ctree.c 149.4 KB
Newer Older
C
Chris Mason 已提交
1
/*
C
Chris Mason 已提交
2
 * Copyright (C) 2007,2008 Oracle.  All rights reserved.
C
Chris Mason 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public
 * License v2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public
 * License along with this program; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 021110-1307, USA.
 */

19
#include <linux/sched.h>
20
#include <linux/slab.h>
21
#include <linux/rbtree.h>
22 23
#include "ctree.h"
#include "disk-io.h"
24
#include "transaction.h"
25
#include "print-tree.h"
26
#include "locking.h"
27

28 29 30
static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
		      *root, struct btrfs_path *path, int level);
static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
31
		      *root, struct btrfs_key *ins_key,
32
		      struct btrfs_path *path, int data_size, int extend);
33 34
static int push_node_left(struct btrfs_trans_handle *trans,
			  struct btrfs_root *root, struct extent_buffer *dst,
35
			  struct extent_buffer *src, int empty);
36 37 38 39
static int balance_node_right(struct btrfs_trans_handle *trans,
			      struct btrfs_root *root,
			      struct extent_buffer *dst_buf,
			      struct extent_buffer *src_buf);
40
static void del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
41 42
		    struct btrfs_path *path, int level, int slot,
		    int tree_mod_log);
43 44 45 46 47 48 49 50
static void tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
				 struct extent_buffer *eb);
struct extent_buffer *read_old_tree_block(struct btrfs_root *root, u64 bytenr,
					  u32 blocksize, u64 parent_transid,
					  u64 time_seq);
struct extent_buffer *btrfs_find_old_tree_block(struct btrfs_root *root,
						u64 bytenr, u32 blocksize,
						u64 time_seq);
51

C
Chris Mason 已提交
52
struct btrfs_path *btrfs_alloc_path(void)
C
Chris Mason 已提交
53
{
C
Chris Mason 已提交
54
	struct btrfs_path *path;
J
Jeff Mahoney 已提交
55
	path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
C
Chris Mason 已提交
56
	return path;
C
Chris Mason 已提交
57 58
}

59 60 61 62 63 64 65 66
/*
 * set all locked nodes in the path to blocking locks.  This should
 * be done before scheduling
 */
noinline void btrfs_set_path_blocking(struct btrfs_path *p)
{
	int i;
	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
67 68 69 70 71 72 73
		if (!p->nodes[i] || !p->locks[i])
			continue;
		btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
		if (p->locks[i] == BTRFS_READ_LOCK)
			p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
		else if (p->locks[i] == BTRFS_WRITE_LOCK)
			p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
74 75 76 77 78
	}
}

/*
 * reset all the locked nodes in the patch to spinning locks.
79 80 81 82 83
 *
 * held is used to keep lockdep happy, when lockdep is enabled
 * we set held to a blocking lock before we go around and
 * retake all the spinlocks in the path.  You can safely use NULL
 * for held
84
 */
85
noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
86
					struct extent_buffer *held, int held_rw)
87 88
{
	int i;
89 90 91 92 93 94 95 96

#ifdef CONFIG_DEBUG_LOCK_ALLOC
	/* lockdep really cares that we take all of these spinlocks
	 * in the right order.  If any of the locks in the path are not
	 * currently blocking, it is going to complain.  So, make really
	 * really sure by forcing the path to blocking before we clear
	 * the path blocking.
	 */
97 98 99 100 101 102 103
	if (held) {
		btrfs_set_lock_blocking_rw(held, held_rw);
		if (held_rw == BTRFS_WRITE_LOCK)
			held_rw = BTRFS_WRITE_LOCK_BLOCKING;
		else if (held_rw == BTRFS_READ_LOCK)
			held_rw = BTRFS_READ_LOCK_BLOCKING;
	}
104 105 106 107
	btrfs_set_path_blocking(p);
#endif

	for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
108 109 110 111 112 113 114
		if (p->nodes[i] && p->locks[i]) {
			btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
			if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
				p->locks[i] = BTRFS_WRITE_LOCK;
			else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
				p->locks[i] = BTRFS_READ_LOCK;
		}
115
	}
116 117 118

#ifdef CONFIG_DEBUG_LOCK_ALLOC
	if (held)
119
		btrfs_clear_lock_blocking_rw(held, held_rw);
120
#endif
121 122
}

C
Chris Mason 已提交
123
/* this also releases the path */
C
Chris Mason 已提交
124
void btrfs_free_path(struct btrfs_path *p)
125
{
126 127
	if (!p)
		return;
128
	btrfs_release_path(p);
C
Chris Mason 已提交
129
	kmem_cache_free(btrfs_path_cachep, p);
130 131
}

C
Chris Mason 已提交
132 133 134 135 136 137
/*
 * path release drops references on the extent buffers in the path
 * and it drops any locks held by this path
 *
 * It is safe to call this on paths that no locks or extent buffers held.
 */
138
noinline void btrfs_release_path(struct btrfs_path *p)
139 140
{
	int i;
141

C
Chris Mason 已提交
142
	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
143
		p->slots[i] = 0;
144
		if (!p->nodes[i])
145 146
			continue;
		if (p->locks[i]) {
147
			btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
148 149
			p->locks[i] = 0;
		}
150
		free_extent_buffer(p->nodes[i]);
151
		p->nodes[i] = NULL;
152 153 154
	}
}

C
Chris Mason 已提交
155 156 157 158 159 160 161 162 163 164
/*
 * safely gets a reference on the root node of a tree.  A lock
 * is not taken, so a concurrent writer may put a different node
 * at the root of the tree.  See btrfs_lock_root_node for the
 * looping required.
 *
 * The extent buffer returned by this has a reference taken, so
 * it won't disappear.  It may stop being the root of the tree
 * at any time because there are no locks held.
 */
165 166 167
struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
{
	struct extent_buffer *eb;
168

169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
	while (1) {
		rcu_read_lock();
		eb = rcu_dereference(root->node);

		/*
		 * RCU really hurts here, we could free up the root node because
		 * it was cow'ed but we may not get the new root node yet so do
		 * the inc_not_zero dance and if it doesn't work then
		 * synchronize_rcu and try again.
		 */
		if (atomic_inc_not_zero(&eb->refs)) {
			rcu_read_unlock();
			break;
		}
		rcu_read_unlock();
		synchronize_rcu();
	}
186 187 188
	return eb;
}

C
Chris Mason 已提交
189 190 191 192
/* loop around taking references on and locking the root node of the
 * tree until you end up with a lock on the root.  A locked buffer
 * is returned, with a reference held.
 */
193 194 195 196
struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
{
	struct extent_buffer *eb;

C
Chris Mason 已提交
197
	while (1) {
198 199
		eb = btrfs_root_node(root);
		btrfs_tree_lock(eb);
200
		if (eb == root->node)
201 202 203 204 205 206 207
			break;
		btrfs_tree_unlock(eb);
		free_extent_buffer(eb);
	}
	return eb;
}

208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
/* loop around taking references on and locking the root node of the
 * tree until you end up with a lock on the root.  A locked buffer
 * is returned, with a reference held.
 */
struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
{
	struct extent_buffer *eb;

	while (1) {
		eb = btrfs_root_node(root);
		btrfs_tree_read_lock(eb);
		if (eb == root->node)
			break;
		btrfs_tree_read_unlock(eb);
		free_extent_buffer(eb);
	}
	return eb;
}

C
Chris Mason 已提交
227 228 229 230
/* cowonly root (everything not a reference counted cow subvolume), just get
 * put onto a simple dirty list.  transaction.c walks this to make sure they
 * get properly updated on disk.
 */
231 232
static void add_root_to_dirty_list(struct btrfs_root *root)
{
233
	spin_lock(&root->fs_info->trans_lock);
234 235 236 237
	if (root->track_dirty && list_empty(&root->dirty_list)) {
		list_add(&root->dirty_list,
			 &root->fs_info->dirty_cowonly_roots);
	}
238
	spin_unlock(&root->fs_info->trans_lock);
239 240
}

C
Chris Mason 已提交
241 242 243 244 245
/*
 * used by snapshot creation to make a copy of a root for a tree with
 * a given objectid.  The buffer with the new root node is returned in
 * cow_ret, and this func returns zero on success or a negative error code.
 */
246 247 248 249 250 251 252 253
int btrfs_copy_root(struct btrfs_trans_handle *trans,
		      struct btrfs_root *root,
		      struct extent_buffer *buf,
		      struct extent_buffer **cow_ret, u64 new_root_objectid)
{
	struct extent_buffer *cow;
	int ret = 0;
	int level;
254
	struct btrfs_disk_key disk_key;
255 256 257 258 259 260

	WARN_ON(root->ref_cows && trans->transid !=
		root->fs_info->running_transaction->transid);
	WARN_ON(root->ref_cows && trans->transid != root->last_trans);

	level = btrfs_header_level(buf);
261 262 263 264
	if (level == 0)
		btrfs_item_key(buf, &disk_key, 0);
	else
		btrfs_node_key(buf, &disk_key, 0);
Z
Zheng Yan 已提交
265

266 267
	cow = btrfs_alloc_free_block(trans, root, buf->len, 0,
				     new_root_objectid, &disk_key, level,
268
				     buf->start, 0);
269
	if (IS_ERR(cow))
270 271 272 273 274
		return PTR_ERR(cow);

	copy_extent_buffer(cow, buf, 0, 0, cow->len);
	btrfs_set_header_bytenr(cow, cow->start);
	btrfs_set_header_generation(cow, trans->transid);
275 276 277 278 279 280 281
	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
				     BTRFS_HEADER_FLAG_RELOC);
	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
	else
		btrfs_set_header_owner(cow, new_root_objectid);
282

Y
Yan Zheng 已提交
283 284 285 286
	write_extent_buffer(cow, root->fs_info->fsid,
			    (unsigned long)btrfs_header_fsid(cow),
			    BTRFS_FSID_SIZE);

287
	WARN_ON(btrfs_header_generation(buf) > trans->transid);
288
	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
A
Arne Jansen 已提交
289
		ret = btrfs_inc_ref(trans, root, cow, 1, 1);
290
	else
A
Arne Jansen 已提交
291
		ret = btrfs_inc_ref(trans, root, cow, 0, 1);
292

293 294 295 296 297 298 299 300
	if (ret)
		return ret;

	btrfs_mark_buffer_dirty(cow);
	*cow_ret = cow;
	return 0;
}

301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
enum mod_log_op {
	MOD_LOG_KEY_REPLACE,
	MOD_LOG_KEY_ADD,
	MOD_LOG_KEY_REMOVE,
	MOD_LOG_KEY_REMOVE_WHILE_FREEING,
	MOD_LOG_KEY_REMOVE_WHILE_MOVING,
	MOD_LOG_MOVE_KEYS,
	MOD_LOG_ROOT_REPLACE,
};

struct tree_mod_move {
	int dst_slot;
	int nr_items;
};

struct tree_mod_root {
	u64 logical;
	u8 level;
};

struct tree_mod_elem {
	struct rb_node node;
	u64 index;		/* shifted logical */
324
	u64 seq;
325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
	enum mod_log_op op;

	/* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
	int slot;

	/* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
	u64 generation;

	/* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
	struct btrfs_disk_key key;
	u64 blockptr;

	/* this is used for op == MOD_LOG_MOVE_KEYS */
	struct tree_mod_move move;

	/* this is used for op == MOD_LOG_ROOT_REPLACE */
	struct tree_mod_root old_root;
};

344
static inline void tree_mod_log_read_lock(struct btrfs_fs_info *fs_info)
345
{
346
	read_lock(&fs_info->tree_mod_log_lock);
347 348
}

349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
static inline void tree_mod_log_read_unlock(struct btrfs_fs_info *fs_info)
{
	read_unlock(&fs_info->tree_mod_log_lock);
}

static inline void tree_mod_log_write_lock(struct btrfs_fs_info *fs_info)
{
	write_lock(&fs_info->tree_mod_log_lock);
}

static inline void tree_mod_log_write_unlock(struct btrfs_fs_info *fs_info)
{
	write_unlock(&fs_info->tree_mod_log_lock);
}

/*
 * This adds a new blocker to the tree mod log's blocker list if the @elem
 * passed does not already have a sequence number set. So when a caller expects
 * to record tree modifications, it should ensure to set elem->seq to zero
 * before calling btrfs_get_tree_mod_seq.
 * Returns a fresh, unused tree log modification sequence number, even if no new
 * blocker was added.
 */
u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
			   struct seq_list *elem)
374
{
375 376 377
	u64 seq;

	tree_mod_log_write_lock(fs_info);
378
	spin_lock(&fs_info->tree_mod_seq_lock);
379 380 381 382 383
	if (!elem->seq) {
		elem->seq = btrfs_inc_tree_mod_seq(fs_info);
		list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
	}
	seq = btrfs_inc_tree_mod_seq(fs_info);
384
	spin_unlock(&fs_info->tree_mod_seq_lock);
385 386 387
	tree_mod_log_write_unlock(fs_info);

	return seq;
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
}

void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
			    struct seq_list *elem)
{
	struct rb_root *tm_root;
	struct rb_node *node;
	struct rb_node *next;
	struct seq_list *cur_elem;
	struct tree_mod_elem *tm;
	u64 min_seq = (u64)-1;
	u64 seq_putting = elem->seq;

	if (!seq_putting)
		return;

	spin_lock(&fs_info->tree_mod_seq_lock);
	list_del(&elem->list);
406
	elem->seq = 0;
407 408

	list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
409
		if (cur_elem->seq < min_seq) {
410 411 412 413 414
			if (seq_putting > cur_elem->seq) {
				/*
				 * blocker with lower sequence number exists, we
				 * cannot remove anything from the log
				 */
415 416
				spin_unlock(&fs_info->tree_mod_seq_lock);
				return;
417 418 419 420
			}
			min_seq = cur_elem->seq;
		}
	}
421 422
	spin_unlock(&fs_info->tree_mod_seq_lock);

423 424 425 426
	/*
	 * anything that's lower than the lowest existing (read: blocked)
	 * sequence number can be removed from the tree.
	 */
427
	tree_mod_log_write_lock(fs_info);
428 429 430 431
	tm_root = &fs_info->tree_mod_log;
	for (node = rb_first(tm_root); node; node = next) {
		next = rb_next(node);
		tm = container_of(node, struct tree_mod_elem, node);
432
		if (tm->seq > min_seq)
433 434 435 436
			continue;
		rb_erase(node, tm_root);
		kfree(tm);
	}
437
	tree_mod_log_write_unlock(fs_info);
438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
}

/*
 * key order of the log:
 *       index -> sequence
 *
 * the index is the shifted logical of the *new* root node for root replace
 * operations, or the shifted logical of the affected block for all other
 * operations.
 */
static noinline int
__tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
{
	struct rb_root *tm_root;
	struct rb_node **new;
	struct rb_node *parent = NULL;
	struct tree_mod_elem *cur;

456
	BUG_ON(!tm || !tm->seq);
457 458 459 460 461 462 463 464 465 466

	tm_root = &fs_info->tree_mod_log;
	new = &tm_root->rb_node;
	while (*new) {
		cur = container_of(*new, struct tree_mod_elem, node);
		parent = *new;
		if (cur->index < tm->index)
			new = &((*new)->rb_left);
		else if (cur->index > tm->index)
			new = &((*new)->rb_right);
467
		else if (cur->seq < tm->seq)
468
			new = &((*new)->rb_left);
469
		else if (cur->seq > tm->seq)
470 471 472
			new = &((*new)->rb_right);
		else {
			kfree(tm);
473
			return -EEXIST;
474 475 476 477 478
		}
	}

	rb_link_node(&tm->node, parent, new);
	rb_insert_color(&tm->node, tm_root);
479
	return 0;
480 481
}

482 483 484 485 486 487
/*
 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
 * returns zero with the tree_mod_log_lock acquired. The caller must hold
 * this until all tree mod log insertions are recorded in the rb tree and then
 * call tree_mod_log_write_unlock() to release.
 */
488 489 490 491 492
static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
				    struct extent_buffer *eb) {
	smp_mb();
	if (list_empty(&(fs_info)->tree_mod_seq_list))
		return 1;
493 494 495 496 497 498 499 500 501 502
	if (eb && btrfs_header_level(eb) == 0)
		return 1;

	tree_mod_log_write_lock(fs_info);
	if (list_empty(&fs_info->tree_mod_seq_list)) {
		/*
		 * someone emptied the list while we were waiting for the lock.
		 * we must not add to the list when no blocker exists.
		 */
		tree_mod_log_write_unlock(fs_info);
503
		return 1;
504 505
	}

506 507 508
	return 0;
}

509
/*
510
 * This allocates memory and gets a tree modification sequence number.
511
 *
512 513
 * Returns <0 on error.
 * Returns >0 (the added sequence number) on success.
514
 */
515 516
static inline int tree_mod_alloc(struct btrfs_fs_info *fs_info, gfp_t flags,
				 struct tree_mod_elem **tm_ret)
517 518 519
{
	struct tree_mod_elem *tm;

520 521 522 523 524
	/*
	 * once we switch from spin locks to something different, we should
	 * honor the flags parameter here.
	 */
	tm = *tm_ret = kzalloc(sizeof(*tm), GFP_ATOMIC);
525 526 527
	if (!tm)
		return -ENOMEM;

528 529
	tm->seq = btrfs_inc_tree_mod_seq(fs_info);
	return tm->seq;
530 531
}

532 533 534 535
static inline int
__tree_mod_log_insert_key(struct btrfs_fs_info *fs_info,
			  struct extent_buffer *eb, int slot,
			  enum mod_log_op op, gfp_t flags)
536 537
{
	int ret;
538
	struct tree_mod_elem *tm;
539 540

	ret = tree_mod_alloc(fs_info, flags, &tm);
541
	if (ret < 0)
542 543 544 545 546 547 548 549 550 551 552
		return ret;

	tm->index = eb->start >> PAGE_CACHE_SHIFT;
	if (op != MOD_LOG_KEY_ADD) {
		btrfs_node_key(eb, &tm->key, slot);
		tm->blockptr = btrfs_node_blockptr(eb, slot);
	}
	tm->op = op;
	tm->slot = slot;
	tm->generation = btrfs_node_ptr_generation(eb, slot);

553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
	return __tree_mod_log_insert(fs_info, tm);
}

static noinline int
tree_mod_log_insert_key_mask(struct btrfs_fs_info *fs_info,
			     struct extent_buffer *eb, int slot,
			     enum mod_log_op op, gfp_t flags)
{
	int ret;

	if (tree_mod_dont_log(fs_info, eb))
		return 0;

	ret = __tree_mod_log_insert_key(fs_info, eb, slot, op, flags);

	tree_mod_log_write_unlock(fs_info);
569
	return ret;
570 571 572 573 574 575 576 577 578
}

static noinline int
tree_mod_log_insert_key(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
			int slot, enum mod_log_op op)
{
	return tree_mod_log_insert_key_mask(fs_info, eb, slot, op, GFP_NOFS);
}

579 580 581 582 583 584 585 586
static noinline int
tree_mod_log_insert_key_locked(struct btrfs_fs_info *fs_info,
			     struct extent_buffer *eb, int slot,
			     enum mod_log_op op)
{
	return __tree_mod_log_insert_key(fs_info, eb, slot, op, GFP_NOFS);
}

587 588 589 590 591 592 593 594 595
static noinline int
tree_mod_log_insert_move(struct btrfs_fs_info *fs_info,
			 struct extent_buffer *eb, int dst_slot, int src_slot,
			 int nr_items, gfp_t flags)
{
	struct tree_mod_elem *tm;
	int ret;
	int i;

J
Jan Schmidt 已提交
596 597
	if (tree_mod_dont_log(fs_info, eb))
		return 0;
598 599

	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
600
		ret = tree_mod_log_insert_key_locked(fs_info, eb, i + dst_slot,
601 602 603 604
					      MOD_LOG_KEY_REMOVE_WHILE_MOVING);
		BUG_ON(ret < 0);
	}

J
Jan Schmidt 已提交
605
	ret = tree_mod_alloc(fs_info, flags, &tm);
606 607
	if (ret < 0)
		goto out;
J
Jan Schmidt 已提交
608

609 610 611 612 613 614
	tm->index = eb->start >> PAGE_CACHE_SHIFT;
	tm->slot = src_slot;
	tm->move.dst_slot = dst_slot;
	tm->move.nr_items = nr_items;
	tm->op = MOD_LOG_MOVE_KEYS;

615
	ret = __tree_mod_log_insert(fs_info, tm);
616 617
out:
	tree_mod_log_write_unlock(fs_info);
618
	return ret;
619 620
}

621 622 623 624 625 626 627 628 629 630 631 632 633 634 635
static inline void
__tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
{
	int i;
	u32 nritems;
	int ret;

	nritems = btrfs_header_nritems(eb);
	for (i = nritems - 1; i >= 0; i--) {
		ret = tree_mod_log_insert_key_locked(fs_info, eb, i,
					      MOD_LOG_KEY_REMOVE_WHILE_FREEING);
		BUG_ON(ret < 0);
	}
}

636 637 638 639 640 641 642 643
static noinline int
tree_mod_log_insert_root(struct btrfs_fs_info *fs_info,
			 struct extent_buffer *old_root,
			 struct extent_buffer *new_root, gfp_t flags)
{
	struct tree_mod_elem *tm;
	int ret;

644 645 646 647 648
	if (tree_mod_dont_log(fs_info, NULL))
		return 0;

	__tree_mod_log_free_eb(fs_info, old_root);

649
	ret = tree_mod_alloc(fs_info, flags, &tm);
650 651
	if (ret < 0)
		goto out;
652 653 654 655 656 657 658

	tm->index = new_root->start >> PAGE_CACHE_SHIFT;
	tm->old_root.logical = old_root->start;
	tm->old_root.level = btrfs_header_level(old_root);
	tm->generation = btrfs_header_generation(old_root);
	tm->op = MOD_LOG_ROOT_REPLACE;

659
	ret = __tree_mod_log_insert(fs_info, tm);
660 661
out:
	tree_mod_log_write_unlock(fs_info);
662
	return ret;
663 664 665 666 667 668 669 670 671 672 673 674
}

static struct tree_mod_elem *
__tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
		      int smallest)
{
	struct rb_root *tm_root;
	struct rb_node *node;
	struct tree_mod_elem *cur = NULL;
	struct tree_mod_elem *found = NULL;
	u64 index = start >> PAGE_CACHE_SHIFT;

675
	tree_mod_log_read_lock(fs_info);
676 677 678 679 680 681 682 683
	tm_root = &fs_info->tree_mod_log;
	node = tm_root->rb_node;
	while (node) {
		cur = container_of(node, struct tree_mod_elem, node);
		if (cur->index < index) {
			node = node->rb_left;
		} else if (cur->index > index) {
			node = node->rb_right;
684
		} else if (cur->seq < min_seq) {
685 686 687 688
			node = node->rb_left;
		} else if (!smallest) {
			/* we want the node with the highest seq */
			if (found)
689
				BUG_ON(found->seq > cur->seq);
690 691
			found = cur;
			node = node->rb_left;
692
		} else if (cur->seq > min_seq) {
693 694
			/* we want the node with the smallest seq */
			if (found)
695
				BUG_ON(found->seq < cur->seq);
696 697 698 699 700 701 702
			found = cur;
			node = node->rb_right;
		} else {
			found = cur;
			break;
		}
	}
703
	tree_mod_log_read_unlock(fs_info);
704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730

	return found;
}

/*
 * this returns the element from the log with the smallest time sequence
 * value that's in the log (the oldest log item). any element with a time
 * sequence lower than min_seq will be ignored.
 */
static struct tree_mod_elem *
tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
			   u64 min_seq)
{
	return __tree_mod_log_search(fs_info, start, min_seq, 1);
}

/*
 * this returns the element from the log with the largest time sequence
 * value that's in the log (the most recent log item). any element with
 * a time sequence lower than min_seq will be ignored.
 */
static struct tree_mod_elem *
tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
{
	return __tree_mod_log_search(fs_info, start, min_seq, 0);
}

731
static noinline void
732 733 734 735 736 737 738
tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
		     struct extent_buffer *src, unsigned long dst_offset,
		     unsigned long src_offset, int nr_items)
{
	int ret;
	int i;

739
	if (tree_mod_dont_log(fs_info, NULL))
740 741
		return;

742 743
	if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0) {
		tree_mod_log_write_unlock(fs_info);
744
		return;
745
	}
746 747

	for (i = 0; i < nr_items; i++) {
748 749 750
		ret = tree_mod_log_insert_key_locked(fs_info, src,
						     i + src_offset,
						     MOD_LOG_KEY_REMOVE);
751
		BUG_ON(ret < 0);
752 753 754
		ret = tree_mod_log_insert_key_locked(fs_info, dst,
						     i + dst_offset,
						     MOD_LOG_KEY_ADD);
755 756
		BUG_ON(ret < 0);
	}
757 758

	tree_mod_log_write_unlock(fs_info);
759 760 761 762 763 764 765 766 767 768 769 770
}

static inline void
tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
		     int dst_offset, int src_offset, int nr_items)
{
	int ret;
	ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset,
				       nr_items, GFP_NOFS);
	BUG_ON(ret < 0);
}

771
static noinline void
772 773 774 775 776 777 778 779 780 781 782 783
tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info,
			  struct extent_buffer *eb,
			  struct btrfs_disk_key *disk_key, int slot, int atomic)
{
	int ret;

	ret = tree_mod_log_insert_key_mask(fs_info, eb, slot,
					   MOD_LOG_KEY_REPLACE,
					   atomic ? GFP_ATOMIC : GFP_NOFS);
	BUG_ON(ret < 0);
}

784 785
static noinline void
tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
786
{
787
	if (tree_mod_dont_log(fs_info, eb))
788 789
		return;

790 791 792
	__tree_mod_log_free_eb(fs_info, eb);

	tree_mod_log_write_unlock(fs_info);
793 794
}

795
static noinline void
796 797 798 799 800 801 802 803 804
tree_mod_log_set_root_pointer(struct btrfs_root *root,
			      struct extent_buffer *new_root_node)
{
	int ret;
	ret = tree_mod_log_insert_root(root->fs_info, root->node,
				       new_root_node, GFP_NOFS);
	BUG_ON(ret < 0);
}

805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833
/*
 * check if the tree block can be shared by multiple trees
 */
int btrfs_block_can_be_shared(struct btrfs_root *root,
			      struct extent_buffer *buf)
{
	/*
	 * Tree blocks not in refernece counted trees and tree roots
	 * are never shared. If a block was allocated after the last
	 * snapshot and the block was not allocated by tree relocation,
	 * we know the block is not shared.
	 */
	if (root->ref_cows &&
	    buf != root->node && buf != root->commit_root &&
	    (btrfs_header_generation(buf) <=
	     btrfs_root_last_snapshot(&root->root_item) ||
	     btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
		return 1;
#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
	if (root->ref_cows &&
	    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
		return 1;
#endif
	return 0;
}

static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
				       struct btrfs_root *root,
				       struct extent_buffer *buf,
834 835
				       struct extent_buffer *cow,
				       int *last_ref)
836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862
{
	u64 refs;
	u64 owner;
	u64 flags;
	u64 new_flags = 0;
	int ret;

	/*
	 * Backrefs update rules:
	 *
	 * Always use full backrefs for extent pointers in tree block
	 * allocated by tree relocation.
	 *
	 * If a shared tree block is no longer referenced by its owner
	 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
	 * use full backrefs for extent pointers in tree block.
	 *
	 * If a tree block is been relocating
	 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
	 * use full backrefs for extent pointers in tree block.
	 * The reason for this is some operations (such as drop tree)
	 * are only allowed for blocks use full backrefs.
	 */

	if (btrfs_block_can_be_shared(root, buf)) {
		ret = btrfs_lookup_extent_info(trans, root, buf->start,
					       buf->len, &refs, &flags);
863 864
		if (ret)
			return ret;
865 866 867 868 869
		if (refs == 0) {
			ret = -EROFS;
			btrfs_std_error(root->fs_info, ret);
			return ret;
		}
870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886
	} else {
		refs = 1;
		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
			flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
		else
			flags = 0;
	}

	owner = btrfs_header_owner(buf);
	BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
	       !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));

	if (refs > 1) {
		if ((owner == root->root_key.objectid ||
		     root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
		    !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
A
Arne Jansen 已提交
887
			ret = btrfs_inc_ref(trans, root, buf, 1, 1);
888
			BUG_ON(ret); /* -ENOMEM */
889 890 891

			if (root->root_key.objectid ==
			    BTRFS_TREE_RELOC_OBJECTID) {
A
Arne Jansen 已提交
892
				ret = btrfs_dec_ref(trans, root, buf, 0, 1);
893
				BUG_ON(ret); /* -ENOMEM */
A
Arne Jansen 已提交
894
				ret = btrfs_inc_ref(trans, root, cow, 1, 1);
895
				BUG_ON(ret); /* -ENOMEM */
896 897 898 899 900 901
			}
			new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
		} else {

			if (root->root_key.objectid ==
			    BTRFS_TREE_RELOC_OBJECTID)
A
Arne Jansen 已提交
902
				ret = btrfs_inc_ref(trans, root, cow, 1, 1);
903
			else
A
Arne Jansen 已提交
904
				ret = btrfs_inc_ref(trans, root, cow, 0, 1);
905
			BUG_ON(ret); /* -ENOMEM */
906 907 908 909 910 911
		}
		if (new_flags != 0) {
			ret = btrfs_set_disk_extent_flags(trans, root,
							  buf->start,
							  buf->len,
							  new_flags, 0);
912 913
			if (ret)
				return ret;
914 915 916 917 918
		}
	} else {
		if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
			if (root->root_key.objectid ==
			    BTRFS_TREE_RELOC_OBJECTID)
A
Arne Jansen 已提交
919
				ret = btrfs_inc_ref(trans, root, cow, 1, 1);
920
			else
A
Arne Jansen 已提交
921
				ret = btrfs_inc_ref(trans, root, cow, 0, 1);
922
			BUG_ON(ret); /* -ENOMEM */
A
Arne Jansen 已提交
923
			ret = btrfs_dec_ref(trans, root, buf, 1, 1);
924
			BUG_ON(ret); /* -ENOMEM */
925
		}
926 927 928 929 930 931
		/*
		 * don't log freeing in case we're freeing the root node, this
		 * is done by tree_mod_log_set_root_pointer later
		 */
		if (buf != root->node && btrfs_header_level(buf) != 0)
			tree_mod_log_free_eb(root->fs_info, buf);
932
		clean_tree_block(trans, root, buf);
933
		*last_ref = 1;
934 935 936 937
	}
	return 0;
}

C
Chris Mason 已提交
938
/*
C
Chris Mason 已提交
939 940 941 942
 * does the dirty work in cow of a single block.  The parent block (if
 * supplied) is updated to point to the new cow copy.  The new buffer is marked
 * dirty and returned locked.  If you modify the block it needs to be marked
 * dirty again.
C
Chris Mason 已提交
943 944 945
 *
 * search_start -- an allocation hint for the new block
 *
C
Chris Mason 已提交
946 947 948
 * empty_size -- a hint that you plan on doing more cow.  This is the size in
 * bytes the allocator should try to find free next to the block it returns.
 * This is just a hint and may be ignored by the allocator.
C
Chris Mason 已提交
949
 */
C
Chris Mason 已提交
950
static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
951 952 953 954
			     struct btrfs_root *root,
			     struct extent_buffer *buf,
			     struct extent_buffer *parent, int parent_slot,
			     struct extent_buffer **cow_ret,
955
			     u64 search_start, u64 empty_size)
C
Chris Mason 已提交
956
{
957
	struct btrfs_disk_key disk_key;
958
	struct extent_buffer *cow;
959
	int level, ret;
960
	int last_ref = 0;
961
	int unlock_orig = 0;
962
	u64 parent_start;
963

964 965 966
	if (*cow_ret == buf)
		unlock_orig = 1;

967
	btrfs_assert_tree_locked(buf);
968

969 970
	WARN_ON(root->ref_cows && trans->transid !=
		root->fs_info->running_transaction->transid);
971
	WARN_ON(root->ref_cows && trans->transid != root->last_trans);
972

973
	level = btrfs_header_level(buf);
Z
Zheng Yan 已提交
974

975 976 977 978 979 980 981 982 983 984 985 986 987 988 989
	if (level == 0)
		btrfs_item_key(buf, &disk_key, 0);
	else
		btrfs_node_key(buf, &disk_key, 0);

	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
		if (parent)
			parent_start = parent->start;
		else
			parent_start = 0;
	} else
		parent_start = 0;

	cow = btrfs_alloc_free_block(trans, root, buf->len, parent_start,
				     root->root_key.objectid, &disk_key,
990
				     level, search_start, empty_size);
991 992
	if (IS_ERR(cow))
		return PTR_ERR(cow);
993

994 995
	/* cow is set to blocking by btrfs_init_new_buffer */

996
	copy_extent_buffer(cow, buf, 0, 0, cow->len);
997
	btrfs_set_header_bytenr(cow, cow->start);
998
	btrfs_set_header_generation(cow, trans->transid);
999 1000 1001 1002 1003 1004 1005
	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
				     BTRFS_HEADER_FLAG_RELOC);
	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
	else
		btrfs_set_header_owner(cow, root->root_key.objectid);
1006

Y
Yan Zheng 已提交
1007 1008 1009 1010
	write_extent_buffer(cow, root->fs_info->fsid,
			    (unsigned long)btrfs_header_fsid(cow),
			    BTRFS_FSID_SIZE);

1011
	ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1012
	if (ret) {
1013
		btrfs_abort_transaction(trans, root, ret);
1014 1015
		return ret;
	}
Z
Zheng Yan 已提交
1016

1017 1018 1019
	if (root->ref_cows)
		btrfs_reloc_cow_block(trans, root, buf, cow);

C
Chris Mason 已提交
1020
	if (buf == root->node) {
1021
		WARN_ON(parent && parent != buf);
1022 1023 1024 1025 1026
		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
			parent_start = buf->start;
		else
			parent_start = 0;
1027

1028
		extent_buffer_get(cow);
1029
		tree_mod_log_set_root_pointer(root, cow);
1030
		rcu_assign_pointer(root->node, cow);
1031

1032
		btrfs_free_tree_block(trans, root, buf, parent_start,
1033
				      last_ref);
1034
		free_extent_buffer(buf);
1035
		add_root_to_dirty_list(root);
C
Chris Mason 已提交
1036
	} else {
1037 1038 1039 1040 1041 1042
		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
			parent_start = parent->start;
		else
			parent_start = 0;

		WARN_ON(trans->transid != btrfs_header_generation(parent));
1043 1044
		tree_mod_log_insert_key(root->fs_info, parent, parent_slot,
					MOD_LOG_KEY_REPLACE);
1045
		btrfs_set_node_blockptr(parent, parent_slot,
1046
					cow->start);
1047 1048
		btrfs_set_node_ptr_generation(parent, parent_slot,
					      trans->transid);
C
Chris Mason 已提交
1049
		btrfs_mark_buffer_dirty(parent);
1050
		btrfs_free_tree_block(trans, root, buf, parent_start,
1051
				      last_ref);
C
Chris Mason 已提交
1052
	}
1053 1054
	if (unlock_orig)
		btrfs_tree_unlock(buf);
1055
	free_extent_buffer_stale(buf);
C
Chris Mason 已提交
1056
	btrfs_mark_buffer_dirty(cow);
C
Chris Mason 已提交
1057
	*cow_ret = cow;
C
Chris Mason 已提交
1058 1059 1060
	return 0;
}

J
Jan Schmidt 已提交
1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
/*
 * returns the logical address of the oldest predecessor of the given root.
 * entries older than time_seq are ignored.
 */
static struct tree_mod_elem *
__tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info,
			   struct btrfs_root *root, u64 time_seq)
{
	struct tree_mod_elem *tm;
	struct tree_mod_elem *found = NULL;
	u64 root_logical = root->node->start;
	int looped = 0;

	if (!time_seq)
		return 0;

	/*
	 * the very last operation that's logged for a root is the replacement
	 * operation (if it is replaced at all). this has the index of the *new*
	 * root, making it the very first operation that's logged for this root.
	 */
	while (1) {
		tm = tree_mod_log_search_oldest(fs_info, root_logical,
						time_seq);
		if (!looped && !tm)
			return 0;
		/*
1088 1089 1090
		 * if there are no tree operation for the oldest root, we simply
		 * return it. this should only happen if that (old) root is at
		 * level 0.
J
Jan Schmidt 已提交
1091
		 */
1092 1093
		if (!tm)
			break;
J
Jan Schmidt 已提交
1094

1095 1096 1097 1098 1099
		/*
		 * if there's an operation that's not a root replacement, we
		 * found the oldest version of our root. normally, we'll find a
		 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
		 */
J
Jan Schmidt 已提交
1100 1101 1102 1103 1104 1105 1106 1107 1108
		if (tm->op != MOD_LOG_ROOT_REPLACE)
			break;

		found = tm;
		root_logical = tm->old_root.logical;
		BUG_ON(root_logical == root->node->start);
		looped = 1;
	}

1109 1110 1111 1112
	/* if there's no old root to return, return what we found instead */
	if (!found)
		found = tm;

J
Jan Schmidt 已提交
1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
	return found;
}

/*
 * tm is a pointer to the first operation to rewind within eb. then, all
 * previous operations will be rewinded (until we reach something older than
 * time_seq).
 */
static void
__tree_mod_log_rewind(struct extent_buffer *eb, u64 time_seq,
		      struct tree_mod_elem *first_tm)
{
	u32 n;
	struct rb_node *next;
	struct tree_mod_elem *tm = first_tm;
	unsigned long o_dst;
	unsigned long o_src;
	unsigned long p_size = sizeof(struct btrfs_key_ptr);

	n = btrfs_header_nritems(eb);
1133
	while (tm && tm->seq >= time_seq) {
J
Jan Schmidt 已提交
1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157
		/*
		 * all the operations are recorded with the operator used for
		 * the modification. as we're going backwards, we do the
		 * opposite of each operation here.
		 */
		switch (tm->op) {
		case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
			BUG_ON(tm->slot < n);
		case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
		case MOD_LOG_KEY_REMOVE:
			btrfs_set_node_key(eb, &tm->key, tm->slot);
			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
			btrfs_set_node_ptr_generation(eb, tm->slot,
						      tm->generation);
			n++;
			break;
		case MOD_LOG_KEY_REPLACE:
			BUG_ON(tm->slot >= n);
			btrfs_set_node_key(eb, &tm->key, tm->slot);
			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
			btrfs_set_node_ptr_generation(eb, tm->slot,
						      tm->generation);
			break;
		case MOD_LOG_KEY_ADD:
1158
			/* if a move operation is needed it's in the log */
J
Jan Schmidt 已提交
1159 1160 1161
			n--;
			break;
		case MOD_LOG_MOVE_KEYS:
1162 1163 1164
			o_dst = btrfs_node_key_ptr_offset(tm->slot);
			o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
			memmove_extent_buffer(eb, o_dst, o_src,
J
Jan Schmidt 已提交
1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
					      tm->move.nr_items * p_size);
			break;
		case MOD_LOG_ROOT_REPLACE:
			/*
			 * this operation is special. for roots, this must be
			 * handled explicitly before rewinding.
			 * for non-roots, this operation may exist if the node
			 * was a root: root A -> child B; then A gets empty and
			 * B is promoted to the new root. in the mod log, we'll
			 * have a root-replace operation for B, a tree block
			 * that is no root. we simply ignore that operation.
			 */
			break;
		}
		next = rb_next(&tm->node);
		if (!next)
			break;
		tm = container_of(next, struct tree_mod_elem, node);
		if (tm->index != first_tm->index)
			break;
	}
	btrfs_set_header_nritems(eb, n);
}

static struct extent_buffer *
tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
		    u64 time_seq)
{
	struct extent_buffer *eb_rewin;
	struct tree_mod_elem *tm;

	if (!time_seq)
		return eb;

	if (btrfs_header_level(eb) == 0)
		return eb;

	tm = tree_mod_log_search(fs_info, eb->start, time_seq);
	if (!tm)
		return eb;

	if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
		BUG_ON(tm->slot != 0);
		eb_rewin = alloc_dummy_extent_buffer(eb->start,
						fs_info->tree_root->nodesize);
		BUG_ON(!eb_rewin);
		btrfs_set_header_bytenr(eb_rewin, eb->start);
		btrfs_set_header_backref_rev(eb_rewin,
					     btrfs_header_backref_rev(eb));
		btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1215
		btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
J
Jan Schmidt 已提交
1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
	} else {
		eb_rewin = btrfs_clone_extent_buffer(eb);
		BUG_ON(!eb_rewin);
	}

	extent_buffer_get(eb_rewin);
	free_extent_buffer(eb);

	__tree_mod_log_rewind(eb_rewin, time_seq, tm);

	return eb_rewin;
}

1229 1230 1231 1232 1233 1234 1235
/*
 * get_old_root() rewinds the state of @root's root node to the given @time_seq
 * value. If there are no changes, the current root->root_node is returned. If
 * anything changed in between, there's a fresh buffer allocated on which the
 * rewind operations are done. In any case, the returned buffer is read locked.
 * Returns NULL on error (with no locks held).
 */
J
Jan Schmidt 已提交
1236 1237 1238 1239 1240
static inline struct extent_buffer *
get_old_root(struct btrfs_root *root, u64 time_seq)
{
	struct tree_mod_elem *tm;
	struct extent_buffer *eb;
1241
	struct tree_mod_root *old_root = NULL;
1242
	u64 old_generation = 0;
1243
	u64 logical;
J
Jan Schmidt 已提交
1244

1245
	eb = btrfs_read_lock_root_node(root);
J
Jan Schmidt 已提交
1246 1247 1248 1249
	tm = __tree_mod_log_oldest_root(root->fs_info, root, time_seq);
	if (!tm)
		return root->node;

1250 1251 1252 1253 1254 1255 1256
	if (tm->op == MOD_LOG_ROOT_REPLACE) {
		old_root = &tm->old_root;
		old_generation = tm->generation;
		logical = old_root->logical;
	} else {
		logical = root->node->start;
	}
J
Jan Schmidt 已提交
1257

1258 1259
	tm = tree_mod_log_search(root->fs_info, logical, time_seq);
	if (old_root)
1260
		eb = alloc_dummy_extent_buffer(logical, root->nodesize);
1261 1262
	else
		eb = btrfs_clone_extent_buffer(root->node);
1263 1264 1265 1266 1267
	btrfs_tree_read_unlock(root->node);
	free_extent_buffer(root->node);
	if (!eb)
		return NULL;
	btrfs_tree_read_lock(eb);
1268
	if (old_root) {
J
Jan Schmidt 已提交
1269 1270 1271
		btrfs_set_header_bytenr(eb, eb->start);
		btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
		btrfs_set_header_owner(eb, root->root_key.objectid);
1272 1273
		btrfs_set_header_level(eb, old_root->level);
		btrfs_set_header_generation(eb, old_generation);
J
Jan Schmidt 已提交
1274
	}
1275 1276 1277 1278
	if (tm)
		__tree_mod_log_rewind(eb, time_seq, tm);
	else
		WARN_ON(btrfs_header_level(eb) != 0);
1279
	extent_buffer_get(eb);
J
Jan Schmidt 已提交
1280 1281 1282 1283

	return eb;
}

1284 1285 1286 1287
static inline int should_cow_block(struct btrfs_trans_handle *trans,
				   struct btrfs_root *root,
				   struct extent_buffer *buf)
{
1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301
	/* ensure we can see the force_cow */
	smp_rmb();

	/*
	 * We do not need to cow a block if
	 * 1) this block is not created or changed in this transaction;
	 * 2) this block does not belong to TREE_RELOC tree;
	 * 3) the root is not forced COW.
	 *
	 * What is forced COW:
	 *    when we create snapshot during commiting the transaction,
	 *    after we've finished coping src root, we must COW the shared
	 *    block to ensure the metadata consistency.
	 */
1302 1303 1304
	if (btrfs_header_generation(buf) == trans->transid &&
	    !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
	    !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1305 1306
	      btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
	    !root->force_cow)
1307 1308 1309 1310
		return 0;
	return 1;
}

C
Chris Mason 已提交
1311 1312 1313 1314 1315
/*
 * cows a single block, see __btrfs_cow_block for the real work.
 * This version of it has extra checks so that a block isn't cow'd more than
 * once per transaction, as long as it hasn't been written yet
 */
C
Chris Mason 已提交
1316
noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1317 1318
		    struct btrfs_root *root, struct extent_buffer *buf,
		    struct extent_buffer *parent, int parent_slot,
1319
		    struct extent_buffer **cow_ret)
1320 1321
{
	u64 search_start;
1322
	int ret;
C
Chris Mason 已提交
1323

1324
	if (trans->transaction != root->fs_info->running_transaction) {
C
Chris Mason 已提交
1325 1326 1327
		printk(KERN_CRIT "trans %llu running %llu\n",
		       (unsigned long long)trans->transid,
		       (unsigned long long)
1328 1329 1330 1331
		       root->fs_info->running_transaction->transid);
		WARN_ON(1);
	}
	if (trans->transid != root->fs_info->generation) {
C
Chris Mason 已提交
1332 1333 1334
		printk(KERN_CRIT "trans %llu running %llu\n",
		       (unsigned long long)trans->transid,
		       (unsigned long long)root->fs_info->generation);
1335 1336
		WARN_ON(1);
	}
C
Chris Mason 已提交
1337

1338
	if (!should_cow_block(trans, root, buf)) {
1339 1340 1341
		*cow_ret = buf;
		return 0;
	}
1342

1343
	search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
1344 1345 1346 1347 1348

	if (parent)
		btrfs_set_lock_blocking(parent);
	btrfs_set_lock_blocking(buf);

1349
	ret = __btrfs_cow_block(trans, root, buf, parent,
1350
				 parent_slot, cow_ret, search_start, 0);
1351 1352 1353

	trace_btrfs_cow_block(root, buf, *cow_ret);

1354
	return ret;
1355 1356
}

C
Chris Mason 已提交
1357 1358 1359 1360
/*
 * helper function for defrag to decide if two blocks pointed to by a
 * node are actually close by
 */
1361
static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1362
{
1363
	if (blocknr < other && other - (blocknr + blocksize) < 32768)
1364
		return 1;
1365
	if (blocknr > other && blocknr - (other + blocksize) < 32768)
1366 1367 1368 1369
		return 1;
	return 0;
}

1370 1371 1372 1373 1374 1375 1376 1377 1378
/*
 * compare two keys in a memcmp fashion
 */
static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
{
	struct btrfs_key k1;

	btrfs_disk_key_to_cpu(&k1, disk);

1379
	return btrfs_comp_cpu_keys(&k1, k2);
1380 1381
}

1382 1383 1384
/*
 * same as comp_keys only with two btrfs_key's
 */
1385
int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400
{
	if (k1->objectid > k2->objectid)
		return 1;
	if (k1->objectid < k2->objectid)
		return -1;
	if (k1->type > k2->type)
		return 1;
	if (k1->type < k2->type)
		return -1;
	if (k1->offset > k2->offset)
		return 1;
	if (k1->offset < k2->offset)
		return -1;
	return 0;
}
1401

C
Chris Mason 已提交
1402 1403 1404 1405 1406
/*
 * this is used by the defrag code to go through all the
 * leaves pointed to by a node and reallocate them so that
 * disk order is close to key order
 */
1407
int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1408
		       struct btrfs_root *root, struct extent_buffer *parent,
1409 1410
		       int start_slot, int cache_only, u64 *last_ret,
		       struct btrfs_key *progress)
1411
{
1412
	struct extent_buffer *cur;
1413
	u64 blocknr;
1414
	u64 gen;
1415 1416
	u64 search_start = *last_ret;
	u64 last_block = 0;
1417 1418 1419 1420 1421
	u64 other;
	u32 parent_nritems;
	int end_slot;
	int i;
	int err = 0;
1422
	int parent_level;
1423 1424
	int uptodate;
	u32 blocksize;
1425 1426
	int progress_passed = 0;
	struct btrfs_disk_key disk_key;
1427

1428 1429 1430 1431
	parent_level = btrfs_header_level(parent);
	if (cache_only && parent_level != 1)
		return 0;

C
Chris Mason 已提交
1432
	if (trans->transaction != root->fs_info->running_transaction)
1433
		WARN_ON(1);
C
Chris Mason 已提交
1434
	if (trans->transid != root->fs_info->generation)
1435
		WARN_ON(1);
1436

1437 1438
	parent_nritems = btrfs_header_nritems(parent);
	blocksize = btrfs_level_size(root, parent_level - 1);
1439 1440 1441 1442 1443
	end_slot = parent_nritems;

	if (parent_nritems == 1)
		return 0;

1444 1445
	btrfs_set_lock_blocking(parent);

1446 1447
	for (i = start_slot; i < end_slot; i++) {
		int close = 1;
1448

1449 1450 1451 1452 1453
		btrfs_node_key(parent, &disk_key, i);
		if (!progress_passed && comp_keys(&disk_key, progress) < 0)
			continue;

		progress_passed = 1;
1454
		blocknr = btrfs_node_blockptr(parent, i);
1455
		gen = btrfs_node_ptr_generation(parent, i);
1456 1457
		if (last_block == 0)
			last_block = blocknr;
1458

1459
		if (i > 0) {
1460 1461
			other = btrfs_node_blockptr(parent, i - 1);
			close = close_blocks(blocknr, other, blocksize);
1462
		}
C
Chris Mason 已提交
1463
		if (!close && i < end_slot - 2) {
1464 1465
			other = btrfs_node_blockptr(parent, i + 1);
			close = close_blocks(blocknr, other, blocksize);
1466
		}
1467 1468
		if (close) {
			last_block = blocknr;
1469
			continue;
1470
		}
1471

1472 1473
		cur = btrfs_find_tree_block(root, blocknr, blocksize);
		if (cur)
1474
			uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1475 1476
		else
			uptodate = 0;
1477
		if (!cur || !uptodate) {
1478
			if (cache_only) {
1479
				free_extent_buffer(cur);
1480 1481
				continue;
			}
1482 1483
			if (!cur) {
				cur = read_tree_block(root, blocknr,
1484
							 blocksize, gen);
1485 1486
				if (!cur)
					return -EIO;
1487
			} else if (!uptodate) {
1488 1489 1490 1491 1492
				err = btrfs_read_buffer(cur, gen);
				if (err) {
					free_extent_buffer(cur);
					return err;
				}
1493
			}
1494
		}
1495
		if (search_start == 0)
1496
			search_start = last_block;
1497

1498
		btrfs_tree_lock(cur);
1499
		btrfs_set_lock_blocking(cur);
1500
		err = __btrfs_cow_block(trans, root, cur, parent, i,
1501
					&cur, search_start,
1502
					min(16 * blocksize,
1503
					    (end_slot - i) * blocksize));
Y
Yan 已提交
1504
		if (err) {
1505
			btrfs_tree_unlock(cur);
1506
			free_extent_buffer(cur);
1507
			break;
Y
Yan 已提交
1508
		}
1509 1510
		search_start = cur->start;
		last_block = cur->start;
1511
		*last_ret = search_start;
1512 1513
		btrfs_tree_unlock(cur);
		free_extent_buffer(cur);
1514 1515 1516 1517
	}
	return err;
}

C
Chris Mason 已提交
1518 1519 1520 1521 1522
/*
 * The leaf data grows from end-to-front in the node.
 * this returns the address of the start of the last item,
 * which is the stop of the leaf data stack
 */
C
Chris Mason 已提交
1523
static inline unsigned int leaf_data_end(struct btrfs_root *root,
1524
					 struct extent_buffer *leaf)
1525
{
1526
	u32 nr = btrfs_header_nritems(leaf);
1527
	if (nr == 0)
C
Chris Mason 已提交
1528
		return BTRFS_LEAF_DATA_SIZE(root);
1529
	return btrfs_item_offset_nr(leaf, nr - 1);
1530 1531
}

C
Chris Mason 已提交
1532

C
Chris Mason 已提交
1533
/*
1534 1535 1536
 * search for key in the extent_buffer.  The items start at offset p,
 * and they are item_size apart.  There are 'max' items in p.
 *
C
Chris Mason 已提交
1537 1538 1539 1540 1541 1542
 * the slot in the array is returned via slot, and it points to
 * the place where you would insert key if it is not found in
 * the array.
 *
 * slot may point to max if the key is bigger than all of the keys
 */
1543 1544 1545 1546
static noinline int generic_bin_search(struct extent_buffer *eb,
				       unsigned long p,
				       int item_size, struct btrfs_key *key,
				       int max, int *slot)
1547 1548 1549 1550 1551
{
	int low = 0;
	int high = max;
	int mid;
	int ret;
1552
	struct btrfs_disk_key *tmp = NULL;
1553 1554 1555 1556 1557
	struct btrfs_disk_key unaligned;
	unsigned long offset;
	char *kaddr = NULL;
	unsigned long map_start = 0;
	unsigned long map_len = 0;
1558
	int err;
1559

C
Chris Mason 已提交
1560
	while (low < high) {
1561
		mid = (low + high) / 2;
1562 1563
		offset = p + mid * item_size;

1564
		if (!kaddr || offset < map_start ||
1565 1566
		    (offset + sizeof(struct btrfs_disk_key)) >
		    map_start + map_len) {
1567 1568

			err = map_private_extent_buffer(eb, offset,
1569
						sizeof(struct btrfs_disk_key),
1570
						&kaddr, &map_start, &map_len);
1571 1572 1573 1574 1575 1576 1577 1578 1579

			if (!err) {
				tmp = (struct btrfs_disk_key *)(kaddr + offset -
							map_start);
			} else {
				read_extent_buffer(eb, &unaligned,
						   offset, sizeof(unaligned));
				tmp = &unaligned;
			}
1580 1581 1582 1583 1584

		} else {
			tmp = (struct btrfs_disk_key *)(kaddr + offset -
							map_start);
		}
1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599
		ret = comp_keys(tmp, key);

		if (ret < 0)
			low = mid + 1;
		else if (ret > 0)
			high = mid;
		else {
			*slot = mid;
			return 0;
		}
	}
	*slot = low;
	return 1;
}

C
Chris Mason 已提交
1600 1601 1602 1603
/*
 * simple bin_search frontend that does the right thing for
 * leaves vs nodes
 */
1604 1605
static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
		      int level, int *slot)
1606
{
1607
	if (level == 0)
1608 1609
		return generic_bin_search(eb,
					  offsetof(struct btrfs_leaf, items),
C
Chris Mason 已提交
1610
					  sizeof(struct btrfs_item),
1611
					  key, btrfs_header_nritems(eb),
1612
					  slot);
1613
	else
1614 1615
		return generic_bin_search(eb,
					  offsetof(struct btrfs_node, ptrs),
C
Chris Mason 已提交
1616
					  sizeof(struct btrfs_key_ptr),
1617
					  key, btrfs_header_nritems(eb),
1618
					  slot);
1619 1620
}

1621 1622 1623 1624 1625 1626
int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
		     int level, int *slot)
{
	return bin_search(eb, key, level, slot);
}

1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642
static void root_add_used(struct btrfs_root *root, u32 size)
{
	spin_lock(&root->accounting_lock);
	btrfs_set_root_used(&root->root_item,
			    btrfs_root_used(&root->root_item) + size);
	spin_unlock(&root->accounting_lock);
}

static void root_sub_used(struct btrfs_root *root, u32 size)
{
	spin_lock(&root->accounting_lock);
	btrfs_set_root_used(&root->root_item,
			    btrfs_root_used(&root->root_item) - size);
	spin_unlock(&root->accounting_lock);
}

C
Chris Mason 已提交
1643 1644 1645 1646
/* given a node and slot number, this reads the blocks it points to.  The
 * extent buffer is returned with a reference taken (but unlocked).
 * NULL is returned on error.
 */
1647
static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
1648
				   struct extent_buffer *parent, int slot)
1649
{
1650
	int level = btrfs_header_level(parent);
1651 1652
	if (slot < 0)
		return NULL;
1653
	if (slot >= btrfs_header_nritems(parent))
1654
		return NULL;
1655 1656 1657

	BUG_ON(level == 0);

1658
	return read_tree_block(root, btrfs_node_blockptr(parent, slot),
1659 1660
		       btrfs_level_size(root, level - 1),
		       btrfs_node_ptr_generation(parent, slot));
1661 1662
}

C
Chris Mason 已提交
1663 1664 1665 1666 1667
/*
 * node level balancing, used to make sure nodes are in proper order for
 * item deletion.  We balance from the top down, so we have to make sure
 * that a deletion won't leave an node completely empty later on.
 */
1668
static noinline int balance_level(struct btrfs_trans_handle *trans,
1669 1670
			 struct btrfs_root *root,
			 struct btrfs_path *path, int level)
1671
{
1672 1673 1674 1675
	struct extent_buffer *right = NULL;
	struct extent_buffer *mid;
	struct extent_buffer *left = NULL;
	struct extent_buffer *parent = NULL;
1676 1677 1678 1679
	int ret = 0;
	int wret;
	int pslot;
	int orig_slot = path->slots[level];
1680
	u64 orig_ptr;
1681 1682 1683 1684

	if (level == 0)
		return 0;

1685
	mid = path->nodes[level];
1686

1687 1688
	WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
		path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1689 1690
	WARN_ON(btrfs_header_generation(mid) != trans->transid);

1691
	orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1692

L
Li Zefan 已提交
1693
	if (level < BTRFS_MAX_LEVEL - 1) {
1694
		parent = path->nodes[level + 1];
L
Li Zefan 已提交
1695 1696
		pslot = path->slots[level + 1];
	}
1697

C
Chris Mason 已提交
1698 1699 1700 1701
	/*
	 * deal with the case where there is only one pointer in the root
	 * by promoting the node below to a root
	 */
1702 1703
	if (!parent) {
		struct extent_buffer *child;
1704

1705
		if (btrfs_header_nritems(mid) != 1)
1706 1707 1708
			return 0;

		/* promote the child to a root */
1709
		child = read_node_slot(root, mid, 0);
1710 1711 1712 1713 1714 1715
		if (!child) {
			ret = -EROFS;
			btrfs_std_error(root->fs_info, ret);
			goto enospc;
		}

1716
		btrfs_tree_lock(child);
1717
		btrfs_set_lock_blocking(child);
1718
		ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1719 1720 1721 1722 1723
		if (ret) {
			btrfs_tree_unlock(child);
			free_extent_buffer(child);
			goto enospc;
		}
1724

1725
		tree_mod_log_set_root_pointer(root, child);
1726
		rcu_assign_pointer(root->node, child);
1727

1728
		add_root_to_dirty_list(root);
1729
		btrfs_tree_unlock(child);
1730

1731
		path->locks[level] = 0;
1732
		path->nodes[level] = NULL;
1733
		clean_tree_block(trans, root, mid);
1734
		btrfs_tree_unlock(mid);
1735
		/* once for the path */
1736
		free_extent_buffer(mid);
1737 1738

		root_sub_used(root, mid->len);
1739
		btrfs_free_tree_block(trans, root, mid, 0, 1);
1740
		/* once for the root ptr */
1741
		free_extent_buffer_stale(mid);
1742
		return 0;
1743
	}
1744
	if (btrfs_header_nritems(mid) >
C
Chris Mason 已提交
1745
	    BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
1746 1747
		return 0;

1748 1749
	left = read_node_slot(root, parent, pslot - 1);
	if (left) {
1750
		btrfs_tree_lock(left);
1751
		btrfs_set_lock_blocking(left);
1752
		wret = btrfs_cow_block(trans, root, left,
1753
				       parent, pslot - 1, &left);
1754 1755 1756 1757
		if (wret) {
			ret = wret;
			goto enospc;
		}
1758
	}
1759 1760
	right = read_node_slot(root, parent, pslot + 1);
	if (right) {
1761
		btrfs_tree_lock(right);
1762
		btrfs_set_lock_blocking(right);
1763
		wret = btrfs_cow_block(trans, root, right,
1764
				       parent, pslot + 1, &right);
1765 1766 1767 1768 1769 1770 1771
		if (wret) {
			ret = wret;
			goto enospc;
		}
	}

	/* first, try to make some room in the middle buffer */
1772 1773
	if (left) {
		orig_slot += btrfs_header_nritems(left);
1774
		wret = push_node_left(trans, root, left, mid, 1);
1775 1776
		if (wret < 0)
			ret = wret;
1777
	}
1778 1779 1780 1781

	/*
	 * then try to empty the right most buffer into the middle
	 */
1782
	if (right) {
1783
		wret = push_node_left(trans, root, mid, right, 1);
1784
		if (wret < 0 && wret != -ENOSPC)
1785
			ret = wret;
1786 1787
		if (btrfs_header_nritems(right) == 0) {
			clean_tree_block(trans, root, right);
1788
			btrfs_tree_unlock(right);
1789
			del_ptr(trans, root, path, level + 1, pslot + 1, 1);
1790
			root_sub_used(root, right->len);
1791
			btrfs_free_tree_block(trans, root, right, 0, 1);
1792
			free_extent_buffer_stale(right);
1793
			right = NULL;
1794
		} else {
1795 1796
			struct btrfs_disk_key right_key;
			btrfs_node_key(right, &right_key, 0);
1797 1798
			tree_mod_log_set_node_key(root->fs_info, parent,
						  &right_key, pslot + 1, 0);
1799 1800
			btrfs_set_node_key(parent, &right_key, pslot + 1);
			btrfs_mark_buffer_dirty(parent);
1801 1802
		}
	}
1803
	if (btrfs_header_nritems(mid) == 1) {
1804 1805 1806 1807 1808 1809 1810 1811 1812
		/*
		 * we're not allowed to leave a node with one item in the
		 * tree during a delete.  A deletion from lower in the tree
		 * could try to delete the only pointer in this node.
		 * So, pull some keys from the left.
		 * There has to be a left pointer at this point because
		 * otherwise we would have pulled some pointers from the
		 * right
		 */
1813 1814 1815 1816 1817
		if (!left) {
			ret = -EROFS;
			btrfs_std_error(root->fs_info, ret);
			goto enospc;
		}
1818
		wret = balance_node_right(trans, root, mid, left);
1819
		if (wret < 0) {
1820
			ret = wret;
1821 1822
			goto enospc;
		}
1823 1824 1825 1826 1827
		if (wret == 1) {
			wret = push_node_left(trans, root, left, mid, 1);
			if (wret < 0)
				ret = wret;
		}
1828 1829
		BUG_ON(wret == 1);
	}
1830 1831
	if (btrfs_header_nritems(mid) == 0) {
		clean_tree_block(trans, root, mid);
1832
		btrfs_tree_unlock(mid);
1833
		del_ptr(trans, root, path, level + 1, pslot, 1);
1834
		root_sub_used(root, mid->len);
1835
		btrfs_free_tree_block(trans, root, mid, 0, 1);
1836
		free_extent_buffer_stale(mid);
1837
		mid = NULL;
1838 1839
	} else {
		/* update the parent key to reflect our changes */
1840 1841
		struct btrfs_disk_key mid_key;
		btrfs_node_key(mid, &mid_key, 0);
1842 1843
		tree_mod_log_set_node_key(root->fs_info, parent, &mid_key,
					  pslot, 0);
1844 1845
		btrfs_set_node_key(parent, &mid_key, pslot);
		btrfs_mark_buffer_dirty(parent);
1846
	}
1847

1848
	/* update the path */
1849 1850 1851
	if (left) {
		if (btrfs_header_nritems(left) > orig_slot) {
			extent_buffer_get(left);
1852
			/* left was locked after cow */
1853
			path->nodes[level] = left;
1854 1855
			path->slots[level + 1] -= 1;
			path->slots[level] = orig_slot;
1856 1857
			if (mid) {
				btrfs_tree_unlock(mid);
1858
				free_extent_buffer(mid);
1859
			}
1860
		} else {
1861
			orig_slot -= btrfs_header_nritems(left);
1862 1863 1864
			path->slots[level] = orig_slot;
		}
	}
1865
	/* double check we haven't messed things up */
C
Chris Mason 已提交
1866
	if (orig_ptr !=
1867
	    btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1868
		BUG();
1869
enospc:
1870 1871
	if (right) {
		btrfs_tree_unlock(right);
1872
		free_extent_buffer(right);
1873 1874 1875 1876
	}
	if (left) {
		if (path->nodes[level] != left)
			btrfs_tree_unlock(left);
1877
		free_extent_buffer(left);
1878
	}
1879 1880 1881
	return ret;
}

C
Chris Mason 已提交
1882 1883 1884 1885
/* Node balancing for insertion.  Here we only split or push nodes around
 * when they are completely full.  This is also done top down, so we
 * have to be pessimistic.
 */
C
Chris Mason 已提交
1886
static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1887 1888
					  struct btrfs_root *root,
					  struct btrfs_path *path, int level)
1889
{
1890 1891 1892 1893
	struct extent_buffer *right = NULL;
	struct extent_buffer *mid;
	struct extent_buffer *left = NULL;
	struct extent_buffer *parent = NULL;
1894 1895 1896 1897 1898 1899 1900 1901
	int ret = 0;
	int wret;
	int pslot;
	int orig_slot = path->slots[level];

	if (level == 0)
		return 1;

1902
	mid = path->nodes[level];
1903
	WARN_ON(btrfs_header_generation(mid) != trans->transid);
1904

L
Li Zefan 已提交
1905
	if (level < BTRFS_MAX_LEVEL - 1) {
1906
		parent = path->nodes[level + 1];
L
Li Zefan 已提交
1907 1908
		pslot = path->slots[level + 1];
	}
1909

1910
	if (!parent)
1911 1912
		return 1;

1913
	left = read_node_slot(root, parent, pslot - 1);
1914 1915

	/* first, try to make some room in the middle buffer */
1916
	if (left) {
1917
		u32 left_nr;
1918 1919

		btrfs_tree_lock(left);
1920 1921
		btrfs_set_lock_blocking(left);

1922
		left_nr = btrfs_header_nritems(left);
C
Chris Mason 已提交
1923 1924 1925
		if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
			wret = 1;
		} else {
1926
			ret = btrfs_cow_block(trans, root, left, parent,
1927
					      pslot - 1, &left);
1928 1929 1930 1931
			if (ret)
				wret = 1;
			else {
				wret = push_node_left(trans, root,
1932
						      left, mid, 0);
1933
			}
C
Chris Mason 已提交
1934
		}
1935 1936 1937
		if (wret < 0)
			ret = wret;
		if (wret == 0) {
1938
			struct btrfs_disk_key disk_key;
1939
			orig_slot += left_nr;
1940
			btrfs_node_key(mid, &disk_key, 0);
1941 1942
			tree_mod_log_set_node_key(root->fs_info, parent,
						  &disk_key, pslot, 0);
1943 1944 1945 1946
			btrfs_set_node_key(parent, &disk_key, pslot);
			btrfs_mark_buffer_dirty(parent);
			if (btrfs_header_nritems(left) > orig_slot) {
				path->nodes[level] = left;
1947 1948
				path->slots[level + 1] -= 1;
				path->slots[level] = orig_slot;
1949
				btrfs_tree_unlock(mid);
1950
				free_extent_buffer(mid);
1951 1952
			} else {
				orig_slot -=
1953
					btrfs_header_nritems(left);
1954
				path->slots[level] = orig_slot;
1955
				btrfs_tree_unlock(left);
1956
				free_extent_buffer(left);
1957 1958 1959
			}
			return 0;
		}
1960
		btrfs_tree_unlock(left);
1961
		free_extent_buffer(left);
1962
	}
1963
	right = read_node_slot(root, parent, pslot + 1);
1964 1965 1966 1967

	/*
	 * then try to empty the right most buffer into the middle
	 */
1968
	if (right) {
C
Chris Mason 已提交
1969
		u32 right_nr;
1970

1971
		btrfs_tree_lock(right);
1972 1973
		btrfs_set_lock_blocking(right);

1974
		right_nr = btrfs_header_nritems(right);
C
Chris Mason 已提交
1975 1976 1977
		if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
			wret = 1;
		} else {
1978 1979
			ret = btrfs_cow_block(trans, root, right,
					      parent, pslot + 1,
1980
					      &right);
1981 1982 1983 1984
			if (ret)
				wret = 1;
			else {
				wret = balance_node_right(trans, root,
1985
							  right, mid);
1986
			}
C
Chris Mason 已提交
1987
		}
1988 1989 1990
		if (wret < 0)
			ret = wret;
		if (wret == 0) {
1991 1992 1993
			struct btrfs_disk_key disk_key;

			btrfs_node_key(right, &disk_key, 0);
1994 1995
			tree_mod_log_set_node_key(root->fs_info, parent,
						  &disk_key, pslot + 1, 0);
1996 1997 1998 1999 2000
			btrfs_set_node_key(parent, &disk_key, pslot + 1);
			btrfs_mark_buffer_dirty(parent);

			if (btrfs_header_nritems(mid) <= orig_slot) {
				path->nodes[level] = right;
2001 2002
				path->slots[level + 1] += 1;
				path->slots[level] = orig_slot -
2003
					btrfs_header_nritems(mid);
2004
				btrfs_tree_unlock(mid);
2005
				free_extent_buffer(mid);
2006
			} else {
2007
				btrfs_tree_unlock(right);
2008
				free_extent_buffer(right);
2009 2010 2011
			}
			return 0;
		}
2012
		btrfs_tree_unlock(right);
2013
		free_extent_buffer(right);
2014 2015 2016 2017
	}
	return 1;
}

2018
/*
C
Chris Mason 已提交
2019 2020
 * readahead one full node of leaves, finding things that are close
 * to the block in 'slot', and triggering ra on them.
2021
 */
2022 2023 2024
static void reada_for_search(struct btrfs_root *root,
			     struct btrfs_path *path,
			     int level, int slot, u64 objectid)
2025
{
2026
	struct extent_buffer *node;
2027
	struct btrfs_disk_key disk_key;
2028 2029
	u32 nritems;
	u64 search;
2030
	u64 target;
2031
	u64 nread = 0;
2032
	u64 gen;
2033
	int direction = path->reada;
2034
	struct extent_buffer *eb;
2035 2036 2037
	u32 nr;
	u32 blocksize;
	u32 nscan = 0;
2038

2039
	if (level != 1)
2040 2041 2042
		return;

	if (!path->nodes[level])
2043 2044
		return;

2045
	node = path->nodes[level];
2046

2047
	search = btrfs_node_blockptr(node, slot);
2048 2049
	blocksize = btrfs_level_size(root, level - 1);
	eb = btrfs_find_tree_block(root, search, blocksize);
2050 2051
	if (eb) {
		free_extent_buffer(eb);
2052 2053 2054
		return;
	}

2055
	target = search;
2056

2057
	nritems = btrfs_header_nritems(node);
2058
	nr = slot;
2059

C
Chris Mason 已提交
2060
	while (1) {
2061 2062 2063 2064 2065 2066 2067 2068
		if (direction < 0) {
			if (nr == 0)
				break;
			nr--;
		} else if (direction > 0) {
			nr++;
			if (nr >= nritems)
				break;
2069
		}
2070 2071 2072 2073 2074
		if (path->reada < 0 && objectid) {
			btrfs_node_key(node, &disk_key, nr);
			if (btrfs_disk_key_objectid(&disk_key) != objectid)
				break;
		}
2075
		search = btrfs_node_blockptr(node, nr);
2076 2077
		if ((search <= target && target - search <= 65536) ||
		    (search > target && search - target <= 65536)) {
2078 2079
			gen = btrfs_node_ptr_generation(node, nr);
			readahead_tree_block(root, search, blocksize, gen);
2080 2081 2082
			nread += blocksize;
		}
		nscan++;
2083
		if ((nread > 65536 || nscan > 32))
2084
			break;
2085 2086
	}
}
2087

2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104
/*
 * returns -EAGAIN if it had to drop the path, or zero if everything was in
 * cache
 */
static noinline int reada_for_balance(struct btrfs_root *root,
				      struct btrfs_path *path, int level)
{
	int slot;
	int nritems;
	struct extent_buffer *parent;
	struct extent_buffer *eb;
	u64 gen;
	u64 block1 = 0;
	u64 block2 = 0;
	int ret = 0;
	int blocksize;

2105
	parent = path->nodes[level + 1];
2106 2107 2108 2109
	if (!parent)
		return 0;

	nritems = btrfs_header_nritems(parent);
2110
	slot = path->slots[level + 1];
2111 2112 2113 2114 2115 2116
	blocksize = btrfs_level_size(root, level);

	if (slot > 0) {
		block1 = btrfs_node_blockptr(parent, slot - 1);
		gen = btrfs_node_ptr_generation(parent, slot - 1);
		eb = btrfs_find_tree_block(root, block1, blocksize);
2117 2118 2119 2120 2121 2122
		/*
		 * if we get -eagain from btrfs_buffer_uptodate, we
		 * don't want to return eagain here.  That will loop
		 * forever
		 */
		if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2123 2124 2125
			block1 = 0;
		free_extent_buffer(eb);
	}
2126
	if (slot + 1 < nritems) {
2127 2128 2129
		block2 = btrfs_node_blockptr(parent, slot + 1);
		gen = btrfs_node_ptr_generation(parent, slot + 1);
		eb = btrfs_find_tree_block(root, block2, blocksize);
2130
		if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2131 2132 2133 2134 2135
			block2 = 0;
		free_extent_buffer(eb);
	}
	if (block1 || block2) {
		ret = -EAGAIN;
2136 2137

		/* release the whole path */
2138
		btrfs_release_path(path);
2139 2140

		/* read the blocks */
2141 2142 2143 2144 2145 2146 2147 2148 2149
		if (block1)
			readahead_tree_block(root, block1, blocksize, 0);
		if (block2)
			readahead_tree_block(root, block2, blocksize, 0);

		if (block1) {
			eb = read_tree_block(root, block1, blocksize, 0);
			free_extent_buffer(eb);
		}
2150
		if (block2) {
2151 2152 2153 2154 2155 2156 2157 2158
			eb = read_tree_block(root, block2, blocksize, 0);
			free_extent_buffer(eb);
		}
	}
	return ret;
}


C
Chris Mason 已提交
2159
/*
C
Chris Mason 已提交
2160 2161 2162 2163
 * when we walk down the tree, it is usually safe to unlock the higher layers
 * in the tree.  The exceptions are when our path goes through slot 0, because
 * operations on the tree might require changing key pointers higher up in the
 * tree.
C
Chris Mason 已提交
2164
 *
C
Chris Mason 已提交
2165 2166 2167
 * callers might also have set path->keep_locks, which tells this code to keep
 * the lock if the path points to the last slot in the block.  This is part of
 * walking through the tree, and selecting the next slot in the higher block.
C
Chris Mason 已提交
2168
 *
C
Chris Mason 已提交
2169 2170
 * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
 * if lowest_unlock is 1, level 0 won't be unlocked
C
Chris Mason 已提交
2171
 */
2172
static noinline void unlock_up(struct btrfs_path *path, int level,
2173 2174
			       int lowest_unlock, int min_write_lock_level,
			       int *write_lock_level)
2175 2176 2177
{
	int i;
	int skip_level = level;
2178
	int no_skips = 0;
2179 2180 2181 2182 2183 2184 2185
	struct extent_buffer *t;

	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
		if (!path->nodes[i])
			break;
		if (!path->locks[i])
			break;
2186
		if (!no_skips && path->slots[i] == 0) {
2187 2188 2189
			skip_level = i + 1;
			continue;
		}
2190
		if (!no_skips && path->keep_locks) {
2191 2192 2193
			u32 nritems;
			t = path->nodes[i];
			nritems = btrfs_header_nritems(t);
2194
			if (nritems < 1 || path->slots[i] >= nritems - 1) {
2195 2196 2197 2198
				skip_level = i + 1;
				continue;
			}
		}
2199 2200 2201
		if (skip_level < i && i >= lowest_unlock)
			no_skips = 1;

2202 2203
		t = path->nodes[i];
		if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
2204
			btrfs_tree_unlock_rw(t, path->locks[i]);
2205
			path->locks[i] = 0;
2206 2207 2208 2209 2210
			if (write_lock_level &&
			    i > min_write_lock_level &&
			    i <= *write_lock_level) {
				*write_lock_level = i - 1;
			}
2211 2212 2213 2214
		}
	}
}

2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227
/*
 * This releases any locks held in the path starting at level and
 * going all the way up to the root.
 *
 * btrfs_search_slot will keep the lock held on higher nodes in a few
 * corner cases, such as COW of the block at slot zero in the node.  This
 * ignores those rules, and it should only be called when there are no
 * more updates to be done higher up in the tree.
 */
noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
{
	int i;

2228
	if (path->keep_locks)
2229 2230 2231 2232
		return;

	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
		if (!path->nodes[i])
2233
			continue;
2234
		if (!path->locks[i])
2235
			continue;
2236
		btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
2237 2238 2239 2240
		path->locks[i] = 0;
	}
}

2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252
/*
 * helper function for btrfs_search_slot.  The goal is to find a block
 * in cache without setting the path to blocking.  If we find the block
 * we return zero and the path is unchanged.
 *
 * If we can't find the block, we set the path blocking and do some
 * reada.  -EAGAIN is returned and the search must be repeated.
 */
static int
read_block_for_search(struct btrfs_trans_handle *trans,
		       struct btrfs_root *root, struct btrfs_path *p,
		       struct extent_buffer **eb_ret, int level, int slot,
J
Jan Schmidt 已提交
2253
		       struct btrfs_key *key, u64 time_seq)
2254 2255 2256 2257 2258 2259
{
	u64 blocknr;
	u64 gen;
	u32 blocksize;
	struct extent_buffer *b = *eb_ret;
	struct extent_buffer *tmp;
2260
	int ret;
2261 2262 2263 2264 2265 2266

	blocknr = btrfs_node_blockptr(b, slot);
	gen = btrfs_node_ptr_generation(b, slot);
	blocksize = btrfs_level_size(root, level - 1);

	tmp = btrfs_find_tree_block(root, blocknr, blocksize);
2267
	if (tmp) {
2268 2269 2270
		/* first we do an atomic uptodate check */
		if (btrfs_buffer_uptodate(tmp, 0, 1) > 0) {
			if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285
				/*
				 * we found an up to date block without
				 * sleeping, return
				 * right away
				 */
				*eb_ret = tmp;
				return 0;
			}
			/* the pages were up to date, but we failed
			 * the generation number check.  Do a full
			 * read for the generation number that is correct.
			 * We must do this without dropping locks so
			 * we can trust our generation number
			 */
			free_extent_buffer(tmp);
2286 2287
			btrfs_set_path_blocking(p);

2288
			/* now we're allowed to do a blocking uptodate check */
2289
			tmp = read_tree_block(root, blocknr, blocksize, gen);
2290
			if (tmp && btrfs_buffer_uptodate(tmp, gen, 0) > 0) {
2291 2292 2293 2294
				*eb_ret = tmp;
				return 0;
			}
			free_extent_buffer(tmp);
2295
			btrfs_release_path(p);
2296 2297
			return -EIO;
		}
2298 2299 2300 2301 2302
	}

	/*
	 * reduce lock contention at high levels
	 * of the btree by dropping locks before
2303 2304 2305
	 * we read.  Don't release the lock on the current
	 * level because we need to walk this node to figure
	 * out which blocks to read.
2306
	 */
2307 2308 2309
	btrfs_unlock_up_safe(p, level + 1);
	btrfs_set_path_blocking(p);

2310
	free_extent_buffer(tmp);
2311 2312 2313
	if (p->reada)
		reada_for_search(root, p, level, slot, key->objectid);

2314
	btrfs_release_path(p);
2315 2316

	ret = -EAGAIN;
2317
	tmp = read_tree_block(root, blocknr, blocksize, 0);
2318 2319 2320 2321 2322 2323 2324
	if (tmp) {
		/*
		 * If the read above didn't mark this buffer up to date,
		 * it will never end up being up to date.  Set ret to EIO now
		 * and give up so that our caller doesn't loop forever
		 * on our EAGAINs.
		 */
2325
		if (!btrfs_buffer_uptodate(tmp, 0, 0))
2326
			ret = -EIO;
2327
		free_extent_buffer(tmp);
2328 2329
	}
	return ret;
2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343
}

/*
 * helper function for btrfs_search_slot.  This does all of the checks
 * for node-level blocks and does any balancing required based on
 * the ins_len.
 *
 * If no extra work was required, zero is returned.  If we had to
 * drop the path, -EAGAIN is returned and btrfs_search_slot must
 * start over
 */
static int
setup_nodes_for_search(struct btrfs_trans_handle *trans,
		       struct btrfs_root *root, struct btrfs_path *p,
2344 2345
		       struct extent_buffer *b, int level, int ins_len,
		       int *write_lock_level)
2346 2347 2348 2349 2350 2351
{
	int ret;
	if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
	    BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
		int sret;

2352 2353 2354 2355 2356 2357
		if (*write_lock_level < level + 1) {
			*write_lock_level = level + 1;
			btrfs_release_path(p);
			goto again;
		}

2358 2359 2360 2361 2362 2363
		sret = reada_for_balance(root, p, level);
		if (sret)
			goto again;

		btrfs_set_path_blocking(p);
		sret = split_node(trans, root, p, level);
2364
		btrfs_clear_path_blocking(p, NULL, 0);
2365 2366 2367 2368 2369 2370 2371 2372

		BUG_ON(sret > 0);
		if (sret) {
			ret = sret;
			goto done;
		}
		b = p->nodes[level];
	} else if (ins_len < 0 && btrfs_header_nritems(b) <
C
Chris Mason 已提交
2373
		   BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
2374 2375
		int sret;

2376 2377 2378 2379 2380 2381
		if (*write_lock_level < level + 1) {
			*write_lock_level = level + 1;
			btrfs_release_path(p);
			goto again;
		}

2382 2383 2384 2385 2386 2387
		sret = reada_for_balance(root, p, level);
		if (sret)
			goto again;

		btrfs_set_path_blocking(p);
		sret = balance_level(trans, root, p, level);
2388
		btrfs_clear_path_blocking(p, NULL, 0);
2389 2390 2391 2392 2393 2394 2395

		if (sret) {
			ret = sret;
			goto done;
		}
		b = p->nodes[level];
		if (!b) {
2396
			btrfs_release_path(p);
2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408
			goto again;
		}
		BUG_ON(btrfs_header_nritems(b) == 1);
	}
	return 0;

again:
	ret = -EAGAIN;
done:
	return ret;
}

C
Chris Mason 已提交
2409 2410 2411 2412 2413 2414
/*
 * look for key in the tree.  path is filled in with nodes along the way
 * if key is found, we return zero and you can find the item in the leaf
 * level of the path (level 0)
 *
 * If the key isn't found, the path points to the slot where it should
C
Chris Mason 已提交
2415 2416
 * be inserted, and 1 is returned.  If there are other errors during the
 * search a negative error number is returned.
C
Chris Mason 已提交
2417 2418 2419 2420
 *
 * if ins_len > 0, nodes and leaves will be split as we walk down the
 * tree.  if ins_len < 0, nodes will be merged as we walk down the tree (if
 * possible)
C
Chris Mason 已提交
2421
 */
2422 2423 2424
int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
		      *root, struct btrfs_key *key, struct btrfs_path *p, int
		      ins_len, int cow)
2425
{
2426
	struct extent_buffer *b;
2427 2428
	int slot;
	int ret;
2429
	int err;
2430
	int level;
2431
	int lowest_unlock = 1;
2432 2433 2434
	int root_lock;
	/* everything at write_lock_level or lower must be write locked */
	int write_lock_level = 0;
2435
	u8 lowest_level = 0;
2436
	int min_write_lock_level;
2437

2438
	lowest_level = p->lowest_level;
2439
	WARN_ON(lowest_level && ins_len > 0);
C
Chris Mason 已提交
2440
	WARN_ON(p->nodes[0] != NULL);
2441

2442
	if (ins_len < 0) {
2443
		lowest_unlock = 2;
2444

2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463
		/* when we are removing items, we might have to go up to level
		 * two as we update tree pointers  Make sure we keep write
		 * for those levels as well
		 */
		write_lock_level = 2;
	} else if (ins_len > 0) {
		/*
		 * for inserting items, make sure we have a write lock on
		 * level 1 so we can update keys
		 */
		write_lock_level = 1;
	}

	if (!cow)
		write_lock_level = -1;

	if (cow && (p->keep_locks || p->lowest_level))
		write_lock_level = BTRFS_MAX_LEVEL;

2464 2465
	min_write_lock_level = write_lock_level;

2466
again:
2467 2468 2469 2470 2471
	/*
	 * we try very hard to do read locks on the root
	 */
	root_lock = BTRFS_READ_LOCK;
	level = 0;
2472
	if (p->search_commit_root) {
2473 2474 2475 2476
		/*
		 * the commit roots are read only
		 * so we always do read locks
		 */
2477 2478
		b = root->commit_root;
		extent_buffer_get(b);
2479
		level = btrfs_header_level(b);
2480
		if (!p->skip_locking)
2481
			btrfs_tree_read_lock(b);
2482
	} else {
2483
		if (p->skip_locking) {
2484
			b = btrfs_root_node(root);
2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502
			level = btrfs_header_level(b);
		} else {
			/* we don't know the level of the root node
			 * until we actually have it read locked
			 */
			b = btrfs_read_lock_root_node(root);
			level = btrfs_header_level(b);
			if (level <= write_lock_level) {
				/* whoops, must trade for write lock */
				btrfs_tree_read_unlock(b);
				free_extent_buffer(b);
				b = btrfs_lock_root_node(root);
				root_lock = BTRFS_WRITE_LOCK;

				/* the level might have changed, check again */
				level = btrfs_header_level(b);
			}
		}
2503
	}
2504 2505 2506
	p->nodes[level] = b;
	if (!p->skip_locking)
		p->locks[level] = root_lock;
2507

2508
	while (b) {
2509
		level = btrfs_header_level(b);
2510 2511 2512 2513 2514

		/*
		 * setup the path here so we can release it under lock
		 * contention with the cow code
		 */
C
Chris Mason 已提交
2515
		if (cow) {
2516 2517 2518 2519 2520
			/*
			 * if we don't really need to cow this block
			 * then we don't want to set the path blocking,
			 * so we test it here
			 */
2521
			if (!should_cow_block(trans, root, b))
2522
				goto cow_done;
2523

2524 2525
			btrfs_set_path_blocking(p);

2526 2527 2528 2529 2530 2531 2532 2533 2534 2535
			/*
			 * must have write locks on this node and the
			 * parent
			 */
			if (level + 1 > write_lock_level) {
				write_lock_level = level + 1;
				btrfs_release_path(p);
				goto again;
			}

2536 2537 2538 2539 2540
			err = btrfs_cow_block(trans, root, b,
					      p->nodes[level + 1],
					      p->slots[level + 1], &b);
			if (err) {
				ret = err;
2541
				goto done;
2542
			}
C
Chris Mason 已提交
2543
		}
2544
cow_done:
C
Chris Mason 已提交
2545
		BUG_ON(!cow && ins_len);
2546

2547
		p->nodes[level] = b;
2548
		btrfs_clear_path_blocking(p, NULL, 0);
2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563

		/*
		 * we have a lock on b and as long as we aren't changing
		 * the tree, there is no way to for the items in b to change.
		 * It is safe to drop the lock on our parent before we
		 * go through the expensive btree search on b.
		 *
		 * If cow is true, then we might be changing slot zero,
		 * which may require changing the parent.  So, we can't
		 * drop the lock until after we know which slot we're
		 * operating on.
		 */
		if (!cow)
			btrfs_unlock_up_safe(p, level + 1);

2564
		ret = bin_search(b, key, level, &slot);
2565

2566
		if (level != 0) {
2567 2568 2569
			int dec = 0;
			if (ret && slot > 0) {
				dec = 1;
2570
				slot -= 1;
2571
			}
2572
			p->slots[level] = slot;
2573
			err = setup_nodes_for_search(trans, root, p, b, level,
2574
					     ins_len, &write_lock_level);
2575
			if (err == -EAGAIN)
2576
				goto again;
2577 2578
			if (err) {
				ret = err;
2579
				goto done;
2580
			}
2581 2582
			b = p->nodes[level];
			slot = p->slots[level];
2583

2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596
			/*
			 * slot 0 is special, if we change the key
			 * we have to update the parent pointer
			 * which means we must have a write lock
			 * on the parent
			 */
			if (slot == 0 && cow &&
			    write_lock_level < level + 1) {
				write_lock_level = level + 1;
				btrfs_release_path(p);
				goto again;
			}

2597 2598
			unlock_up(p, level, lowest_unlock,
				  min_write_lock_level, &write_lock_level);
2599

2600
			if (level == lowest_level) {
2601 2602
				if (dec)
					p->slots[level]++;
2603
				goto done;
2604
			}
2605

2606
			err = read_block_for_search(trans, root, p,
J
Jan Schmidt 已提交
2607
						    &b, level, slot, key, 0);
2608
			if (err == -EAGAIN)
2609
				goto again;
2610 2611
			if (err) {
				ret = err;
2612
				goto done;
2613
			}
2614

2615
			if (!p->skip_locking) {
2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634
				level = btrfs_header_level(b);
				if (level <= write_lock_level) {
					err = btrfs_try_tree_write_lock(b);
					if (!err) {
						btrfs_set_path_blocking(p);
						btrfs_tree_lock(b);
						btrfs_clear_path_blocking(p, b,
								  BTRFS_WRITE_LOCK);
					}
					p->locks[level] = BTRFS_WRITE_LOCK;
				} else {
					err = btrfs_try_tree_read_lock(b);
					if (!err) {
						btrfs_set_path_blocking(p);
						btrfs_tree_read_lock(b);
						btrfs_clear_path_blocking(p, b,
								  BTRFS_READ_LOCK);
					}
					p->locks[level] = BTRFS_READ_LOCK;
2635
				}
2636
				p->nodes[level] = b;
2637
			}
2638 2639
		} else {
			p->slots[level] = slot;
2640 2641
			if (ins_len > 0 &&
			    btrfs_leaf_free_space(root, b) < ins_len) {
2642 2643 2644 2645 2646 2647
				if (write_lock_level < 1) {
					write_lock_level = 1;
					btrfs_release_path(p);
					goto again;
				}

2648
				btrfs_set_path_blocking(p);
2649 2650
				err = split_leaf(trans, root, key,
						 p, ins_len, ret == 0);
2651
				btrfs_clear_path_blocking(p, NULL, 0);
2652

2653 2654 2655
				BUG_ON(err > 0);
				if (err) {
					ret = err;
2656 2657
					goto done;
				}
C
Chris Mason 已提交
2658
			}
2659
			if (!p->search_for_split)
2660 2661
				unlock_up(p, level, lowest_unlock,
					  min_write_lock_level, &write_lock_level);
2662
			goto done;
2663 2664
		}
	}
2665 2666
	ret = 1;
done:
2667 2668 2669 2670
	/*
	 * we don't really know what they plan on doing with the path
	 * from here on, so for now just mark it as blocking
	 */
2671 2672
	if (!p->leave_spinning)
		btrfs_set_path_blocking(p);
2673
	if (ret < 0)
2674
		btrfs_release_path(p);
2675
	return ret;
2676 2677
}

J
Jan Schmidt 已提交
2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784
/*
 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
 * current state of the tree together with the operations recorded in the tree
 * modification log to search for the key in a previous version of this tree, as
 * denoted by the time_seq parameter.
 *
 * Naturally, there is no support for insert, delete or cow operations.
 *
 * The resulting path and return value will be set up as if we called
 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
 */
int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key,
			  struct btrfs_path *p, u64 time_seq)
{
	struct extent_buffer *b;
	int slot;
	int ret;
	int err;
	int level;
	int lowest_unlock = 1;
	u8 lowest_level = 0;

	lowest_level = p->lowest_level;
	WARN_ON(p->nodes[0] != NULL);

	if (p->search_commit_root) {
		BUG_ON(time_seq);
		return btrfs_search_slot(NULL, root, key, p, 0, 0);
	}

again:
	b = get_old_root(root, time_seq);
	level = btrfs_header_level(b);
	p->locks[level] = BTRFS_READ_LOCK;

	while (b) {
		level = btrfs_header_level(b);
		p->nodes[level] = b;
		btrfs_clear_path_blocking(p, NULL, 0);

		/*
		 * we have a lock on b and as long as we aren't changing
		 * the tree, there is no way to for the items in b to change.
		 * It is safe to drop the lock on our parent before we
		 * go through the expensive btree search on b.
		 */
		btrfs_unlock_up_safe(p, level + 1);

		ret = bin_search(b, key, level, &slot);

		if (level != 0) {
			int dec = 0;
			if (ret && slot > 0) {
				dec = 1;
				slot -= 1;
			}
			p->slots[level] = slot;
			unlock_up(p, level, lowest_unlock, 0, NULL);

			if (level == lowest_level) {
				if (dec)
					p->slots[level]++;
				goto done;
			}

			err = read_block_for_search(NULL, root, p, &b, level,
						    slot, key, time_seq);
			if (err == -EAGAIN)
				goto again;
			if (err) {
				ret = err;
				goto done;
			}

			level = btrfs_header_level(b);
			err = btrfs_try_tree_read_lock(b);
			if (!err) {
				btrfs_set_path_blocking(p);
				btrfs_tree_read_lock(b);
				btrfs_clear_path_blocking(p, b,
							  BTRFS_READ_LOCK);
			}
			p->locks[level] = BTRFS_READ_LOCK;
			p->nodes[level] = b;
			b = tree_mod_log_rewind(root->fs_info, b, time_seq);
			if (b != p->nodes[level]) {
				btrfs_tree_unlock_rw(p->nodes[level],
						     p->locks[level]);
				p->locks[level] = 0;
				p->nodes[level] = b;
			}
		} else {
			p->slots[level] = slot;
			unlock_up(p, level, lowest_unlock, 0, NULL);
			goto done;
		}
	}
	ret = 1;
done:
	if (!p->leave_spinning)
		btrfs_set_path_blocking(p);
	if (ret < 0)
		btrfs_release_path(p);

	return ret;
}

2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833
/*
 * helper to use instead of search slot if no exact match is needed but
 * instead the next or previous item should be returned.
 * When find_higher is true, the next higher item is returned, the next lower
 * otherwise.
 * When return_any and find_higher are both true, and no higher item is found,
 * return the next lower instead.
 * When return_any is true and find_higher is false, and no lower item is found,
 * return the next higher instead.
 * It returns 0 if any item is found, 1 if none is found (tree empty), and
 * < 0 on error
 */
int btrfs_search_slot_for_read(struct btrfs_root *root,
			       struct btrfs_key *key, struct btrfs_path *p,
			       int find_higher, int return_any)
{
	int ret;
	struct extent_buffer *leaf;

again:
	ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
	if (ret <= 0)
		return ret;
	/*
	 * a return value of 1 means the path is at the position where the
	 * item should be inserted. Normally this is the next bigger item,
	 * but in case the previous item is the last in a leaf, path points
	 * to the first free slot in the previous leaf, i.e. at an invalid
	 * item.
	 */
	leaf = p->nodes[0];

	if (find_higher) {
		if (p->slots[0] >= btrfs_header_nritems(leaf)) {
			ret = btrfs_next_leaf(root, p);
			if (ret <= 0)
				return ret;
			if (!return_any)
				return 1;
			/*
			 * no higher item found, return the next
			 * lower instead
			 */
			return_any = 0;
			find_higher = 0;
			btrfs_release_path(p);
			goto again;
		}
	} else {
2834 2835 2836 2837 2838 2839 2840
		if (p->slots[0] == 0) {
			ret = btrfs_prev_leaf(root, p);
			if (ret < 0)
				return ret;
			if (!ret) {
				p->slots[0] = btrfs_header_nritems(leaf) - 1;
				return 0;
2841
			}
2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852
			if (!return_any)
				return 1;
			/*
			 * no lower item found, return the next
			 * higher instead
			 */
			return_any = 0;
			find_higher = 1;
			btrfs_release_path(p);
			goto again;
		} else {
2853 2854 2855 2856 2857 2858
			--p->slots[0];
		}
	}
	return 0;
}

C
Chris Mason 已提交
2859 2860 2861 2862 2863 2864
/*
 * adjust the pointers going up the tree, starting at level
 * making sure the right key of each node is points to 'key'.
 * This is used after shifting pointers to the left, so it stops
 * fixing up pointers when a given leaf/node is not in slot 0 of the
 * higher levels
C
Chris Mason 已提交
2865
 *
C
Chris Mason 已提交
2866
 */
2867 2868 2869
static void fixup_low_keys(struct btrfs_trans_handle *trans,
			   struct btrfs_root *root, struct btrfs_path *path,
			   struct btrfs_disk_key *key, int level)
2870 2871
{
	int i;
2872 2873
	struct extent_buffer *t;

C
Chris Mason 已提交
2874
	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2875
		int tslot = path->slots[i];
2876
		if (!path->nodes[i])
2877
			break;
2878
		t = path->nodes[i];
2879
		tree_mod_log_set_node_key(root->fs_info, t, key, tslot, 1);
2880
		btrfs_set_node_key(t, key, tslot);
C
Chris Mason 已提交
2881
		btrfs_mark_buffer_dirty(path->nodes[i]);
2882 2883 2884 2885 2886
		if (tslot != 0)
			break;
	}
}

Z
Zheng Yan 已提交
2887 2888 2889 2890 2891 2892
/*
 * update item key.
 *
 * This function isn't completely safe. It's the caller's responsibility
 * that the new key won't break the order
 */
2893 2894 2895
void btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
			     struct btrfs_root *root, struct btrfs_path *path,
			     struct btrfs_key *new_key)
Z
Zheng Yan 已提交
2896 2897 2898 2899 2900 2901 2902 2903 2904
{
	struct btrfs_disk_key disk_key;
	struct extent_buffer *eb;
	int slot;

	eb = path->nodes[0];
	slot = path->slots[0];
	if (slot > 0) {
		btrfs_item_key(eb, &disk_key, slot - 1);
2905
		BUG_ON(comp_keys(&disk_key, new_key) >= 0);
Z
Zheng Yan 已提交
2906 2907 2908
	}
	if (slot < btrfs_header_nritems(eb) - 1) {
		btrfs_item_key(eb, &disk_key, slot + 1);
2909
		BUG_ON(comp_keys(&disk_key, new_key) <= 0);
Z
Zheng Yan 已提交
2910 2911 2912 2913 2914 2915 2916 2917 2918
	}

	btrfs_cpu_key_to_disk(&disk_key, new_key);
	btrfs_set_item_key(eb, &disk_key, slot);
	btrfs_mark_buffer_dirty(eb);
	if (slot == 0)
		fixup_low_keys(trans, root, path, &disk_key, 1);
}

C
Chris Mason 已提交
2919 2920
/*
 * try to push data from one node into the next node left in the
2921
 * tree.
C
Chris Mason 已提交
2922 2923 2924
 *
 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
 * error, and > 0 if there was no room in the left hand block.
C
Chris Mason 已提交
2925
 */
2926 2927
static int push_node_left(struct btrfs_trans_handle *trans,
			  struct btrfs_root *root, struct extent_buffer *dst,
2928
			  struct extent_buffer *src, int empty)
2929 2930
{
	int push_items = 0;
2931 2932
	int src_nritems;
	int dst_nritems;
C
Chris Mason 已提交
2933
	int ret = 0;
2934

2935 2936
	src_nritems = btrfs_header_nritems(src);
	dst_nritems = btrfs_header_nritems(dst);
C
Chris Mason 已提交
2937
	push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
2938 2939
	WARN_ON(btrfs_header_generation(src) != trans->transid);
	WARN_ON(btrfs_header_generation(dst) != trans->transid);
2940

2941
	if (!empty && src_nritems <= 8)
2942 2943
		return 1;

C
Chris Mason 已提交
2944
	if (push_items <= 0)
2945 2946
		return 1;

2947
	if (empty) {
2948
		push_items = min(src_nritems, push_items);
2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960
		if (push_items < src_nritems) {
			/* leave at least 8 pointers in the node if
			 * we aren't going to empty it
			 */
			if (src_nritems - push_items < 8) {
				if (push_items <= 8)
					return 1;
				push_items -= 8;
			}
		}
	} else
		push_items = min(src_nritems - 8, push_items);
2961

2962 2963
	tree_mod_log_eb_copy(root->fs_info, dst, src, dst_nritems, 0,
			     push_items);
2964 2965 2966
	copy_extent_buffer(dst, src,
			   btrfs_node_key_ptr_offset(dst_nritems),
			   btrfs_node_key_ptr_offset(0),
C
Chris Mason 已提交
2967
			   push_items * sizeof(struct btrfs_key_ptr));
2968

2969
	if (push_items < src_nritems) {
2970 2971
		tree_mod_log_eb_move(root->fs_info, src, 0, push_items,
				     src_nritems - push_items);
2972 2973 2974 2975 2976 2977 2978 2979 2980
		memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
				      btrfs_node_key_ptr_offset(push_items),
				      (src_nritems - push_items) *
				      sizeof(struct btrfs_key_ptr));
	}
	btrfs_set_header_nritems(src, src_nritems - push_items);
	btrfs_set_header_nritems(dst, dst_nritems + push_items);
	btrfs_mark_buffer_dirty(src);
	btrfs_mark_buffer_dirty(dst);
Z
Zheng Yan 已提交
2981

2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993
	return ret;
}

/*
 * try to push data from one node into the next node right in the
 * tree.
 *
 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
 * error, and > 0 if there was no room in the right hand block.
 *
 * this will  only push up to 1/2 the contents of the left node over
 */
2994 2995 2996 2997
static int balance_node_right(struct btrfs_trans_handle *trans,
			      struct btrfs_root *root,
			      struct extent_buffer *dst,
			      struct extent_buffer *src)
2998 2999 3000 3001 3002 3003 3004
{
	int push_items = 0;
	int max_push;
	int src_nritems;
	int dst_nritems;
	int ret = 0;

3005 3006 3007
	WARN_ON(btrfs_header_generation(src) != trans->transid);
	WARN_ON(btrfs_header_generation(dst) != trans->transid);

3008 3009
	src_nritems = btrfs_header_nritems(src);
	dst_nritems = btrfs_header_nritems(dst);
C
Chris Mason 已提交
3010
	push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
C
Chris Mason 已提交
3011
	if (push_items <= 0)
3012
		return 1;
3013

C
Chris Mason 已提交
3014
	if (src_nritems < 4)
3015
		return 1;
3016 3017 3018

	max_push = src_nritems / 2 + 1;
	/* don't try to empty the node */
C
Chris Mason 已提交
3019
	if (max_push >= src_nritems)
3020
		return 1;
Y
Yan 已提交
3021

3022 3023 3024
	if (max_push < push_items)
		push_items = max_push;

3025
	tree_mod_log_eb_move(root->fs_info, dst, push_items, 0, dst_nritems);
3026 3027 3028 3029
	memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
				      btrfs_node_key_ptr_offset(0),
				      (dst_nritems) *
				      sizeof(struct btrfs_key_ptr));
C
Chris Mason 已提交
3030

3031 3032
	tree_mod_log_eb_copy(root->fs_info, dst, src, 0,
			     src_nritems - push_items, push_items);
3033 3034 3035
	copy_extent_buffer(dst, src,
			   btrfs_node_key_ptr_offset(0),
			   btrfs_node_key_ptr_offset(src_nritems - push_items),
C
Chris Mason 已提交
3036
			   push_items * sizeof(struct btrfs_key_ptr));
3037

3038 3039
	btrfs_set_header_nritems(src, src_nritems - push_items);
	btrfs_set_header_nritems(dst, dst_nritems + push_items);
3040

3041 3042
	btrfs_mark_buffer_dirty(src);
	btrfs_mark_buffer_dirty(dst);
Z
Zheng Yan 已提交
3043

C
Chris Mason 已提交
3044
	return ret;
3045 3046
}

C
Chris Mason 已提交
3047 3048 3049 3050
/*
 * helper function to insert a new root level in the tree.
 * A new node is allocated, and a single item is inserted to
 * point to the existing root
C
Chris Mason 已提交
3051 3052
 *
 * returns zero on success or < 0 on failure.
C
Chris Mason 已提交
3053
 */
C
Chris Mason 已提交
3054
static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3055 3056
			   struct btrfs_root *root,
			   struct btrfs_path *path, int level)
C
Chris Mason 已提交
3057
{
3058
	u64 lower_gen;
3059 3060
	struct extent_buffer *lower;
	struct extent_buffer *c;
3061
	struct extent_buffer *old;
3062
	struct btrfs_disk_key lower_key;
C
Chris Mason 已提交
3063 3064 3065 3066

	BUG_ON(path->nodes[level]);
	BUG_ON(path->nodes[level-1] != root->node);

3067 3068 3069 3070 3071 3072
	lower = path->nodes[level-1];
	if (level == 1)
		btrfs_item_key(lower, &lower_key, 0);
	else
		btrfs_node_key(lower, &lower_key, 0);

Z
Zheng Yan 已提交
3073
	c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
3074
				   root->root_key.objectid, &lower_key,
3075
				   level, root->node->start, 0);
3076 3077
	if (IS_ERR(c))
		return PTR_ERR(c);
3078

3079 3080
	root_add_used(root, root->nodesize);

3081
	memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
3082 3083
	btrfs_set_header_nritems(c, 1);
	btrfs_set_header_level(c, level);
3084
	btrfs_set_header_bytenr(c, c->start);
3085
	btrfs_set_header_generation(c, trans->transid);
3086
	btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
3087 3088 3089 3090 3091
	btrfs_set_header_owner(c, root->root_key.objectid);

	write_extent_buffer(c, root->fs_info->fsid,
			    (unsigned long)btrfs_header_fsid(c),
			    BTRFS_FSID_SIZE);
3092 3093 3094 3095 3096

	write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
			    (unsigned long)btrfs_header_chunk_tree_uuid(c),
			    BTRFS_UUID_SIZE);

3097
	btrfs_set_node_key(c, &lower_key, 0);
3098
	btrfs_set_node_blockptr(c, 0, lower->start);
3099
	lower_gen = btrfs_header_generation(lower);
Z
Zheng Yan 已提交
3100
	WARN_ON(lower_gen != trans->transid);
3101 3102

	btrfs_set_node_ptr_generation(c, 0, lower_gen);
3103

3104
	btrfs_mark_buffer_dirty(c);
3105

3106
	old = root->node;
3107
	tree_mod_log_set_root_pointer(root, c);
3108
	rcu_assign_pointer(root->node, c);
3109 3110 3111 3112

	/* the super has an extra ref to root->node */
	free_extent_buffer(old);

3113
	add_root_to_dirty_list(root);
3114 3115
	extent_buffer_get(c);
	path->nodes[level] = c;
3116
	path->locks[level] = BTRFS_WRITE_LOCK;
C
Chris Mason 已提交
3117 3118 3119 3120
	path->slots[level] = 0;
	return 0;
}

C
Chris Mason 已提交
3121 3122 3123
/*
 * worker function to insert a single pointer in a node.
 * the node should have enough room for the pointer already
C
Chris Mason 已提交
3124
 *
C
Chris Mason 已提交
3125 3126 3127
 * slot and level indicate where you want the key to go, and
 * blocknr is the block the key points to.
 */
3128 3129 3130
static void insert_ptr(struct btrfs_trans_handle *trans,
		       struct btrfs_root *root, struct btrfs_path *path,
		       struct btrfs_disk_key *key, u64 bytenr,
3131
		       int slot, int level)
C
Chris Mason 已提交
3132
{
3133
	struct extent_buffer *lower;
C
Chris Mason 已提交
3134
	int nritems;
3135
	int ret;
C
Chris Mason 已提交
3136 3137

	BUG_ON(!path->nodes[level]);
3138
	btrfs_assert_tree_locked(path->nodes[level]);
3139 3140
	lower = path->nodes[level];
	nritems = btrfs_header_nritems(lower);
S
Stoyan Gaydarov 已提交
3141
	BUG_ON(slot > nritems);
3142
	BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(root));
C
Chris Mason 已提交
3143
	if (slot != nritems) {
3144
		if (level)
3145 3146
			tree_mod_log_eb_move(root->fs_info, lower, slot + 1,
					     slot, nritems - slot);
3147 3148 3149
		memmove_extent_buffer(lower,
			      btrfs_node_key_ptr_offset(slot + 1),
			      btrfs_node_key_ptr_offset(slot),
C
Chris Mason 已提交
3150
			      (nritems - slot) * sizeof(struct btrfs_key_ptr));
C
Chris Mason 已提交
3151
	}
3152
	if (level) {
3153 3154 3155 3156
		ret = tree_mod_log_insert_key(root->fs_info, lower, slot,
					      MOD_LOG_KEY_ADD);
		BUG_ON(ret < 0);
	}
3157
	btrfs_set_node_key(lower, key, slot);
3158
	btrfs_set_node_blockptr(lower, slot, bytenr);
3159 3160
	WARN_ON(trans->transid == 0);
	btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3161 3162
	btrfs_set_header_nritems(lower, nritems + 1);
	btrfs_mark_buffer_dirty(lower);
C
Chris Mason 已提交
3163 3164
}

C
Chris Mason 已提交
3165 3166 3167 3168 3169 3170
/*
 * split the node at the specified level in path in two.
 * The path is corrected to point to the appropriate node after the split
 *
 * Before splitting this tries to make some room in the node by pushing
 * left and right, if either one works, it returns right away.
C
Chris Mason 已提交
3171 3172
 *
 * returns 0 on success and < 0 on failure
C
Chris Mason 已提交
3173
 */
3174 3175 3176
static noinline int split_node(struct btrfs_trans_handle *trans,
			       struct btrfs_root *root,
			       struct btrfs_path *path, int level)
3177
{
3178 3179 3180
	struct extent_buffer *c;
	struct extent_buffer *split;
	struct btrfs_disk_key disk_key;
3181
	int mid;
C
Chris Mason 已提交
3182
	int ret;
3183
	u32 c_nritems;
3184

3185
	c = path->nodes[level];
3186
	WARN_ON(btrfs_header_generation(c) != trans->transid);
3187
	if (c == root->node) {
C
Chris Mason 已提交
3188
		/* trying to split the root, lets make a new one */
3189
		ret = insert_new_root(trans, root, path, level + 1);
C
Chris Mason 已提交
3190 3191
		if (ret)
			return ret;
3192
	} else {
3193
		ret = push_nodes_for_insert(trans, root, path, level);
3194 3195
		c = path->nodes[level];
		if (!ret && btrfs_header_nritems(c) <
3196
		    BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
3197
			return 0;
3198 3199
		if (ret < 0)
			return ret;
3200
	}
3201

3202
	c_nritems = btrfs_header_nritems(c);
3203 3204
	mid = (c_nritems + 1) / 2;
	btrfs_node_key(c, &disk_key, mid);
3205

3206
	split = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
Z
Zheng Yan 已提交
3207
					root->root_key.objectid,
3208
					&disk_key, level, c->start, 0);
3209 3210 3211
	if (IS_ERR(split))
		return PTR_ERR(split);

3212 3213
	root_add_used(root, root->nodesize);

3214
	memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
3215
	btrfs_set_header_level(split, btrfs_header_level(c));
3216
	btrfs_set_header_bytenr(split, split->start);
3217
	btrfs_set_header_generation(split, trans->transid);
3218
	btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
3219 3220 3221 3222
	btrfs_set_header_owner(split, root->root_key.objectid);
	write_extent_buffer(split, root->fs_info->fsid,
			    (unsigned long)btrfs_header_fsid(split),
			    BTRFS_FSID_SIZE);
3223 3224 3225
	write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
			    (unsigned long)btrfs_header_chunk_tree_uuid(split),
			    BTRFS_UUID_SIZE);
3226

3227
	tree_mod_log_eb_copy(root->fs_info, split, c, 0, mid, c_nritems - mid);
3228 3229 3230 3231 3232 3233
	copy_extent_buffer(split, c,
			   btrfs_node_key_ptr_offset(0),
			   btrfs_node_key_ptr_offset(mid),
			   (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
	btrfs_set_header_nritems(split, c_nritems - mid);
	btrfs_set_header_nritems(c, mid);
C
Chris Mason 已提交
3234 3235
	ret = 0;

3236 3237 3238
	btrfs_mark_buffer_dirty(c);
	btrfs_mark_buffer_dirty(split);

3239
	insert_ptr(trans, root, path, &disk_key, split->start,
3240
		   path->slots[level + 1] + 1, level + 1);
C
Chris Mason 已提交
3241

C
Chris Mason 已提交
3242
	if (path->slots[level] >= mid) {
C
Chris Mason 已提交
3243
		path->slots[level] -= mid;
3244
		btrfs_tree_unlock(c);
3245 3246
		free_extent_buffer(c);
		path->nodes[level] = split;
C
Chris Mason 已提交
3247 3248
		path->slots[level + 1] += 1;
	} else {
3249
		btrfs_tree_unlock(split);
3250
		free_extent_buffer(split);
3251
	}
C
Chris Mason 已提交
3252
	return ret;
3253 3254
}

C
Chris Mason 已提交
3255 3256 3257 3258 3259
/*
 * how many bytes are required to store the items in a leaf.  start
 * and nr indicate which items in the leaf to check.  This totals up the
 * space used both by the item structs and the item data
 */
3260
static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3261 3262
{
	int data_len;
3263
	int nritems = btrfs_header_nritems(l);
3264
	int end = min(nritems, start + nr) - 1;
3265 3266 3267

	if (!nr)
		return 0;
3268 3269
	data_len = btrfs_item_end_nr(l, start);
	data_len = data_len - btrfs_item_offset_nr(l, end);
C
Chris Mason 已提交
3270
	data_len += sizeof(struct btrfs_item) * nr;
3271
	WARN_ON(data_len < 0);
3272 3273 3274
	return data_len;
}

3275 3276 3277 3278 3279
/*
 * The space between the end of the leaf items and
 * the start of the leaf data.  IOW, how much room
 * the leaf has left for both items and data
 */
C
Chris Mason 已提交
3280
noinline int btrfs_leaf_free_space(struct btrfs_root *root,
3281
				   struct extent_buffer *leaf)
3282
{
3283 3284 3285 3286
	int nritems = btrfs_header_nritems(leaf);
	int ret;
	ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
	if (ret < 0) {
C
Chris Mason 已提交
3287 3288
		printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, "
		       "used %d nritems %d\n",
J
Jens Axboe 已提交
3289
		       ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
3290 3291 3292
		       leaf_space_used(leaf, 0, nritems), nritems);
	}
	return ret;
3293 3294
}

3295 3296 3297 3298
/*
 * min slot controls the lowest index we're willing to push to the
 * right.  We'll push up to and including min_slot, but no lower
 */
3299 3300 3301 3302 3303
static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
				      struct btrfs_root *root,
				      struct btrfs_path *path,
				      int data_size, int empty,
				      struct extent_buffer *right,
3304 3305
				      int free_space, u32 left_nritems,
				      u32 min_slot)
C
Chris Mason 已提交
3306
{
3307
	struct extent_buffer *left = path->nodes[0];
3308
	struct extent_buffer *upper = path->nodes[1];
3309
	struct btrfs_map_token token;
3310
	struct btrfs_disk_key disk_key;
C
Chris Mason 已提交
3311
	int slot;
3312
	u32 i;
C
Chris Mason 已提交
3313 3314
	int push_space = 0;
	int push_items = 0;
C
Chris Mason 已提交
3315
	struct btrfs_item *item;
3316
	u32 nr;
3317
	u32 right_nritems;
3318
	u32 data_end;
3319
	u32 this_item_size;
C
Chris Mason 已提交
3320

3321 3322
	btrfs_init_map_token(&token);

3323 3324 3325
	if (empty)
		nr = 0;
	else
3326
		nr = max_t(u32, 1, min_slot);
3327

Z
Zheng Yan 已提交
3328
	if (path->slots[0] >= left_nritems)
3329
		push_space += data_size;
Z
Zheng Yan 已提交
3330

3331
	slot = path->slots[1];
3332 3333
	i = left_nritems - 1;
	while (i >= nr) {
3334
		item = btrfs_item_nr(left, i);
3335

Z
Zheng Yan 已提交
3336 3337 3338 3339 3340 3341 3342 3343 3344 3345
		if (!empty && push_items > 0) {
			if (path->slots[0] > i)
				break;
			if (path->slots[0] == i) {
				int space = btrfs_leaf_free_space(root, left);
				if (space + push_space * 2 > free_space)
					break;
			}
		}

C
Chris Mason 已提交
3346
		if (path->slots[0] == i)
3347
			push_space += data_size;
3348 3349 3350

		this_item_size = btrfs_item_size(left, item);
		if (this_item_size + sizeof(*item) + push_space > free_space)
C
Chris Mason 已提交
3351
			break;
Z
Zheng Yan 已提交
3352

C
Chris Mason 已提交
3353
		push_items++;
3354
		push_space += this_item_size + sizeof(*item);
3355 3356 3357
		if (i == 0)
			break;
		i--;
3358
	}
3359

3360 3361
	if (push_items == 0)
		goto out_unlock;
3362

3363
	if (!empty && push_items == left_nritems)
3364
		WARN_ON(1);
3365

C
Chris Mason 已提交
3366
	/* push left to right */
3367
	right_nritems = btrfs_header_nritems(right);
3368

3369
	push_space = btrfs_item_end_nr(left, left_nritems - push_items);
C
Chris Mason 已提交
3370
	push_space -= leaf_data_end(root, left);
3371

C
Chris Mason 已提交
3372
	/* make room in the right data area */
3373 3374 3375 3376 3377 3378
	data_end = leaf_data_end(root, right);
	memmove_extent_buffer(right,
			      btrfs_leaf_data(right) + data_end - push_space,
			      btrfs_leaf_data(right) + data_end,
			      BTRFS_LEAF_DATA_SIZE(root) - data_end);

C
Chris Mason 已提交
3379
	/* copy from the left data area */
3380
	copy_extent_buffer(right, left, btrfs_leaf_data(right) +
C
Chris Mason 已提交
3381 3382 3383
		     BTRFS_LEAF_DATA_SIZE(root) - push_space,
		     btrfs_leaf_data(left) + leaf_data_end(root, left),
		     push_space);
3384 3385 3386 3387 3388

	memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
			      btrfs_item_nr_offset(0),
			      right_nritems * sizeof(struct btrfs_item));

C
Chris Mason 已提交
3389
	/* copy the items from left to right */
3390 3391 3392
	copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
		   btrfs_item_nr_offset(left_nritems - push_items),
		   push_items * sizeof(struct btrfs_item));
C
Chris Mason 已提交
3393 3394

	/* update the item pointers */
3395
	right_nritems += push_items;
3396
	btrfs_set_header_nritems(right, right_nritems);
C
Chris Mason 已提交
3397
	push_space = BTRFS_LEAF_DATA_SIZE(root);
3398
	for (i = 0; i < right_nritems; i++) {
3399
		item = btrfs_item_nr(right, i);
3400 3401
		push_space -= btrfs_token_item_size(right, item, &token);
		btrfs_set_token_item_offset(right, item, push_space, &token);
3402 3403
	}

3404
	left_nritems -= push_items;
3405
	btrfs_set_header_nritems(left, left_nritems);
C
Chris Mason 已提交
3406

3407 3408
	if (left_nritems)
		btrfs_mark_buffer_dirty(left);
3409 3410 3411
	else
		clean_tree_block(trans, root, left);

3412
	btrfs_mark_buffer_dirty(right);
3413

3414 3415
	btrfs_item_key(right, &disk_key, 0);
	btrfs_set_node_key(upper, &disk_key, slot + 1);
C
Chris Mason 已提交
3416
	btrfs_mark_buffer_dirty(upper);
C
Chris Mason 已提交
3417

C
Chris Mason 已提交
3418
	/* then fixup the leaf pointer in the path */
3419 3420
	if (path->slots[0] >= left_nritems) {
		path->slots[0] -= left_nritems;
3421 3422 3423
		if (btrfs_header_nritems(path->nodes[0]) == 0)
			clean_tree_block(trans, root, path->nodes[0]);
		btrfs_tree_unlock(path->nodes[0]);
3424 3425
		free_extent_buffer(path->nodes[0]);
		path->nodes[0] = right;
C
Chris Mason 已提交
3426 3427
		path->slots[1] += 1;
	} else {
3428
		btrfs_tree_unlock(right);
3429
		free_extent_buffer(right);
C
Chris Mason 已提交
3430 3431
	}
	return 0;
3432 3433 3434 3435 3436

out_unlock:
	btrfs_tree_unlock(right);
	free_extent_buffer(right);
	return 1;
C
Chris Mason 已提交
3437
}
3438

3439 3440 3441 3442 3443 3444
/*
 * push some data in the path leaf to the right, trying to free up at
 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
 *
 * returns 1 if the push failed because the other node didn't have enough
 * room, 0 if everything worked out and < 0 if there were major errors.
3445 3446 3447
 *
 * this will push starting from min_slot to the end of the leaf.  It won't
 * push any slot lower than min_slot
3448 3449
 */
static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3450 3451 3452
			   *root, struct btrfs_path *path,
			   int min_data_size, int data_size,
			   int empty, u32 min_slot)
3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472
{
	struct extent_buffer *left = path->nodes[0];
	struct extent_buffer *right;
	struct extent_buffer *upper;
	int slot;
	int free_space;
	u32 left_nritems;
	int ret;

	if (!path->nodes[1])
		return 1;

	slot = path->slots[1];
	upper = path->nodes[1];
	if (slot >= btrfs_header_nritems(upper) - 1)
		return 1;

	btrfs_assert_tree_locked(path->nodes[1]);

	right = read_node_slot(root, upper, slot + 1);
T
Tsutomu Itoh 已提交
3473 3474 3475
	if (right == NULL)
		return 1;

3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496
	btrfs_tree_lock(right);
	btrfs_set_lock_blocking(right);

	free_space = btrfs_leaf_free_space(root, right);
	if (free_space < data_size)
		goto out_unlock;

	/* cow and double check */
	ret = btrfs_cow_block(trans, root, right, upper,
			      slot + 1, &right);
	if (ret)
		goto out_unlock;

	free_space = btrfs_leaf_free_space(root, right);
	if (free_space < data_size)
		goto out_unlock;

	left_nritems = btrfs_header_nritems(left);
	if (left_nritems == 0)
		goto out_unlock;

3497 3498
	return __push_leaf_right(trans, root, path, min_data_size, empty,
				right, free_space, left_nritems, min_slot);
3499 3500 3501 3502 3503 3504
out_unlock:
	btrfs_tree_unlock(right);
	free_extent_buffer(right);
	return 1;
}

C
Chris Mason 已提交
3505 3506 3507
/*
 * push some data in the path leaf to the left, trying to free up at
 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3508 3509 3510 3511
 *
 * max_slot can put a limit on how far into the leaf we'll push items.  The
 * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
 * items
C
Chris Mason 已提交
3512
 */
3513 3514 3515 3516
static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
				     struct btrfs_root *root,
				     struct btrfs_path *path, int data_size,
				     int empty, struct extent_buffer *left,
3517 3518
				     int free_space, u32 right_nritems,
				     u32 max_slot)
3519
{
3520 3521
	struct btrfs_disk_key disk_key;
	struct extent_buffer *right = path->nodes[0];
3522 3523 3524
	int i;
	int push_space = 0;
	int push_items = 0;
C
Chris Mason 已提交
3525
	struct btrfs_item *item;
3526
	u32 old_left_nritems;
3527
	u32 nr;
C
Chris Mason 已提交
3528
	int ret = 0;
3529 3530
	u32 this_item_size;
	u32 old_left_item_size;
3531 3532 3533
	struct btrfs_map_token token;

	btrfs_init_map_token(&token);
3534

3535
	if (empty)
3536
		nr = min(right_nritems, max_slot);
3537
	else
3538
		nr = min(right_nritems - 1, max_slot);
3539 3540

	for (i = 0; i < nr; i++) {
3541
		item = btrfs_item_nr(right, i);
3542

Z
Zheng Yan 已提交
3543 3544 3545 3546 3547 3548 3549 3550 3551 3552
		if (!empty && push_items > 0) {
			if (path->slots[0] < i)
				break;
			if (path->slots[0] == i) {
				int space = btrfs_leaf_free_space(root, right);
				if (space + push_space * 2 > free_space)
					break;
			}
		}

3553
		if (path->slots[0] == i)
3554
			push_space += data_size;
3555 3556 3557

		this_item_size = btrfs_item_size(right, item);
		if (this_item_size + sizeof(*item) + push_space > free_space)
3558
			break;
3559

3560
		push_items++;
3561 3562 3563
		push_space += this_item_size + sizeof(*item);
	}

3564
	if (push_items == 0) {
3565 3566
		ret = 1;
		goto out;
3567
	}
3568
	if (!empty && push_items == btrfs_header_nritems(right))
3569
		WARN_ON(1);
3570

3571
	/* push data from right to left */
3572 3573 3574 3575 3576
	copy_extent_buffer(left, right,
			   btrfs_item_nr_offset(btrfs_header_nritems(left)),
			   btrfs_item_nr_offset(0),
			   push_items * sizeof(struct btrfs_item));

C
Chris Mason 已提交
3577
	push_space = BTRFS_LEAF_DATA_SIZE(root) -
C
Chris Mason 已提交
3578
		     btrfs_item_offset_nr(right, push_items - 1);
3579 3580

	copy_extent_buffer(left, right, btrfs_leaf_data(left) +
C
Chris Mason 已提交
3581 3582
		     leaf_data_end(root, left) - push_space,
		     btrfs_leaf_data(right) +
3583
		     btrfs_item_offset_nr(right, push_items - 1),
C
Chris Mason 已提交
3584
		     push_space);
3585
	old_left_nritems = btrfs_header_nritems(left);
3586
	BUG_ON(old_left_nritems <= 0);
3587

3588
	old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
C
Chris Mason 已提交
3589
	for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3590
		u32 ioff;
3591

3592
		item = btrfs_item_nr(left, i);
3593

3594 3595 3596 3597
		ioff = btrfs_token_item_offset(left, item, &token);
		btrfs_set_token_item_offset(left, item,
		      ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size),
		      &token);
3598
	}
3599
	btrfs_set_header_nritems(left, old_left_nritems + push_items);
3600 3601

	/* fixup right node */
3602
	if (push_items > right_nritems) {
C
Chris Mason 已提交
3603 3604
		printk(KERN_CRIT "push items %d nr %u\n", push_items,
		       right_nritems);
3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616
		WARN_ON(1);
	}

	if (push_items < right_nritems) {
		push_space = btrfs_item_offset_nr(right, push_items - 1) -
						  leaf_data_end(root, right);
		memmove_extent_buffer(right, btrfs_leaf_data(right) +
				      BTRFS_LEAF_DATA_SIZE(root) - push_space,
				      btrfs_leaf_data(right) +
				      leaf_data_end(root, right), push_space);

		memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3617 3618 3619
			      btrfs_item_nr_offset(push_items),
			     (btrfs_header_nritems(right) - push_items) *
			     sizeof(struct btrfs_item));
3620
	}
3621 3622
	right_nritems -= push_items;
	btrfs_set_header_nritems(right, right_nritems);
C
Chris Mason 已提交
3623
	push_space = BTRFS_LEAF_DATA_SIZE(root);
3624 3625
	for (i = 0; i < right_nritems; i++) {
		item = btrfs_item_nr(right, i);
3626

3627 3628 3629
		push_space = push_space - btrfs_token_item_size(right,
								item, &token);
		btrfs_set_token_item_offset(right, item, push_space, &token);
3630
	}
3631

3632
	btrfs_mark_buffer_dirty(left);
3633 3634
	if (right_nritems)
		btrfs_mark_buffer_dirty(right);
3635 3636
	else
		clean_tree_block(trans, root, right);
3637

3638
	btrfs_item_key(right, &disk_key, 0);
3639
	fixup_low_keys(trans, root, path, &disk_key, 1);
3640 3641 3642 3643

	/* then fixup the leaf pointer in the path */
	if (path->slots[0] < push_items) {
		path->slots[0] += old_left_nritems;
3644
		btrfs_tree_unlock(path->nodes[0]);
3645 3646
		free_extent_buffer(path->nodes[0]);
		path->nodes[0] = left;
3647 3648
		path->slots[1] -= 1;
	} else {
3649
		btrfs_tree_unlock(left);
3650
		free_extent_buffer(left);
3651 3652
		path->slots[0] -= push_items;
	}
3653
	BUG_ON(path->slots[0] < 0);
C
Chris Mason 已提交
3654
	return ret;
3655 3656 3657 3658
out:
	btrfs_tree_unlock(left);
	free_extent_buffer(left);
	return ret;
3659 3660
}

3661 3662 3663
/*
 * push some data in the path leaf to the left, trying to free up at
 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3664 3665 3666 3667
 *
 * max_slot can put a limit on how far into the leaf we'll push items.  The
 * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
 * items
3668 3669
 */
static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3670 3671
			  *root, struct btrfs_path *path, int min_data_size,
			  int data_size, int empty, u32 max_slot)
3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692
{
	struct extent_buffer *right = path->nodes[0];
	struct extent_buffer *left;
	int slot;
	int free_space;
	u32 right_nritems;
	int ret = 0;

	slot = path->slots[1];
	if (slot == 0)
		return 1;
	if (!path->nodes[1])
		return 1;

	right_nritems = btrfs_header_nritems(right);
	if (right_nritems == 0)
		return 1;

	btrfs_assert_tree_locked(path->nodes[1]);

	left = read_node_slot(root, path->nodes[1], slot - 1);
T
Tsutomu Itoh 已提交
3693 3694 3695
	if (left == NULL)
		return 1;

3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709
	btrfs_tree_lock(left);
	btrfs_set_lock_blocking(left);

	free_space = btrfs_leaf_free_space(root, left);
	if (free_space < data_size) {
		ret = 1;
		goto out;
	}

	/* cow and double check */
	ret = btrfs_cow_block(trans, root, left,
			      path->nodes[1], slot - 1, &left);
	if (ret) {
		/* we hit -ENOSPC, but it isn't fatal here */
3710 3711
		if (ret == -ENOSPC)
			ret = 1;
3712 3713 3714 3715 3716 3717 3718 3719 3720
		goto out;
	}

	free_space = btrfs_leaf_free_space(root, left);
	if (free_space < data_size) {
		ret = 1;
		goto out;
	}

3721 3722 3723
	return __push_leaf_left(trans, root, path, min_data_size,
			       empty, left, free_space, right_nritems,
			       max_slot);
3724 3725 3726 3727 3728 3729 3730 3731 3732 3733
out:
	btrfs_tree_unlock(left);
	free_extent_buffer(left);
	return ret;
}

/*
 * split the path's leaf in two, making sure there is at least data_size
 * available for the resulting leaf level of the path.
 */
3734 3735 3736 3737 3738 3739
static noinline void copy_for_split(struct btrfs_trans_handle *trans,
				    struct btrfs_root *root,
				    struct btrfs_path *path,
				    struct extent_buffer *l,
				    struct extent_buffer *right,
				    int slot, int mid, int nritems)
3740 3741 3742 3743 3744
{
	int data_copy_size;
	int rt_data_off;
	int i;
	struct btrfs_disk_key disk_key;
3745 3746 3747
	struct btrfs_map_token token;

	btrfs_init_map_token(&token);
3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768

	nritems = nritems - mid;
	btrfs_set_header_nritems(right, nritems);
	data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);

	copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
			   btrfs_item_nr_offset(mid),
			   nritems * sizeof(struct btrfs_item));

	copy_extent_buffer(right, l,
		     btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
		     data_copy_size, btrfs_leaf_data(l) +
		     leaf_data_end(root, l), data_copy_size);

	rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
		      btrfs_item_end_nr(l, mid);

	for (i = 0; i < nritems; i++) {
		struct btrfs_item *item = btrfs_item_nr(right, i);
		u32 ioff;

3769 3770 3771
		ioff = btrfs_token_item_offset(right, item, &token);
		btrfs_set_token_item_offset(right, item,
					    ioff + rt_data_off, &token);
3772 3773 3774 3775
	}

	btrfs_set_header_nritems(l, mid);
	btrfs_item_key(right, &disk_key, 0);
3776
	insert_ptr(trans, root, path, &disk_key, right->start,
3777
		   path->slots[1] + 1, 1);
3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796

	btrfs_mark_buffer_dirty(right);
	btrfs_mark_buffer_dirty(l);
	BUG_ON(path->slots[0] != slot);

	if (mid <= slot) {
		btrfs_tree_unlock(path->nodes[0]);
		free_extent_buffer(path->nodes[0]);
		path->nodes[0] = right;
		path->slots[0] -= mid;
		path->slots[1] += 1;
	} else {
		btrfs_tree_unlock(right);
		free_extent_buffer(right);
	}

	BUG_ON(path->slots[0] < 0);
}

3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854
/*
 * double splits happen when we need to insert a big item in the middle
 * of a leaf.  A double split can leave us with 3 mostly empty leaves:
 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
 *          A                 B                 C
 *
 * We avoid this by trying to push the items on either side of our target
 * into the adjacent leaves.  If all goes well we can avoid the double split
 * completely.
 */
static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
					  struct btrfs_root *root,
					  struct btrfs_path *path,
					  int data_size)
{
	int ret;
	int progress = 0;
	int slot;
	u32 nritems;

	slot = path->slots[0];

	/*
	 * try to push all the items after our slot into the
	 * right leaf
	 */
	ret = push_leaf_right(trans, root, path, 1, data_size, 0, slot);
	if (ret < 0)
		return ret;

	if (ret == 0)
		progress++;

	nritems = btrfs_header_nritems(path->nodes[0]);
	/*
	 * our goal is to get our slot at the start or end of a leaf.  If
	 * we've done so we're done
	 */
	if (path->slots[0] == 0 || path->slots[0] == nritems)
		return 0;

	if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
		return 0;

	/* try to push all the items before our slot into the next leaf */
	slot = path->slots[0];
	ret = push_leaf_left(trans, root, path, 1, data_size, 0, slot);
	if (ret < 0)
		return ret;

	if (ret == 0)
		progress++;

	if (progress)
		return 0;
	return 1;
}

C
Chris Mason 已提交
3855 3856 3857
/*
 * split the path's leaf in two, making sure there is at least data_size
 * available for the resulting leaf level of the path.
C
Chris Mason 已提交
3858 3859
 *
 * returns 0 if all went well and < 0 on failure.
C
Chris Mason 已提交
3860
 */
3861 3862 3863 3864 3865
static noinline int split_leaf(struct btrfs_trans_handle *trans,
			       struct btrfs_root *root,
			       struct btrfs_key *ins_key,
			       struct btrfs_path *path, int data_size,
			       int extend)
3866
{
3867
	struct btrfs_disk_key disk_key;
3868
	struct extent_buffer *l;
3869
	u32 nritems;
3870 3871
	int mid;
	int slot;
3872
	struct extent_buffer *right;
3873
	int ret = 0;
C
Chris Mason 已提交
3874
	int wret;
3875
	int split;
3876
	int num_doubles = 0;
3877
	int tried_avoid_double = 0;
C
Chris Mason 已提交
3878

3879 3880 3881 3882 3883 3884
	l = path->nodes[0];
	slot = path->slots[0];
	if (extend && data_size + btrfs_item_size_nr(l, slot) +
	    sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
		return -EOVERFLOW;

C
Chris Mason 已提交
3885
	/* first try to make some room by pushing left and right */
3886 3887 3888
	if (data_size) {
		wret = push_leaf_right(trans, root, path, data_size,
				       data_size, 0, 0);
C
Chris Mason 已提交
3889
		if (wret < 0)
C
Chris Mason 已提交
3890
			return wret;
3891
		if (wret) {
3892 3893
			wret = push_leaf_left(trans, root, path, data_size,
					      data_size, 0, (u32)-1);
3894 3895 3896 3897
			if (wret < 0)
				return wret;
		}
		l = path->nodes[0];
C
Chris Mason 已提交
3898

3899
		/* did the pushes work? */
3900
		if (btrfs_leaf_free_space(root, l) >= data_size)
3901
			return 0;
3902
	}
C
Chris Mason 已提交
3903

C
Chris Mason 已提交
3904
	if (!path->nodes[1]) {
3905
		ret = insert_new_root(trans, root, path, 1);
C
Chris Mason 已提交
3906 3907 3908
		if (ret)
			return ret;
	}
3909
again:
3910
	split = 1;
3911
	l = path->nodes[0];
3912
	slot = path->slots[0];
3913
	nritems = btrfs_header_nritems(l);
C
Chris Mason 已提交
3914
	mid = (nritems + 1) / 2;
3915

3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926
	if (mid <= slot) {
		if (nritems == 1 ||
		    leaf_space_used(l, mid, nritems - mid) + data_size >
			BTRFS_LEAF_DATA_SIZE(root)) {
			if (slot >= nritems) {
				split = 0;
			} else {
				mid = slot;
				if (mid != nritems &&
				    leaf_space_used(l, mid, nritems - mid) +
				    data_size > BTRFS_LEAF_DATA_SIZE(root)) {
3927 3928
					if (data_size && !tried_avoid_double)
						goto push_for_double;
3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944
					split = 2;
				}
			}
		}
	} else {
		if (leaf_space_used(l, 0, mid) + data_size >
			BTRFS_LEAF_DATA_SIZE(root)) {
			if (!extend && data_size && slot == 0) {
				split = 0;
			} else if ((extend || !data_size) && slot == 0) {
				mid = 1;
			} else {
				mid = slot;
				if (mid != nritems &&
				    leaf_space_used(l, mid, nritems - mid) +
				    data_size > BTRFS_LEAF_DATA_SIZE(root)) {
3945 3946
					if (data_size && !tried_avoid_double)
						goto push_for_double;
3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958
					split = 2 ;
				}
			}
		}
	}

	if (split == 0)
		btrfs_cpu_key_to_disk(&disk_key, ins_key);
	else
		btrfs_item_key(l, &disk_key, mid);

	right = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
Z
Zheng Yan 已提交
3959
					root->root_key.objectid,
3960
					&disk_key, 0, l->start, 0);
3961
	if (IS_ERR(right))
3962
		return PTR_ERR(right);
3963 3964

	root_add_used(root, root->leafsize);
3965 3966

	memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
3967
	btrfs_set_header_bytenr(right, right->start);
3968
	btrfs_set_header_generation(right, trans->transid);
3969
	btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
3970 3971 3972 3973 3974
	btrfs_set_header_owner(right, root->root_key.objectid);
	btrfs_set_header_level(right, 0);
	write_extent_buffer(right, root->fs_info->fsid,
			    (unsigned long)btrfs_header_fsid(right),
			    BTRFS_FSID_SIZE);
3975 3976 3977 3978

	write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
			    (unsigned long)btrfs_header_chunk_tree_uuid(right),
			    BTRFS_UUID_SIZE);
3979

3980 3981 3982
	if (split == 0) {
		if (mid <= slot) {
			btrfs_set_header_nritems(right, 0);
3983
			insert_ptr(trans, root, path, &disk_key, right->start,
3984
				   path->slots[1] + 1, 1);
3985 3986 3987 3988 3989 3990 3991
			btrfs_tree_unlock(path->nodes[0]);
			free_extent_buffer(path->nodes[0]);
			path->nodes[0] = right;
			path->slots[0] = 0;
			path->slots[1] += 1;
		} else {
			btrfs_set_header_nritems(right, 0);
3992
			insert_ptr(trans, root, path, &disk_key, right->start,
3993
					  path->slots[1], 1);
3994 3995 3996 3997
			btrfs_tree_unlock(path->nodes[0]);
			free_extent_buffer(path->nodes[0]);
			path->nodes[0] = right;
			path->slots[0] = 0;
3998 3999 4000
			if (path->slots[1] == 0)
				fixup_low_keys(trans, root, path,
					       &disk_key, 1);
4001
		}
4002 4003
		btrfs_mark_buffer_dirty(right);
		return ret;
4004
	}
C
Chris Mason 已提交
4005

4006
	copy_for_split(trans, root, path, l, right, slot, mid, nritems);
Z
Zheng Yan 已提交
4007

4008
	if (split == 2) {
4009 4010 4011
		BUG_ON(num_doubles != 0);
		num_doubles++;
		goto again;
4012
	}
4013

4014
	return 0;
4015 4016 4017 4018 4019 4020 4021

push_for_double:
	push_for_double_split(trans, root, path, data_size);
	tried_avoid_double = 1;
	if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
		return 0;
	goto again;
4022 4023
}

Y
Yan, Zheng 已提交
4024 4025 4026
static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
					 struct btrfs_root *root,
					 struct btrfs_path *path, int ins_len)
4027
{
Y
Yan, Zheng 已提交
4028
	struct btrfs_key key;
4029
	struct extent_buffer *leaf;
Y
Yan, Zheng 已提交
4030 4031 4032 4033
	struct btrfs_file_extent_item *fi;
	u64 extent_len = 0;
	u32 item_size;
	int ret;
4034 4035

	leaf = path->nodes[0];
Y
Yan, Zheng 已提交
4036 4037 4038 4039 4040 4041 4042
	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);

	BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
	       key.type != BTRFS_EXTENT_CSUM_KEY);

	if (btrfs_leaf_free_space(root, leaf) >= ins_len)
		return 0;
4043 4044

	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
Y
Yan, Zheng 已提交
4045 4046 4047 4048 4049
	if (key.type == BTRFS_EXTENT_DATA_KEY) {
		fi = btrfs_item_ptr(leaf, path->slots[0],
				    struct btrfs_file_extent_item);
		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
	}
4050
	btrfs_release_path(path);
4051 4052

	path->keep_locks = 1;
Y
Yan, Zheng 已提交
4053 4054
	path->search_for_split = 1;
	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4055
	path->search_for_split = 0;
Y
Yan, Zheng 已提交
4056 4057
	if (ret < 0)
		goto err;
4058

Y
Yan, Zheng 已提交
4059 4060
	ret = -EAGAIN;
	leaf = path->nodes[0];
4061
	/* if our item isn't there or got smaller, return now */
Y
Yan, Zheng 已提交
4062 4063 4064
	if (ret > 0 || item_size != btrfs_item_size_nr(leaf, path->slots[0]))
		goto err;

4065 4066 4067 4068
	/* the leaf has  changed, it now has room.  return now */
	if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
		goto err;

Y
Yan, Zheng 已提交
4069 4070 4071 4072 4073
	if (key.type == BTRFS_EXTENT_DATA_KEY) {
		fi = btrfs_item_ptr(leaf, path->slots[0],
				    struct btrfs_file_extent_item);
		if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
			goto err;
4074 4075
	}

4076
	btrfs_set_path_blocking(path);
Y
Yan, Zheng 已提交
4077
	ret = split_leaf(trans, root, &key, path, ins_len, 1);
4078 4079
	if (ret)
		goto err;
4080

Y
Yan, Zheng 已提交
4081
	path->keep_locks = 0;
4082
	btrfs_unlock_up_safe(path, 1);
Y
Yan, Zheng 已提交
4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104
	return 0;
err:
	path->keep_locks = 0;
	return ret;
}

static noinline int split_item(struct btrfs_trans_handle *trans,
			       struct btrfs_root *root,
			       struct btrfs_path *path,
			       struct btrfs_key *new_key,
			       unsigned long split_offset)
{
	struct extent_buffer *leaf;
	struct btrfs_item *item;
	struct btrfs_item *new_item;
	int slot;
	char *buf;
	u32 nritems;
	u32 item_size;
	u32 orig_offset;
	struct btrfs_disk_key disk_key;

4105 4106 4107
	leaf = path->nodes[0];
	BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));

4108 4109
	btrfs_set_path_blocking(path);

4110 4111 4112 4113 4114
	item = btrfs_item_nr(leaf, path->slots[0]);
	orig_offset = btrfs_item_offset(leaf, item);
	item_size = btrfs_item_size(leaf, item);

	buf = kmalloc(item_size, GFP_NOFS);
Y
Yan, Zheng 已提交
4115 4116 4117
	if (!buf)
		return -ENOMEM;

4118 4119 4120
	read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
			    path->slots[0]), item_size);

Y
Yan, Zheng 已提交
4121
	slot = path->slots[0] + 1;
4122 4123 4124 4125
	nritems = btrfs_header_nritems(leaf);
	if (slot != nritems) {
		/* shift the items */
		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
Y
Yan, Zheng 已提交
4126 4127
				btrfs_item_nr_offset(slot),
				(nritems - slot) * sizeof(struct btrfs_item));
4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154
	}

	btrfs_cpu_key_to_disk(&disk_key, new_key);
	btrfs_set_item_key(leaf, &disk_key, slot);

	new_item = btrfs_item_nr(leaf, slot);

	btrfs_set_item_offset(leaf, new_item, orig_offset);
	btrfs_set_item_size(leaf, new_item, item_size - split_offset);

	btrfs_set_item_offset(leaf, item,
			      orig_offset + item_size - split_offset);
	btrfs_set_item_size(leaf, item, split_offset);

	btrfs_set_header_nritems(leaf, nritems + 1);

	/* write the data for the start of the original item */
	write_extent_buffer(leaf, buf,
			    btrfs_item_ptr_offset(leaf, path->slots[0]),
			    split_offset);

	/* write the data for the new item */
	write_extent_buffer(leaf, buf + split_offset,
			    btrfs_item_ptr_offset(leaf, slot),
			    item_size - split_offset);
	btrfs_mark_buffer_dirty(leaf);

Y
Yan, Zheng 已提交
4155
	BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
4156
	kfree(buf);
Y
Yan, Zheng 已提交
4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187
	return 0;
}

/*
 * This function splits a single item into two items,
 * giving 'new_key' to the new item and splitting the
 * old one at split_offset (from the start of the item).
 *
 * The path may be released by this operation.  After
 * the split, the path is pointing to the old item.  The
 * new item is going to be in the same node as the old one.
 *
 * Note, the item being split must be smaller enough to live alone on
 * a tree block with room for one extra struct btrfs_item
 *
 * This allows us to split the item in place, keeping a lock on the
 * leaf the entire time.
 */
int btrfs_split_item(struct btrfs_trans_handle *trans,
		     struct btrfs_root *root,
		     struct btrfs_path *path,
		     struct btrfs_key *new_key,
		     unsigned long split_offset)
{
	int ret;
	ret = setup_leaf_for_split(trans, root, path,
				   sizeof(struct btrfs_item));
	if (ret)
		return ret;

	ret = split_item(trans, root, path, new_key, split_offset);
4188 4189 4190
	return ret;
}

Y
Yan, Zheng 已提交
4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215
/*
 * This function duplicate a item, giving 'new_key' to the new item.
 * It guarantees both items live in the same tree leaf and the new item
 * is contiguous with the original item.
 *
 * This allows us to split file extent in place, keeping a lock on the
 * leaf the entire time.
 */
int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
			 struct btrfs_root *root,
			 struct btrfs_path *path,
			 struct btrfs_key *new_key)
{
	struct extent_buffer *leaf;
	int ret;
	u32 item_size;

	leaf = path->nodes[0];
	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
	ret = setup_leaf_for_split(trans, root, path,
				   item_size + sizeof(struct btrfs_item));
	if (ret)
		return ret;

	path->slots[0]++;
4216 4217 4218
	setup_items_for_insert(trans, root, path, new_key, &item_size,
			       item_size, item_size +
			       sizeof(struct btrfs_item), 1);
Y
Yan, Zheng 已提交
4219 4220 4221 4222 4223 4224 4225 4226
	leaf = path->nodes[0];
	memcpy_extent_buffer(leaf,
			     btrfs_item_ptr_offset(leaf, path->slots[0]),
			     btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
			     item_size);
	return 0;
}

C
Chris Mason 已提交
4227 4228 4229 4230 4231 4232
/*
 * make the item pointed to by the path smaller.  new_size indicates
 * how small to make it, and from_end tells us if we just chop bytes
 * off the end of the item or if we shift the item to chop bytes off
 * the front.
 */
4233 4234 4235 4236
void btrfs_truncate_item(struct btrfs_trans_handle *trans,
			 struct btrfs_root *root,
			 struct btrfs_path *path,
			 u32 new_size, int from_end)
C
Chris Mason 已提交
4237 4238
{
	int slot;
4239 4240
	struct extent_buffer *leaf;
	struct btrfs_item *item;
C
Chris Mason 已提交
4241 4242 4243 4244 4245 4246
	u32 nritems;
	unsigned int data_end;
	unsigned int old_data_start;
	unsigned int old_size;
	unsigned int size_diff;
	int i;
4247 4248 4249
	struct btrfs_map_token token;

	btrfs_init_map_token(&token);
C
Chris Mason 已提交
4250

4251
	leaf = path->nodes[0];
4252 4253 4254 4255
	slot = path->slots[0];

	old_size = btrfs_item_size_nr(leaf, slot);
	if (old_size == new_size)
4256
		return;
C
Chris Mason 已提交
4257

4258
	nritems = btrfs_header_nritems(leaf);
C
Chris Mason 已提交
4259 4260
	data_end = leaf_data_end(root, leaf);

4261
	old_data_start = btrfs_item_offset_nr(leaf, slot);
4262

C
Chris Mason 已提交
4263 4264 4265 4266 4267 4268 4269 4270 4271 4272
	size_diff = old_size - new_size;

	BUG_ON(slot < 0);
	BUG_ON(slot >= nritems);

	/*
	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
	 */
	/* first correct the data pointers */
	for (i = slot; i < nritems; i++) {
4273 4274
		u32 ioff;
		item = btrfs_item_nr(leaf, i);
4275

4276 4277 4278
		ioff = btrfs_token_item_offset(leaf, item, &token);
		btrfs_set_token_item_offset(leaf, item,
					    ioff + size_diff, &token);
C
Chris Mason 已提交
4279
	}
4280

C
Chris Mason 已提交
4281
	/* shift the data */
4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304
	if (from_end) {
		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
			      data_end + size_diff, btrfs_leaf_data(leaf) +
			      data_end, old_data_start + new_size - data_end);
	} else {
		struct btrfs_disk_key disk_key;
		u64 offset;

		btrfs_item_key(leaf, &disk_key, slot);

		if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
			unsigned long ptr;
			struct btrfs_file_extent_item *fi;

			fi = btrfs_item_ptr(leaf, slot,
					    struct btrfs_file_extent_item);
			fi = (struct btrfs_file_extent_item *)(
			     (unsigned long)fi - size_diff);

			if (btrfs_file_extent_type(leaf, fi) ==
			    BTRFS_FILE_EXTENT_INLINE) {
				ptr = btrfs_item_ptr_offset(leaf, slot);
				memmove_extent_buffer(leaf, ptr,
C
Chris Mason 已提交
4305 4306
				      (unsigned long)fi,
				      offsetof(struct btrfs_file_extent_item,
4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320
						 disk_bytenr));
			}
		}

		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
			      data_end + size_diff, btrfs_leaf_data(leaf) +
			      data_end, old_data_start - data_end);

		offset = btrfs_disk_key_offset(&disk_key);
		btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
		btrfs_set_item_key(leaf, &disk_key, slot);
		if (slot == 0)
			fixup_low_keys(trans, root, path, &disk_key, 1);
	}
4321 4322 4323 4324

	item = btrfs_item_nr(leaf, slot);
	btrfs_set_item_size(leaf, item, new_size);
	btrfs_mark_buffer_dirty(leaf);
C
Chris Mason 已提交
4325

4326 4327
	if (btrfs_leaf_free_space(root, leaf) < 0) {
		btrfs_print_leaf(root, leaf);
C
Chris Mason 已提交
4328
		BUG();
4329
	}
C
Chris Mason 已提交
4330 4331
}

C
Chris Mason 已提交
4332 4333 4334
/*
 * make the item pointed to by the path bigger, data_size is the new size.
 */
4335 4336 4337
void btrfs_extend_item(struct btrfs_trans_handle *trans,
		       struct btrfs_root *root, struct btrfs_path *path,
		       u32 data_size)
4338 4339
{
	int slot;
4340 4341
	struct extent_buffer *leaf;
	struct btrfs_item *item;
4342 4343 4344 4345 4346
	u32 nritems;
	unsigned int data_end;
	unsigned int old_data;
	unsigned int old_size;
	int i;
4347 4348 4349
	struct btrfs_map_token token;

	btrfs_init_map_token(&token);
4350

4351
	leaf = path->nodes[0];
4352

4353
	nritems = btrfs_header_nritems(leaf);
4354 4355
	data_end = leaf_data_end(root, leaf);

4356 4357
	if (btrfs_leaf_free_space(root, leaf) < data_size) {
		btrfs_print_leaf(root, leaf);
4358
		BUG();
4359
	}
4360
	slot = path->slots[0];
4361
	old_data = btrfs_item_end_nr(leaf, slot);
4362 4363

	BUG_ON(slot < 0);
4364 4365
	if (slot >= nritems) {
		btrfs_print_leaf(root, leaf);
C
Chris Mason 已提交
4366 4367
		printk(KERN_CRIT "slot %d too large, nritems %d\n",
		       slot, nritems);
4368 4369
		BUG_ON(1);
	}
4370 4371 4372 4373 4374 4375

	/*
	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
	 */
	/* first correct the data pointers */
	for (i = slot; i < nritems; i++) {
4376 4377
		u32 ioff;
		item = btrfs_item_nr(leaf, i);
4378

4379 4380 4381
		ioff = btrfs_token_item_offset(leaf, item, &token);
		btrfs_set_token_item_offset(leaf, item,
					    ioff - data_size, &token);
4382
	}
4383

4384
	/* shift the data */
4385
	memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4386 4387
		      data_end - data_size, btrfs_leaf_data(leaf) +
		      data_end, old_data - data_end);
4388

4389
	data_end = old_data;
4390 4391 4392 4393
	old_size = btrfs_item_size_nr(leaf, slot);
	item = btrfs_item_nr(leaf, slot);
	btrfs_set_item_size(leaf, item, old_size + data_size);
	btrfs_mark_buffer_dirty(leaf);
4394

4395 4396
	if (btrfs_leaf_free_space(root, leaf) < 0) {
		btrfs_print_leaf(root, leaf);
4397
		BUG();
4398
	}
4399 4400
}

4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422
/*
 * Given a key and some data, insert items into the tree.
 * This does all the path init required, making room in the tree if needed.
 * Returns the number of keys that were inserted.
 */
int btrfs_insert_some_items(struct btrfs_trans_handle *trans,
			    struct btrfs_root *root,
			    struct btrfs_path *path,
			    struct btrfs_key *cpu_key, u32 *data_size,
			    int nr)
{
	struct extent_buffer *leaf;
	struct btrfs_item *item;
	int ret = 0;
	int slot;
	int i;
	u32 nritems;
	u32 total_data = 0;
	u32 total_size = 0;
	unsigned int data_end;
	struct btrfs_disk_key disk_key;
	struct btrfs_key found_key;
4423 4424 4425
	struct btrfs_map_token token;

	btrfs_init_map_token(&token);
4426

4427 4428 4429 4430 4431 4432
	for (i = 0; i < nr; i++) {
		if (total_size + data_size[i] + sizeof(struct btrfs_item) >
		    BTRFS_LEAF_DATA_SIZE(root)) {
			break;
			nr = i;
		}
4433
		total_data += data_size[i];
4434 4435 4436
		total_size += data_size[i] + sizeof(struct btrfs_item);
	}
	BUG_ON(nr == 0);
4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470

	ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
	if (ret == 0)
		return -EEXIST;
	if (ret < 0)
		goto out;

	leaf = path->nodes[0];

	nritems = btrfs_header_nritems(leaf);
	data_end = leaf_data_end(root, leaf);

	if (btrfs_leaf_free_space(root, leaf) < total_size) {
		for (i = nr; i >= 0; i--) {
			total_data -= data_size[i];
			total_size -= data_size[i] + sizeof(struct btrfs_item);
			if (total_size < btrfs_leaf_free_space(root, leaf))
				break;
		}
		nr = i;
	}

	slot = path->slots[0];
	BUG_ON(slot < 0);

	if (slot != nritems) {
		unsigned int old_data = btrfs_item_end_nr(leaf, slot);

		item = btrfs_item_nr(leaf, slot);
		btrfs_item_key_to_cpu(leaf, &found_key, slot);

		/* figure out how many keys we can insert in here */
		total_data = data_size[0];
		for (i = 1; i < nr; i++) {
4471
			if (btrfs_comp_cpu_keys(&found_key, cpu_key + i) <= 0)
4472 4473 4474 4475 4476 4477 4478
				break;
			total_data += data_size[i];
		}
		nr = i;

		if (old_data < data_end) {
			btrfs_print_leaf(root, leaf);
C
Chris Mason 已提交
4479
			printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490
			       slot, old_data, data_end);
			BUG_ON(1);
		}
		/*
		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
		 */
		/* first correct the data pointers */
		for (i = slot; i < nritems; i++) {
			u32 ioff;

			item = btrfs_item_nr(leaf, i);
4491 4492 4493
			ioff = btrfs_token_item_offset(leaf, item, &token);
			btrfs_set_token_item_offset(leaf, item,
						    ioff - total_data, &token);
4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519
		}
		/* shift the items */
		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
			      btrfs_item_nr_offset(slot),
			      (nritems - slot) * sizeof(struct btrfs_item));

		/* shift the data */
		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
			      data_end - total_data, btrfs_leaf_data(leaf) +
			      data_end, old_data - data_end);
		data_end = old_data;
	} else {
		/*
		 * this sucks but it has to be done, if we are inserting at
		 * the end of the leaf only insert 1 of the items, since we
		 * have no way of knowing whats on the next leaf and we'd have
		 * to drop our current locks to figure it out
		 */
		nr = 1;
	}

	/* setup the item for the new data */
	for (i = 0; i < nr; i++) {
		btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
		btrfs_set_item_key(leaf, &disk_key, slot + i);
		item = btrfs_item_nr(leaf, slot + i);
4520 4521
		btrfs_set_token_item_offset(leaf, item,
					    data_end - data_size[i], &token);
4522
		data_end -= data_size[i];
4523
		btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4524 4525 4526 4527 4528 4529 4530
	}
	btrfs_set_header_nritems(leaf, nritems + nr);
	btrfs_mark_buffer_dirty(leaf);

	ret = 0;
	if (slot == 0) {
		btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4531
		fixup_low_keys(trans, root, path, &disk_key, 1);
4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543
	}

	if (btrfs_leaf_free_space(root, leaf) < 0) {
		btrfs_print_leaf(root, leaf);
		BUG();
	}
out:
	if (!ret)
		ret = nr;
	return ret;
}

C
Chris Mason 已提交
4544
/*
4545 4546 4547
 * this is a helper for btrfs_insert_empty_items, the main goal here is
 * to save stack depth by doing the bulk of the work in a function
 * that doesn't call btrfs_search_slot
C
Chris Mason 已提交
4548
 */
4549 4550 4551 4552
void setup_items_for_insert(struct btrfs_trans_handle *trans,
			    struct btrfs_root *root, struct btrfs_path *path,
			    struct btrfs_key *cpu_key, u32 *data_size,
			    u32 total_data, u32 total_size, int nr)
4553
{
4554
	struct btrfs_item *item;
4555
	int i;
4556
	u32 nritems;
4557
	unsigned int data_end;
C
Chris Mason 已提交
4558
	struct btrfs_disk_key disk_key;
4559 4560
	struct extent_buffer *leaf;
	int slot;
4561 4562 4563
	struct btrfs_map_token token;

	btrfs_init_map_token(&token);
C
Chris Mason 已提交
4564

4565
	leaf = path->nodes[0];
4566
	slot = path->slots[0];
C
Chris Mason 已提交
4567

4568
	nritems = btrfs_header_nritems(leaf);
C
Chris Mason 已提交
4569
	data_end = leaf_data_end(root, leaf);
4570

4571
	if (btrfs_leaf_free_space(root, leaf) < total_size) {
4572
		btrfs_print_leaf(root, leaf);
C
Chris Mason 已提交
4573
		printk(KERN_CRIT "not enough freespace need %u have %d\n",
4574
		       total_size, btrfs_leaf_free_space(root, leaf));
4575
		BUG();
4576
	}
4577

4578
	if (slot != nritems) {
4579
		unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4580

4581 4582
		if (old_data < data_end) {
			btrfs_print_leaf(root, leaf);
C
Chris Mason 已提交
4583
			printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
4584 4585 4586
			       slot, old_data, data_end);
			BUG_ON(1);
		}
4587 4588 4589 4590
		/*
		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
		 */
		/* first correct the data pointers */
C
Chris Mason 已提交
4591
		for (i = slot; i < nritems; i++) {
4592
			u32 ioff;
4593

4594
			item = btrfs_item_nr(leaf, i);
4595 4596 4597
			ioff = btrfs_token_item_offset(leaf, item, &token);
			btrfs_set_token_item_offset(leaf, item,
						    ioff - total_data, &token);
C
Chris Mason 已提交
4598
		}
4599
		/* shift the items */
4600
		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4601
			      btrfs_item_nr_offset(slot),
C
Chris Mason 已提交
4602
			      (nritems - slot) * sizeof(struct btrfs_item));
4603 4604

		/* shift the data */
4605
		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4606
			      data_end - total_data, btrfs_leaf_data(leaf) +
C
Chris Mason 已提交
4607
			      data_end, old_data - data_end);
4608 4609
		data_end = old_data;
	}
4610

4611
	/* setup the item for the new data */
4612 4613 4614 4615
	for (i = 0; i < nr; i++) {
		btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
		btrfs_set_item_key(leaf, &disk_key, slot + i);
		item = btrfs_item_nr(leaf, slot + i);
4616 4617
		btrfs_set_token_item_offset(leaf, item,
					    data_end - data_size[i], &token);
4618
		data_end -= data_size[i];
4619
		btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4620
	}
4621

4622
	btrfs_set_header_nritems(leaf, nritems + nr);
C
Chris Mason 已提交
4623

4624 4625
	if (slot == 0) {
		btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4626
		fixup_low_keys(trans, root, path, &disk_key, 1);
4627
	}
4628 4629
	btrfs_unlock_up_safe(path, 1);
	btrfs_mark_buffer_dirty(leaf);
C
Chris Mason 已提交
4630

4631 4632
	if (btrfs_leaf_free_space(root, leaf) < 0) {
		btrfs_print_leaf(root, leaf);
4633
		BUG();
4634
	}
4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660
}

/*
 * Given a key and some data, insert items into the tree.
 * This does all the path init required, making room in the tree if needed.
 */
int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
			    struct btrfs_root *root,
			    struct btrfs_path *path,
			    struct btrfs_key *cpu_key, u32 *data_size,
			    int nr)
{
	int ret = 0;
	int slot;
	int i;
	u32 total_size = 0;
	u32 total_data = 0;

	for (i = 0; i < nr; i++)
		total_data += data_size[i];

	total_size = total_data + (nr * sizeof(struct btrfs_item));
	ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
	if (ret == 0)
		return -EEXIST;
	if (ret < 0)
4661
		return ret;
4662 4663 4664 4665

	slot = path->slots[0];
	BUG_ON(slot < 0);

4666
	setup_items_for_insert(trans, root, path, cpu_key, data_size,
4667
			       total_data, total_size, nr);
4668
	return 0;
4669 4670 4671 4672 4673 4674
}

/*
 * Given a key and some data, insert an item into the tree.
 * This does all the path init required, making room in the tree if needed.
 */
4675 4676 4677
int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
		      *root, struct btrfs_key *cpu_key, void *data, u32
		      data_size)
4678 4679
{
	int ret = 0;
C
Chris Mason 已提交
4680
	struct btrfs_path *path;
4681 4682
	struct extent_buffer *leaf;
	unsigned long ptr;
4683

C
Chris Mason 已提交
4684
	path = btrfs_alloc_path();
T
Tsutomu Itoh 已提交
4685 4686
	if (!path)
		return -ENOMEM;
C
Chris Mason 已提交
4687
	ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4688
	if (!ret) {
4689 4690 4691 4692
		leaf = path->nodes[0];
		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
		write_extent_buffer(leaf, data, ptr, data_size);
		btrfs_mark_buffer_dirty(leaf);
4693
	}
C
Chris Mason 已提交
4694
	btrfs_free_path(path);
C
Chris Mason 已提交
4695
	return ret;
4696 4697
}

C
Chris Mason 已提交
4698
/*
C
Chris Mason 已提交
4699
 * delete the pointer from a given node.
C
Chris Mason 已提交
4700
 *
C
Chris Mason 已提交
4701 4702
 * the tree should have been previously balanced so the deletion does not
 * empty a node.
C
Chris Mason 已提交
4703
 */
4704
static void del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4705 4706
		    struct btrfs_path *path, int level, int slot,
		    int tree_mod_log)
4707
{
4708
	struct extent_buffer *parent = path->nodes[level];
4709
	u32 nritems;
4710
	int ret;
4711

4712
	nritems = btrfs_header_nritems(parent);
C
Chris Mason 已提交
4713
	if (slot != nritems - 1) {
4714 4715 4716
		if (tree_mod_log && level)
			tree_mod_log_eb_move(root->fs_info, parent, slot,
					     slot + 1, nritems - slot - 1);
4717 4718 4719
		memmove_extent_buffer(parent,
			      btrfs_node_key_ptr_offset(slot),
			      btrfs_node_key_ptr_offset(slot + 1),
C
Chris Mason 已提交
4720 4721
			      sizeof(struct btrfs_key_ptr) *
			      (nritems - slot - 1));
J
Jan Schmidt 已提交
4722
	} else if (tree_mod_log && level) {
4723 4724 4725
		ret = tree_mod_log_insert_key(root->fs_info, parent, slot,
					      MOD_LOG_KEY_REMOVE);
		BUG_ON(ret < 0);
4726
	}
4727

4728
	nritems--;
4729
	btrfs_set_header_nritems(parent, nritems);
4730
	if (nritems == 0 && parent == root->node) {
4731
		BUG_ON(btrfs_header_level(root->node) != 1);
4732
		/* just turn the root into a leaf and break */
4733
		btrfs_set_header_level(root->node, 0);
4734
	} else if (slot == 0) {
4735 4736 4737
		struct btrfs_disk_key disk_key;

		btrfs_node_key(parent, &disk_key, 0);
4738
		fixup_low_keys(trans, root, path, &disk_key, level + 1);
4739
	}
C
Chris Mason 已提交
4740
	btrfs_mark_buffer_dirty(parent);
4741 4742
}

4743 4744
/*
 * a helper function to delete the leaf pointed to by path->slots[1] and
4745
 * path->nodes[1].
4746 4747 4748 4749 4750 4751 4752
 *
 * This deletes the pointer in path->nodes[1] and frees the leaf
 * block extent.  zero is returned if it all worked out, < 0 otherwise.
 *
 * The path must have already been setup for deleting the leaf, including
 * all the proper balancing.  path->nodes[1] must be locked.
 */
4753 4754 4755 4756
static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
				    struct btrfs_root *root,
				    struct btrfs_path *path,
				    struct extent_buffer *leaf)
4757
{
4758
	WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4759
	del_ptr(trans, root, path, 1, path->slots[1], 1);
4760

4761 4762 4763 4764 4765 4766
	/*
	 * btrfs_free_extent is expensive, we want to make sure we
	 * aren't holding any locks when we call it
	 */
	btrfs_unlock_up_safe(path, 0);

4767 4768
	root_sub_used(root, leaf->len);

4769
	extent_buffer_get(leaf);
4770
	btrfs_free_tree_block(trans, root, leaf, 0, 1);
4771
	free_extent_buffer_stale(leaf);
4772
}
C
Chris Mason 已提交
4773 4774 4775 4776
/*
 * delete the item at the leaf level in path.  If that empties
 * the leaf, remove it from the tree
 */
4777 4778
int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
		    struct btrfs_path *path, int slot, int nr)
4779
{
4780 4781
	struct extent_buffer *leaf;
	struct btrfs_item *item;
4782 4783
	int last_off;
	int dsize = 0;
C
Chris Mason 已提交
4784 4785
	int ret = 0;
	int wret;
4786
	int i;
4787
	u32 nritems;
4788 4789 4790
	struct btrfs_map_token token;

	btrfs_init_map_token(&token);
4791

4792
	leaf = path->nodes[0];
4793 4794 4795 4796 4797
	last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);

	for (i = 0; i < nr; i++)
		dsize += btrfs_item_size_nr(leaf, slot + i);

4798
	nritems = btrfs_header_nritems(leaf);
4799

4800
	if (slot + nr != nritems) {
C
Chris Mason 已提交
4801
		int data_end = leaf_data_end(root, leaf);
4802 4803

		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
C
Chris Mason 已提交
4804 4805
			      data_end + dsize,
			      btrfs_leaf_data(leaf) + data_end,
4806
			      last_off - data_end);
4807

4808
		for (i = slot + nr; i < nritems; i++) {
4809
			u32 ioff;
4810

4811
			item = btrfs_item_nr(leaf, i);
4812 4813 4814
			ioff = btrfs_token_item_offset(leaf, item, &token);
			btrfs_set_token_item_offset(leaf, item,
						    ioff + dsize, &token);
C
Chris Mason 已提交
4815
		}
4816

4817
		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4818
			      btrfs_item_nr_offset(slot + nr),
C
Chris Mason 已提交
4819
			      sizeof(struct btrfs_item) *
4820
			      (nritems - slot - nr));
4821
	}
4822 4823
	btrfs_set_header_nritems(leaf, nritems - nr);
	nritems -= nr;
4824

C
Chris Mason 已提交
4825
	/* delete the leaf if we've emptied it */
4826
	if (nritems == 0) {
4827 4828
		if (leaf == root->node) {
			btrfs_set_header_level(leaf, 0);
4829
		} else {
4830 4831
			btrfs_set_path_blocking(path);
			clean_tree_block(trans, root, leaf);
4832
			btrfs_del_leaf(trans, root, path, leaf);
4833
		}
4834
	} else {
4835
		int used = leaf_space_used(leaf, 0, nritems);
C
Chris Mason 已提交
4836
		if (slot == 0) {
4837 4838 4839
			struct btrfs_disk_key disk_key;

			btrfs_item_key(leaf, &disk_key, 0);
4840
			fixup_low_keys(trans, root, path, &disk_key, 1);
C
Chris Mason 已提交
4841 4842
		}

C
Chris Mason 已提交
4843
		/* delete the leaf if it is mostly empty */
4844
		if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
4845 4846 4847 4848
			/* push_leaf_left fixes the path.
			 * make sure the path still points to our leaf
			 * for possible call to del_ptr below
			 */
4849
			slot = path->slots[1];
4850 4851
			extent_buffer_get(leaf);

4852
			btrfs_set_path_blocking(path);
4853 4854
			wret = push_leaf_left(trans, root, path, 1, 1,
					      1, (u32)-1);
4855
			if (wret < 0 && wret != -ENOSPC)
C
Chris Mason 已提交
4856
				ret = wret;
4857 4858 4859

			if (path->nodes[0] == leaf &&
			    btrfs_header_nritems(leaf)) {
4860 4861
				wret = push_leaf_right(trans, root, path, 1,
						       1, 1, 0);
4862
				if (wret < 0 && wret != -ENOSPC)
C
Chris Mason 已提交
4863 4864
					ret = wret;
			}
4865 4866

			if (btrfs_header_nritems(leaf) == 0) {
4867
				path->slots[1] = slot;
4868
				btrfs_del_leaf(trans, root, path, leaf);
4869
				free_extent_buffer(leaf);
4870
				ret = 0;
C
Chris Mason 已提交
4871
			} else {
4872 4873 4874 4875 4876 4877 4878
				/* if we're still in the path, make sure
				 * we're dirty.  Otherwise, one of the
				 * push_leaf functions must have already
				 * dirtied this buffer
				 */
				if (path->nodes[0] == leaf)
					btrfs_mark_buffer_dirty(leaf);
4879
				free_extent_buffer(leaf);
4880
			}
4881
		} else {
4882
			btrfs_mark_buffer_dirty(leaf);
4883 4884
		}
	}
C
Chris Mason 已提交
4885
	return ret;
4886 4887
}

4888
/*
4889
 * search the tree again to find a leaf with lesser keys
4890 4891
 * returns 0 if it found something or 1 if there are no lesser leaves.
 * returns < 0 on io errors.
C
Chris Mason 已提交
4892 4893 4894
 *
 * This may release the path, and so you may lose any locks held at the
 * time you call it.
4895 4896 4897
 */
int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
{
4898 4899 4900
	struct btrfs_key key;
	struct btrfs_disk_key found_key;
	int ret;
4901

4902
	btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
4903

4904 4905 4906 4907 4908 4909 4910 4911
	if (key.offset > 0)
		key.offset--;
	else if (key.type > 0)
		key.type--;
	else if (key.objectid > 0)
		key.objectid--;
	else
		return 1;
4912

4913
	btrfs_release_path(path);
4914 4915 4916 4917 4918 4919 4920 4921
	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	if (ret < 0)
		return ret;
	btrfs_item_key(path->nodes[0], &found_key, 0);
	ret = comp_keys(&found_key, &key);
	if (ret < 0)
		return 0;
	return 1;
4922 4923
}

4924 4925 4926
/*
 * A helper function to walk down the tree starting at min_key, and looking
 * for nodes or leaves that are either in cache or have a minimum
C
Chris Mason 已提交
4927
 * transaction id.  This is used by the btree defrag code, and tree logging
4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938
 *
 * This does not cow, but it does stuff the starting key it finds back
 * into min_key, so you can call btrfs_search_slot with cow=1 on the
 * key and get a writable path.
 *
 * This does lock as it descends, and path->keep_locks should be set
 * to 1 by the caller.
 *
 * This honors path->lowest_level to prevent descent past a given level
 * of the tree.
 *
C
Chris Mason 已提交
4939 4940 4941 4942
 * min_trans indicates the oldest transaction that you are interested
 * in walking through.  Any nodes or leaves older than min_trans are
 * skipped over (without reading them).
 *
4943 4944 4945 4946
 * returns zero if something useful was found, < 0 on error and 1 if there
 * was nothing in the tree that matched the search criteria.
 */
int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
4947
			 struct btrfs_key *max_key,
4948 4949 4950 4951 4952 4953
			 struct btrfs_path *path, int cache_only,
			 u64 min_trans)
{
	struct extent_buffer *cur;
	struct btrfs_key found_key;
	int slot;
4954
	int sret;
4955 4956 4957 4958
	u32 nritems;
	int level;
	int ret = 1;

4959
	WARN_ON(!path->keep_locks);
4960
again:
4961
	cur = btrfs_read_lock_root_node(root);
4962
	level = btrfs_header_level(cur);
4963
	WARN_ON(path->nodes[level]);
4964
	path->nodes[level] = cur;
4965
	path->locks[level] = BTRFS_READ_LOCK;
4966 4967 4968 4969 4970

	if (btrfs_header_generation(cur) < min_trans) {
		ret = 1;
		goto out;
	}
C
Chris Mason 已提交
4971
	while (1) {
4972 4973
		nritems = btrfs_header_nritems(cur);
		level = btrfs_header_level(cur);
4974
		sret = bin_search(cur, min_key, level, &slot);
4975

4976 4977
		/* at the lowest level, we're done, setup the path and exit */
		if (level == path->lowest_level) {
4978 4979
			if (slot >= nritems)
				goto find_next_key;
4980 4981 4982 4983 4984
			ret = 0;
			path->slots[level] = slot;
			btrfs_item_key_to_cpu(cur, &found_key, slot);
			goto out;
		}
4985 4986
		if (sret && slot > 0)
			slot--;
4987 4988 4989 4990 4991
		/*
		 * check this node pointer against the cache_only and
		 * min_trans parameters.  If it isn't in cache or is too
		 * old, skip to the next one.
		 */
C
Chris Mason 已提交
4992
		while (slot < nritems) {
4993 4994 4995
			u64 blockptr;
			u64 gen;
			struct extent_buffer *tmp;
4996 4997
			struct btrfs_disk_key disk_key;

4998 4999 5000 5001 5002 5003 5004 5005 5006
			blockptr = btrfs_node_blockptr(cur, slot);
			gen = btrfs_node_ptr_generation(cur, slot);
			if (gen < min_trans) {
				slot++;
				continue;
			}
			if (!cache_only)
				break;

5007 5008 5009 5010 5011 5012 5013 5014
			if (max_key) {
				btrfs_node_key(cur, &disk_key, slot);
				if (comp_keys(&disk_key, max_key) >= 0) {
					ret = 1;
					goto out;
				}
			}

5015 5016 5017
			tmp = btrfs_find_tree_block(root, blockptr,
					    btrfs_level_size(root, level - 1));

5018
			if (tmp && btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
5019 5020 5021 5022 5023 5024 5025
				free_extent_buffer(tmp);
				break;
			}
			if (tmp)
				free_extent_buffer(tmp);
			slot++;
		}
5026
find_next_key:
5027 5028 5029 5030 5031
		/*
		 * we didn't find a candidate key in this node, walk forward
		 * and find another one
		 */
		if (slot >= nritems) {
5032
			path->slots[level] = slot;
5033
			btrfs_set_path_blocking(path);
5034
			sret = btrfs_find_next_key(root, path, min_key, level,
5035
						  cache_only, min_trans);
5036
			if (sret == 0) {
5037
				btrfs_release_path(path);
5038 5039 5040 5041 5042 5043 5044 5045 5046 5047
				goto again;
			} else {
				goto out;
			}
		}
		/* save our key for returning back */
		btrfs_node_key_to_cpu(cur, &found_key, slot);
		path->slots[level] = slot;
		if (level == path->lowest_level) {
			ret = 0;
5048
			unlock_up(path, level, 1, 0, NULL);
5049 5050
			goto out;
		}
5051
		btrfs_set_path_blocking(path);
5052
		cur = read_node_slot(root, cur, slot);
5053
		BUG_ON(!cur); /* -ENOMEM */
5054

5055
		btrfs_tree_read_lock(cur);
5056

5057
		path->locks[level - 1] = BTRFS_READ_LOCK;
5058
		path->nodes[level - 1] = cur;
5059
		unlock_up(path, level, 1, 0, NULL);
5060
		btrfs_clear_path_blocking(path, NULL, 0);
5061 5062 5063 5064
	}
out:
	if (ret == 0)
		memcpy(min_key, &found_key, sizeof(found_key));
5065
	btrfs_set_path_blocking(path);
5066 5067 5068
	return ret;
}

5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493
static void tree_move_down(struct btrfs_root *root,
			   struct btrfs_path *path,
			   int *level, int root_level)
{
	path->nodes[*level - 1] = read_node_slot(root, path->nodes[*level],
					path->slots[*level]);
	path->slots[*level - 1] = 0;
	(*level)--;
}

static int tree_move_next_or_upnext(struct btrfs_root *root,
				    struct btrfs_path *path,
				    int *level, int root_level)
{
	int ret = 0;
	int nritems;
	nritems = btrfs_header_nritems(path->nodes[*level]);

	path->slots[*level]++;

	while (path->slots[*level] == nritems) {
		if (*level == root_level)
			return -1;

		/* move upnext */
		path->slots[*level] = 0;
		free_extent_buffer(path->nodes[*level]);
		path->nodes[*level] = NULL;
		(*level)++;
		path->slots[*level]++;

		nritems = btrfs_header_nritems(path->nodes[*level]);
		ret = 1;
	}
	return ret;
}

/*
 * Returns 1 if it had to move up and next. 0 is returned if it moved only next
 * or down.
 */
static int tree_advance(struct btrfs_root *root,
			struct btrfs_path *path,
			int *level, int root_level,
			int allow_down,
			struct btrfs_key *key)
{
	int ret;

	if (*level == 0 || !allow_down) {
		ret = tree_move_next_or_upnext(root, path, level, root_level);
	} else {
		tree_move_down(root, path, level, root_level);
		ret = 0;
	}
	if (ret >= 0) {
		if (*level == 0)
			btrfs_item_key_to_cpu(path->nodes[*level], key,
					path->slots[*level]);
		else
			btrfs_node_key_to_cpu(path->nodes[*level], key,
					path->slots[*level]);
	}
	return ret;
}

static int tree_compare_item(struct btrfs_root *left_root,
			     struct btrfs_path *left_path,
			     struct btrfs_path *right_path,
			     char *tmp_buf)
{
	int cmp;
	int len1, len2;
	unsigned long off1, off2;

	len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
	len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
	if (len1 != len2)
		return 1;

	off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
	off2 = btrfs_item_ptr_offset(right_path->nodes[0],
				right_path->slots[0]);

	read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);

	cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
	if (cmp)
		return 1;
	return 0;
}

#define ADVANCE 1
#define ADVANCE_ONLY_NEXT -1

/*
 * This function compares two trees and calls the provided callback for
 * every changed/new/deleted item it finds.
 * If shared tree blocks are encountered, whole subtrees are skipped, making
 * the compare pretty fast on snapshotted subvolumes.
 *
 * This currently works on commit roots only. As commit roots are read only,
 * we don't do any locking. The commit roots are protected with transactions.
 * Transactions are ended and rejoined when a commit is tried in between.
 *
 * This function checks for modifications done to the trees while comparing.
 * If it detects a change, it aborts immediately.
 */
int btrfs_compare_trees(struct btrfs_root *left_root,
			struct btrfs_root *right_root,
			btrfs_changed_cb_t changed_cb, void *ctx)
{
	int ret;
	int cmp;
	struct btrfs_trans_handle *trans = NULL;
	struct btrfs_path *left_path = NULL;
	struct btrfs_path *right_path = NULL;
	struct btrfs_key left_key;
	struct btrfs_key right_key;
	char *tmp_buf = NULL;
	int left_root_level;
	int right_root_level;
	int left_level;
	int right_level;
	int left_end_reached;
	int right_end_reached;
	int advance_left;
	int advance_right;
	u64 left_blockptr;
	u64 right_blockptr;
	u64 left_start_ctransid;
	u64 right_start_ctransid;
	u64 ctransid;

	left_path = btrfs_alloc_path();
	if (!left_path) {
		ret = -ENOMEM;
		goto out;
	}
	right_path = btrfs_alloc_path();
	if (!right_path) {
		ret = -ENOMEM;
		goto out;
	}

	tmp_buf = kmalloc(left_root->leafsize, GFP_NOFS);
	if (!tmp_buf) {
		ret = -ENOMEM;
		goto out;
	}

	left_path->search_commit_root = 1;
	left_path->skip_locking = 1;
	right_path->search_commit_root = 1;
	right_path->skip_locking = 1;

	spin_lock(&left_root->root_times_lock);
	left_start_ctransid = btrfs_root_ctransid(&left_root->root_item);
	spin_unlock(&left_root->root_times_lock);

	spin_lock(&right_root->root_times_lock);
	right_start_ctransid = btrfs_root_ctransid(&right_root->root_item);
	spin_unlock(&right_root->root_times_lock);

	trans = btrfs_join_transaction(left_root);
	if (IS_ERR(trans)) {
		ret = PTR_ERR(trans);
		trans = NULL;
		goto out;
	}

	/*
	 * Strategy: Go to the first items of both trees. Then do
	 *
	 * If both trees are at level 0
	 *   Compare keys of current items
	 *     If left < right treat left item as new, advance left tree
	 *       and repeat
	 *     If left > right treat right item as deleted, advance right tree
	 *       and repeat
	 *     If left == right do deep compare of items, treat as changed if
	 *       needed, advance both trees and repeat
	 * If both trees are at the same level but not at level 0
	 *   Compare keys of current nodes/leafs
	 *     If left < right advance left tree and repeat
	 *     If left > right advance right tree and repeat
	 *     If left == right compare blockptrs of the next nodes/leafs
	 *       If they match advance both trees but stay at the same level
	 *         and repeat
	 *       If they don't match advance both trees while allowing to go
	 *         deeper and repeat
	 * If tree levels are different
	 *   Advance the tree that needs it and repeat
	 *
	 * Advancing a tree means:
	 *   If we are at level 0, try to go to the next slot. If that's not
	 *   possible, go one level up and repeat. Stop when we found a level
	 *   where we could go to the next slot. We may at this point be on a
	 *   node or a leaf.
	 *
	 *   If we are not at level 0 and not on shared tree blocks, go one
	 *   level deeper.
	 *
	 *   If we are not at level 0 and on shared tree blocks, go one slot to
	 *   the right if possible or go up and right.
	 */

	left_level = btrfs_header_level(left_root->commit_root);
	left_root_level = left_level;
	left_path->nodes[left_level] = left_root->commit_root;
	extent_buffer_get(left_path->nodes[left_level]);

	right_level = btrfs_header_level(right_root->commit_root);
	right_root_level = right_level;
	right_path->nodes[right_level] = right_root->commit_root;
	extent_buffer_get(right_path->nodes[right_level]);

	if (left_level == 0)
		btrfs_item_key_to_cpu(left_path->nodes[left_level],
				&left_key, left_path->slots[left_level]);
	else
		btrfs_node_key_to_cpu(left_path->nodes[left_level],
				&left_key, left_path->slots[left_level]);
	if (right_level == 0)
		btrfs_item_key_to_cpu(right_path->nodes[right_level],
				&right_key, right_path->slots[right_level]);
	else
		btrfs_node_key_to_cpu(right_path->nodes[right_level],
				&right_key, right_path->slots[right_level]);

	left_end_reached = right_end_reached = 0;
	advance_left = advance_right = 0;

	while (1) {
		/*
		 * We need to make sure the transaction does not get committed
		 * while we do anything on commit roots. This means, we need to
		 * join and leave transactions for every item that we process.
		 */
		if (trans && btrfs_should_end_transaction(trans, left_root)) {
			btrfs_release_path(left_path);
			btrfs_release_path(right_path);

			ret = btrfs_end_transaction(trans, left_root);
			trans = NULL;
			if (ret < 0)
				goto out;
		}
		/* now rejoin the transaction */
		if (!trans) {
			trans = btrfs_join_transaction(left_root);
			if (IS_ERR(trans)) {
				ret = PTR_ERR(trans);
				trans = NULL;
				goto out;
			}

			spin_lock(&left_root->root_times_lock);
			ctransid = btrfs_root_ctransid(&left_root->root_item);
			spin_unlock(&left_root->root_times_lock);
			if (ctransid != left_start_ctransid)
				left_start_ctransid = 0;

			spin_lock(&right_root->root_times_lock);
			ctransid = btrfs_root_ctransid(&right_root->root_item);
			spin_unlock(&right_root->root_times_lock);
			if (ctransid != right_start_ctransid)
				right_start_ctransid = 0;

			if (!left_start_ctransid || !right_start_ctransid) {
				WARN(1, KERN_WARNING
					"btrfs: btrfs_compare_tree detected "
					"a change in one of the trees while "
					"iterating. This is probably a "
					"bug.\n");
				ret = -EIO;
				goto out;
			}

			/*
			 * the commit root may have changed, so start again
			 * where we stopped
			 */
			left_path->lowest_level = left_level;
			right_path->lowest_level = right_level;
			ret = btrfs_search_slot(NULL, left_root,
					&left_key, left_path, 0, 0);
			if (ret < 0)
				goto out;
			ret = btrfs_search_slot(NULL, right_root,
					&right_key, right_path, 0, 0);
			if (ret < 0)
				goto out;
		}

		if (advance_left && !left_end_reached) {
			ret = tree_advance(left_root, left_path, &left_level,
					left_root_level,
					advance_left != ADVANCE_ONLY_NEXT,
					&left_key);
			if (ret < 0)
				left_end_reached = ADVANCE;
			advance_left = 0;
		}
		if (advance_right && !right_end_reached) {
			ret = tree_advance(right_root, right_path, &right_level,
					right_root_level,
					advance_right != ADVANCE_ONLY_NEXT,
					&right_key);
			if (ret < 0)
				right_end_reached = ADVANCE;
			advance_right = 0;
		}

		if (left_end_reached && right_end_reached) {
			ret = 0;
			goto out;
		} else if (left_end_reached) {
			if (right_level == 0) {
				ret = changed_cb(left_root, right_root,
						left_path, right_path,
						&right_key,
						BTRFS_COMPARE_TREE_DELETED,
						ctx);
				if (ret < 0)
					goto out;
			}
			advance_right = ADVANCE;
			continue;
		} else if (right_end_reached) {
			if (left_level == 0) {
				ret = changed_cb(left_root, right_root,
						left_path, right_path,
						&left_key,
						BTRFS_COMPARE_TREE_NEW,
						ctx);
				if (ret < 0)
					goto out;
			}
			advance_left = ADVANCE;
			continue;
		}

		if (left_level == 0 && right_level == 0) {
			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
			if (cmp < 0) {
				ret = changed_cb(left_root, right_root,
						left_path, right_path,
						&left_key,
						BTRFS_COMPARE_TREE_NEW,
						ctx);
				if (ret < 0)
					goto out;
				advance_left = ADVANCE;
			} else if (cmp > 0) {
				ret = changed_cb(left_root, right_root,
						left_path, right_path,
						&right_key,
						BTRFS_COMPARE_TREE_DELETED,
						ctx);
				if (ret < 0)
					goto out;
				advance_right = ADVANCE;
			} else {
				ret = tree_compare_item(left_root, left_path,
						right_path, tmp_buf);
				if (ret) {
					ret = changed_cb(left_root, right_root,
						left_path, right_path,
						&left_key,
						BTRFS_COMPARE_TREE_CHANGED,
						ctx);
					if (ret < 0)
						goto out;
				}
				advance_left = ADVANCE;
				advance_right = ADVANCE;
			}
		} else if (left_level == right_level) {
			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
			if (cmp < 0) {
				advance_left = ADVANCE;
			} else if (cmp > 0) {
				advance_right = ADVANCE;
			} else {
				left_blockptr = btrfs_node_blockptr(
						left_path->nodes[left_level],
						left_path->slots[left_level]);
				right_blockptr = btrfs_node_blockptr(
						right_path->nodes[right_level],
						right_path->slots[right_level]);
				if (left_blockptr == right_blockptr) {
					/*
					 * As we're on a shared block, don't
					 * allow to go deeper.
					 */
					advance_left = ADVANCE_ONLY_NEXT;
					advance_right = ADVANCE_ONLY_NEXT;
				} else {
					advance_left = ADVANCE;
					advance_right = ADVANCE;
				}
			}
		} else if (left_level < right_level) {
			advance_right = ADVANCE;
		} else {
			advance_left = ADVANCE;
		}
	}

out:
	btrfs_free_path(left_path);
	btrfs_free_path(right_path);
	kfree(tmp_buf);

	if (trans) {
		if (!ret)
			ret = btrfs_end_transaction(trans, left_root);
		else
			btrfs_end_transaction(trans, left_root);
	}

	return ret;
}

5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505
/*
 * this is similar to btrfs_next_leaf, but does not try to preserve
 * and fixup the path.  It looks for and returns the next key in the
 * tree based on the current path and the cache_only and min_trans
 * parameters.
 *
 * 0 is returned if another key is found, < 0 if there are any errors
 * and 1 is returned if there are no higher keys in the tree
 *
 * path->keep_locks should be set to 1 on the search made before
 * calling this function.
 */
5506
int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5507
			struct btrfs_key *key, int level,
5508
			int cache_only, u64 min_trans)
5509 5510 5511 5512
{
	int slot;
	struct extent_buffer *c;

5513
	WARN_ON(!path->keep_locks);
C
Chris Mason 已提交
5514
	while (level < BTRFS_MAX_LEVEL) {
5515 5516 5517 5518 5519
		if (!path->nodes[level])
			return 1;

		slot = path->slots[level] + 1;
		c = path->nodes[level];
5520
next:
5521
		if (slot >= btrfs_header_nritems(c)) {
5522 5523 5524 5525 5526
			int ret;
			int orig_lowest;
			struct btrfs_key cur_key;
			if (level + 1 >= BTRFS_MAX_LEVEL ||
			    !path->nodes[level + 1])
5527
				return 1;
5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540

			if (path->locks[level + 1]) {
				level++;
				continue;
			}

			slot = btrfs_header_nritems(c) - 1;
			if (level == 0)
				btrfs_item_key_to_cpu(c, &cur_key, slot);
			else
				btrfs_node_key_to_cpu(c, &cur_key, slot);

			orig_lowest = path->lowest_level;
5541
			btrfs_release_path(path);
5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553
			path->lowest_level = level;
			ret = btrfs_search_slot(NULL, root, &cur_key, path,
						0, 0);
			path->lowest_level = orig_lowest;
			if (ret < 0)
				return ret;

			c = path->nodes[level];
			slot = path->slots[level];
			if (ret == 0)
				slot++;
			goto next;
5554
		}
5555

5556 5557
		if (level == 0)
			btrfs_item_key_to_cpu(c, key, slot);
5558 5559 5560 5561 5562 5563 5564 5565
		else {
			u64 blockptr = btrfs_node_blockptr(c, slot);
			u64 gen = btrfs_node_ptr_generation(c, slot);

			if (cache_only) {
				struct extent_buffer *cur;
				cur = btrfs_find_tree_block(root, blockptr,
					    btrfs_level_size(root, level - 1));
5566 5567
				if (!cur ||
				    btrfs_buffer_uptodate(cur, gen, 1) <= 0) {
5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578
					slot++;
					if (cur)
						free_extent_buffer(cur);
					goto next;
				}
				free_extent_buffer(cur);
			}
			if (gen < min_trans) {
				slot++;
				goto next;
			}
5579
			btrfs_node_key_to_cpu(c, key, slot);
5580
		}
5581 5582 5583 5584 5585
		return 0;
	}
	return 1;
}

C
Chris Mason 已提交
5586
/*
5587
 * search the tree again to find a leaf with greater keys
C
Chris Mason 已提交
5588 5589
 * returns 0 if it found something or 1 if there are no greater leaves.
 * returns < 0 on io errors.
C
Chris Mason 已提交
5590
 */
C
Chris Mason 已提交
5591
int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
J
Jan Schmidt 已提交
5592 5593 5594 5595 5596 5597
{
	return btrfs_next_old_leaf(root, path, 0);
}

int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
			u64 time_seq)
5598 5599
{
	int slot;
5600
	int level;
5601
	struct extent_buffer *c;
5602
	struct extent_buffer *next;
5603 5604 5605
	struct btrfs_key key;
	u32 nritems;
	int ret;
5606
	int old_spinning = path->leave_spinning;
5607
	int next_rw_lock = 0;
5608 5609

	nritems = btrfs_header_nritems(path->nodes[0]);
C
Chris Mason 已提交
5610
	if (nritems == 0)
5611 5612
		return 1;

5613 5614 5615 5616
	btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
again:
	level = 1;
	next = NULL;
5617
	next_rw_lock = 0;
5618
	btrfs_release_path(path);
5619

5620
	path->keep_locks = 1;
5621
	path->leave_spinning = 1;
5622

J
Jan Schmidt 已提交
5623 5624 5625 5626
	if (time_seq)
		ret = btrfs_search_old_slot(root, &key, path, time_seq);
	else
		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5627 5628 5629 5630 5631
	path->keep_locks = 0;

	if (ret < 0)
		return ret;

5632
	nritems = btrfs_header_nritems(path->nodes[0]);
5633 5634 5635 5636 5637 5638
	/*
	 * by releasing the path above we dropped all our locks.  A balance
	 * could have added more items next to the key that used to be
	 * at the very end of the block.  So, check again here and
	 * advance the path if there are now more items available.
	 */
5639
	if (nritems > 0 && path->slots[0] < nritems - 1) {
5640 5641
		if (ret == 0)
			path->slots[0]++;
5642
		ret = 0;
5643 5644
		goto done;
	}
5645

C
Chris Mason 已提交
5646
	while (level < BTRFS_MAX_LEVEL) {
5647 5648 5649 5650
		if (!path->nodes[level]) {
			ret = 1;
			goto done;
		}
5651

5652 5653
		slot = path->slots[level] + 1;
		c = path->nodes[level];
5654
		if (slot >= btrfs_header_nritems(c)) {
5655
			level++;
5656 5657 5658 5659
			if (level == BTRFS_MAX_LEVEL) {
				ret = 1;
				goto done;
			}
5660 5661
			continue;
		}
5662

5663
		if (next) {
5664
			btrfs_tree_unlock_rw(next, next_rw_lock);
5665
			free_extent_buffer(next);
5666
		}
5667

5668
		next = c;
5669
		next_rw_lock = path->locks[level];
5670
		ret = read_block_for_search(NULL, root, path, &next, level,
J
Jan Schmidt 已提交
5671
					    slot, &key, 0);
5672 5673
		if (ret == -EAGAIN)
			goto again;
5674

5675
		if (ret < 0) {
5676
			btrfs_release_path(path);
5677 5678 5679
			goto done;
		}

5680
		if (!path->skip_locking) {
5681
			ret = btrfs_try_tree_read_lock(next);
5682 5683 5684 5685 5686 5687 5688 5689
			if (!ret && time_seq) {
				/*
				 * If we don't get the lock, we may be racing
				 * with push_leaf_left, holding that lock while
				 * itself waiting for the leaf we've currently
				 * locked. To solve this situation, we give up
				 * on our lock and cycle.
				 */
5690
				free_extent_buffer(next);
5691 5692 5693 5694
				btrfs_release_path(path);
				cond_resched();
				goto again;
			}
5695 5696
			if (!ret) {
				btrfs_set_path_blocking(path);
5697
				btrfs_tree_read_lock(next);
5698
				btrfs_clear_path_blocking(path, next,
5699
							  BTRFS_READ_LOCK);
5700
			}
5701
			next_rw_lock = BTRFS_READ_LOCK;
5702
		}
5703 5704 5705
		break;
	}
	path->slots[level] = slot;
C
Chris Mason 已提交
5706
	while (1) {
5707 5708
		level--;
		c = path->nodes[level];
5709
		if (path->locks[level])
5710
			btrfs_tree_unlock_rw(c, path->locks[level]);
5711

5712
		free_extent_buffer(c);
5713 5714
		path->nodes[level] = next;
		path->slots[level] = 0;
5715
		if (!path->skip_locking)
5716
			path->locks[level] = next_rw_lock;
5717 5718
		if (!level)
			break;
5719

5720
		ret = read_block_for_search(NULL, root, path, &next, level,
J
Jan Schmidt 已提交
5721
					    0, &key, 0);
5722 5723 5724
		if (ret == -EAGAIN)
			goto again;

5725
		if (ret < 0) {
5726
			btrfs_release_path(path);
5727 5728 5729
			goto done;
		}

5730
		if (!path->skip_locking) {
5731
			ret = btrfs_try_tree_read_lock(next);
5732 5733
			if (!ret) {
				btrfs_set_path_blocking(path);
5734
				btrfs_tree_read_lock(next);
5735
				btrfs_clear_path_blocking(path, next,
5736 5737
							  BTRFS_READ_LOCK);
			}
5738
			next_rw_lock = BTRFS_READ_LOCK;
5739
		}
5740
	}
5741
	ret = 0;
5742
done:
5743
	unlock_up(path, 0, 1, 0, NULL);
5744 5745 5746 5747 5748
	path->leave_spinning = old_spinning;
	if (!old_spinning)
		btrfs_set_path_blocking(path);

	return ret;
5749
}
5750

5751 5752 5753 5754 5755 5756
/*
 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
 * searching until it gets past min_objectid or finds an item of 'type'
 *
 * returns 0 if something is found, 1 if nothing was found and < 0 on error
 */
5757 5758 5759 5760 5761 5762
int btrfs_previous_item(struct btrfs_root *root,
			struct btrfs_path *path, u64 min_objectid,
			int type)
{
	struct btrfs_key found_key;
	struct extent_buffer *leaf;
5763
	u32 nritems;
5764 5765
	int ret;

C
Chris Mason 已提交
5766
	while (1) {
5767
		if (path->slots[0] == 0) {
5768
			btrfs_set_path_blocking(path);
5769 5770 5771 5772 5773 5774 5775
			ret = btrfs_prev_leaf(root, path);
			if (ret != 0)
				return ret;
		} else {
			path->slots[0]--;
		}
		leaf = path->nodes[0];
5776 5777 5778 5779 5780 5781
		nritems = btrfs_header_nritems(leaf);
		if (nritems == 0)
			return 1;
		if (path->slots[0] == nritems)
			path->slots[0]--;

5782
		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5783 5784
		if (found_key.objectid < min_objectid)
			break;
5785 5786
		if (found_key.type == type)
			return 0;
5787 5788 5789
		if (found_key.objectid == min_objectid &&
		    found_key.type < type)
			break;
5790 5791 5792
	}
	return 1;
}