Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
openeuler
raspberrypi-kernel
提交
74123bd7
R
raspberrypi-kernel
项目概览
openeuler
/
raspberrypi-kernel
通知
13
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
R
raspberrypi-kernel
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
74123bd7
编写于
2月 02, 2007
作者:
C
Chris Mason
提交者:
David Woodhouse
2月 02, 2007
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Btrfs: Commenting/cleanup
Signed-off-by:
N
Chris Mason
<
chris.mason@oracle.com
>
上级
eb60ceac
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
186 addition
and
63 deletion
+186
-63
fs/btrfs/ctree.c
fs/btrfs/ctree.c
+186
-63
未找到文件。
fs/btrfs/ctree.c
浏览文件 @
74123bd7
...
...
@@ -20,6 +20,11 @@ static void release_path(struct ctree_root *root, struct ctree_path *p)
}
}
/*
* The leaf data grows from end-to-front in the node.
* this returns the address of the start of the last item,
* which is the stop of the leaf data stack
*/
static
inline
unsigned
int
leaf_data_end
(
struct
leaf
*
leaf
)
{
unsigned
int
nr
=
leaf
->
header
.
nritems
;
...
...
@@ -28,6 +33,11 @@ static inline unsigned int leaf_data_end(struct leaf *leaf)
return
leaf
->
items
[
nr
-
1
].
offset
;
}
/*
* The space between the end of the leaf items and
* the start of the leaf data. IOW, how much room
* the leaf has left for both items and data
*/
static
inline
int
leaf_free_space
(
struct
leaf
*
leaf
)
{
int
data_end
=
leaf_data_end
(
leaf
);
...
...
@@ -36,6 +46,9 @@ static inline int leaf_free_space(struct leaf *leaf)
return
(
char
*
)(
leaf
->
data
+
data_end
)
-
(
char
*
)
items_end
;
}
/*
* compare two keys in a memcmp fashion
*/
int
comp_keys
(
struct
key
*
k1
,
struct
key
*
k2
)
{
if
(
k1
->
objectid
>
k2
->
objectid
)
...
...
@@ -52,6 +65,16 @@ int comp_keys(struct key *k1, struct key *k2)
return
-
1
;
return
0
;
}
/*
* search for key in the array p. items p are item_size apart
* and there are 'max' items in p
* the slot in the array is returned via slot, and it points to
* the place where you would insert key if it is not found in
* the array.
*
* slot may point to max if the key is bigger than all of the keys
*/
int
generic_bin_search
(
char
*
p
,
int
item_size
,
struct
key
*
key
,
int
max
,
int
*
slot
)
{
...
...
@@ -92,6 +115,14 @@ int bin_search(struct node *c, struct key *key, int *slot)
return
-
1
;
}
/*
* look for key in the tree. path is filled in with nodes along the way
* if key is found, we return zero and you can find the item in the leaf
* level of the path (level 0)
*
* If the key isn't found, the path points to the slot where it should
* be inserted.
*/
int
search_slot
(
struct
ctree_root
*
root
,
struct
key
*
key
,
struct
ctree_path
*
p
)
{
struct
tree_buffer
*
b
=
root
->
node
;
...
...
@@ -120,12 +151,18 @@ int search_slot(struct ctree_root *root, struct key *key, struct ctree_path *p)
return
-
1
;
}
/*
* adjust the pointers going up the tree, starting at level
* making sure the right key of each node is points to 'key'.
* This is used after shifting pointers to the left, so it stops
* fixing up pointers when a given leaf/node is not in slot 0 of the
* higher levels
*/
static
void
fixup_low_keys
(
struct
ctree_root
*
root
,
struct
ctree_path
*
path
,
struct
key
*
key
,
int
level
)
{
int
i
;
/* adjust the pointers going up the tree */
for
(
i
=
level
;
i
<
MAX_LEVEL
;
i
++
)
{
struct
node
*
t
;
int
tslot
=
path
->
slots
[
i
];
...
...
@@ -139,64 +176,16 @@ static void fixup_low_keys(struct ctree_root *root,
}
}
int
__insert_ptr
(
struct
ctree_root
*
root
,
struct
ctree_path
*
path
,
struct
key
*
key
,
u64
blocknr
,
int
slot
,
int
level
)
{
struct
node
*
c
;
struct
node
*
lower
;
struct
key
*
lower_key
;
int
nritems
;
/* need a new root */
if
(
!
path
->
nodes
[
level
])
{
struct
tree_buffer
*
t
;
t
=
alloc_free_block
(
root
);
c
=
&
t
->
node
;
memset
(
c
,
0
,
sizeof
(
c
));
c
->
header
.
nritems
=
2
;
c
->
header
.
flags
=
node_level
(
level
);
c
->
header
.
blocknr
=
t
->
blocknr
;
lower
=
&
path
->
nodes
[
level
-
1
]
->
node
;
if
(
is_leaf
(
lower
->
header
.
flags
))
lower_key
=
&
((
struct
leaf
*
)
lower
)
->
items
[
0
].
key
;
else
lower_key
=
lower
->
keys
;
memcpy
(
c
->
keys
,
lower_key
,
sizeof
(
struct
key
));
memcpy
(
c
->
keys
+
1
,
key
,
sizeof
(
struct
key
));
c
->
blockptrs
[
0
]
=
path
->
nodes
[
level
-
1
]
->
blocknr
;
c
->
blockptrs
[
1
]
=
blocknr
;
/* the path has an extra ref to root->node */
tree_block_release
(
root
,
root
->
node
);
root
->
node
=
t
;
t
->
count
++
;
write_tree_block
(
root
,
t
);
path
->
nodes
[
level
]
=
t
;
path
->
slots
[
level
]
=
0
;
if
(
c
->
keys
[
1
].
objectid
==
0
)
BUG
();
return
0
;
}
lower
=
&
path
->
nodes
[
level
]
->
node
;
nritems
=
lower
->
header
.
nritems
;
if
(
slot
>
nritems
)
BUG
();
if
(
nritems
==
NODEPTRS_PER_BLOCK
)
BUG
();
if
(
slot
!=
nritems
)
{
memmove
(
lower
->
keys
+
slot
+
1
,
lower
->
keys
+
slot
,
(
nritems
-
slot
)
*
sizeof
(
struct
key
));
memmove
(
lower
->
blockptrs
+
slot
+
1
,
lower
->
blockptrs
+
slot
,
(
nritems
-
slot
)
*
sizeof
(
u64
));
}
memcpy
(
lower
->
keys
+
slot
,
key
,
sizeof
(
struct
key
));
lower
->
blockptrs
[
slot
]
=
blocknr
;
lower
->
header
.
nritems
++
;
if
(
lower
->
keys
[
1
].
objectid
==
0
)
BUG
();
write_tree_block
(
root
,
path
->
nodes
[
level
]);
return
0
;
}
/*
* try to push data from one node into the next node left in the
* tree. The src node is found at specified level in the path.
* If some bytes were pushed, return 0, otherwise return 1.
*
* Lower nodes/leaves in the path are not touched, higher nodes may
* be modified to reflect the push.
*
* The path is altered to reflect the push.
*/
int
push_node_left
(
struct
ctree_root
*
root
,
struct
ctree_path
*
path
,
int
level
)
{
int
slot
;
...
...
@@ -259,6 +248,16 @@ int push_node_left(struct ctree_root *root, struct ctree_path *path, int level)
return
0
;
}
/*
* try to push data from one node into the next node right in the
* tree. The src node is found at specified level in the path.
* If some bytes were pushed, return 0, otherwise return 1.
*
* Lower nodes/leaves in the path are not touched, higher nodes may
* be modified to reflect the push.
*
* The path is altered to reflect the push.
*/
int
push_node_right
(
struct
ctree_root
*
root
,
struct
ctree_path
*
path
,
int
level
)
{
int
slot
;
...
...
@@ -270,8 +269,11 @@ int push_node_right(struct ctree_root *root, struct ctree_path *path, int level)
int
dst_nritems
;
int
src_nritems
;
/* can't push from the root */
if
(
level
==
MAX_LEVEL
-
1
||
path
->
nodes
[
level
+
1
]
==
0
)
return
1
;
/* only try to push inside the node higher up */
slot
=
path
->
slots
[
level
+
1
];
if
(
slot
==
NODEPTRS_PER_BLOCK
-
1
)
return
1
;
...
...
@@ -315,7 +317,7 @@ int push_node_right(struct ctree_root *root, struct ctree_path *path, int level)
write_tree_block
(
root
,
t
);
write_tree_block
(
root
,
src_buffer
);
/* then fixup the
leaf pointer
in the path */
/* then fixup the
pointers
in the path */
if
(
path
->
slots
[
level
]
>=
src
->
header
.
nritems
)
{
path
->
slots
[
level
]
-=
src
->
header
.
nritems
;
tree_block_release
(
root
,
path
->
nodes
[
level
]);
...
...
@@ -327,6 +329,76 @@ int push_node_right(struct ctree_root *root, struct ctree_path *path, int level)
return
0
;
}
/*
* worker function to insert a single pointer in a node.
* the node should have enough room for the pointer already
* slot and level indicate where you want the key to go, and
* blocknr is the block the key points to.
*/
int
__insert_ptr
(
struct
ctree_root
*
root
,
struct
ctree_path
*
path
,
struct
key
*
key
,
u64
blocknr
,
int
slot
,
int
level
)
{
struct
node
*
c
;
struct
node
*
lower
;
struct
key
*
lower_key
;
int
nritems
;
/* need a new root */
if
(
!
path
->
nodes
[
level
])
{
struct
tree_buffer
*
t
;
t
=
alloc_free_block
(
root
);
c
=
&
t
->
node
;
memset
(
c
,
0
,
sizeof
(
c
));
c
->
header
.
nritems
=
2
;
c
->
header
.
flags
=
node_level
(
level
);
c
->
header
.
blocknr
=
t
->
blocknr
;
lower
=
&
path
->
nodes
[
level
-
1
]
->
node
;
if
(
is_leaf
(
lower
->
header
.
flags
))
lower_key
=
&
((
struct
leaf
*
)
lower
)
->
items
[
0
].
key
;
else
lower_key
=
lower
->
keys
;
memcpy
(
c
->
keys
,
lower_key
,
sizeof
(
struct
key
));
memcpy
(
c
->
keys
+
1
,
key
,
sizeof
(
struct
key
));
c
->
blockptrs
[
0
]
=
path
->
nodes
[
level
-
1
]
->
blocknr
;
c
->
blockptrs
[
1
]
=
blocknr
;
/* the path has an extra ref to root->node */
tree_block_release
(
root
,
root
->
node
);
root
->
node
=
t
;
t
->
count
++
;
write_tree_block
(
root
,
t
);
path
->
nodes
[
level
]
=
t
;
path
->
slots
[
level
]
=
0
;
if
(
c
->
keys
[
1
].
objectid
==
0
)
BUG
();
return
0
;
}
lower
=
&
path
->
nodes
[
level
]
->
node
;
nritems
=
lower
->
header
.
nritems
;
if
(
slot
>
nritems
)
BUG
();
if
(
nritems
==
NODEPTRS_PER_BLOCK
)
BUG
();
if
(
slot
!=
nritems
)
{
memmove
(
lower
->
keys
+
slot
+
1
,
lower
->
keys
+
slot
,
(
nritems
-
slot
)
*
sizeof
(
struct
key
));
memmove
(
lower
->
blockptrs
+
slot
+
1
,
lower
->
blockptrs
+
slot
,
(
nritems
-
slot
)
*
sizeof
(
u64
));
}
memcpy
(
lower
->
keys
+
slot
,
key
,
sizeof
(
struct
key
));
lower
->
blockptrs
[
slot
]
=
blocknr
;
lower
->
header
.
nritems
++
;
if
(
lower
->
keys
[
1
].
objectid
==
0
)
BUG
();
write_tree_block
(
root
,
path
->
nodes
[
level
]);
return
0
;
}
/*
* insert a key,blocknr pair into the tree at a given level
* If the node at that level in the path doesn't have room,
* it is split or shifted as appropriate.
*/
int
insert_ptr
(
struct
ctree_root
*
root
,
struct
ctree_path
*
path
,
struct
key
*
key
,
u64
blocknr
,
int
level
)
...
...
@@ -340,6 +412,15 @@ int insert_ptr(struct ctree_root *root,
int
mid
;
int
bal_start
=
-
1
;
/*
* check to see if we need to make room in the node for this
* pointer. If we do, keep walking the tree, making sure there
* is enough room in each level for the required insertions.
*
* The bal array is filled in with any nodes to be inserted
* due to splitting. Once we've done all the splitting required
* do the inserts based on the data in the bal array.
*/
memset
(
bal
,
0
,
ARRAY_SIZE
(
bal
));
while
(
t
&&
t
->
node
.
header
.
nritems
==
NODEPTRS_PER_BLOCK
)
{
c
=
&
t
->
node
;
...
...
@@ -373,6 +454,11 @@ int insert_ptr(struct ctree_root *root,
bal_level
+=
1
;
t
=
path
->
nodes
[
bal_level
];
}
/*
* bal_start tells us the first level in the tree that needed to
* be split. Go through the bal array inserting the new nodes
* as needed. The path is fixed as we go.
*/
while
(
bal_start
>
0
)
{
b_buffer
=
bal
[
bal_start
];
c
=
&
path
->
nodes
[
bal_start
]
->
node
;
...
...
@@ -390,10 +476,16 @@ int insert_ptr(struct ctree_root *root,
if
(
!
bal
[
bal_start
])
break
;
}
/* Now that the tree has room, insert the requested pointer */
return
__insert_ptr
(
root
,
path
,
key
,
blocknr
,
path
->
slots
[
level
]
+
1
,
level
);
}
/*
* how many bytes are required to store the items in a leaf. start
* and nr indicate which items in the leaf to check. This totals up the
* space used both by the item structs and the item data
*/
int
leaf_space_used
(
struct
leaf
*
l
,
int
start
,
int
nr
)
{
int
data_len
;
...
...
@@ -407,6 +499,10 @@ int leaf_space_used(struct leaf *l, int start, int nr)
return
data_len
;
}
/*
* push some data in the path leaf to the left, trying to free up at
* least data_size bytes. returns zero if the push worked, nonzero otherwise
*/
int
push_leaf_left
(
struct
ctree_root
*
root
,
struct
ctree_path
*
path
,
int
data_size
)
{
...
...
@@ -498,6 +594,10 @@ int push_leaf_left(struct ctree_root *root, struct ctree_path *path,
return
0
;
}
/*
* split the path's leaf in two, making sure there is at least data_size
* available for the resulting leaf level of the path.
*/
int
split_leaf
(
struct
ctree_root
*
root
,
struct
ctree_path
*
path
,
int
data_size
)
{
struct
tree_buffer
*
l_buf
=
path
->
nodes
[
0
];
...
...
@@ -548,9 +648,10 @@ int split_leaf(struct ctree_root *root, struct ctree_path *path, int data_size)
l
->
data
+
leaf_data_end
(
l
),
data_copy_size
);
rt_data_off
=
LEAF_DATA_SIZE
-
(
l
->
items
[
mid
].
offset
+
l
->
items
[
mid
].
size
);
for
(
i
=
0
;
i
<
right
->
header
.
nritems
;
i
++
)
{
for
(
i
=
0
;
i
<
right
->
header
.
nritems
;
i
++
)
right
->
items
[
i
].
offset
+=
rt_data_off
;
}
l
->
header
.
nritems
=
mid
;
ret
=
insert_ptr
(
root
,
path
,
&
right
->
items
[
0
].
key
,
right_buffer
->
blocknr
,
1
);
...
...
@@ -570,6 +671,10 @@ int split_leaf(struct ctree_root *root, struct ctree_path *path, int data_size)
return
ret
;
}
/*
* Given a key and some data, insert an item into the tree.
* This does all the path init required, making room in the tree if needed.
*/
int
insert_item
(
struct
ctree_root
*
root
,
struct
key
*
key
,
void
*
data
,
int
data_size
)
{
...
...
@@ -582,6 +687,7 @@ int insert_item(struct ctree_root *root, struct key *key,
unsigned
int
data_end
;
struct
ctree_path
path
;
/* create a root if there isn't one */
if
(
!
root
->
node
)
{
struct
tree_buffer
*
t
;
t
=
alloc_free_block
(
root
);
...
...
@@ -602,6 +708,8 @@ int insert_item(struct ctree_root *root, struct key *key,
slot_orig
=
path
.
slots
[
0
];
leaf_buf
=
path
.
nodes
[
0
];
leaf
=
&
leaf_buf
->
leaf
;
/* make room if needed */
if
(
leaf_free_space
(
leaf
)
<
sizeof
(
struct
item
)
+
data_size
)
{
split_leaf
(
root
,
&
path
,
data_size
);
leaf_buf
=
path
.
nodes
[
0
];
...
...
@@ -638,6 +746,7 @@ int insert_item(struct ctree_root *root, struct key *key,
data_end
,
old_data
-
data_end
);
data_end
=
old_data
;
}
/* copy the new data in */
memcpy
(
&
leaf
->
items
[
slot
].
key
,
key
,
sizeof
(
struct
key
));
leaf
->
items
[
slot
].
offset
=
data_end
-
data_size
;
leaf
->
items
[
slot
].
size
=
data_size
;
...
...
@@ -650,6 +759,14 @@ int insert_item(struct ctree_root *root, struct key *key,
return
0
;
}
/*
* delete the pointer from a given level in the path. The path is not
* fixed up, so after calling this it is not valid at that level.
*
* If the delete empties a node, the node is removed from the tree,
* continuing all the way the root if required. The root is converted into
* a leaf if all the nodes are emptied.
*/
int
del_ptr
(
struct
ctree_root
*
root
,
struct
ctree_path
*
path
,
int
level
)
{
int
slot
;
...
...
@@ -705,6 +822,10 @@ int del_ptr(struct ctree_root *root, struct ctree_path *path, int level)
return
0
;
}
/*
* delete the item at the leaf level in path. If that empties
* the leaf, remove it from the tree
*/
int
del_item
(
struct
ctree_root
*
root
,
struct
ctree_path
*
path
)
{
int
slot
;
...
...
@@ -732,6 +853,7 @@ int del_item(struct ctree_root *root, struct ctree_path *path)
(
leaf
->
header
.
nritems
-
slot
-
1
));
}
leaf
->
header
.
nritems
-=
1
;
/* delete the leaf if we've emptied it */
if
(
leaf
->
header
.
nritems
==
0
)
{
if
(
leaf_buf
==
root
->
node
)
{
leaf
->
header
.
flags
=
node_level
(
0
);
...
...
@@ -742,6 +864,7 @@ int del_item(struct ctree_root *root, struct ctree_path *path)
if
(
slot
==
0
)
fixup_low_keys
(
root
,
path
,
&
leaf
->
items
[
0
].
key
,
1
);
write_tree_block
(
root
,
leaf_buf
);
/* delete the leaf if it is mostly empty */
if
(
leaf_space_used
(
leaf
,
0
,
leaf
->
header
.
nritems
)
<
LEAF_DATA_SIZE
/
4
)
{
/* push_leaf_left fixes the path.
...
...
@@ -837,7 +960,7 @@ int main() {
int
i
;
int
num
;
int
ret
;
int
run_size
=
1000
000
;
int
run_size
=
25
000
;
int
max_key
=
100000000
;
int
tree_size
=
0
;
struct
ctree_path
path
;
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录