);
		} else {
			eb = btrfs_clone_extent_buffer(eb);
		}
	} else if (old_root) {
		btrfs_tree_read_unlock(root->node);
		free_extent_buffer(root->node);
1278
		eb = alloc_dummy_extent_buffer(logical, root->nodesize);
1279
	} else {
1280
		eb = btrfs_clone_extent_buffer(root->node);
1281 1282 1283 1284
		btrfs_tree_read_unlock(root->node);
		free_extent_buffer(root->node);
	}

1285 1286
	if (!eb)
		return NULL;
1287
	extent_buffer_get(eb);
1288
	btrfs_tree_read_lock(eb);
1289
	if (old_root) {
J
Jan Schmidt 已提交
1290 1291 1292
		btrfs_set_header_bytenr(eb, eb->start);
		btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
		btrfs_set_header_owner(eb, root->root_key.objectid);
1293 1294
		btrfs_set_header_level(eb, old_root->level);
		btrfs_set_header_generation(eb, old_generation);
J
Jan Schmidt 已提交
1295
	}
1296 1297 1298 1299
	if (tm)
		__tree_mod_log_rewind(eb, time_seq, tm);
	else
		WARN_ON(btrfs_header_level(eb) != 0);
1300
	WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(root));
J
Jan Schmidt 已提交
1301 1302 1303 1304

	return eb;
}

J
Jan Schmidt 已提交
1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321
int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
{
	struct tree_mod_elem *tm;
	int level;

	tm = __tree_mod_log_oldest_root(root->fs_info, root, time_seq);
	if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
		level = tm->old_root.level;
	} else {
		rcu_read_lock();
		level = btrfs_header_level(root->node);
		rcu_read_unlock();
	}

	return level;
}

1322 1323 1324 1325
static inline int should_cow_block(struct btrfs_trans_handle *trans,
				   struct btrfs_root *root,
				   struct extent_buffer *buf)
{
1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339
	/* ensure we can see the force_cow */
	smp_rmb();

	/*
	 * We do not need to cow a block if
	 * 1) this block is not created or changed in this transaction;
	 * 2) this block does not belong to TREE_RELOC tree;
	 * 3) the root is not forced COW.
	 *
	 * What is forced COW:
	 *    when we create snapshot during commiting the transaction,
	 *    after we've finished coping src root, we must COW the shared
	 *    block to ensure the metadata consistency.
	 */
1340 1341 1342
	if (btrfs_header_generation(buf) == trans->transid &&
	    !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
	    !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1343 1344
	      btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
	    !root->force_cow)
1345 1346 1347 1348
		return 0;
	return 1;
}

C
Chris Mason 已提交
1349 1350 1351 1352 1353
/*
 * cows a single block, see __btrfs_cow_block for the real work.
 * This version of it has extra checks so that a block isn't cow'd more than
 * once per transaction, as long as it hasn't been written yet
 */
C
Chris Mason 已提交
1354
noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1355 1356
		    struct btrfs_root *root, struct extent_buffer *buf,
		    struct extent_buffer *parent, int parent_slot,
1357
		    struct extent_buffer **cow_ret)
1358 1359
{
	u64 search_start;
1360
	int ret;
C
Chris Mason 已提交
1361

1362
	if (trans->transaction != root->fs_info->running_transaction) {
C
Chris Mason 已提交
1363 1364 1365
		printk(KERN_CRIT "trans %llu running %llu\n",
		       (unsigned long long)trans->transid,
		       (unsigned long long)
1366 1367 1368 1369
		       root->fs_info->running_transaction->transid);
		WARN_ON(1);
	}
	if (trans->transid != root->fs_info->generation) {
C
Chris Mason 已提交
1370 1371 1372
		printk(KERN_CRIT "trans %llu running %llu\n",
		       (unsigned long long)trans->transid,
		       (unsigned long long)root->fs_info->generation);
1373 1374
		WARN_ON(1);
	}
C
Chris Mason 已提交
1375

1376
	if (!should_cow_block(trans, root, buf)) {
1377 1378 1379
		*cow_ret = buf;
		return 0;
	}
1380

1381
	search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
1382 1383 1384 1385 1386

	if (parent)
		btrfs_set_lock_blocking(parent);
	btrfs_set_lock_blocking(buf);

1387
	ret = __btrfs_cow_block(trans, root, buf, parent,
1388
				 parent_slot, cow_ret, search_start, 0);
1389 1390 1391

	trace_btrfs_cow_block(root, buf, *cow_ret);

1392
	return ret;
1393 1394
}

C
Chris Mason 已提交
1395 1396 1397 1398
/*
 * helper function for defrag to decide if two blocks pointed to by a
 * node are actually close by
 */
1399
static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1400
{
1401
	if (blocknr < other && other - (blocknr + blocksize) < 32768)
1402
		return 1;
1403
	if (blocknr > other && blocknr - (other + blocksize) < 32768)
1404 1405 1406 1407
		return 1;
	return 0;
}

1408 1409 1410 1411 1412 1413 1414 1415 1416
/*
 * compare two keys in a memcmp fashion
 */
static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
{
	struct btrfs_key k1;

	btrfs_disk_key_to_cpu(&k1, disk);

1417
	return btrfs_comp_cpu_keys(&k1, k2);
1418 1419
}

1420 1421 1422
/*
 * same as comp_keys only with two btrfs_key's
 */
1423
int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438
{
	if (k1->objectid > k2->objectid)
		return 1;
	if (k1->objectid < k2->objectid)
		return -1;
	if (k1->type > k2->type)
		return 1;
	if (k1->type < k2->type)
		return -1;
	if (k1->offset > k2->offset)
		return 1;
	if (k1->offset < k2->offset)
		return -1;
	return 0;
}
1439

C
Chris Mason 已提交
1440 1441 1442 1443 1444
/*
 * this is used by the defrag code to go through all the
 * leaves pointed to by a node and reallocate them so that
 * disk order is close to key order
 */
1445
int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1446
		       struct btrfs_root *root, struct extent_buffer *parent,
1447 1448
		       int start_slot, int cache_only, u64 *last_ret,
		       struct btrfs_key *progress)
1449
{
1450
	struct extent_buffer *cur;
1451
	u64 blocknr;
1452
	u64 gen;
1453 1454
	u64 search_start = *last_ret;
	u64 last_block = 0;
1455 1456 1457 1458 1459
	u64 other;
	u32 parent_nritems;
	int end_slot;
	int i;
	int err = 0;
1460
	int parent_level;
1461 1462
	int uptodate;
	u32 blocksize;
1463 1464
	int progress_passed = 0;
	struct btrfs_disk_key disk_key;
1465

1466 1467 1468 1469
	parent_level = btrfs_header_level(parent);
	if (cache_only && parent_level != 1)
		return 0;

C
Chris Mason 已提交
1470
	if (trans->transaction != root->fs_info->running_transaction)
1471
		WARN_ON(1);
C
Chris Mason 已提交
1472
	if (trans->transid != root->fs_info->generation)
1473
		WARN_ON(1);
1474

1475 1476
	parent_nritems = btrfs_header_nritems(parent);
	blocksize = btrfs_level_size(root, parent_level - 1);
1477 1478 1479 1480 1481
	end_slot = parent_nritems;

	if (parent_nritems == 1)
		return 0;

1482 1483
	btrfs_set_lock_blocking(parent);

1484 1485
	for (i = start_slot; i < end_slot; i++) {
		int close = 1;
1486

1487 1488 1489 1490 1491
		btrfs_node_key(parent, &disk_key, i);
		if (!progress_passed && comp_keys(&disk_key, progress) < 0)
			continue;

		progress_passed = 1;
1492
		blocknr = btrfs_node_blockptr(parent, i);
1493
		gen = btrfs_node_ptr_generation(parent, i);
1494 1495
		if (last_block == 0)
			last_block = blocknr;
1496

1497
		if (i > 0) {
1498 1499
			other = btrfs_node_blockptr(parent, i - 1);
			close = close_blocks(blocknr, other, blocksize);
1500
		}
C
Chris Mason 已提交
1501
		if (!close && i < end_slot - 2) {
1502 1503
			other = btrfs_node_blockptr(parent, i + 1);
			close = close_blocks(blocknr, other, blocksize);
1504
		}
1505 1506
		if (close) {
			last_block = blocknr;
1507
			continue;
1508
		}
1509

1510 1511
		cur = btrfs_find_tree_block(root, blocknr, blocksize);
		if (cur)
1512
			uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1513 1514
		else
			uptodate = 0;
1515
		if (!cur || !uptodate) {
1516
			if (cache_only) {
1517
				free_extent_buffer(cur);
1518 1519
				continue;
			}
1520 1521
			if (!cur) {
				cur = read_tree_block(root, blocknr,
1522
							 blocksize, gen);
1523 1524
				if (!cur)
					return -EIO;
1525
			} else if (!uptodate) {
1526 1527 1528 1529 1530
				err = btrfs_read_buffer(cur, gen);
				if (err) {
					free_extent_buffer(cur);
					return err;
				}
1531
			}
1532
		}
1533
		if (search_start == 0)
1534
			search_start = last_block;
1535

1536
		btrfs_tree_lock(cur);
1537
		btrfs_set_lock_blocking(cur);
1538
		err = __btrfs_cow_block(trans, root, cur, parent, i,
1539
					&cur, search_start,
1540
					min(16 * blocksize,
1541
					    (end_slot - i) * blocksize));
Y
Yan 已提交
1542
		if (err) {
1543
			btrfs_tree_unlock(cur);
1544
			free_extent_buffer(cur);
1545
			break;
Y
Yan 已提交
1546
		}
1547 1548
		search_start = cur->start;
		last_block = cur->start;
1549
		*last_ret = search_start;
1550 1551
		btrfs_tree_unlock(cur);
		free_extent_buffer(cur);
1552 1553 1554 1555
	}
	return err;
}

C
Chris Mason 已提交
1556 1557 1558 1559 1560
/*
 * The leaf data grows from end-to-front in the node.
 * this returns the address of the start of the last item,
 * which is the stop of the leaf data stack
 */
C
Chris Mason 已提交
1561
static inline unsigned int leaf_data_end(struct btrfs_root *root,
1562
					 struct extent_buffer *leaf)
1563
{
1564
	u32 nr = btrfs_header_nritems(leaf);
1565
	if (nr == 0)
C
Chris Mason 已提交
1566
		return BTRFS_LEAF_DATA_SIZE(root);
1567
	return btrfs_item_offset_nr(leaf, nr - 1);
1568 1569
}

C
Chris Mason 已提交
1570

C
Chris Mason 已提交
1571
/*
1572 1573 1574
 * search for key in the extent_buffer.  The items start at offset p,
 * and they are item_size apart.  There are 'max' items in p.
 *
C
Chris Mason 已提交
1575 1576 1577 1578 1579 1580
 * the slot in the array is returned via slot, and it points to
 * the place where you would insert key if it is not found in
 * the array.
 *
 * slot may point to max if the key is bigger than all of the keys
 */
1581 1582 1583 1584
static noinline int generic_bin_search(struct extent_buffer *eb,
				       unsigned long p,
				       int item_size, struct btrfs_key *key,
				       int max, int *slot)
1585 1586 1587 1588 1589
{
	int low = 0;
	int high = max;
	int mid;
	int ret;
1590
	struct btrfs_disk_key *tmp = NULL;
1591 1592 1593 1594 1595
	struct btrfs_disk_key unaligned;
	unsigned long offset;
	char *kaddr = NULL;
	unsigned long map_start = 0;
	unsigned long map_len = 0;
1596
	int err;
1597

C
Chris Mason 已提交
1598
	while (low < high) {
1599
		mid = (low + high) / 2;
1600 1601
		offset = p + mid * item_size;

1602
		if (!kaddr || offset < map_start ||
1603 1604
		    (offset + sizeof(struct btrfs_disk_key)) >
		    map_start + map_len) {
1605 1606

			err = map_private_extent_buffer(eb, offset,
1607
						sizeof(struct btrfs_disk_key),
1608
						&kaddr, &map_start, &map_len);
1609 1610 1611 1612 1613 1614 1615 1616 1617

			if (!err) {
				tmp = (struct btrfs_disk_key *)(kaddr + offset -
							map_start);
			} else {
				read_extent_buffer(eb, &unaligned,
						   offset, sizeof(unaligned));
				tmp = &unaligned;
			}
1618 1619 1620 1621 1622

		} else {
			tmp = (struct btrfs_disk_key *)(kaddr + offset -
							map_start);
		}
1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637
		ret = comp_keys(tmp, key);

		if (ret < 0)
			low = mid + 1;
		else if (ret > 0)
			high = mid;
		else {
			*slot = mid;
			return 0;
		}
	}
	*slot = low;
	return 1;
}

C
Chris Mason 已提交
1638 1639 1640 1641
/*
 * simple bin_search frontend that does the right thing for
 * leaves vs nodes
 */
1642 1643
static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
		      int level, int *slot)
1644
{
1645
	if (level == 0)
1646 1647
		return generic_bin_search(eb,
					  offsetof(struct btrfs_leaf, items),
C
Chris Mason 已提交
1648
					  sizeof(struct btrfs_item),
1649
					  key, btrfs_header_nritems(eb),
1650
					  slot);
1651
	else
1652 1653
		return generic_bin_search(eb,
					  offsetof(struct btrfs_node, ptrs),
C
Chris Mason 已提交
1654
					  sizeof(struct btrfs_key_ptr),
1655
					  key, btrfs_header_nritems(eb),
1656
					  slot);
1657 1658
}

1659 1660 1661 1662 1663 1664
int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
		     int level, int *slot)
{
	return bin_search(eb, key, level, slot);
}

1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680
static void root_add_used(struct btrfs_root *root, u32 size)
{
	spin_lock(&root->accounting_lock);
	btrfs_set_root_used(&root->root_item,
			    btrfs_root_used(&root->root_item) + size);
	spin_unlock(&root->accounting_lock);
}

static void root_sub_used(struct btrfs_root *root, u32 size)
{
	spin_lock(&root->accounting_lock);
	btrfs_set_root_used(&root->root_item,
			    btrfs_root_used(&root->root_item) - size);
	spin_unlock(&root->accounting_lock);
}

C
Chris Mason 已提交
1681 1682 1683 1684
/* given a node and slot number, this reads the blocks it points to.  The
 * extent buffer is returned with a reference taken (but unlocked).
 * NULL is returned on error.
 */
1685
static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
1686
				   struct extent_buffer *parent, int slot)
1687
{
1688
	int level = btrfs_header_level(parent);
1689 1690
	if (slot < 0)
		return NULL;
1691
	if (slot >= btrfs_header_nritems(parent))
1692
		return NULL;
1693 1694 1695

	BUG_ON(level == 0);

1696
	return read_tree_block(root, btrfs_node_blockptr(parent, slot),
1697 1698
		       btrfs_level_size(root, level - 1),
		       btrfs_node_ptr_generation(parent, slot));
1699 1700
}

C
Chris Mason 已提交
1701 1702 1703 1704 1705
/*
 * node level balancing, used to make sure nodes are in proper order for
 * item deletion.  We balance from the top down, so we have to make sure
 * that a deletion won't leave an node completely empty later on.
 */
1706
static noinline int balance_level(struct btrfs_trans_handle *trans,
1707 1708
			 struct btrfs_root *root,
			 struct btrfs_path *path, int level)
1709
{
1710 1711 1712 1713
	struct extent_buffer *right = NULL;
	struct extent_buffer *mid;
	struct extent_buffer *left = NULL;
	struct extent_buffer *parent = NULL;
1714 1715 1716 1717
	int ret = 0;
	int wret;
	int pslot;
	int orig_slot = path->slots[level];
1718
	u64 orig_ptr;
1719 1720 1721 1722

	if (level == 0)
		return 0;

1723
	mid = path->nodes[level];
1724

1725 1726
	WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
		path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1727 1728
	WARN_ON(btrfs_header_generation(mid) != trans->transid);

1729
	orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1730

L
Li Zefan 已提交
1731
	if (level < BTRFS_MAX_LEVEL - 1) {
1732
		parent = path->nodes[level + 1];
L
Li Zefan 已提交
1733 1734
		pslot = path->slots[level + 1];
	}
1735

C
Chris Mason 已提交
1736 1737 1738 1739
	/*
	 * deal with the case where there is only one pointer in the root
	 * by promoting the node below to a root
	 */
1740 1741
	if (!parent) {
		struct extent_buffer *child;
1742

1743
		if (btrfs_header_nritems(mid) != 1)
1744 1745 1746
			return 0;

		/* promote the child to a root */
1747
		child = read_node_slot(root, mid, 0);
1748 1749 1750 1751 1752 1753
		if (!child) {
			ret = -EROFS;
			btrfs_std_error(root->fs_info, ret);
			goto enospc;
		}

1754
		btrfs_tree_lock(child);
1755
		btrfs_set_lock_blocking(child);
1756
		ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1757 1758 1759 1760 1761
		if (ret) {
			btrfs_tree_unlock(child);
			free_extent_buffer(child);
			goto enospc;
		}
1762

1763
		tree_mod_log_free_eb(root->fs_info, root->node);
1764
		tree_mod_log_set_root_pointer(root, child);
1765
		rcu_assign_pointer(root->node, child);
1766

1767
		add_root_to_dirty_list(root);
1768
		btrfs_tree_unlock(child);
1769

1770
		path->locks[level] = 0;
1771
		path->nodes[level] = NULL;
1772
		clean_tree_block(trans, root, mid);
1773
		btrfs_tree_unlock(mid);
1774
		/* once for the path */
1775
		free_extent_buffer(mid);
1776 1777

		root_sub_used(root, mid->len);
1778
		btrfs_free_tree_block(trans, root, mid, 0, 1);
1779
		/* once for the root ptr */
1780
		free_extent_buffer_stale(mid);
1781
		return 0;
1782
	}
1783
	if (btrfs_header_nritems(mid) >
C
Chris Mason 已提交
1784
	    BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
1785 1786
		return 0;

1787 1788
	left = read_node_slot(root, parent, pslot - 1);
	if (left) {
1789
		btrfs_tree_lock(left);
1790
		btrfs_set_lock_blocking(left);
1791
		wret = btrfs_cow_block(trans, root, left,
1792
				       parent, pslot - 1, &left);
1793 1794 1795 1796
		if (wret) {
			ret = wret;
			goto enospc;
		}
1797
	}
1798 1799
	right = read_node_slot(root, parent, pslot + 1);
	if (right) {
1800
		btrfs_tree_lock(right);
1801
		btrfs_set_lock_blocking(right);
1802
		wret = btrfs_cow_block(trans, root, right,
1803
				       parent, pslot + 1, &right);
1804 1805 1806 1807 1808 1809 1810
		if (wret) {
			ret = wret;
			goto enospc;
		}
	}

	/* first, try to make some room in the middle buffer */
1811 1812
	if (left) {
		orig_slot += btrfs_header_nritems(left);
1813
		wret = push_node_left(trans, root, left, mid, 1);
1814 1815
		if (wret < 0)
			ret = wret;
1816
	}
1817 1818 1819 1820

	/*
	 * then try to empty the right most buffer into the middle
	 */
1821
	if (right) {
1822
		wret = push_node_left(trans, root, mid, right, 1);
1823
		if (wret < 0 && wret != -ENOSPC)
1824
			ret = wret;
1825 1826
		if (btrfs_header_nritems(right) == 0) {
			clean_tree_block(trans, root, right);
1827
			btrfs_tree_unlock(right);
1828
			del_ptr(trans, root, path, level + 1, pslot + 1, 1);
1829
			root_sub_used(root, right->len);
1830
			btrfs_free_tree_block(trans, root, right, 0, 1);
1831
			free_extent_buffer_stale(right);
1832
			right = NULL;
1833
		} else {
1834 1835
			struct btrfs_disk_key right_key;
			btrfs_node_key(right, &right_key, 0);
1836 1837
			tree_mod_log_set_node_key(root->fs_info, parent,
						  &right_key, pslot + 1, 0);
1838 1839
			btrfs_set_node_key(parent, &right_key, pslot + 1);
			btrfs_mark_buffer_dirty(parent);
1840 1841
		}
	}
1842
	if (btrfs_header_nritems(mid) == 1) {
1843 1844 1845 1846 1847 1848 1849 1850 1851
		/*
		 * we're not allowed to leave a node with one item in the
		 * tree during a delete.  A deletion from lower in the tree
		 * could try to delete the only pointer in this node.
		 * So, pull some keys from the left.
		 * There has to be a left pointer at this point because
		 * otherwise we would have pulled some pointers from the
		 * right
		 */
1852 1853 1854 1855 1856
		if (!left) {
			ret = -EROFS;
			btrfs_std_error(root->fs_info, ret);
			goto enospc;
		}
1857
		wret = balance_node_right(trans, root, mid, left);
1858
		if (wret < 0) {
1859
			ret = wret;
1860 1861
			goto enospc;
		}
1862 1863 1864 1865 1866
		if (wret == 1) {
			wret = push_node_left(trans, root, left, mid, 1);
			if (wret < 0)
				ret = wret;
		}
1867 1868
		BUG_ON(wret == 1);
	}
1869 1870
	if (btrfs_header_nritems(mid) == 0) {
		clean_tree_block(trans, root, mid);
1871
		btrfs_tree_unlock(mid);
1872
		del_ptr(trans, root, path, level + 1, pslot, 1);
1873
		root_sub_used(root, mid->len);
1874
		btrfs_free_tree_block(trans, root, mid, 0, 1);
1875
		free_extent_buffer_stale(mid);
1876
		mid = NULL;
1877 1878
	} else {
		/* update the parent key to reflect our changes */
1879 1880
		struct btrfs_disk_key mid_key;
		btrfs_node_key(mid, &mid_key, 0);
1881 1882
		tree_mod_log_set_node_key(root->fs_info, parent, &mid_key,
					  pslot, 0);
1883 1884
		btrfs_set_node_key(parent, &mid_key, pslot);
		btrfs_mark_buffer_dirty(parent);
1885
	}
1886

1887
	/* update the path */
1888 1889 1890
	if (left) {
		if (btrfs_header_nritems(left) > orig_slot) {
			extent_buffer_get(left);
1891
			/* left was locked after cow */
1892
			path->nodes[level] = left;
1893 1894
			path->slots[level + 1] -= 1;
			path->slots[level] = orig_slot;
1895 1896
			if (mid) {
				btrfs_tree_unlock(mid);
1897
				free_extent_buffer(mid);
1898
			}
1899
		} else {
1900
			orig_slot -= btrfs_header_nritems(left);
1901 1902 1903
			path->slots[level] = orig_slot;
		}
	}
1904
	/* double check we haven't messed things up */
C
Chris Mason 已提交
1905
	if (orig_ptr !=
1906
	    btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1907
		BUG();
1908
enospc:
1909 1910
	if (right) {
		btrfs_tree_unlock(right);
1911
		free_extent_buffer(right);
1912 1913 1914 1915
	}
	if (left) {
		if (path->nodes[level] != left)
			btrfs_tree_unlock(left);
1916
		free_extent_buffer(left);
1917
	}
1918 1919 1920
	return ret;
}

C
Chris Mason 已提交
1921 1922 1923 1924
/* Node balancing for insertion.  Here we only split or push nodes around
 * when they are completely full.  This is also done top down, so we
 * have to be pessimistic.
 */
C
Chris Mason 已提交
1925
static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1926 1927
					  struct btrfs_root *root,
					  struct btrfs_path *path, int level)
1928
{
1929 1930 1931 1932
	struct extent_buffer *right = NULL;
	struct extent_buffer *mid;
	struct extent_buffer *left = NULL;
	struct extent_buffer *parent = NULL;
1933 1934 1935 1936 1937 1938 1939 1940
	int ret = 0;
	int wret;
	int pslot;
	int orig_slot = path->slots[level];

	if (level == 0)
		return 1;

1941
	mid = path->nodes[level];
1942
	WARN_ON(btrfs_header_generation(mid) != trans->transid);
1943

L
Li Zefan 已提交
1944
	if (level < BTRFS_MAX_LEVEL - 1) {
1945
		parent = path->nodes[level + 1];
L
Li Zefan 已提交
1946 1947
		pslot = path->slots[level + 1];
	}
1948

1949
	if (!parent)
1950 1951
		return 1;

1952
	left = read_node_slot(root, parent, pslot - 1);
1953 1954

	/* first, try to make some room in the middle buffer */
1955
	if (left) {
1956
		u32 left_nr;
1957 1958

		btrfs_tree_lock(left);
1959 1960
		btrfs_set_lock_blocking(left);

1961
		left_nr = btrfs_header_nritems(left);
C
Chris Mason 已提交
1962 1963 1964
		if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
			wret = 1;
		} else {
1965
			ret = btrfs_cow_block(trans, root, left, parent,
1966
					      pslot - 1, &left);
1967 1968 1969 1970
			if (ret)
				wret = 1;
			else {
				wret = push_node_left(trans, root,
1971
						      left, mid, 0);
1972
			}
C
Chris Mason 已提交
1973
		}
1974 1975 1976
		if (wret < 0)
			ret = wret;
		if (wret == 0) {
1977
			struct btrfs_disk_key disk_key;
1978
			orig_slot += left_nr;
1979
			btrfs_node_key(mid, &disk_key, 0);
1980 1981
			tree_mod_log_set_node_key(root->fs_info, parent,
						  &disk_key, pslot, 0);
1982 1983 1984 1985
			btrfs_set_node_key(parent, &disk_key, pslot);
			btrfs_mark_buffer_dirty(parent);
			if (btrfs_header_nritems(left) > orig_slot) {
				path->nodes[level] = left;
1986 1987
				path->slots[level + 1] -= 1;
				path->slots[level] = orig_slot;
1988
				btrfs_tree_unlock(mid);
1989
				free_extent_buffer(mid);
1990 1991
			} else {
				orig_slot -=
1992
					btrfs_header_nritems(left);
1993
				path->slots[level] = orig_slot;
1994
				btrfs_tree_unlock(left);
1995
				free_extent_buffer(left);
1996 1997 1998
			}
			return 0;
		}
1999
		btrfs_tree_unlock(left);
2000
		free_extent_buffer(left);
2001
	}
2002
	right = read_node_slot(root, parent, pslot + 1);
2003 2004 2005 2006

	/*
	 * then try to empty the right most buffer into the middle
	 */
2007
	if (right) {
C
Chris Mason 已提交
2008
		u32 right_nr;
2009

2010
		btrfs_tree_lock(right);
2011 2012
		btrfs_set_lock_blocking(right);

2013
		right_nr = btrfs_header_nritems(right);
C
Chris Mason 已提交
2014 2015 2016
		if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
			wret = 1;
		} else {
2017 2018
			ret = btrfs_cow_block(trans, root, right,
					      parent, pslot + 1,
2019
					      &right);
2020 2021 2022 2023
			if (ret)
				wret = 1;
			else {
				wret = balance_node_right(trans, root,
2024
							  right, mid);
2025
			}
C
Chris Mason 已提交
2026
		}
2027 2028 2029
		if (wret < 0)
			ret = wret;
		if (wret == 0) {
2030 2031 2032
			struct btrfs_disk_key disk_key;

			btrfs_node_key(right, &disk_key, 0);
2033 2034
			tree_mod_log_set_node_key(root->fs_info, parent,
						  &disk_key, pslot + 1, 0);
2035 2036 2037 2038 2039
			btrfs_set_node_key(parent, &disk_key, pslot + 1);
			btrfs_mark_buffer_dirty(parent);

			if (btrfs_header_nritems(mid) <= orig_slot) {
				path->nodes[level] = right;
2040 2041
				path->slots[level + 1] += 1;
				path->slots[level] = orig_slot -
2042
					btrfs_header_nritems(mid);
2043
				btrfs_tree_unlock(mid);
2044
				free_extent_buffer(mid);
2045
			} else {
2046
				btrfs_tree_unlock(right);
2047
				free_extent_buffer(right);
2048 2049 2050
			}
			return 0;
		}
2051
		btrfs_tree_unlock(right);
2052
		free_extent_buffer(right);
2053 2054 2055 2056
	}
	return 1;
}

2057
/*
C
Chris Mason 已提交
2058 2059
 * readahead one full node of leaves, finding things that are close
 * to the block in 'slot', and triggering ra on them.
2060
 */
2061 2062 2063
static void reada_for_search(struct btrfs_root *root,
			     struct btrfs_path *path,
			     int level, int slot, u64 objectid)
2064
{
2065
	struct extent_buffer *node;
2066
	struct btrfs_disk_key disk_key;
2067 2068
	u32 nritems;
	u64 search;
2069
	u64 target;
2070
	u64 nread = 0;
2071
	u64 gen;
2072
	int direction = path->reada;
2073
	struct extent_buffer *eb;
2074 2075 2076
	u32 nr;
	u32 blocksize;
	u32 nscan = 0;
2077

2078
	if (level != 1)
2079 2080 2081
		return;

	if (!path->nodes[level])
2082 2083
		return;

2084
	node = path->nodes[level];
2085

2086
	search = btrfs_node_blockptr(node, slot);
2087 2088
	blocksize = btrfs_level_size(root, level - 1);
	eb = btrfs_find_tree_block(root, search, blocksize);
2089 2090
	if (eb) {
		free_extent_buffer(eb);
2091 2092 2093
		return;
	}

2094
	target = search;
2095

2096
	nritems = btrfs_header_nritems(node);
2097
	nr = slot;
2098

C
Chris Mason 已提交
2099
	while (1) {
2100 2101 2102 2103 2104 2105 2106 2107
		if (direction < 0) {
			if (nr == 0)
				break;
			nr--;
		} else if (direction > 0) {
			nr++;
			if (nr >= nritems)
				break;
2108
		}
2109 2110 2111 2112 2113
		if (path->reada < 0 && objectid) {
			btrfs_node_key(node, &disk_key, nr);
			if (btrfs_disk_key_objectid(&disk_key) != objectid)
				break;
		}
2114
		search = btrfs_node_blockptr(node, nr);
2115 2116
		if ((search <= target && target - search <= 65536) ||
		    (search > target && search - target <= 65536)) {
2117 2118
			gen = btrfs_node_ptr_generation(node, nr);
			readahead_tree_block(root, search, blocksize, gen);
2119 2120 2121
			nread += blocksize;
		}
		nscan++;
2122
		if ((nread > 65536 || nscan > 32))
2123
			break;
2124 2125
	}
}
2126

2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143
/*
 * returns -EAGAIN if it had to drop the path, or zero if everything was in
 * cache
 */
static noinline int reada_for_balance(struct btrfs_root *root,
				      struct btrfs_path *path, int level)
{
	int slot;
	int nritems;
	struct extent_buffer *parent;
	struct extent_buffer *eb;
	u64 gen;
	u64 block1 = 0;
	u64 block2 = 0;
	int ret = 0;
	int blocksize;

2144
	parent = path->nodes[level + 1];
2145 2146 2147 2148
	if (!parent)
		return 0;

	nritems = btrfs_header_nritems(parent);
2149
	slot = path->slots[level + 1];
2150 2151 2152 2153 2154 2155
	blocksize = btrfs_level_size(root, level);

	if (slot > 0) {
		block1 = btrfs_node_blockptr(parent, slot - 1);
		gen = btrfs_node_ptr_generation(parent, slot - 1);
		eb = btrfs_find_tree_block(root, block1, blocksize);
2156 2157 2158 2159 2160 2161
		/*
		 * if we get -eagain from btrfs_buffer_uptodate, we
		 * don't want to return eagain here.  That will loop
		 * forever
		 */
		if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2162 2163 2164
			block1 = 0;
		free_extent_buffer(eb);
	}
2165
	if (slot + 1 < nritems) {
2166 2167 2168
		block2 = btrfs_node_blockptr(parent, slot + 1);
		gen = btrfs_node_ptr_generation(parent, slot + 1);
		eb = btrfs_find_tree_block(root, block2, blocksize);
2169
		if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2170 2171 2172 2173 2174
			block2 = 0;
		free_extent_buffer(eb);
	}
	if (block1 || block2) {
		ret = -EAGAIN;
2175 2176

		/* release the whole path */
2177
		btrfs_release_path(path);
2178 2179

		/* read the blocks */
2180 2181 2182 2183 2184 2185 2186 2187 2188
		if (block1)
			readahead_tree_block(root, block1, blocksize, 0);
		if (block2)
			readahead_tree_block(root, block2, blocksize, 0);

		if (block1) {
			eb = read_tree_block(root, block1, blocksize, 0);
			free_extent_buffer(eb);
		}
2189
		if (block2) {
2190 2191 2192 2193 2194 2195 2196 2197
			eb = read_tree_block(root, block2, blocksize, 0);
			free_extent_buffer(eb);
		}
	}
	return ret;
}


C
Chris Mason 已提交
2198
/*
C
Chris Mason 已提交
2199 2200 2201 2202
 * when we walk down the tree, it is usually safe to unlock the higher layers
 * in the tree.  The exceptions are when our path goes through slot 0, because
 * operations on the tree might require changing key pointers higher up in the
 * tree.
C
Chris Mason 已提交
2203
 *
C
Chris Mason 已提交
2204 2205 2206
 * callers might also have set path->keep_locks, which tells this code to keep
 * the lock if the path points to the last slot in the block.  This is part of
 * walking through the tree, and selecting the next slot in the higher block.
C
Chris Mason 已提交
2207
 *
C
Chris Mason 已提交
2208 2209
 * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
 * if lowest_unlock is 1, level 0 won't be unlocked
C
Chris Mason 已提交
2210
 */
2211
static noinline void unlock_up(struct btrfs_path *path, int level,
2212 2213
			       int lowest_unlock, int min_write_lock_level,
			       int *write_lock_level)
2214 2215 2216
{
	int i;
	int skip_level = level;
2217
	int no_skips = 0;
2218 2219 2220 2221 2222 2223 2224
	struct extent_buffer *t;

	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
		if (!path->nodes[i])
			break;
		if (!path->locks[i])
			break;
2225
		if (!no_skips && path->slots[i] == 0) {
2226 2227 2228
			skip_level = i + 1;
			continue;
		}
2229
		if (!no_skips && path->keep_locks) {
2230 2231 2232
			u32 nritems;
			t = path->nodes[i];
			nritems = btrfs_header_nritems(t);
2233
			if (nritems < 1 || path->slots[i] >= nritems - 1) {
2234 2235 2236 2237
				skip_level = i + 1;
				continue;
			}
		}
2238 2239 2240
		if (skip_level < i && i >= lowest_unlock)
			no_skips = 1;

2241 2242
		t = path->nodes[i];
		if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
2243
			btrfs_tree_unlock_rw(t, path->locks[i]);
2244
			path->locks[i] = 0;
2245 2246 2247 2248 2249
			if (write_lock_level &&
			    i > min_write_lock_level &&
			    i <= *write_lock_level) {
				*write_lock_level = i - 1;
			}
2250 2251 2252 2253
		}
	}
}

2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266
/*
 * This releases any locks held in the path starting at level and
 * going all the way up to the root.
 *
 * btrfs_search_slot will keep the lock held on higher nodes in a few
 * corner cases, such as COW of the block at slot zero in the node.  This
 * ignores those rules, and it should only be called when there are no
 * more updates to be done higher up in the tree.
 */
noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
{
	int i;

2267
	if (path->keep_locks)
2268 2269 2270 2271
		return;

	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
		if (!path->nodes[i])
2272
			continue;
2273
		if (!path->locks[i])
2274
			continue;
2275
		btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
2276 2277 2278 2279
		path->locks[i] = 0;
	}
}

2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291
/*
 * helper function for btrfs_search_slot.  The goal is to find a block
 * in cache without setting the path to blocking.  If we find the block
 * we return zero and the path is unchanged.
 *
 * If we can't find the block, we set the path blocking and do some
 * reada.  -EAGAIN is returned and the search must be repeated.
 */
static int
read_block_for_search(struct btrfs_trans_handle *trans,
		       struct btrfs_root *root, struct btrfs_path *p,
		       struct extent_buffer **eb_ret, int level, int slot,
J
Jan Schmidt 已提交
2292
		       struct btrfs_key *key, u64 time_seq)
2293 2294 2295 2296 2297 2298
{
	u64 blocknr;
	u64 gen;
	u32 blocksize;
	struct extent_buffer *b = *eb_ret;
	struct extent_buffer *tmp;
2299
	int ret;
2300 2301 2302 2303 2304 2305

	blocknr = btrfs_node_blockptr(b, slot);
	gen = btrfs_node_ptr_generation(b, slot);
	blocksize = btrfs_level_size(root, level - 1);

	tmp = btrfs_find_tree_block(root, blocknr, blocksize);
2306
	if (tmp) {
2307 2308 2309
		/* first we do an atomic uptodate check */
		if (btrfs_buffer_uptodate(tmp, 0, 1) > 0) {
			if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324
				/*
				 * we found an up to date block without
				 * sleeping, return
				 * right away
				 */
				*eb_ret = tmp;
				return 0;
			}
			/* the pages were up to date, but we failed
			 * the generation number check.  Do a full
			 * read for the generation number that is correct.
			 * We must do this without dropping locks so
			 * we can trust our generation number
			 */
			free_extent_buffer(tmp);
2325 2326
			btrfs_set_path_blocking(p);

2327
			/* now we're allowed to do a blocking uptodate check */
2328
			tmp = read_tree_block(root, blocknr, blocksize, gen);
2329
			if (tmp && btrfs_buffer_uptodate(tmp, gen, 0) > 0) {
2330 2331 2332 2333
				*eb_ret = tmp;
				return 0;
			}
			free_extent_buffer(tmp);
2334
			btrfs_release_path(p);
2335 2336
			return -EIO;
		}
2337 2338 2339 2340 2341
	}

	/*
	 * reduce lock contention at high levels
	 * of the btree by dropping locks before
2342 2343 2344
	 * we read.  Don't release the lock on the current
	 * level because we need to walk this node to figure
	 * out which blocks to read.
2345
	 */
2346 2347 2348
	btrfs_unlock_up_safe(p, level + 1);
	btrfs_set_path_blocking(p);

2349
	free_extent_buffer(tmp);
2350 2351 2352
	if (p->reada)
		reada_for_search(root, p, level, slot, key->objectid);

2353
	btrfs_release_path(p);
2354 2355

	ret = -EAGAIN;
2356
	tmp = read_tree_block(root, blocknr, blocksize, 0);
2357 2358 2359 2360 2361 2362 2363
	if (tmp) {
		/*
		 * If the read above didn't mark this buffer up to date,
		 * it will never end up being up to date.  Set ret to EIO now
		 * and give up so that our caller doesn't loop forever
		 * on our EAGAINs.
		 */
2364
		if (!btrfs_buffer_uptodate(tmp, 0, 0))
2365
			ret = -EIO;
2366
		free_extent_buffer(tmp);
2367 2368
	}
	return ret;
2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382
}

/*
 * helper function for btrfs_search_slot.  This does all of the checks
 * for node-level blocks and does any balancing required based on
 * the ins_len.
 *
 * If no extra work was required, zero is returned.  If we had to
 * drop the path, -EAGAIN is returned and btrfs_search_slot must
 * start over
 */
static int
setup_nodes_for_search(struct btrfs_trans_handle *trans,
		       struct btrfs_root *root, struct btrfs_path *p,
2383 2384
		       struct extent_buffer *b, int level, int ins_len,
		       int *write_lock_level)
2385 2386 2387 2388 2389 2390
{
	int ret;
	if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
	    BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
		int sret;

2391 2392 2393 2394 2395 2396
		if (*write_lock_level < level + 1) {
			*write_lock_level = level + 1;
			btrfs_release_path(p);
			goto again;
		}

2397 2398 2399 2400 2401 2402
		sret = reada_for_balance(root, p, level);
		if (sret)
			goto again;

		btrfs_set_path_blocking(p);
		sret = split_node(trans, root, p, level);
2403
		btrfs_clear_path_blocking(p, NULL, 0);
2404 2405 2406 2407 2408 2409 2410 2411

		BUG_ON(sret > 0);
		if (sret) {
			ret = sret;
			goto done;
		}
		b = p->nodes[level];
	} else if (ins_len < 0 && btrfs_header_nritems(b) <
C
Chris Mason 已提交
2412
		   BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
2413 2414
		int sret;

2415 2416 2417 2418 2419 2420
		if (*write_lock_level < level + 1) {
			*write_lock_level = level + 1;
			btrfs_release_path(p);
			goto again;
		}

2421 2422 2423 2424 2425 2426
		sret = reada_for_balance(root, p, level);
		if (sret)
			goto again;

		btrfs_set_path_blocking(p);
		sret = balance_level(trans, root, p, level);
2427
		btrfs_clear_path_blocking(p, NULL, 0);
2428 2429 2430 2431 2432 2433 2434

		if (sret) {
			ret = sret;
			goto done;
		}
		b = p->nodes[level];
		if (!b) {
2435
			btrfs_release_path(p);
2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447
			goto again;
		}
		BUG_ON(btrfs_header_nritems(b) == 1);
	}
	return 0;

again:
	ret = -EAGAIN;
done:
	return ret;
}

C
Chris Mason 已提交
2448 2449 2450 2451 2452 2453
/*
 * look for key in the tree.  path is filled in with nodes along the way
 * if key is found, we return zero and you can find the item in the leaf
 * level of the path (level 0)
 *
 * If the key isn't found, the path points to the slot where it should
C
Chris Mason 已提交
2454 2455
 * be inserted, and 1 is returned.  If there are other errors during the
 * search a negative error number is returned.
C
Chris Mason 已提交
2456 2457 2458 2459
 *
 * if ins_len > 0, nodes and leaves will be split as we walk down the
 * tree.  if ins_len < 0, nodes will be merged as we walk down the tree (if
 * possible)
C
Chris Mason 已提交
2460
 */
2461 2462 2463
int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
		      *root, struct btrfs_key *key, struct btrfs_path *p, int
		      ins_len, int cow)
2464
{
2465
	struct extent_buffer *b;
2466 2467
	int slot;
	int ret;
2468
	int err;
2469
	int level;
2470
	int lowest_unlock = 1;
2471 2472 2473
	int root_lock;
	/* everything at write_lock_level or lower must be write locked */
	int write_lock_level = 0;
2474
	u8 lowest_level = 0;
2475
	int min_write_lock_level;
2476

2477
	lowest_level = p->lowest_level;
2478
	WARN_ON(lowest_level && ins_len > 0);
C
Chris Mason 已提交
2479
	WARN_ON(p->nodes[0] != NULL);
2480

2481
	if (ins_len < 0) {
2482
		lowest_unlock = 2;
2483

2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502
		/* when we are removing items, we might have to go up to level
		 * two as we update tree pointers  Make sure we keep write
		 * for those levels as well
		 */
		write_lock_level = 2;
	} else if (ins_len > 0) {
		/*
		 * for inserting items, make sure we have a write lock on
		 * level 1 so we can update keys
		 */
		write_lock_level = 1;
	}

	if (!cow)
		write_lock_level = -1;

	if (cow && (p->keep_locks || p->lowest_level))
		write_lock_level = BTRFS_MAX_LEVEL;

2503 2504
	min_write_lock_level = write_lock_level;

2505
again:
2506 2507 2508 2509 2510
	/*
	 * we try very hard to do read locks on the root
	 */
	root_lock = BTRFS_READ_LOCK;
	level = 0;
2511
	if (p->search_commit_root) {
2512 2513 2514 2515
		/*
		 * the commit roots are read only
		 * so we always do read locks
		 */
2516 2517
		b = root->commit_root;
		extent_buffer_get(b);
2518
		level = btrfs_header_level(b);
2519
		if (!p->skip_locking)
2520
			btrfs_tree_read_lock(b);
2521
	} else {
2522
		if (p->skip_locking) {
2523
			b = btrfs_root_node(root);
2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541
			level = btrfs_header_level(b);
		} else {
			/* we don't know the level of the root node
			 * until we actually have it read locked
			 */
			b = btrfs_read_lock_root_node(root);
			level = btrfs_header_level(b);
			if (level <= write_lock_level) {
				/* whoops, must trade for write lock */
				btrfs_tree_read_unlock(b);
				free_extent_buffer(b);
				b = btrfs_lock_root_node(root);
				root_lock = BTRFS_WRITE_LOCK;

				/* the level might have changed, check again */
				level = btrfs_header_level(b);
			}
		}
2542
	}
2543 2544 2545
	p->nodes[level] = b;
	if (!p->skip_locking)
		p->locks[level] = root_lock;
2546

2547
	while (b) {
2548
		level = btrfs_header_level(b);
2549 2550 2551 2552 2553

		/*
		 * setup the path here so we can release it under lock
		 * contention with the cow code
		 */
C
Chris Mason 已提交
2554
		if (cow) {
2555 2556 2557 2558 2559
			/*
			 * if we don't really need to cow this block
			 * then we don't want to set the path blocking,
			 * so we test it here
			 */
2560
			if (!should_cow_block(trans, root, b))
2561
				goto cow_done;
2562

2563 2564
			btrfs_set_path_blocking(p);

2565 2566 2567 2568 2569 2570 2571 2572 2573 2574
			/*
			 * must have write locks on this node and the
			 * parent
			 */
			if (level + 1 > write_lock_level) {
				write_lock_level = level + 1;
				btrfs_release_path(p);
				goto again;
			}

2575 2576 2577 2578 2579
			err = btrfs_cow_block(trans, root, b,
					      p->nodes[level + 1],
					      p->slots[level + 1], &b);
			if (err) {
				ret = err;
2580
				goto done;
2581
			}
C
Chris Mason 已提交
2582
		}
2583
cow_done:
C
Chris Mason 已提交
2584
		BUG_ON(!cow && ins_len);
2585

2586
		p->nodes[level] = b;
2587
		btrfs_clear_path_blocking(p, NULL, 0);
2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602

		/*
		 * we have a lock on b and as long as we aren't changing
		 * the tree, there is no way to for the items in b to change.
		 * It is safe to drop the lock on our parent before we
		 * go through the expensive btree search on b.
		 *
		 * If cow is true, then we might be changing slot zero,
		 * which may require changing the parent.  So, we can't
		 * drop the lock until after we know which slot we're
		 * operating on.
		 */
		if (!cow)
			btrfs_unlock_up_safe(p, level + 1);

2603
		ret = bin_search(b, key, level, &slot);
2604

2605
		if (level != 0) {
2606 2607 2608
			int dec = 0;
			if (ret && slot > 0) {
				dec = 1;
2609
				slot -= 1;
2610
			}
2611
			p->slots[level] = slot;
2612
			err = setup_nodes_for_search(trans, root, p, b, level,
2613
					     ins_len, &write_lock_level);
2614
			if (err == -EAGAIN)
2615
				goto again;
2616 2617
			if (err) {
				ret = err;
2618
				goto done;
2619
			}
2620 2621
			b = p->nodes[level];
			slot = p->slots[level];
2622

2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635
			/*
			 * slot 0 is special, if we change the key
			 * we have to update the parent pointer
			 * which means we must have a write lock
			 * on the parent
			 */
			if (slot == 0 && cow &&
			    write_lock_level < level + 1) {
				write_lock_level = level + 1;
				btrfs_release_path(p);
				goto again;
			}

2636 2637
			unlock_up(p, level, lowest_unlock,
				  min_write_lock_level, &write_lock_level);
2638

2639
			if (level == lowest_level) {
2640 2641
				if (dec)
					p->slots[level]++;
2642
				goto done;
2643
			}
2644

2645
			err = read_block_for_search(trans, root, p,
J
Jan Schmidt 已提交
2646
						    &b, level, slot, key, 0);
2647
			if (err == -EAGAIN)
2648
				goto again;
2649 2650
			if (err) {
				ret = err;
2651
				goto done;
2652
			}
2653

2654
			if (!p->skip_locking) {
2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673
				level = btrfs_header_level(b);
				if (level <= write_lock_level) {
					err = btrfs_try_tree_write_lock(b);
					if (!err) {
						btrfs_set_path_blocking(p);
						btrfs_tree_lock(b);
						btrfs_clear_path_blocking(p, b,
								  BTRFS_WRITE_LOCK);
					}
					p->locks[level] = BTRFS_WRITE_LOCK;
				} else {
					err = btrfs_try_tree_read_lock(b);
					if (!err) {
						btrfs_set_path_blocking(p);
						btrfs_tree_read_lock(b);
						btrfs_clear_path_blocking(p, b,
								  BTRFS_READ_LOCK);
					}
					p->locks[level] = BTRFS_READ_LOCK;
2674
				}
2675
				p->nodes[level] = b;
2676
			}
2677 2678
		} else {
			p->slots[level] = slot;
2679 2680
			if (ins_len > 0 &&
			    btrfs_leaf_free_space(root, b) < ins_len) {
2681 2682 2683 2684 2685 2686
				if (write_lock_level < 1) {
					write_lock_level = 1;
					btrfs_release_path(p);
					goto again;
				}

2687
				btrfs_set_path_blocking(p);
2688 2689
				err = split_leaf(trans, root, key,
						 p, ins_len, ret == 0);
2690
				btrfs_clear_path_blocking(p, NULL, 0);
2691

2692 2693 2694
				BUG_ON(err > 0);
				if (err) {
					ret = err;
2695 2696
					goto done;
				}
C
Chris Mason 已提交
2697
			}
2698
			if (!p->search_for_split)
2699 2700
				unlock_up(p, level, lowest_unlock,
					  min_write_lock_level, &write_lock_level);
2701
			goto done;
2702 2703
		}
	}
2704 2705
	ret = 1;
done:
2706 2707 2708 2709
	/*
	 * we don't really know what they plan on doing with the path
	 * from here on, so for now just mark it as blocking
	 */
2710 2711
	if (!p->leave_spinning)
		btrfs_set_path_blocking(p);
2712
	if (ret < 0)
2713
		btrfs_release_path(p);
2714
	return ret;
2715 2716
}

J
Jan Schmidt 已提交
2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823
/*
 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
 * current state of the tree together with the operations recorded in the tree
 * modification log to search for the key in a previous version of this tree, as
 * denoted by the time_seq parameter.
 *
 * Naturally, there is no support for insert, delete or cow operations.
 *
 * The resulting path and return value will be set up as if we called
 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
 */
int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key,
			  struct btrfs_path *p, u64 time_seq)
{
	struct extent_buffer *b;
	int slot;
	int ret;
	int err;
	int level;
	int lowest_unlock = 1;
	u8 lowest_level = 0;

	lowest_level = p->lowest_level;
	WARN_ON(p->nodes[0] != NULL);

	if (p->search_commit_root) {
		BUG_ON(time_seq);
		return btrfs_search_slot(NULL, root, key, p, 0, 0);
	}

again:
	b = get_old_root(root, time_seq);
	level = btrfs_header_level(b);
	p->locks[level] = BTRFS_READ_LOCK;

	while (b) {
		level = btrfs_header_level(b);
		p->nodes[level] = b;
		btrfs_clear_path_blocking(p, NULL, 0);

		/*
		 * we have a lock on b and as long as we aren't changing
		 * the tree, there is no way to for the items in b to change.
		 * It is safe to drop the lock on our parent before we
		 * go through the expensive btree search on b.
		 */
		btrfs_unlock_up_safe(p, level + 1);

		ret = bin_search(b, key, level, &slot);

		if (level != 0) {
			int dec = 0;
			if (ret && slot > 0) {
				dec = 1;
				slot -= 1;
			}
			p->slots[level] = slot;
			unlock_up(p, level, lowest_unlock, 0, NULL);

			if (level == lowest_level) {
				if (dec)
					p->slots[level]++;
				goto done;
			}

			err = read_block_for_search(NULL, root, p, &b, level,
						    slot, key, time_seq);
			if (err == -EAGAIN)
				goto again;
			if (err) {
				ret = err;
				goto done;
			}

			level = btrfs_header_level(b);
			err = btrfs_try_tree_read_lock(b);
			if (!err) {
				btrfs_set_path_blocking(p);
				btrfs_tree_read_lock(b);
				btrfs_clear_path_blocking(p, b,
							  BTRFS_READ_LOCK);
			}
			p->locks[level] = BTRFS_READ_LOCK;
			p->nodes[level] = b;
			b = tree_mod_log_rewind(root->fs_info, b, time_seq);
			if (b != p->nodes[level]) {
				btrfs_tree_unlock_rw(p->nodes[level],
						     p->locks[level]);
				p->locks[level] = 0;
				p->nodes[level] = b;
			}
		} else {
			p->slots[level] = slot;
			unlock_up(p, level, lowest_unlock, 0, NULL);
			goto done;
		}
	}
	ret = 1;
done:
	if (!p->leave_spinning)
		btrfs_set_path_blocking(p);
	if (ret < 0)
		btrfs_release_path(p);

	return ret;
}

2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872
/*
 * helper to use instead of search slot if no exact match is needed but
 * instead the next or previous item should be returned.
 * When find_higher is true, the next higher item is returned, the next lower
 * otherwise.
 * When return_any and find_higher are both true, and no higher item is found,
 * return the next lower instead.
 * When return_any is true and find_higher is false, and no lower item is found,
 * return the next higher instead.
 * It returns 0 if any item is found, 1 if none is found (tree empty), and
 * < 0 on error
 */
int btrfs_search_slot_for_read(struct btrfs_root *root,
			       struct btrfs_key *key, struct btrfs_path *p,
			       int find_higher, int return_any)
{
	int ret;
	struct extent_buffer *leaf;

again:
	ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
	if (ret <= 0)
		return ret;
	/*
	 * a return value of 1 means the path is at the position where the
	 * item should be inserted. Normally this is the next bigger item,
	 * but in case the previous item is the last in a leaf, path points
	 * to the first free slot in the previous leaf, i.e. at an invalid
	 * item.
	 */
	leaf = p->nodes[0];

	if (find_higher) {
		if (p->slots[0] >= btrfs_header_nritems(leaf)) {
			ret = btrfs_next_leaf(root, p);
			if (ret <= 0)
				return ret;
			if (!return_any)
				return 1;
			/*
			 * no higher item found, return the next
			 * lower instead
			 */
			return_any = 0;
			find_higher = 0;
			btrfs_release_path(p);
			goto again;
		}
	} else {
2873 2874 2875 2876 2877 2878 2879
		if (p->slots[0] == 0) {
			ret = btrfs_prev_leaf(root, p);
			if (ret < 0)
				return ret;
			if (!ret) {
				p->slots[0] = btrfs_header_nritems(leaf) - 1;
				return 0;
2880
			}
2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891
			if (!return_any)
				return 1;
			/*
			 * no lower item found, return the next
			 * higher instead
			 */
			return_any = 0;
			find_higher = 1;
			btrfs_release_path(p);
			goto again;
		} else {
2892 2893 2894 2895 2896 2897
			--p->slots[0];
		}
	}
	return 0;
}

C
Chris Mason 已提交
2898 2899 2900 2901 2902 2903
/*
 * adjust the pointers going up the tree, starting at level
 * making sure the right key of each node is points to 'key'.
 * This is used after shifting pointers to the left, so it stops
 * fixing up pointers when a given leaf/node is not in slot 0 of the
 * higher levels
C
Chris Mason 已提交
2904
 *
C
Chris Mason 已提交
2905
 */
2906 2907 2908
static void fixup_low_keys(struct btrfs_trans_handle *trans,
			   struct btrfs_root *root, struct btrfs_path *path,
			   struct btrfs_disk_key *key, int level)
2909 2910
{
	int i;
2911 2912
	struct extent_buffer *t;

C
Chris Mason 已提交
2913
	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2914
		int tslot = path->slots[i];
2915
		if (!path->nodes[i])
2916
			break;
2917
		t = path->nodes[i];
2918
		tree_mod_log_set_node_key(root->fs_info, t, key, tslot, 1);
2919
		btrfs_set_node_key(t, key, tslot);
C
Chris Mason 已提交
2920
		btrfs_mark_buffer_dirty(path->nodes[i]);
2921 2922 2923 2924 2925
		if (tslot != 0)
			break;
	}
}

Z
Zheng Yan 已提交
2926 2927 2928 2929 2930 2931
/*
 * update item key.
 *
 * This function isn't completely safe. It's the caller's responsibility
 * that the new key won't break the order
 */
2932 2933 2934
void btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
			     struct btrfs_root *root, struct btrfs_path *path,
			     struct btrfs_key *new_key)
Z
Zheng Yan 已提交
2935 2936 2937 2938 2939 2940 2941 2942 2943
{
	struct btrfs_disk_key disk_key;
	struct extent_buffer *eb;
	int slot;

	eb = path->nodes[0];
	slot = path->slots[0];
	if (slot > 0) {
		btrfs_item_key(eb, &disk_key, slot - 1);
2944
		BUG_ON(comp_keys(&disk_key, new_key) >= 0);
Z
Zheng Yan 已提交
2945 2946 2947
	}
	if (slot < btrfs_header_nritems(eb) - 1) {
		btrfs_item_key(eb, &disk_key, slot + 1);
2948
		BUG_ON(comp_keys(&disk_key, new_key) <= 0);
Z
Zheng Yan 已提交
2949 2950 2951 2952 2953 2954 2955 2956 2957
	}

	btrfs_cpu_key_to_disk(&disk_key, new_key);
	btrfs_set_item_key(eb, &disk_key, slot);
	btrfs_mark_buffer_dirty(eb);
	if (slot == 0)
		fixup_low_keys(trans, root, path, &disk_key, 1);
}

C
Chris Mason 已提交
2958 2959
/*
 * try to push data from one node into the next node left in the
2960
 * tree.
C
Chris Mason 已提交
2961 2962 2963
 *
 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
 * error, and > 0 if there was no room in the left hand block.
C
Chris Mason 已提交
2964
 */
2965 2966
static int push_node_left(struct btrfs_trans_handle *trans,
			  struct btrfs_root *root, struct extent_buffer *dst,
2967
			  struct extent_buffer *src, int empty)
2968 2969
{
	int push_items = 0;
2970 2971
	int src_nritems;
	int dst_nritems;
C
Chris Mason 已提交
2972
	int ret = 0;
2973

2974 2975
	src_nritems = btrfs_header_nritems(src);
	dst_nritems = btrfs_header_nritems(dst);
C
Chris Mason 已提交
2976
	push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
2977 2978
	WARN_ON(btrfs_header_generation(src) != trans->transid);
	WARN_ON(btrfs_header_generation(dst) != trans->transid);
2979

2980
	if (!empty && src_nritems <= 8)
2981 2982
		return 1;

C
Chris Mason 已提交
2983
	if (push_items <= 0)
2984 2985
		return 1;

2986
	if (empty) {
2987
		push_items = min(src_nritems, push_items);
2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999
		if (push_items < src_nritems) {
			/* leave at least 8 pointers in the node if
			 * we aren't going to empty it
			 */
			if (src_nritems - push_items < 8) {
				if (push_items <= 8)
					return 1;
				push_items -= 8;
			}
		}
	} else
		push_items = min(src_nritems - 8, push_items);
3000

3001 3002
	tree_mod_log_eb_copy(root->fs_info, dst, src, dst_nritems, 0,
			     push_items);
3003 3004 3005
	copy_extent_buffer(dst, src,
			   btrfs_node_key_ptr_offset(dst_nritems),
			   btrfs_node_key_ptr_offset(0),
C
Chris Mason 已提交
3006
			   push_items * sizeof(struct btrfs_key_ptr));
3007

3008
	if (push_items < src_nritems) {
3009 3010 3011 3012
		/*
		 * don't call tree_mod_log_eb_move here, key removal was already
		 * fully logged by tree_mod_log_eb_copy above.
		 */
3013 3014 3015 3016 3017 3018 3019 3020 3021
		memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
				      btrfs_node_key_ptr_offset(push_items),
				      (src_nritems - push_items) *
				      sizeof(struct btrfs_key_ptr));
	}
	btrfs_set_header_nritems(src, src_nritems - push_items);
	btrfs_set_header_nritems(dst, dst_nritems + push_items);
	btrfs_mark_buffer_dirty(src);
	btrfs_mark_buffer_dirty(dst);
Z
Zheng Yan 已提交
3022

3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034
	return ret;
}

/*
 * try to push data from one node into the next node right in the
 * tree.
 *
 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
 * error, and > 0 if there was no room in the right hand block.
 *
 * this will  only push up to 1/2 the contents of the left node over
 */
3035 3036 3037 3038
static int balance_node_right(struct btrfs_trans_handle *trans,
			      struct btrfs_root *root,
			      struct extent_buffer *dst,
			      struct extent_buffer *src)
3039 3040 3041 3042 3043 3044 3045
{
	int push_items = 0;
	int max_push;
	int src_nritems;
	int dst_nritems;
	int ret = 0;

3046 3047 3048
	WARN_ON(btrfs_header_generation(src) != trans->transid);
	WARN_ON(btrfs_header_generation(dst) != trans->transid);

3049 3050
	src_nritems = btrfs_header_nritems(src);
	dst_nritems = btrfs_header_nritems(dst);
C
Chris Mason 已提交
3051
	push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
C
Chris Mason 已提交
3052
	if (push_items <= 0)
3053
		return 1;
3054

C
Chris Mason 已提交
3055
	if (src_nritems < 4)
3056
		return 1;
3057 3058 3059

	max_push = src_nritems / 2 + 1;
	/* don't try to empty the node */
C
Chris Mason 已提交
3060
	if (max_push >= src_nritems)
3061
		return 1;
Y
Yan 已提交
3062

3063 3064 3065
	if (max_push < push_items)
		push_items = max_push;

3066
	tree_mod_log_eb_move(root->fs_info, dst, push_items, 0, dst_nritems);
3067 3068 3069 3070
	memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
				      btrfs_node_key_ptr_offset(0),
				      (dst_nritems) *
				      sizeof(struct btrfs_key_ptr));
C
Chris Mason 已提交
3071

3072 3073
	tree_mod_log_eb_copy(root->fs_info, dst, src, 0,
			     src_nritems - push_items, push_items);
3074 3075 3076
	copy_extent_buffer(dst, src,
			   btrfs_node_key_ptr_offset(0),
			   btrfs_node_key_ptr_offset(src_nritems - push_items),
C
Chris Mason 已提交
3077
			   push_items * sizeof(struct btrfs_key_ptr));
3078

3079 3080
	btrfs_set_header_nritems(src, src_nritems - push_items);
	btrfs_set_header_nritems(dst, dst_nritems + push_items);
3081

3082 3083
	btrfs_mark_buffer_dirty(src);
	btrfs_mark_buffer_dirty(dst);
Z
Zheng Yan 已提交
3084

C
Chris Mason 已提交
3085
	return ret;
3086 3087
}

C
Chris Mason 已提交
3088 3089 3090 3091
/*
 * helper function to insert a new root level in the tree.
 * A new node is allocated, and a single item is inserted to
 * point to the existing root
C
Chris Mason 已提交
3092 3093
 *
 * returns zero on success or < 0 on failure.
C
Chris Mason 已提交
3094
 */
C
Chris Mason 已提交
3095
static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3096 3097
			   struct btrfs_root *root,
			   struct btrfs_path *path, int level)
C
Chris Mason 已提交
3098
{
3099
	u64 lower_gen;
3100 3101
	struct extent_buffer *lower;
	struct extent_buffer *c;
3102
	struct extent_buffer *old;
3103
	struct btrfs_disk_key lower_key;
C
Chris Mason 已提交
3104 3105 3106 3107

	BUG_ON(path->nodes[level]);
	BUG_ON(path->nodes[level-1] != root->node);

3108 3109 3110 3111 3112 3113
	lower = path->nodes[level-1];
	if (level == 1)
		btrfs_item_key(lower, &lower_key, 0);
	else
		btrfs_node_key(lower, &lower_key, 0);

Z
Zheng Yan 已提交
3114
	c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
3115
				   root->root_key.objectid, &lower_key,
3116
				   level, root->node->start, 0);
3117 3118
	if (IS_ERR(c))
		return PTR_ERR(c);
3119

3120 3121
	root_add_used(root, root->nodesize);

3122
	memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
3123 3124
	btrfs_set_header_nritems(c, 1);
	btrfs_set_header_level(c, level);
3125
	btrfs_set_header_bytenr(c, c->start);
3126
	btrfs_set_header_generation(c, trans->transid);
3127
	btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
3128 3129 3130 3131 3132
	btrfs_set_header_owner(c, root->root_key.objectid);

	write_extent_buffer(c, root->fs_info->fsid,
			    (unsigned long)btrfs_header_fsid(c),
			    BTRFS_FSID_SIZE);
3133 3134 3135 3136 3137

	write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
			    (unsigned long)btrfs_header_chunk_tree_uuid(c),
			    BTRFS_UUID_SIZE);

3138
	btrfs_set_node_key(c, &lower_key, 0);
3139
	btrfs_set_node_blockptr(c, 0, lower->start);
3140
	lower_gen = btrfs_header_generation(lower);
Z
Zheng Yan 已提交
3141
	WARN_ON(lower_gen != trans->transid);
3142 3143

	btrfs_set_node_ptr_generation(c, 0, lower_gen);
3144

3145
	btrfs_mark_buffer_dirty(c);
3146

3147
	old = root->node;
3148
	tree_mod_log_set_root_pointer(root, c);
3149
	rcu_assign_pointer(root->node, c);
3150 3151 3152 3153

	/* the super has an extra ref to root->node */
	free_extent_buffer(old);

3154
	add_root_to_dirty_list(root);
3155 3156
	extent_buffer_get(c);
	path->nodes[level] = c;
3157
	path->locks[level] = BTRFS_WRITE_LOCK;
C
Chris Mason 已提交
3158 3159 3160 3161
	path->slots[level] = 0;
	return 0;
}

C
Chris Mason 已提交
3162 3163 3164
/*
 * worker function to insert a single pointer in a node.
 * the node should have enough room for the pointer already
C
Chris Mason 已提交
3165
 *
C
Chris Mason 已提交
3166 3167 3168
 * slot and level indicate where you want the key to go, and
 * blocknr is the block the key points to.
 */
3169 3170 3171
static void insert_ptr(struct btrfs_trans_handle *trans,
		       struct btrfs_root *root, struct btrfs_path *path,
		       struct btrfs_disk_key *key, u64 bytenr,
3172
		       int slot, int level)
C
Chris Mason 已提交
3173
{
3174
	struct extent_buffer *lower;
C
Chris Mason 已提交
3175
	int nritems;
3176
	int ret;
C
Chris Mason 已提交
3177 3178

	BUG_ON(!path->nodes[level]);
3179
	btrfs_assert_tree_locked(path->nodes[level]);
3180 3181
	lower = path->nodes[level];
	nritems = btrfs_header_nritems(lower);
S
Stoyan Gaydarov 已提交
3182
	BUG_ON(slot > nritems);
3183
	BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(root));
C
Chris Mason 已提交
3184
	if (slot != nritems) {
3185
		if (level)
3186 3187
			tree_mod_log_eb_move(root->fs_info, lower, slot + 1,
					     slot, nritems - slot);
3188 3189 3190
		memmove_extent_buffer(lower,
			      btrfs_node_key_ptr_offset(slot + 1),
			      btrfs_node_key_ptr_offset(slot),
C
Chris Mason 已提交
3191
			      (nritems - slot) * sizeof(struct btrfs_key_ptr));
C
Chris Mason 已提交
3192
	}
3193
	if (level) {
3194 3195 3196 3197
		ret = tree_mod_log_insert_key(root->fs_info, lower, slot,
					      MOD_LOG_KEY_ADD);
		BUG_ON(ret < 0);
	}
3198
	btrfs_set_node_key(lower, key, slot);
3199
	btrfs_set_node_blockptr(lower, slot, bytenr);
3200 3201
	WARN_ON(trans->transid == 0);
	btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3202 3203
	btrfs_set_header_nritems(lower, nritems + 1);
	btrfs_mark_buffer_dirty(lower);
C
Chris Mason 已提交
3204 3205
}

C
Chris Mason 已提交
3206 3207 3208 3209 3210 3211
/*
 * split the node at the specified level in path in two.
 * The path is corrected to point to the appropriate node after the split
 *
 * Before splitting this tries to make some room in the node by pushing
 * left and right, if either one works, it returns right away.
C
Chris Mason 已提交
3212 3213
 *
 * returns 0 on success and < 0 on failure
C
Chris Mason 已提交
3214
 */
3215 3216 3217
static noinline int split_node(struct btrfs_trans_handle *trans,
			       struct btrfs_root *root,
			       struct btrfs_path *path, int level)
3218
{
3219 3220 3221
	struct extent_buffer *c;
	struct extent_buffer *split;
	struct btrfs_disk_key disk_key;
3222
	int mid;
C
Chris Mason 已提交
3223
	int ret;
3224
	u32 c_nritems;
3225

3226
	c = path->nodes[level];
3227
	WARN_ON(btrfs_header_generation(c) != trans->transid);
3228
	if (c == root->node) {
C
Chris Mason 已提交
3229
		/* trying to split the root, lets make a new one */
3230
		ret = insert_new_root(trans, root, path, level + 1);
C
Chris Mason 已提交
3231 3232
		if (ret)
			return ret;
3233
	} else {
3234
		ret = push_nodes_for_insert(trans, root, path, level);
3235 3236
		c = path->nodes[level];
		if (!ret && btrfs_header_nritems(c) <
3237
		    BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
3238
			return 0;
3239 3240
		if (ret < 0)
			return ret;
3241
	}
3242

3243
	c_nritems = btrfs_header_nritems(c);
3244 3245
	mid = (c_nritems + 1) / 2;
	btrfs_node_key(c, &disk_key, mid);
3246

3247
	split = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
Z
Zheng Yan 已提交
3248
					root->root_key.objectid,
3249
					&disk_key, level, c->start, 0);
3250 3251 3252
	if (IS_ERR(split))
		return PTR_ERR(split);

3253 3254
	root_add_used(root, root->nodesize);

3255
	memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
3256
	btrfs_set_header_level(split, btrfs_header_level(c));
3257
	btrfs_set_header_bytenr(split, split->start);
3258
	btrfs_set_header_generation(split, trans->transid);
3259
	btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
3260 3261 3262 3263
	btrfs_set_header_owner(split, root->root_key.objectid);
	write_extent_buffer(split, root->fs_info->fsid,
			    (unsigned long)btrfs_header_fsid(split),
			    BTRFS_FSID_SIZE);
3264 3265 3266
	write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
			    (unsigned long)btrfs_header_chunk_tree_uuid(split),
			    BTRFS_UUID_SIZE);
3267

3268
	tree_mod_log_eb_copy(root->fs_info, split, c, 0, mid, c_nritems - mid);
3269 3270 3271 3272 3273 3274
	copy_extent_buffer(split, c,
			   btrfs_node_key_ptr_offset(0),
			   btrfs_node_key_ptr_offset(mid),
			   (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
	btrfs_set_header_nritems(split, c_nritems - mid);
	btrfs_set_header_nritems(c, mid);
C
Chris Mason 已提交
3275 3276
	ret = 0;

3277 3278 3279
	btrfs_mark_buffer_dirty(c);
	btrfs_mark_buffer_dirty(split);

3280
	insert_ptr(trans, root, path, &disk_key, split->start,
3281
		   path->slots[level + 1] + 1, level + 1);
C
Chris Mason 已提交
3282

C
Chris Mason 已提交
3283
	if (path->slots[level] >= mid) {
C
Chris Mason 已提交
3284
		path->slots[level] -= mid;
3285
		btrfs_tree_unlock(c);
3286 3287
		free_extent_buffer(c);
		path->nodes[level] = split;
C
Chris Mason 已提交
3288 3289
		path->slots[level + 1] += 1;
	} else {
3290
		btrfs_tree_unlock(split);
3291
		free_extent_buffer(split);
3292
	}
C
Chris Mason 已提交
3293
	return ret;
3294 3295
}

C
Chris Mason 已提交
3296 3297 3298 3299 3300
/*
 * how many bytes are required to store the items in a leaf.  start
 * and nr indicate which items in the leaf to check.  This totals up the
 * space used both by the item structs and the item data
 */
3301
static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3302 3303
{
	int data_len;
3304
	int nritems = btrfs_header_nritems(l);
3305
	int end = min(nritems, start + nr) - 1;
3306 3307 3308

	if (!nr)
		return 0;
3309 3310
	data_len = btrfs_item_end_nr(l, start);
	data_len = data_len - btrfs_item_offset_nr(l, end);
C
Chris Mason 已提交
3311
	data_len += sizeof(struct btrfs_item) * nr;
3312
	WARN_ON(data_len < 0);
3313 3314 3315
	return data_len;
}

3316 3317 3318 3319 3320
/*
 * The space between the end of the leaf items and
 * the start of the leaf data.  IOW, how much room
 * the leaf has left for both items and data
 */
C
Chris Mason 已提交
3321
noinline int btrfs_leaf_free_space(struct btrfs_root *root,
3322
				   struct extent_buffer *leaf)
3323
{
3324 3325 3326 3327
	int nritems = btrfs_header_nritems(leaf);
	int ret;
	ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
	if (ret < 0) {
C
Chris Mason 已提交
3328 3329
		printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, "
		       "used %d nritems %d\n",
J
Jens Axboe 已提交
3330
		       ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
3331 3332 3333
		       leaf_space_used(leaf, 0, nritems), nritems);
	}
	return ret;
3334 3335
}

3336 3337 3338 3339
/*
 * min slot controls the lowest index we're willing to push to the
 * right.  We'll push up to and including min_slot, but no lower
 */
3340 3341 3342 3343 3344
static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
				      struct btrfs_root *root,
				      struct btrfs_path *path,
				      int data_size, int empty,
				      struct extent_buffer *right,
3345 3346
				      int free_space, u32 left_nritems,
				      u32 min_slot)
C
Chris Mason 已提交
3347
{
3348
	struct extent_buffer *left = path->nodes[0];
3349
	struct extent_buffer *upper = path->nodes[1];
3350
	struct btrfs_map_token token;
3351
	struct btrfs_disk_key disk_key;
C
Chris Mason 已提交
3352
	int slot;
3353
	u32 i;
C
Chris Mason 已提交
3354 3355
	int push_space = 0;
	int push_items = 0;
C
Chris Mason 已提交
3356
	struct btrfs_item *item;
3357
	u32 nr;
3358
	u32 right_nritems;
3359
	u32 data_end;
3360
	u32 this_item_size;
C
Chris Mason 已提交
3361

3362 3363
	btrfs_init_map_token(&token);

3364 3365 3366
	if (empty)
		nr = 0;
	else
3367
		nr = max_t(u32, 1, min_slot);
3368

Z
Zheng Yan 已提交
3369
	if (path->slots[0] >= left_nritems)
3370
		push_space += data_size;
Z
Zheng Yan 已提交
3371

3372
	slot = path->slots[1];
3373 3374
	i = left_nritems - 1;
	while (i >= nr) {
3375
		item = btrfs_item_nr(left, i);
3376

Z
Zheng Yan 已提交
3377 3378 3379 3380 3381 3382 3383 3384 3385 3386
		if (!empty && push_items > 0) {
			if (path->slots[0] > i)
				break;
			if (path->slots[0] == i) {
				int space = btrfs_leaf_free_space(root, left);
				if (space + push_space * 2 > free_space)
					break;
			}
		}

C
Chris Mason 已提交
3387
		if (path->slots[0] == i)
3388
			push_space += data_size;
3389 3390 3391

		this_item_size = btrfs_item_size(left, item);
		if (this_item_size + sizeof(*item) + push_space > free_space)
C
Chris Mason 已提交
3392
			break;
Z
Zheng Yan 已提交
3393

C
Chris Mason 已提交
3394
		push_items++;
3395
		push_space += this_item_size + sizeof(*item);
3396 3397 3398
		if (i == 0)
			break;
		i--;
3399
	}
3400

3401 3402
	if (push_items == 0)
		goto out_unlock;
3403

3404
	if (!empty && push_items == left_nritems)
3405
		WARN_ON(1);
3406

C
Chris Mason 已提交
3407
	/* push left to right */
3408
	right_nritems = btrfs_header_nritems(right);
3409

3410
	push_space = btrfs_item_end_nr(left, left_nritems - push_items);
C
Chris Mason 已提交
3411
	push_space -= leaf_data_end(root, left);
3412

C
Chris Mason 已提交
3413
	/* make room in the right data area */
3414 3415 3416 3417 3418 3419
	data_end = leaf_data_end(root, right);
	memmove_extent_buffer(right,
			      btrfs_leaf_data(right) + data_end - push_space,
			      btrfs_leaf_data(right) + data_end,
			      BTRFS_LEAF_DATA_SIZE(root) - data_end);

C
Chris Mason 已提交
3420
	/* copy from the left data area */
3421
	copy_extent_buffer(right, left, btrfs_leaf_data(right) +
C
Chris Mason 已提交
3422 3423 3424
		     BTRFS_LEAF_DATA_SIZE(root) - push_space,
		     btrfs_leaf_data(left) + leaf_data_end(root, left),
		     push_space);
3425 3426 3427 3428 3429

	memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
			      btrfs_item_nr_offset(0),
			      right_nritems * sizeof(struct btrfs_item));

C
Chris Mason 已提交
3430
	/* copy the items from left to right */
3431 3432 3433
	copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
		   btrfs_item_nr_offset(left_nritems - push_items),
		   push_items * sizeof(struct btrfs_item));
C
Chris Mason 已提交
3434 3435

	/* update the item pointers */
3436
	right_nritems += push_items;
3437
	btrfs_set_header_nritems(right, right_nritems);
C
Chris Mason 已提交
3438
	push_space = BTRFS_LEAF_DATA_SIZE(root);
3439
	for (i = 0; i < right_nritems; i++) {
3440
		item = btrfs_item_nr(right, i);
3441 3442
		push_space -= btrfs_token_item_size(right, item, &token);
		btrfs_set_token_item_offset(right, item, push_space, &token);
3443 3444
	}

3445
	left_nritems -= push_items;
3446
	btrfs_set_header_nritems(left, left_nritems);
C
Chris Mason 已提交
3447

3448 3449
	if (left_nritems)
		btrfs_mark_buffer_dirty(left);
3450 3451 3452
	else
		clean_tree_block(trans, root, left);

3453
	btrfs_mark_buffer_dirty(right);
3454

3455 3456
	btrfs_item_key(right, &disk_key, 0);
	btrfs_set_node_key(upper, &disk_key, slot + 1);
C
Chris Mason 已提交
3457
	btrfs_mark_buffer_dirty(upper);
C
Chris Mason 已提交
3458

C
Chris Mason 已提交
3459
	/* then fixup the leaf pointer in the path */
3460 3461
	if (path->slots[0] >= left_nritems) {
		path->slots[0] -= left_nritems;
3462 3463 3464
		if (btrfs_header_nritems(path->nodes[0]) == 0)
			clean_tree_block(trans, root, path->nodes[0]);
		btrfs_tree_unlock(path->nodes[0]);
3465 3466
		free_extent_buffer(path->nodes[0]);
		path->nodes[0] = right;
C
Chris Mason 已提交
3467 3468
		path->slots[1] += 1;
	} else {
3469
		btrfs_tree_unlock(right);
3470
		free_extent_buffer(right);
C
Chris Mason 已提交
3471 3472
	}
	return 0;
3473 3474 3475 3476 3477

out_unlock:
	btrfs_tree_unlock(right);
	free_extent_buffer(right);
	return 1;
C
Chris Mason 已提交
3478
}
3479

3480 3481 3482 3483 3484 3485
/*
 * push some data in the path leaf to the right, trying to free up at
 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
 *
 * returns 1 if the push failed because the other node didn't have enough
 * room, 0 if everything worked out and < 0 if there were major errors.
3486 3487 3488
 *
 * this will push starting from min_slot to the end of the leaf.  It won't
 * push any slot lower than min_slot
3489 3490
 */
static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3491 3492 3493
			   *root, struct btrfs_path *path,
			   int min_data_size, int data_size,
			   int empty, u32 min_slot)
3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513
{
	struct extent_buffer *left = path->nodes[0];
	struct extent_buffer *right;
	struct extent_buffer *upper;
	int slot;
	int free_space;
	u32 left_nritems;
	int ret;

	if (!path->nodes[1])
		return 1;

	slot = path->slots[1];
	upper = path->nodes[1];
	if (slot >= btrfs_header_nritems(upper) - 1)
		return 1;

	btrfs_assert_tree_locked(path->nodes[1]);

	right = read_node_slot(root, upper, slot + 1);
T
Tsutomu Itoh 已提交
3514 3515 3516
	if (right == NULL)
		return 1;

3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537
	btrfs_tree_lock(right);
	btrfs_set_lock_blocking(right);

	free_space = btrfs_leaf_free_space(root, right);
	if (free_space < data_size)
		goto out_unlock;

	/* cow and double check */
	ret = btrfs_cow_block(trans, root, right, upper,
			      slot + 1, &right);
	if (ret)
		goto out_unlock;

	free_space = btrfs_leaf_free_space(root, right);
	if (free_space < data_size)
		goto out_unlock;

	left_nritems = btrfs_header_nritems(left);
	if (left_nritems == 0)
		goto out_unlock;

3538 3539
	return __push_leaf_right(trans, root, path, min_data_size, empty,
				right, free_space, left_nritems, min_slot);
3540 3541 3542 3543 3544 3545
out_unlock:
	btrfs_tree_unlock(right);
	free_extent_buffer(right);
	return 1;
}

C
Chris Mason 已提交
3546 3547 3548
/*
 * push some data in the path leaf to the left, trying to free up at
 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3549 3550 3551 3552
 *
 * max_slot can put a limit on how far into the leaf we'll push items.  The
 * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
 * items
C
Chris Mason 已提交
3553
 */
3554 3555 3556 3557
static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
				     struct btrfs_root *root,
				     struct btrfs_path *path, int data_size,
				     int empty, struct extent_buffer *left,
3558 3559
				     int free_space, u32 right_nritems,
				     u32 max_slot)
3560
{
3561 3562
	struct btrfs_disk_key disk_key;
	struct extent_buffer *right = path->nodes[0];
3563 3564 3565
	int i;
	int push_space = 0;
	int push_items = 0;
C
Chris Mason 已提交
3566
	struct btrfs_item *item;
3567
	u32 old_left_nritems;
3568
	u32 nr;
C
Chris Mason 已提交
3569
	int ret = 0;
3570 3571
	u32 this_item_size;
	u32 old_left_item_size;
3572 3573 3574
	struct btrfs_map_token token;

	btrfs_init_map_token(&token);
3575

3576
	if (empty)
3577
		nr = min(right_nritems, max_slot);
3578
	else
3579
		nr = min(right_nritems - 1, max_slot);
3580 3581

	for (i = 0; i < nr; i++) {
3582
		item = btrfs_item_nr(right, i);
3583

Z
Zheng Yan 已提交
3584 3585 3586 3587 3588 3589 3590 3591 3592 3593
		if (!empty && push_items > 0) {
			if (path->slots[0] < i)
				break;
			if (path->slots[0] == i) {
				int space = btrfs_leaf_free_space(root, right);
				if (space + push_space * 2 > free_space)
					break;
			}
		}

3594
		if (path->slots[0] == i)
3595
			push_space += data_size;
3596 3597 3598

		this_item_size = btrfs_item_size(right, item);
		if (this_item_size + sizeof(*item) + push_space > free_space)
3599
			break;
3600

3601
		push_items++;
3602 3603 3604
		push_space += this_item_size + sizeof(*item);
	}

3605
	if (push_items == 0) {
3606 3607
		ret = 1;
		goto out;
3608
	}
3609
	if (!empty && push_items == btrfs_header_nritems(right))
3610
		WARN_ON(1);
3611

3612
	/* push data from right to left */
3613 3614 3615 3616 3617
	copy_extent_buffer(left, right,
			   btrfs_item_nr_offset(btrfs_header_nritems(left)),
			   btrfs_item_nr_offset(0),
			   push_items * sizeof(struct btrfs_item));

C
Chris Mason 已提交
3618
	push_space = BTRFS_LEAF_DATA_SIZE(root) -
C
Chris Mason 已提交
3619
		     btrfs_item_offset_nr(right, push_items - 1);
3620 3621

	copy_extent_buffer(left, right, btrfs_leaf_data(left) +
C
Chris Mason 已提交
3622 3623
		     leaf_data_end(root, left) - push_space,
		     btrfs_leaf_data(right) +
3624
		     btrfs_item_offset_nr(right, push_items - 1),
C
Chris Mason 已提交
3625
		     push_space);
3626
	old_left_nritems = btrfs_header_nritems(left);
3627
	BUG_ON(old_left_nritems <= 0);
3628

3629
	old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
C
Chris Mason 已提交
3630
	for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3631
		u32 ioff;
3632

3633
		item = btrfs_item_nr(left, i);
3634

3635 3636 3637 3638
		ioff = btrfs_token_item_offset(left, item, &token);
		btrfs_set_token_item_offset(left, item,
		      ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size),
		      &token);
3639
	}
3640
	btrfs_set_header_nritems(left, old_left_nritems + push_items);
3641 3642

	/* fixup right node */
3643
	if (push_items > right_nritems) {
C
Chris Mason 已提交
3644 3645
		printk(KERN_CRIT "push items %d nr %u\n", push_items,
		       right_nritems);
3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657
		WARN_ON(1);
	}

	if (push_items < right_nritems) {
		push_space = btrfs_item_offset_nr(right, push_items - 1) -
						  leaf_data_end(root, right);
		memmove_extent_buffer(right, btrfs_leaf_data(right) +
				      BTRFS_LEAF_DATA_SIZE(root) - push_space,
				      btrfs_leaf_data(right) +
				      leaf_data_end(root, right), push_space);

		memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3658 3659 3660
			      btrfs_item_nr_offset(push_items),
			     (btrfs_header_nritems(right) - push_items) *
			     sizeof(struct btrfs_item));
3661
	}
3662 3663
	right_nritems -= push_items;
	btrfs_set_header_nritems(right, right_nritems);
C
Chris Mason 已提交
3664
	push_space = BTRFS_LEAF_DATA_SIZE(root);
3665 3666
	for (i = 0; i < right_nritems; i++) {
		item = btrfs_item_nr(right, i);
3667

3668 3669 3670
		push_space = push_space - btrfs_token_item_size(right,
								item, &token);
		btrfs_set_token_item_offset(right, item, push_space, &token);
3671
	}
3672

3673
	btrfs_mark_buffer_dirty(left);
3674 3675
	if (right_nritems)
		btrfs_mark_buffer_dirty(right);
3676 3677
	else
		clean_tree_block(trans, root, right);
3678

3679
	btrfs_item_key(right, &disk_key, 0);
3680
	fixup_low_keys(trans, root, path, &disk_key, 1);
3681 3682 3683 3684

	/* then fixup the leaf pointer in the path */
	if (path->slots[0] < push_items) {
		path->slots[0] += old_left_nritems;
3685
		btrfs_tree_unlock(path->nodes[0]);
3686 3687
		free_extent_buffer(path->nodes[0]);
		path->nodes[0] = left;
3688 3689
		path->slots[1] -= 1;
	} else {
3690
		btrfs_tree_unlock(left);
3691
		free_extent_buffer(left);
3692 3693
		path->slots[0] -= push_items;
	}
3694
	BUG_ON(path->slots[0] < 0);
C
Chris Mason 已提交
3695
	return ret;
3696 3697 3698 3699
out:
	btrfs_tree_unlock(left);
	free_extent_buffer(left);
	return ret;
3700 3701
}

3702 3703 3704
/*
 * push some data in the path leaf to the left, trying to free up at
 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3705 3706 3707 3708
 *
 * max_slot can put a limit on how far into the leaf we'll push items.  The
 * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
 * items
3709 3710
 */
static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3711 3712
			  *root, struct btrfs_path *path, int min_data_size,
			  int data_size, int empty, u32 max_slot)
3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733
{
	struct extent_buffer *right = path->nodes[0];
	struct extent_buffer *left;
	int slot;
	int free_space;
	u32 right_nritems;
	int ret = 0;

	slot = path->slots[1];
	if (slot == 0)
		return 1;
	if (!path->nodes[1])
		return 1;

	right_nritems = btrfs_header_nritems(right);
	if (right_nritems == 0)
		return 1;

	btrfs_assert_tree_locked(path->nodes[1]);

	left = read_node_slot(root, path->nodes[1], slot - 1);
T
Tsutomu Itoh 已提交
3734 3735 3736
	if (left == NULL)
		return 1;

3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750
	btrfs_tree_lock(left);
	btrfs_set_lock_blocking(left);

	free_space = btrfs_leaf_free_space(root, left);
	if (free_space < data_size) {
		ret = 1;
		goto out;
	}

	/* cow and double check */
	ret = btrfs_cow_block(trans, root, left,
			      path->nodes[1], slot - 1, &left);
	if (ret) {
		/* we hit -ENOSPC, but it isn't fatal here */
3751 3752
		if (ret == -ENOSPC)
			ret = 1;
3753 3754 3755 3756 3757 3758 3759 3760 3761
		goto out;
	}

	free_space = btrfs_leaf_free_space(root, left);
	if (free_space < data_size) {
		ret = 1;
		goto out;
	}

3762 3763 3764
	return __push_leaf_left(trans, root, path, min_data_size,
			       empty, left, free_space, right_nritems,
			       max_slot);
3765 3766 3767 3768 3769 3770 3771 3772 3773 3774
out:
	btrfs_tree_unlock(left);
	free_extent_buffer(left);
	return ret;
}

/*
 * split the path's leaf in two, making sure there is at least data_size
 * available for the resulting leaf level of the path.
 */
3775 3776 3777 3778 3779 3780
static noinline void copy_for_split(struct btrfs_trans_handle *trans,
				    struct btrfs_root *root,
				    struct btrfs_path *path,
				    struct extent_buffer *l,
				    struct extent_buffer *right,
				    int slot, int mid, int nritems)
3781 3782 3783 3784 3785
{
	int data_copy_size;
	int rt_data_off;
	int i;
	struct btrfs_disk_key disk_key;
3786 3787 3788
	struct btrfs_map_token token;

	btrfs_init_map_token(&token);
3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809

	nritems = nritems - mid;
	btrfs_set_header_nritems(right, nritems);
	data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);

	copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
			   btrfs_item_nr_offset(mid),
			   nritems * sizeof(struct btrfs_item));

	copy_extent_buffer(right, l,
		     btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
		     data_copy_size, btrfs_leaf_data(l) +
		     leaf_data_end(root, l), data_copy_size);

	rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
		      btrfs_item_end_nr(l, mid);

	for (i = 0; i < nritems; i++) {
		struct btrfs_item *item = btrfs_item_nr(right, i);
		u32 ioff;

3810 3811 3812
		ioff = btrfs_token_item_offset(right, item, &token);
		btrfs_set_token_item_offset(right, item,
					    ioff + rt_data_off, &token);
3813 3814 3815 3816
	}

	btrfs_set_header_nritems(l, mid);
	btrfs_item_key(right, &disk_key, 0);
3817
	insert_ptr(trans, root, path, &disk_key, right->start,
3818
		   path->slots[1] + 1, 1);
3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837

	btrfs_mark_buffer_dirty(right);
	btrfs_mark_buffer_dirty(l);
	BUG_ON(path->slots[0] != slot);

	if (mid <= slot) {
		btrfs_tree_unlock(path->nodes[0]);
		free_extent_buffer(path->nodes[0]);
		path->nodes[0] = right;
		path->slots[0] -= mid;
		path->slots[1] += 1;
	} else {
		btrfs_tree_unlock(right);
		free_extent_buffer(right);
	}

	BUG_ON(path->slots[0] < 0);
}

3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895
/*
 * double splits happen when we need to insert a big item in the middle
 * of a leaf.  A double split can leave us with 3 mostly empty leaves:
 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
 *          A                 B                 C
 *
 * We avoid this by trying to push the items on either side of our target
 * into the adjacent leaves.  If all goes well we can avoid the double split
 * completely.
 */
static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
					  struct btrfs_root *root,
					  struct btrfs_path *path,
					  int data_size)
{
	int ret;
	int progress = 0;
	int slot;
	u32 nritems;

	slot = path->slots[0];

	/*
	 * try to push all the items after our slot into the
	 * right leaf
	 */
	ret = push_leaf_right(trans, root, path, 1, data_size, 0, slot);
	if (ret < 0)
		return ret;

	if (ret == 0)
		progress++;

	nritems = btrfs_header_nritems(path->nodes[0]);
	/*
	 * our goal is to get our slot at the start or end of a leaf.  If
	 * we've done so we're done
	 */
	if (path->slots[0] == 0 || path->slots[0] == nritems)
		return 0;

	if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
		return 0;

	/* try to push all the items before our slot into the next leaf */
	slot = path->slots[0];
	ret = push_leaf_left(trans, root, path, 1, data_size, 0, slot);
	if (ret < 0)
		return ret;

	if (ret == 0)
		progress++;

	if (progress)
		return 0;
	return 1;
}

C
Chris Mason 已提交
3896 3897 3898
/*
 * split the path's leaf in two, making sure there is at least data_size
 * available for the resulting leaf level of the path.
C
Chris Mason 已提交
3899 3900
 *
 * returns 0 if all went well and < 0 on failure.
C
Chris Mason 已提交
3901
 */
3902 3903 3904 3905 3906
static noinline int split_leaf(struct btrfs_trans_handle *trans,
			       struct btrfs_root *root,
			       struct btrfs_key *ins_key,
			       struct btrfs_path *path, int data_size,
			       int extend)
3907
{
3908
	struct btrfs_disk_key disk_key;
3909
	struct extent_buffer *l;
3910
	u32 nritems;
3911 3912
	int mid;
	int slot;
3913
	struct extent_buffer *right;
3914
	int ret = 0;
C
Chris Mason 已提交
3915
	int wret;
3916
	int split;
3917
	int num_doubles = 0;
3918
	int tried_avoid_double = 0;
C
Chris Mason 已提交
3919

3920 3921 3922 3923 3924 3925
	l = path->nodes[0];
	slot = path->slots[0];
	if (extend && data_size + btrfs_item_size_nr(l, slot) +
	    sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
		return -EOVERFLOW;

C
Chris Mason 已提交
3926
	/* first try to make some room by pushing left and right */
3927 3928 3929
	if (data_size) {
		wret = push_leaf_right(trans, root, path, data_size,
				       data_size, 0, 0);
C
Chris Mason 已提交
3930
		if (wret < 0)
C
Chris Mason 已提交
3931
			return wret;
3932
		if (wret) {
3933 3934
			wret = push_leaf_left(trans, root, path, data_size,
					      data_size, 0, (u32)-1);
3935 3936 3937 3938
			if (wret < 0)
				return wret;
		}
		l = path->nodes[0];
C
Chris Mason 已提交
3939

3940
		/* did the pushes work? */
3941
		if (btrfs_leaf_free_space(root, l) >= data_size)
3942
			return 0;
3943
	}
C
Chris Mason 已提交
3944

C
Chris Mason 已提交
3945
	if (!path->nodes[1]) {
3946
		ret = insert_new_root(trans, root, path, 1);
C
Chris Mason 已提交
3947 3948 3949
		if (ret)
			return ret;
	}
3950
again:
3951
	split = 1;
3952
	l = path->nodes[0];
3953
	slot = path->slots[0];
3954
	nritems = btrfs_header_nritems(l);
C
Chris Mason 已提交
3955
	mid = (nritems + 1) / 2;
3956

3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967
	if (mid <= slot) {
		if (nritems == 1 ||
		    leaf_space_used(l, mid, nritems - mid) + data_size >
			BTRFS_LEAF_DATA_SIZE(root)) {
			if (slot >= nritems) {
				split = 0;
			} else {
				mid = slot;
				if (mid != nritems &&
				    leaf_space_used(l, mid, nritems - mid) +
				    data_size > BTRFS_LEAF_DATA_SIZE(root)) {
3968 3969
					if (data_size && !tried_avoid_double)
						goto push_for_double;
3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985
					split = 2;
				}
			}
		}
	} else {
		if (leaf_space_used(l, 0, mid) + data_size >
			BTRFS_LEAF_DATA_SIZE(root)) {
			if (!extend && data_size && slot == 0) {
				split = 0;
			} else if ((extend || !data_size) && slot == 0) {
				mid = 1;
			} else {
				mid = slot;
				if (mid != nritems &&
				    leaf_space_used(l, mid, nritems - mid) +
				    data_size > BTRFS_LEAF_DATA_SIZE(root)) {
3986 3987
					if (data_size && !tried_avoid_double)
						goto push_for_double;
3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999
					split = 2 ;
				}
			}
		}
	}

	if (split == 0)
		btrfs_cpu_key_to_disk(&disk_key, ins_key);
	else
		btrfs_item_key(l, &disk_key, mid);

	right = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
Z
Zheng Yan 已提交
4000
					root->root_key.objectid,
4001
					&disk_key, 0, l->start, 0);
4002
	if (IS_ERR(right))
4003
		return PTR_ERR(right);
4004 4005

	root_add_used(root, root->leafsize);
4006 4007

	memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
4008
	btrfs_set_header_bytenr(right, right->start);
4009
	btrfs_set_header_generation(right, trans->transid);
4010
	btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
4011 4012 4013 4014 4015
	btrfs_set_header_owner(right, root->root_key.objectid);
	btrfs_set_header_level(right, 0);
	write_extent_buffer(right, root->fs_info->fsid,
			    (unsigned long)btrfs_header_fsid(right),
			    BTRFS_FSID_SIZE);
4016 4017 4018 4019

	write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
			    (unsigned long)btrfs_header_chunk_tree_uuid(right),
			    BTRFS_UUID_SIZE);
4020

4021 4022 4023
	if (split == 0) {
		if (mid <= slot) {
			btrfs_set_header_nritems(right, 0);
4024
			insert_ptr(trans, root, path, &disk_key, right->start,
4025
				   path->slots[1] + 1, 1);
4026 4027 4028 4029 4030 4031 4032
			btrfs_tree_unlock(path->nodes[0]);
			free_extent_buffer(path->nodes[0]);
			path->nodes[0] = right;
			path->slots[0] = 0;
			path->slots[1] += 1;
		} else {
			btrfs_set_header_nritems(right, 0);
4033
			insert_ptr(trans, root, path, &disk_key, right->start,
4034
					  path->slots[1], 1);
4035 4036 4037 4038
			btrfs_tree_unlock(path->nodes[0]);
			free_extent_buffer(path->nodes[0]);
			path->nodes[0] = right;
			path->slots[0] = 0;
4039 4040 4041
			if (path->slots[1] == 0)
				fixup_low_keys(trans, root, path,
					       &disk_key, 1);
4042
		}
4043 4044
		btrfs_mark_buffer_dirty(right);
		return ret;
4045
	}
C
Chris Mason 已提交
4046

4047
	copy_for_split(trans, root, path, l, right, slot, mid, nritems);
Z
Zheng Yan 已提交
4048

4049
	if (split == 2) {
4050 4051 4052
		BUG_ON(num_doubles != 0);
		num_doubles++;
		goto again;
4053
	}
4054

4055
	return 0;
4056 4057 4058 4059 4060 4061 4062

push_for_double:
	push_for_double_split(trans, root, path, data_size);
	tried_avoid_double = 1;
	if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
		return 0;
	goto again;
4063 4064
}

Y
Yan, Zheng 已提交
4065 4066 4067
static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
					 struct btrfs_root *root,
					 struct btrfs_path *path, int ins_len)
4068
{
Y
Yan, Zheng 已提交
4069
	struct btrfs_key key;
4070
	struct extent_buffer *leaf;
Y
Yan, Zheng 已提交
4071 4072 4073 4074
	struct btrfs_file_extent_item *fi;
	u64 extent_len = 0;
	u32 item_size;
	int ret;
4075 4076

	leaf = path->nodes[0];
Y
Yan, Zheng 已提交
4077 4078 4079 4080 4081 4082 4083
	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);

	BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
	       key.type != BTRFS_EXTENT_CSUM_KEY);

	if (btrfs_leaf_free_space(root, leaf) >= ins_len)
		return 0;
4084 4085

	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
Y
Yan, Zheng 已提交
4086 4087 4088 4089 4090
	if (key.type == BTRFS_EXTENT_DATA_KEY) {
		fi = btrfs_item_ptr(leaf, path->slots[0],
				    struct btrfs_file_extent_item);
		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
	}
4091
	btrfs_release_path(path);
4092 4093

	path->keep_locks = 1;
Y
Yan, Zheng 已提交
4094 4095
	path->search_for_split = 1;
	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4096
	path->search_for_split = 0;
Y
Yan, Zheng 已提交
4097 4098
	if (ret < 0)
		goto err;
4099

Y
Yan, Zheng 已提交
4100 4101
	ret = -EAGAIN;
	leaf = path->nodes[0];
4102
	/* if our item isn't there or got smaller, return now */
Y
Yan, Zheng 已提交
4103 4104 4105
	if (ret > 0 || item_size != btrfs_item_size_nr(leaf, path->slots[0]))
		goto err;

4106 4107 4108 4109
	/* the leaf has  changed, it now has room.  return now */
	if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
		goto err;

Y
Yan, Zheng 已提交
4110 4111 4112 4113 4114
	if (key.type == BTRFS_EXTENT_DATA_KEY) {
		fi = btrfs_item_ptr(leaf, path->slots[0],
				    struct btrfs_file_extent_item);
		if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
			goto err;
4115 4116
	}

4117
	btrfs_set_path_blocking(path);
Y
Yan, Zheng 已提交
4118
	ret = split_leaf(trans, root, &key, path, ins_len, 1);
4119 4120
	if (ret)
		goto err;
4121

Y
Yan, Zheng 已提交
4122
	path->keep_locks = 0;
4123
	btrfs_unlock_up_safe(path, 1);
Y
Yan, Zheng 已提交
4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145
	return 0;
err:
	path->keep_locks = 0;
	return ret;
}

static noinline int split_item(struct btrfs_trans_handle *trans,
			       struct btrfs_root *root,
			       struct btrfs_path *path,
			       struct btrfs_key *new_key,
			       unsigned long split_offset)
{
	struct extent_buffer *leaf;
	struct btrfs_item *item;
	struct btrfs_item *new_item;
	int slot;
	char *buf;
	u32 nritems;
	u32 item_size;
	u32 orig_offset;
	struct btrfs_disk_key disk_key;

4146 4147 4148
	leaf = path->nodes[0];
	BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));

4149 4150
	btrfs_set_path_blocking(path);

4151 4152 4153 4154 4155
	item = btrfs_item_nr(leaf, path->slots[0]);
	orig_offset = btrfs_item_offset(leaf, item);
	item_size = btrfs_item_size(leaf, item);

	buf = kmalloc(item_size, GFP_NOFS);
Y
Yan, Zheng 已提交
4156 4157 4158
	if (!buf)
		return -ENOMEM;

4159 4160 4161
	read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
			    path->slots[0]), item_size);

Y
Yan, Zheng 已提交
4162
	slot = path->slots[0] + 1;
4163 4164 4165 4166
	nritems = btrfs_header_nritems(leaf);
	if (slot != nritems) {
		/* shift the items */
		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
Y
Yan, Zheng 已提交
4167 4168
				btrfs_item_nr_offset(slot),
				(nritems - slot) * sizeof(struct btrfs_item));
4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195
	}

	btrfs_cpu_key_to_disk(&disk_key, new_key);
	btrfs_set_item_key(leaf, &disk_key, slot);

	new_item = btrfs_item_nr(leaf, slot);

	btrfs_set_item_offset(leaf, new_item, orig_offset);
	btrfs_set_item_size(leaf, new_item, item_size - split_offset);

	btrfs_set_item_offset(leaf, item,
			      orig_offset + item_size - split_offset);
	btrfs_set_item_size(leaf, item, split_offset);

	btrfs_set_header_nritems(leaf, nritems + 1);

	/* write the data for the start of the original item */
	write_extent_buffer(leaf, buf,
			    btrfs_item_ptr_offset(leaf, path->slots[0]),
			    split_offset);

	/* write the data for the new item */
	write_extent_buffer(leaf, buf + split_offset,
			    btrfs_item_ptr_offset(leaf, slot),
			    item_size - split_offset);
	btrfs_mark_buffer_dirty(leaf);

Y
Yan, Zheng 已提交
4196
	BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
4197
	kfree(buf);
Y
Yan, Zheng 已提交
4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228
	return 0;
}

/*
 * This function splits a single item into two items,
 * giving 'new_key' to the new item and splitting the
 * old one at split_offset (from the start of the item).
 *
 * The path may be released by this operation.  After
 * the split, the path is pointing to the old item.  The
 * new item is going to be in the same node as the old one.
 *
 * Note, the item being split must be smaller enough to live alone on
 * a tree block with room for one extra struct btrfs_item
 *
 * This allows us to split the item in place, keeping a lock on the
 * leaf the entire time.
 */
int btrfs_split_item(struct btrfs_trans_handle *trans,
		     struct btrfs_root *root,
		     struct btrfs_path *path,
		     struct btrfs_key *new_key,
		     unsigned long split_offset)
{
	int ret;
	ret = setup_leaf_for_split(trans, root, path,
				   sizeof(struct btrfs_item));
	if (ret)
		return ret;

	ret = split_item(trans, root, path, new_key, split_offset);
4229 4230 4231
	return ret;
}

Y
Yan, Zheng 已提交
4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256
/*
 * This function duplicate a item, giving 'new_key' to the new item.
 * It guarantees both items live in the same tree leaf and the new item
 * is contiguous with the original item.
 *
 * This allows us to split file extent in place, keeping a lock on the
 * leaf the entire time.
 */
int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
			 struct btrfs_root *root,
			 struct btrfs_path *path,
			 struct btrfs_key *new_key)
{
	struct extent_buffer *leaf;
	int ret;
	u32 item_size;

	leaf = path->nodes[0];
	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
	ret = setup_leaf_for_split(trans, root, path,
				   item_size + sizeof(struct btrfs_item));
	if (ret)
		return ret;

	path->slots[0]++;
4257 4258 4259
	setup_items_for_insert(trans, root, path, new_key, &item_size,
			       item_size, item_size +
			       sizeof(struct btrfs_item), 1);
Y
Yan, Zheng 已提交
4260 4261 4262 4263 4264 4265 4266 4267
	leaf = path->nodes[0];
	memcpy_extent_buffer(leaf,
			     btrfs_item_ptr_offset(leaf, path->slots[0]),
			     btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
			     item_size);
	return 0;
}

C
Chris Mason 已提交
4268 4269 4270 4271 4272 4273
/*
 * make the item pointed to by the path smaller.  new_size indicates
 * how small to make it, and from_end tells us if we just chop bytes
 * off the end of the item or if we shift the item to chop bytes off
 * the front.
 */
4274 4275 4276 4277
void btrfs_truncate_item(struct btrfs_trans_handle *trans,
			 struct btrfs_root *root,
			 struct btrfs_path *path,
			 u32 new_size, int from_end)
C
Chris Mason 已提交
4278 4279
{
	int slot;
4280 4281
	struct extent_buffer *leaf;
	struct btrfs_item *item;
C
Chris Mason 已提交
4282 4283 4284 4285 4286 4287
	u32 nritems;
	unsigned int data_end;
	unsigned int old_data_start;
	unsigned int old_size;
	unsigned int size_diff;
	int i;
4288 4289 4290
	struct btrfs_map_token token;

	btrfs_init_map_token(&token);
C
Chris Mason 已提交
4291

4292
	leaf = path->nodes[0];
4293 4294 4295 4296
	slot = path->slots[0];

	old_size = btrfs_item_size_nr(leaf, slot);
	if (old_size == new_size)
4297
		return;
C
Chris Mason 已提交
4298

4299
	nritems = btrfs_header_nritems(leaf);
C
Chris Mason 已提交
4300 4301
	data_end = leaf_data_end(root, leaf);

4302
	old_data_start = btrfs_item_offset_nr(leaf, slot);
4303

C
Chris Mason 已提交
4304 4305 4306 4307 4308 4309 4310 4311 4312 4313
	size_diff = old_size - new_size;

	BUG_ON(slot < 0);
	BUG_ON(slot >= nritems);

	/*
	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
	 */
	/* first correct the data pointers */
	for (i = slot; i < nritems; i++) {
4314 4315
		u32 ioff;
		item = btrfs_item_nr(leaf, i);
4316

4317 4318 4319
		ioff = btrfs_token_item_offset(leaf, item, &token);
		btrfs_set_token_item_offset(leaf, item,
					    ioff + size_diff, &token);
C
Chris Mason 已提交
4320
	}
4321

C
Chris Mason 已提交
4322
	/* shift the data */
4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345
	if (from_end) {
		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
			      data_end + size_diff, btrfs_leaf_data(leaf) +
			      data_end, old_data_start + new_size - data_end);
	} else {
		struct btrfs_disk_key disk_key;
		u64 offset;

		btrfs_item_key(leaf, &disk_key, slot);

		if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
			unsigned long ptr;
			struct btrfs_file_extent_item *fi;

			fi = btrfs_item_ptr(leaf, slot,
					    struct btrfs_file_extent_item);
			fi = (struct btrfs_file_extent_item *)(
			     (unsigned long)fi - size_diff);

			if (btrfs_file_extent_type(leaf, fi) ==
			    BTRFS_FILE_EXTENT_INLINE) {
				ptr = btrfs_item_ptr_offset(leaf, slot);
				memmove_extent_buffer(leaf, ptr,
C
Chris Mason 已提交
4346 4347
				      (unsigned long)fi,
				      offsetof(struct btrfs_file_extent_item,
4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361
						 disk_bytenr));
			}
		}

		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
			      data_end + size_diff, btrfs_leaf_data(leaf) +
			      data_end, old_data_start - data_end);

		offset = btrfs_disk_key_offset(&disk_key);
		btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
		btrfs_set_item_key(leaf, &disk_key, slot);
		if (slot == 0)
			fixup_low_keys(trans, root, path, &disk_key, 1);
	}
4362 4363 4364 4365

	item = btrfs_item_nr(leaf, slot);
	btrfs_set_item_size(leaf, item, new_size);
	btrfs_mark_buffer_dirty(leaf);
C
Chris Mason 已提交
4366

4367 4368
	if (btrfs_leaf_free_space(root, leaf) < 0) {
		btrfs_print_leaf(root, leaf);
C
Chris Mason 已提交
4369
		BUG();
4370
	}
C
Chris Mason 已提交
4371 4372
}

C
Chris Mason 已提交
4373 4374 4375
/*
 * make the item pointed to by the path bigger, data_size is the new size.
 */
4376 4377 4378
void btrfs_extend_item(struct btrfs_trans_handle *trans,
		       struct btrfs_root *root, struct btrfs_path *path,
		       u32 data_size)
4379 4380
{
	int slot;
4381 4382
	struct extent_buffer *leaf;
	struct btrfs_item *item;
4383 4384 4385 4386 4387
	u32 nritems;
	unsigned int data_end;
	unsigned int old_data;
	unsigned int old_size;
	int i;
4388 4389 4390
	struct btrfs_map_token token;

	btrfs_init_map_token(&token);
4391

4392
	leaf = path->nodes[0];
4393

4394
	nritems = btrfs_header_nritems(leaf);
4395 4396
	data_end = leaf_data_end(root, leaf);

4397 4398
	if (btrfs_leaf_free_space(root, leaf) < data_size) {
		btrfs_print_leaf(root, leaf);
4399
		BUG();
4400
	}
4401
	slot = path->slots[0];
4402
	old_data = btrfs_item_end_nr(leaf, slot);
4403 4404

	BUG_ON(slot < 0);
4405 4406
	if (slot >= nritems) {
		btrfs_print_leaf(root, leaf);
C
Chris Mason 已提交
4407 4408
		printk(KERN_CRIT "slot %d too large, nritems %d\n",
		       slot, nritems);
4409 4410
		BUG_ON(1);
	}
4411 4412 4413 4414 4415 4416

	/*
	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
	 */
	/* first correct the data pointers */
	for (i = slot; i < nritems; i++) {
4417 4418
		u32 ioff;
		item = btrfs_item_nr(leaf, i);
4419

4420 4421 4422
		ioff = btrfs_token_item_offset(leaf, item, &token);
		btrfs_set_token_item_offset(leaf, item,
					    ioff - data_size, &token);
4423
	}
4424

4425
	/* shift the data */
4426
	memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4427 4428
		      data_end - data_size, btrfs_leaf_data(leaf) +
		      data_end, old_data - data_end);
4429

4430
	data_end = old_data;
4431 4432 4433 4434
	old_size = btrfs_item_size_nr(leaf, slot);
	item = btrfs_item_nr(leaf, slot);
	btrfs_set_item_size(leaf, item, old_size + data_size);
	btrfs_mark_buffer_dirty(leaf);
4435

4436 4437
	if (btrfs_leaf_free_space(root, leaf) < 0) {
		btrfs_print_leaf(root, leaf);
4438
		BUG();
4439
	}
4440 4441
}

C
Chris Mason 已提交
4442
/*
4443 4444 4445
 * this is a helper for btrfs_insert_empty_items, the main goal here is
 * to save stack depth by doing the bulk of the work in a function
 * that doesn't call btrfs_search_slot
C
Chris Mason 已提交
4446
 */
4447 4448 4449 4450
void setup_items_for_insert(struct btrfs_trans_handle *trans,
			    struct btrfs_root *root, struct btrfs_path *path,
			    struct btrfs_key *cpu_key, u32 *data_size,
			    u32 total_data, u32 total_size, int nr)
4451
{
4452
	struct btrfs_item *item;
4453
	int i;
4454
	u32 nritems;
4455
	unsigned int data_end;
C
Chris Mason 已提交
4456
	struct btrfs_disk_key disk_key;
4457 4458
	struct extent_buffer *leaf;
	int slot;
4459 4460 4461
	struct btrfs_map_token token;

	btrfs_init_map_token(&token);
C
Chris Mason 已提交
4462

4463
	leaf = path->nodes[0];
4464
	slot = path->slots[0];
C
Chris Mason 已提交
4465

4466
	nritems = btrfs_header_nritems(leaf);
C
Chris Mason 已提交
4467
	data_end = leaf_data_end(root, leaf);
4468

4469
	if (btrfs_leaf_free_space(root, leaf) < total_size) {
4470
		btrfs_print_leaf(root, leaf);
C
Chris Mason 已提交
4471
		printk(KERN_CRIT "not enough freespace need %u have %d\n",
4472
		       total_size, btrfs_leaf_free_space(root, leaf));
4473
		BUG();
4474
	}
4475

4476
	if (slot != nritems) {
4477
		unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4478

4479 4480
		if (old_data < data_end) {
			btrfs_print_leaf(root, leaf);
C
Chris Mason 已提交
4481
			printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
4482 4483 4484
			       slot, old_data, data_end);
			BUG_ON(1);
		}
4485 4486 4487 4488
		/*
		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
		 */
		/* first correct the data pointers */
C
Chris Mason 已提交
4489
		for (i = slot; i < nritems; i++) {
4490
			u32 ioff;
4491

4492
			item = btrfs_item_nr(leaf, i);
4493 4494 4495
			ioff = btrfs_token_item_offset(leaf, item, &token);
			btrfs_set_token_item_offset(leaf, item,
						    ioff - total_data, &token);
C
Chris Mason 已提交
4496
		}
4497
		/* shift the items */
4498
		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4499
			      btrfs_item_nr_offset(slot),
C
Chris Mason 已提交
4500
			      (nritems - slot) * sizeof(struct btrfs_item));
4501 4502

		/* shift the data */
4503
		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4504
			      data_end - total_data, btrfs_leaf_data(leaf) +
C
Chris Mason 已提交
4505
			      data_end, old_data - data_end);
4506 4507
		data_end = old_data;
	}
4508

4509
	/* setup the item for the new data */
4510 4511 4512 4513
	for (i = 0; i < nr; i++) {
		btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
		btrfs_set_item_key(leaf, &disk_key, slot + i);
		item = btrfs_item_nr(leaf, slot + i);
4514 4515
		btrfs_set_token_item_offset(leaf, item,
					    data_end - data_size[i], &token);
4516
		data_end -= data_size[i];
4517
		btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4518
	}
4519

4520
	btrfs_set_header_nritems(leaf, nritems + nr);
C
Chris Mason 已提交
4521

4522 4523
	if (slot == 0) {
		btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4524
		fixup_low_keys(trans, root, path, &disk_key, 1);
4525
	}
4526 4527
	btrfs_unlock_up_safe(path, 1);
	btrfs_mark_buffer_dirty(leaf);
C
Chris Mason 已提交
4528

4529 4530
	if (btrfs_leaf_free_space(root, leaf) < 0) {
		btrfs_print_leaf(root, leaf);
4531
		BUG();
4532
	}
4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558
}

/*
 * Given a key and some data, insert items into the tree.
 * This does all the path init required, making room in the tree if needed.
 */
int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
			    struct btrfs_root *root,
			    struct btrfs_path *path,
			    struct btrfs_key *cpu_key, u32 *data_size,
			    int nr)
{
	int ret = 0;
	int slot;
	int i;
	u32 total_size = 0;
	u32 total_data = 0;

	for (i = 0; i < nr; i++)
		total_data += data_size[i];

	total_size = total_data + (nr * sizeof(struct btrfs_item));
	ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
	if (ret == 0)
		return -EEXIST;
	if (ret < 0)
4559
		return ret;
4560 4561 4562 4563

	slot = path->slots[0];
	BUG_ON(slot < 0);

4564
	setup_items_for_insert(trans, root, path, cpu_key, data_size,
4565
			       total_data, total_size, nr);
4566
	return 0;
4567 4568 4569 4570 4571 4572
}

/*
 * Given a key and some data, insert an item into the tree.
 * This does all the path init required, making room in the tree if needed.
 */
4573 4574 4575
int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
		      *root, struct btrfs_key *cpu_key, void *data, u32
		      data_size)
4576 4577
{
	int ret = 0;
C
Chris Mason 已提交
4578
	struct btrfs_path *path;
4579 4580
	struct extent_buffer *leaf;
	unsigned long ptr;
4581

C
Chris Mason 已提交
4582
	path = btrfs_alloc_path();
T
Tsutomu Itoh 已提交
4583 4584
	if (!path)
		return -ENOMEM;
C
Chris Mason 已提交
4585
	ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4586
	if (!ret) {
4587 4588 4589 4590
		leaf = path->nodes[0];
		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
		write_extent_buffer(leaf, data, ptr, data_size);
		btrfs_mark_buffer_dirty(leaf);
4591
	}
C
Chris Mason 已提交
4592
	btrfs_free_path(path);
C
Chris Mason 已提交
4593
	return ret;
4594 4595
}

C
Chris Mason 已提交
4596
/*
C
Chris Mason 已提交
4597
 * delete the pointer from a given node.
C
Chris Mason 已提交
4598
 *
C
Chris Mason 已提交
4599 4600
 * the tree should have been previously balanced so the deletion does not
 * empty a node.
C
Chris Mason 已提交
4601
 */
4602
static void del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4603 4604
		    struct btrfs_path *path, int level, int slot,
		    int tree_mod_log)
4605
{
4606
	struct extent_buffer *parent = path->nodes[level];
4607
	u32 nritems;
4608
	int ret;
4609

4610
	nritems = btrfs_header_nritems(parent);
C
Chris Mason 已提交
4611
	if (slot != nritems - 1) {
4612 4613 4614
		if (tree_mod_log && level)
			tree_mod_log_eb_move(root->fs_info, parent, slot,
					     slot + 1, nritems - slot - 1);
4615 4616 4617
		memmove_extent_buffer(parent,
			      btrfs_node_key_ptr_offset(slot),
			      btrfs_node_key_ptr_offset(slot + 1),
C
Chris Mason 已提交
4618 4619
			      sizeof(struct btrfs_key_ptr) *
			      (nritems - slot - 1));
J
Jan Schmidt 已提交
4620
	} else if (tree_mod_log && level) {
4621 4622 4623
		ret = tree_mod_log_insert_key(root->fs_info, parent, slot,
					      MOD_LOG_KEY_REMOVE);
		BUG_ON(ret < 0);
4624
	}
4625

4626
	nritems--;
4627
	btrfs_set_header_nritems(parent, nritems);
4628
	if (nritems == 0 && parent == root->node) {
4629
		BUG_ON(btrfs_header_level(root->node) != 1);
4630
		/* just turn the root into a leaf and break */
4631
		btrfs_set_header_level(root->node, 0);
4632
	} else if (slot == 0) {
4633 4634 4635
		struct btrfs_disk_key disk_key;

		btrfs_node_key(parent, &disk_key, 0);
4636
		fixup_low_keys(trans, root, path, &disk_key, level + 1);
4637
	}
C
Chris Mason 已提交
4638
	btrfs_mark_buffer_dirty(parent);
4639 4640
}

4641 4642
/*
 * a helper function to delete the leaf pointed to by path->slots[1] and
4643
 * path->nodes[1].
4644 4645 4646 4647 4648 4649 4650
 *
 * This deletes the pointer in path->nodes[1] and frees the leaf
 * block extent.  zero is returned if it all worked out, < 0 otherwise.
 *
 * The path must have already been setup for deleting the leaf, including
 * all the proper balancing.  path->nodes[1] must be locked.
 */
4651 4652 4653 4654
static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
				    struct btrfs_root *root,
				    struct btrfs_path *path,
				    struct extent_buffer *leaf)
4655
{
4656
	WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4657
	del_ptr(trans, root, path, 1, path->slots[1], 1);
4658

4659 4660 4661 4662 4663 4664
	/*
	 * btrfs_free_extent is expensive, we want to make sure we
	 * aren't holding any locks when we call it
	 */
	btrfs_unlock_up_safe(path, 0);

4665 4666
	root_sub_used(root, leaf->len);

4667
	extent_buffer_get(leaf);
4668
	btrfs_free_tree_block(trans, root, leaf, 0, 1);
4669
	free_extent_buffer_stale(leaf);
4670
}
C
Chris Mason 已提交
4671 4672 4673 4674
/*
 * delete the item at the leaf level in path.  If that empties
 * the leaf, remove it from the tree
 */
4675 4676
int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
		    struct btrfs_path *path, int slot, int nr)
4677
{
4678 4679
	struct extent_buffer *leaf;
	struct btrfs_item *item;
4680 4681
	int last_off;
	int dsize = 0;
C
Chris Mason 已提交
4682 4683
	int ret = 0;
	int wret;
4684
	int i;
4685
	u32 nritems;
4686 4687 4688
	struct btrfs_map_token token;

	btrfs_init_map_token(&token);
4689

4690
	leaf = path->nodes[0];
4691 4692 4693 4694 4695
	last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);

	for (i = 0; i < nr; i++)
		dsize += btrfs_item_size_nr(leaf, slot + i);

4696
	nritems = btrfs_header_nritems(leaf);
4697

4698
	if (slot + nr != nritems) {
C
Chris Mason 已提交
4699
		int data_end = leaf_data_end(root, leaf);
4700 4701

		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
C
Chris Mason 已提交
4702 4703
			      data_end + dsize,
			      btrfs_leaf_data(leaf) + data_end,
4704
			      last_off - data_end);
4705

4706
		for (i = slot + nr; i < nritems; i++) {
4707
			u32 ioff;
4708

4709
			item = btrfs_item_nr(leaf, i);
4710 4711 4712
			ioff = btrfs_token_item_offset(leaf, item, &token);
			btrfs_set_token_item_offset(leaf, item,
						    ioff + dsize, &token);
C
Chris Mason 已提交
4713
		}
4714

4715
		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4716
			      btrfs_item_nr_offset(slot + nr),
C
Chris Mason 已提交
4717
			      sizeof(struct btrfs_item) *
4718
			      (nritems - slot - nr));
4719
	}
4720 4721
	btrfs_set_header_nritems(leaf, nritems - nr);
	nritems -= nr;
4722

C
Chris Mason 已提交
4723
	/* delete the leaf if we've emptied it */
4724
	if (nritems == 0) {
4725 4726
		if (leaf == root->node) {
			btrfs_set_header_level(leaf, 0);
4727
		} else {
4728 4729
			btrfs_set_path_blocking(path);
			clean_tree_block(trans, root, leaf);
4730
			btrfs_del_leaf(trans, root, path, leaf);
4731
		}
4732
	} else {
4733
		int used = leaf_space_used(leaf, 0, nritems);
C
Chris Mason 已提交
4734
		if (slot == 0) {
4735 4736 4737
			struct btrfs_disk_key disk_key;

			btrfs_item_key(leaf, &disk_key, 0);
4738
			fixup_low_keys(trans, root, path, &disk_key, 1);
C
Chris Mason 已提交
4739 4740
		}

C
Chris Mason 已提交
4741
		/* delete the leaf if it is mostly empty */
4742
		if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
4743 4744 4745 4746
			/* push_leaf_left fixes the path.
			 * make sure the path still points to our leaf
			 * for possible call to del_ptr below
			 */
4747
			slot = path->slots[1];
4748 4749
			extent_buffer_get(leaf);

4750
			btrfs_set_path_blocking(path);
4751 4752
			wret = push_leaf_left(trans, root, path, 1, 1,
					      1, (u32)-1);
4753
			if (wret < 0 && wret != -ENOSPC)
C
Chris Mason 已提交
4754
				ret = wret;
4755 4756 4757

			if (path->nodes[0] == leaf &&
			    btrfs_header_nritems(leaf)) {
4758 4759
				wret = push_leaf_right(trans, root, path, 1,
						       1, 1, 0);
4760
				if (wret < 0 && wret != -ENOSPC)
C
Chris Mason 已提交
4761 4762
					ret = wret;
			}
4763 4764

			if (btrfs_header_nritems(leaf) == 0) {
4765
				path->slots[1] = slot;
4766
				btrfs_del_leaf(trans, root, path, leaf);
4767
				free_extent_buffer(leaf);
4768
				ret = 0;
C
Chris Mason 已提交
4769
			} else {
4770 4771 4772 4773 4774 4775 4776
				/* if we're still in the path, make sure
				 * we're dirty.  Otherwise, one of the
				 * push_leaf functions must have already
				 * dirtied this buffer
				 */
				if (path->nodes[0] == leaf)
					btrfs_mark_buffer_dirty(leaf);
4777
				free_extent_buffer(leaf);
4778
			}
4779
		} else {
4780
			btrfs_mark_buffer_dirty(leaf);
4781 4782
		}
	}
C
Chris Mason 已提交
4783
	return ret;
4784 4785
}

4786
/*
4787
 * search the tree again to find a leaf with lesser keys
4788 4789
 * returns 0 if it found something or 1 if there are no lesser leaves.
 * returns < 0 on io errors.
C
Chris Mason 已提交
4790 4791 4792
 *
 * This may release the path, and so you may lose any locks held at the
 * time you call it.
4793 4794 4795
 */
int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
{
4796 4797 4798
	struct btrfs_key key;
	struct btrfs_disk_key found_key;
	int ret;
4799

4800
	btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
4801

4802 4803 4804 4805 4806 4807 4808 4809
	if (key.offset > 0)
		key.offset--;
	else if (key.type > 0)
		key.type--;
	else if (key.objectid > 0)
		key.objectid--;
	else
		return 1;
4810

4811
	btrfs_release_path(path);
4812 4813 4814 4815 4816 4817 4818 4819
	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	if (ret < 0)
		return ret;
	btrfs_item_key(path->nodes[0], &found_key, 0);
	ret = comp_keys(&found_key, &key);
	if (ret < 0)
		return 0;
	return 1;
4820 4821
}

4822 4823 4824
/*
 * A helper function to walk down the tree starting at min_key, and looking
 * for nodes or leaves that are either in cache or have a minimum
C
Chris Mason 已提交
4825
 * transaction id.  This is used by the btree defrag code, and tree logging
4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836
 *
 * This does not cow, but it does stuff the starting key it finds back
 * into min_key, so you can call btrfs_search_slot with cow=1 on the
 * key and get a writable path.
 *
 * This does lock as it descends, and path->keep_locks should be set
 * to 1 by the caller.
 *
 * This honors path->lowest_level to prevent descent past a given level
 * of the tree.
 *
C
Chris Mason 已提交
4837 4838 4839 4840
 * min_trans indicates the oldest transaction that you are interested
 * in walking through.  Any nodes or leaves older than min_trans are
 * skipped over (without reading them).
 *
4841 4842 4843 4844
 * returns zero if something useful was found, < 0 on error and 1 if there
 * was nothing in the tree that matched the search criteria.
 */
int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
4845
			 struct btrfs_key *max_key,
4846 4847 4848 4849 4850 4851
			 struct btrfs_path *path, int cache_only,
			 u64 min_trans)
{
	struct extent_buffer *cur;
	struct btrfs_key found_key;
	int slot;
4852
	int sret;
4853 4854 4855 4856
	u32 nritems;
	int level;
	int ret = 1;

4857
	WARN_ON(!path->keep_locks);
4858
again:
4859
	cur = btrfs_read_lock_root_node(root);
4860
	level = btrfs_header_level(cur);
4861
	WARN_ON(path->nodes[level]);
4862
	path->nodes[level] = cur;
4863
	path->locks[level] = BTRFS_READ_LOCK;
4864 4865 4866 4867 4868

	if (btrfs_header_generation(cur) < min_trans) {
		ret = 1;
		goto out;
	}
C
Chris Mason 已提交
4869
	while (1) {
4870 4871
		nritems = btrfs_header_nritems(cur);
		level = btrfs_header_level(cur);
4872
		sret = bin_search(cur, min_key, level, &slot);
4873

4874 4875
		/* at the lowest level, we're done, setup the path and exit */
		if (level == path->lowest_level) {
4876 4877
			if (slot >= nritems)
				goto find_next_key;
4878 4879 4880 4881 4882
			ret = 0;
			path->slots[level] = slot;
			btrfs_item_key_to_cpu(cur, &found_key, slot);
			goto out;
		}
4883 4884
		if (sret && slot > 0)
			slot--;
4885 4886 4887 4888 4889
		/*
		 * check this node pointer against the cache_only and
		 * min_trans parameters.  If it isn't in cache or is too
		 * old, skip to the next one.
		 */
C
Chris Mason 已提交
4890
		while (slot < nritems) {
4891 4892 4893
			u64 blockptr;
			u64 gen;
			struct extent_buffer *tmp;
4894 4895
			struct btrfs_disk_key disk_key;

4896 4897 4898 4899 4900 4901 4902 4903 4904
			blockptr = btrfs_node_blockptr(cur, slot);
			gen = btrfs_node_ptr_generation(cur, slot);
			if (gen < min_trans) {
				slot++;
				continue;
			}
			if (!cache_only)
				break;

4905 4906 4907 4908 4909 4910 4911 4912
			if (max_key) {
				btrfs_node_key(cur, &disk_key, slot);
				if (comp_keys(&disk_key, max_key) >= 0) {
					ret = 1;
					goto out;
				}
			}

4913 4914 4915
			tmp = btrfs_find_tree_block(root, blockptr,
					    btrfs_level_size(root, level - 1));

4916
			if (tmp && btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
4917 4918 4919 4920 4921 4922 4923
				free_extent_buffer(tmp);
				break;
			}
			if (tmp)
				free_extent_buffer(tmp);
			slot++;
		}
4924
find_next_key:
4925 4926 4927 4928 4929
		/*
		 * we didn't find a candidate key in this node, walk forward
		 * and find another one
		 */
		if (slot >= nritems) {
4930
			path->slots[level] = slot;
4931
			btrfs_set_path_blocking(path);
4932
			sret = btrfs_find_next_key(root, path, min_key, level,
4933
						  cache_only, min_trans);
4934
			if (sret == 0) {
4935
				btrfs_release_path(path);
4936 4937 4938 4939 4940 4941 4942 4943 4944 4945
				goto again;
			} else {
				goto out;
			}
		}
		/* save our key for returning back */
		btrfs_node_key_to_cpu(cur, &found_key, slot);
		path->slots[level] = slot;
		if (level == path->lowest_level) {
			ret = 0;
4946
			unlock_up(path, level, 1, 0, NULL);
4947 4948
			goto out;
		}
4949
		btrfs_set_path_blocking(path);
4950
		cur = read_node_slot(root, cur, slot);
4951
		BUG_ON(!cur); /* -ENOMEM */
4952

4953
		btrfs_tree_read_lock(cur);
4954

4955
		path->locks[level - 1] = BTRFS_READ_LOCK;
4956
		path->nodes[level - 1] = cur;
4957
		unlock_up(path, level, 1, 0, NULL);
4958
		btrfs_clear_path_blocking(path, NULL, 0);
4959 4960 4961 4962
	}
out:
	if (ret == 0)
		memcpy(min_key, &found_key, sizeof(found_key));
4963
	btrfs_set_path_blocking(path);
4964 4965 4966
	return ret;
}

4967 4968 4969 4970
static void tree_move_down(struct btrfs_root *root,
			   struct btrfs_path *path,
			   int *level, int root_level)
{
4971
	BUG_ON(*level == 0);
4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987
	path->nodes[*level - 1] = read_node_slot(root, path->nodes[*level],
					path->slots[*level]);
	path->slots[*level - 1] = 0;
	(*level)--;
}

static int tree_move_next_or_upnext(struct btrfs_root *root,
				    struct btrfs_path *path,
				    int *level, int root_level)
{
	int ret = 0;
	int nritems;
	nritems = btrfs_header_nritems(path->nodes[*level]);

	path->slots[*level]++;

4988
	while (path->slots[*level] >= nritems) {
4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331
		if (*level == root_level)
			return -1;

		/* move upnext */
		path->slots[*level] = 0;
		free_extent_buffer(path->nodes[*level]);
		path->nodes[*level] = NULL;
		(*level)++;
		path->slots[*level]++;

		nritems = btrfs_header_nritems(path->nodes[*level]);
		ret = 1;
	}
	return ret;
}

/*
 * Returns 1 if it had to move up and next. 0 is returned if it moved only next
 * or down.
 */
static int tree_advance(struct btrfs_root *root,
			struct btrfs_path *path,
			int *level, int root_level,
			int allow_down,
			struct btrfs_key *key)
{
	int ret;

	if (*level == 0 || !allow_down) {
		ret = tree_move_next_or_upnext(root, path, level, root_level);
	} else {
		tree_move_down(root, path, level, root_level);
		ret = 0;
	}
	if (ret >= 0) {
		if (*level == 0)
			btrfs_item_key_to_cpu(path->nodes[*level], key,
					path->slots[*level]);
		else
			btrfs_node_key_to_cpu(path->nodes[*level], key,
					path->slots[*level]);
	}
	return ret;
}

static int tree_compare_item(struct btrfs_root *left_root,
			     struct btrfs_path *left_path,
			     struct btrfs_path *right_path,
			     char *tmp_buf)
{
	int cmp;
	int len1, len2;
	unsigned long off1, off2;

	len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
	len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
	if (len1 != len2)
		return 1;

	off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
	off2 = btrfs_item_ptr_offset(right_path->nodes[0],
				right_path->slots[0]);

	read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);

	cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
	if (cmp)
		return 1;
	return 0;
}

#define ADVANCE 1
#define ADVANCE_ONLY_NEXT -1

/*
 * This function compares two trees and calls the provided callback for
 * every changed/new/deleted item it finds.
 * If shared tree blocks are encountered, whole subtrees are skipped, making
 * the compare pretty fast on snapshotted subvolumes.
 *
 * This currently works on commit roots only. As commit roots are read only,
 * we don't do any locking. The commit roots are protected with transactions.
 * Transactions are ended and rejoined when a commit is tried in between.
 *
 * This function checks for modifications done to the trees while comparing.
 * If it detects a change, it aborts immediately.
 */
int btrfs_compare_trees(struct btrfs_root *left_root,
			struct btrfs_root *right_root,
			btrfs_changed_cb_t changed_cb, void *ctx)
{
	int ret;
	int cmp;
	struct btrfs_trans_handle *trans = NULL;
	struct btrfs_path *left_path = NULL;
	struct btrfs_path *right_path = NULL;
	struct btrfs_key left_key;
	struct btrfs_key right_key;
	char *tmp_buf = NULL;
	int left_root_level;
	int right_root_level;
	int left_level;
	int right_level;
	int left_end_reached;
	int right_end_reached;
	int advance_left;
	int advance_right;
	u64 left_blockptr;
	u64 right_blockptr;
	u64 left_start_ctransid;
	u64 right_start_ctransid;
	u64 ctransid;

	left_path = btrfs_alloc_path();
	if (!left_path) {
		ret = -ENOMEM;
		goto out;
	}
	right_path = btrfs_alloc_path();
	if (!right_path) {
		ret = -ENOMEM;
		goto out;
	}

	tmp_buf = kmalloc(left_root->leafsize, GFP_NOFS);
	if (!tmp_buf) {
		ret = -ENOMEM;
		goto out;
	}

	left_path->search_commit_root = 1;
	left_path->skip_locking = 1;
	right_path->search_commit_root = 1;
	right_path->skip_locking = 1;

	spin_lock(&left_root->root_times_lock);
	left_start_ctransid = btrfs_root_ctransid(&left_root->root_item);
	spin_unlock(&left_root->root_times_lock);

	spin_lock(&right_root->root_times_lock);
	right_start_ctransid = btrfs_root_ctransid(&right_root->root_item);
	spin_unlock(&right_root->root_times_lock);

	trans = btrfs_join_transaction(left_root);
	if (IS_ERR(trans)) {
		ret = PTR_ERR(trans);
		trans = NULL;
		goto out;
	}

	/*
	 * Strategy: Go to the first items of both trees. Then do
	 *
	 * If both trees are at level 0
	 *   Compare keys of current items
	 *     If left < right treat left item as new, advance left tree
	 *       and repeat
	 *     If left > right treat right item as deleted, advance right tree
	 *       and repeat
	 *     If left == right do deep compare of items, treat as changed if
	 *       needed, advance both trees and repeat
	 * If both trees are at the same level but not at level 0
	 *   Compare keys of current nodes/leafs
	 *     If left < right advance left tree and repeat
	 *     If left > right advance right tree and repeat
	 *     If left == right compare blockptrs of the next nodes/leafs
	 *       If they match advance both trees but stay at the same level
	 *         and repeat
	 *       If they don't match advance both trees while allowing to go
	 *         deeper and repeat
	 * If tree levels are different
	 *   Advance the tree that needs it and repeat
	 *
	 * Advancing a tree means:
	 *   If we are at level 0, try to go to the next slot. If that's not
	 *   possible, go one level up and repeat. Stop when we found a level
	 *   where we could go to the next slot. We may at this point be on a
	 *   node or a leaf.
	 *
	 *   If we are not at level 0 and not on shared tree blocks, go one
	 *   level deeper.
	 *
	 *   If we are not at level 0 and on shared tree blocks, go one slot to
	 *   the right if possible or go up and right.
	 */

	left_level = btrfs_header_level(left_root->commit_root);
	left_root_level = left_level;
	left_path->nodes[left_level] = left_root->commit_root;
	extent_buffer_get(left_path->nodes[left_level]);

	right_level = btrfs_header_level(right_root->commit_root);
	right_root_level = right_level;
	right_path->nodes[right_level] = right_root->commit_root;
	extent_buffer_get(right_path->nodes[right_level]);

	if (left_level == 0)
		btrfs_item_key_to_cpu(left_path->nodes[left_level],
				&left_key, left_path->slots[left_level]);
	else
		btrfs_node_key_to_cpu(left_path->nodes[left_level],
				&left_key, left_path->slots[left_level]);
	if (right_level == 0)
		btrfs_item_key_to_cpu(right_path->nodes[right_level],
				&right_key, right_path->slots[right_level]);
	else
		btrfs_node_key_to_cpu(right_path->nodes[right_level],
				&right_key, right_path->slots[right_level]);

	left_end_reached = right_end_reached = 0;
	advance_left = advance_right = 0;

	while (1) {
		/*
		 * We need to make sure the transaction does not get committed
		 * while we do anything on commit roots. This means, we need to
		 * join and leave transactions for every item that we process.
		 */
		if (trans && btrfs_should_end_transaction(trans, left_root)) {
			btrfs_release_path(left_path);
			btrfs_release_path(right_path);

			ret = btrfs_end_transaction(trans, left_root);
			trans = NULL;
			if (ret < 0)
				goto out;
		}
		/* now rejoin the transaction */
		if (!trans) {
			trans = btrfs_join_transaction(left_root);
			if (IS_ERR(trans)) {
				ret = PTR_ERR(trans);
				trans = NULL;
				goto out;
			}

			spin_lock(&left_root->root_times_lock);
			ctransid = btrfs_root_ctransid(&left_root->root_item);
			spin_unlock(&left_root->root_times_lock);
			if (ctransid != left_start_ctransid)
				left_start_ctransid = 0;

			spin_lock(&right_root->root_times_lock);
			ctransid = btrfs_root_ctransid(&right_root->root_item);
			spin_unlock(&right_root->root_times_lock);
			if (ctransid != right_start_ctransid)
				right_start_ctransid = 0;

			if (!left_start_ctransid || !right_start_ctransid) {
				WARN(1, KERN_WARNING
					"btrfs: btrfs_compare_tree detected "
					"a change in one of the trees while "
					"iterating. This is probably a "
					"bug.\n");
				ret = -EIO;
				goto out;
			}

			/*
			 * the commit root may have changed, so start again
			 * where we stopped
			 */
			left_path->lowest_level = left_level;
			right_path->lowest_level = right_level;
			ret = btrfs_search_slot(NULL, left_root,
					&left_key, left_path, 0, 0);
			if (ret < 0)
				goto out;
			ret = btrfs_search_slot(NULL, right_root,
					&right_key, right_path, 0, 0);
			if (ret < 0)
				goto out;
		}

		if (advance_left && !left_end_reached) {
			ret = tree_advance(left_root, left_path, &left_level,
					left_root_level,
					advance_left != ADVANCE_ONLY_NEXT,
					&left_key);
			if (ret < 0)
				left_end_reached = ADVANCE;
			advance_left = 0;
		}
		if (advance_right && !right_end_reached) {
			ret = tree_advance(right_root, right_path, &right_level,
					right_root_level,
					advance_right != ADVANCE_ONLY_NEXT,
					&right_key);
			if (ret < 0)
				right_end_reached = ADVANCE;
			advance_right = 0;
		}

		if (left_end_reached && right_end_reached) {
			ret = 0;
			goto out;
		} else if (left_end_reached) {
			if (right_level == 0) {
				ret = changed_cb(left_root, right_root,
						left_path, right_path,
						&right_key,
						BTRFS_COMPARE_TREE_DELETED,
						ctx);
				if (ret < 0)
					goto out;
			}
			advance_right = ADVANCE;
			continue;
		} else if (right_end_reached) {
			if (left_level == 0) {
				ret = changed_cb(left_root, right_root,
						left_path, right_path,
						&left_key,
						BTRFS_COMPARE_TREE_NEW,
						ctx);
				if (ret < 0)
					goto out;
			}
			advance_left = ADVANCE;
			continue;
		}

		if (left_level == 0 && right_level == 0) {
			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
			if (cmp < 0) {
				ret = changed_cb(left_root, right_root,
						left_path, right_path,
						&left_key,
						BTRFS_COMPARE_TREE_NEW,
						ctx);
				if (ret < 0)
					goto out;
				advance_left = ADVANCE;
			} else if (cmp > 0) {
				ret = changed_cb(left_root, right_root,
						left_path, right_path,
						&right_key,
						BTRFS_COMPARE_TREE_DELETED,
						ctx);
				if (ret < 0)
					goto out;
				advance_right = ADVANCE;
			} else {
5332
				WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5333 5334 5335
				ret = tree_compare_item(left_root, left_path,
						right_path, tmp_buf);
				if (ret) {
5336
					WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394
					ret = changed_cb(left_root, right_root,
						left_path, right_path,
						&left_key,
						BTRFS_COMPARE_TREE_CHANGED,
						ctx);
					if (ret < 0)
						goto out;
				}
				advance_left = ADVANCE;
				advance_right = ADVANCE;
			}
		} else if (left_level == right_level) {
			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
			if (cmp < 0) {
				advance_left = ADVANCE;
			} else if (cmp > 0) {
				advance_right = ADVANCE;
			} else {
				left_blockptr = btrfs_node_blockptr(
						left_path->nodes[left_level],
						left_path->slots[left_level]);
				right_blockptr = btrfs_node_blockptr(
						right_path->nodes[right_level],
						right_path->slots[right_level]);
				if (left_blockptr == right_blockptr) {
					/*
					 * As we're on a shared block, don't
					 * allow to go deeper.
					 */
					advance_left = ADVANCE_ONLY_NEXT;
					advance_right = ADVANCE_ONLY_NEXT;
				} else {
					advance_left = ADVANCE;
					advance_right = ADVANCE;
				}
			}
		} else if (left_level < right_level) {
			advance_right = ADVANCE;
		} else {
			advance_left = ADVANCE;
		}
	}

out:
	btrfs_free_path(left_path);
	btrfs_free_path(right_path);
	kfree(tmp_buf);

	if (trans) {
		if (!ret)
			ret = btrfs_end_transaction(trans, left_root);
		else
			btrfs_end_transaction(trans, left_root);
	}

	return ret;
}

5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406
/*
 * this is similar to btrfs_next_leaf, but does not try to preserve
 * and fixup the path.  It looks for and returns the next key in the
 * tree based on the current path and the cache_only and min_trans
 * parameters.
 *
 * 0 is returned if another key is found, < 0 if there are any errors
 * and 1 is returned if there are no higher keys in the tree
 *
 * path->keep_locks should be set to 1 on the search made before
 * calling this function.
 */
5407
int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5408
			struct btrfs_key *key, int level,
5409
			int cache_only, u64 min_trans)
5410 5411 5412 5413
{
	int slot;
	struct extent_buffer *c;

5414
	WARN_ON(!path->keep_locks);
C
Chris Mason 已提交
5415
	while (level < BTRFS_MAX_LEVEL) {
5416 5417 5418 5419 5420
		if (!path->nodes[level])
			return 1;

		slot = path->slots[level] + 1;
		c = path->nodes[level];
5421
next:
5422
		if (slot >= btrfs_header_nritems(c)) {
5423 5424 5425 5426 5427
			int ret;
			int orig_lowest;
			struct btrfs_key cur_key;
			if (level + 1 >= BTRFS_MAX_LEVEL ||
			    !path->nodes[level + 1])
5428
				return 1;
5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441

			if (path->locks[level + 1]) {
				level++;
				continue;
			}

			slot = btrfs_header_nritems(c) - 1;
			if (level == 0)
				btrfs_item_key_to_cpu(c, &cur_key, slot);
			else
				btrfs_node_key_to_cpu(c, &cur_key, slot);

			orig_lowest = path->lowest_level;
5442
			btrfs_release_path(path);
5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454
			path->lowest_level = level;
			ret = btrfs_search_slot(NULL, root, &cur_key, path,
						0, 0);
			path->lowest_level = orig_lowest;
			if (ret < 0)
				return ret;

			c = path->nodes[level];
			slot = path->slots[level];
			if (ret == 0)
				slot++;
			goto next;
5455
		}
5456

5457 5458
		if (level == 0)
			btrfs_item_key_to_cpu(c, key, slot);
5459 5460 5461 5462 5463 5464 5465 5466
		else {
			u64 blockptr = btrfs_node_blockptr(c, slot);
			u64 gen = btrfs_node_ptr_generation(c, slot);

			if (cache_only) {
				struct extent_buffer *cur;
				cur = btrfs_find_tree_block(root, blockptr,
					    btrfs_level_size(root, level - 1));
5467 5468
				if (!cur ||
				    btrfs_buffer_uptodate(cur, gen, 1) <= 0) {
5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479
					slot++;
					if (cur)
						free_extent_buffer(cur);
					goto next;
				}
				free_extent_buffer(cur);
			}
			if (gen < min_trans) {
				slot++;
				goto next;
			}
5480
			btrfs_node_key_to_cpu(c, key, slot);
5481
		}
5482 5483 5484 5485 5486
		return 0;
	}
	return 1;
}

C
Chris Mason 已提交
5487
/*
5488
 * search the tree again to find a leaf with greater keys
C
Chris Mason 已提交
5489 5490
 * returns 0 if it found something or 1 if there are no greater leaves.
 * returns < 0 on io errors.
C
Chris Mason 已提交
5491
 */
C
Chris Mason 已提交
5492
int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
J
Jan Schmidt 已提交
5493 5494 5495 5496 5497 5498
{
	return btrfs_next_old_leaf(root, path, 0);
}

int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
			u64 time_seq)
5499 5500
{
	int slot;
5501
	int level;
5502
	struct extent_buffer *c;
5503
	struct extent_buffer *next;
5504 5505 5506
	struct btrfs_key key;
	u32 nritems;
	int ret;
5507
	int old_spinning = path->leave_spinning;
5508
	int next_rw_lock = 0;
5509 5510

	nritems = btrfs_header_nritems(path->nodes[0]);
C
Chris Mason 已提交
5511
	if (nritems == 0)
5512 5513
		return 1;

5514 5515 5516 5517
	btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
again:
	level = 1;
	next = NULL;
5518
	next_rw_lock = 0;
5519
	btrfs_release_path(path);
5520

5521
	path->keep_locks = 1;
5522
	path->leave_spinning = 1;
5523

J
Jan Schmidt 已提交
5524 5525 5526 5527
	if (time_seq)
		ret = btrfs_search_old_slot(root, &key, path, time_seq);
	else
		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5528 5529 5530 5531 5532
	path->keep_locks = 0;

	if (ret < 0)
		return ret;

5533
	nritems = btrfs_header_nritems(path->nodes[0]);
5534 5535 5536 5537 5538 5539
	/*
	 * by releasing the path above we dropped all our locks.  A balance
	 * could have added more items next to the key that used to be
	 * at the very end of the block.  So, check again here and
	 * advance the path if there are now more items available.
	 */
5540
	if (nritems > 0 && path->slots[0] < nritems - 1) {
5541 5542
		if (ret == 0)
			path->slots[0]++;
5543
		ret = 0;
5544 5545
		goto done;
	}
5546

C
Chris Mason 已提交
5547
	while (level < BTRFS_MAX_LEVEL) {
5548 5549 5550 5551
		if (!path->nodes[level]) {
			ret = 1;
			goto done;
		}
5552

5553 5554
		slot = path->slots[level] + 1;
		c = path->nodes[level];
5555
		if (slot >= btrfs_header_nritems(c)) {
5556
			level++;
5557 5558 5559 5560
			if (level == BTRFS_MAX_LEVEL) {
				ret = 1;
				goto done;
			}
5561 5562
			continue;
		}
5563

5564
		if (next) {
5565
			btrfs_tree_unlock_rw(next, next_rw_lock);
5566
			free_extent_buffer(next);
5567
		}
5568

5569
		next = c;
5570
		next_rw_lock = path->locks[level];
5571
		ret = read_block_for_search(NULL, root, path, &next, level,
J
Jan Schmidt 已提交
5572
					    slot, &key, 0);
5573 5574
		if (ret == -EAGAIN)
			goto again;
5575

5576
		if (ret < 0) {
5577
			btrfs_release_path(path);
5578 5579 5580
			goto done;
		}

5581
		if (!path->skip_locking) {
5582
			ret = btrfs_try_tree_read_lock(next);
5583 5584 5585 5586 5587 5588 5589 5590
			if (!ret && time_seq) {
				/*
				 * If we don't get the lock, we may be racing
				 * with push_leaf_left, holding that lock while
				 * itself waiting for the leaf we've currently
				 * locked. To solve this situation, we give up
				 * on our lock and cycle.
				 */
5591
				free_extent_buffer(next);
5592 5593 5594 5595
				btrfs_release_path(path);
				cond_resched();
				goto again;
			}
5596 5597
			if (!ret) {
				btrfs_set_path_blocking(path);
5598
				btrfs_tree_read_lock(next);
5599
				btrfs_clear_path_blocking(path, next,
5600
							  BTRFS_READ_LOCK);
5601
			}
5602
			next_rw_lock = BTRFS_READ_LOCK;
5603
		}
5604 5605 5606
		break;
	}
	path->slots[level] = slot;
C
Chris Mason 已提交
5607
	while (1) {
5608 5609
		level--;
		c = path->nodes[level];
5610
		if (path->locks[level])
5611
			btrfs_tree_unlock_rw(c, path->locks[level]);
5612

5613
		free_extent_buffer(c);
5614 5615
		path->nodes[level] = next;
		path->slots[level] = 0;
5616
		if (!path->skip_locking)
5617
			path->locks[level] = next_rw_lock;
5618 5619
		if (!level)
			break;
5620

5621
		ret = read_block_for_search(NULL, root, path, &next, level,
J
Jan Schmidt 已提交
5622
					    0, &key, 0);
5623 5624 5625
		if (ret == -EAGAIN)
			goto again;

5626
		if (ret < 0) {
5627
			btrfs_release_path(path);
5628 5629 5630
			goto done;
		}

5631
		if (!path->skip_locking) {
5632
			ret = btrfs_try_tree_read_lock(next);
5633 5634
			if (!ret) {
				btrfs_set_path_blocking(path);
5635
				btrfs_tree_read_lock(next);
5636
				btrfs_clear_path_blocking(path, next,
5637 5638
							  BTRFS_READ_LOCK);
			}
5639
			next_rw_lock = BTRFS_READ_LOCK;
5640
		}
5641
	}
5642
	ret = 0;
5643
done:
5644
	unlock_up(path, 0, 1, 0, NULL);
5645 5646 5647 5648 5649
	path->leave_spinning = old_spinning;
	if (!old_spinning)
		btrfs_set_path_blocking(path);

	return ret;
5650
}
5651

5652 5653 5654 5655 5656 5657
/*
 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
 * searching until it gets past min_objectid or finds an item of 'type'
 *
 * returns 0 if something is found, 1 if nothing was found and < 0 on error
 */
5658 5659 5660 5661 5662 5663
int btrfs_previous_item(struct btrfs_root *root,
			struct btrfs_path *path, u64 min_objectid,
			int type)
{
	struct btrfs_key found_key;
	struct extent_buffer *leaf;
5664
	u32 nritems;
5665 5666
	int ret;

C
Chris Mason 已提交
5667
	while (1) {
5668
		if (path->slots[0] == 0) {
5669
			btrfs_set_path_blocking(path);
5670 5671 5672 5673 5674 5675 5676
			ret = btrfs_prev_leaf(root, path);
			if (ret != 0)
				return ret;
		} else {
			path->slots[0]--;
		}
		leaf = path->nodes[0];
5677 5678 5679 5680 5681 5682
		nritems = btrfs_header_nritems(leaf);
		if (nritems == 0)
			return 1;
		if (path->slots[0] == nritems)
			path->slots[0]--;

5683
		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5684 5685
		if (found_key.objectid < min_objectid)
			break;
5686 5687
		if (found_key.type == type)
			return 0;
5688 5689 5690
		if (found_key.objectid == min_objectid &&
		    found_key.type < type)
			break;
5691 5692 5693
	}
	return 1;
}