vmscan.c 106.4 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/*
 *  linux/mm/vmscan.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *
 *  Swap reorganised 29.12.95, Stephen Tweedie.
 *  kswapd added: 7.1.96  sct
 *  Removed kswapd_ctl limits, and swap out as many pages as needed
 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
 *  Multiqueue VM started 5.8.00, Rik van Riel.
 */

#include <linux/mm.h>
#include <linux/module.h>
16
#include <linux/gfp.h>
L
Linus Torvalds 已提交
17 18 19 20 21
#include <linux/kernel_stat.h>
#include <linux/swap.h>
#include <linux/pagemap.h>
#include <linux/init.h>
#include <linux/highmem.h>
22
#include <linux/vmpressure.h>
23
#include <linux/vmstat.h>
L
Linus Torvalds 已提交
24 25 26 27 28 29 30 31 32 33 34
#include <linux/file.h>
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/buffer_head.h>	/* for try_to_release_page(),
					buffer_heads_over_limit */
#include <linux/mm_inline.h>
#include <linux/backing-dev.h>
#include <linux/rmap.h>
#include <linux/topology.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
35
#include <linux/compaction.h>
L
Linus Torvalds 已提交
36 37
#include <linux/notifier.h>
#include <linux/rwsem.h>
38
#include <linux/delay.h>
39
#include <linux/kthread.h>
40
#include <linux/freezer.h>
41
#include <linux/memcontrol.h>
42
#include <linux/delayacct.h>
43
#include <linux/sysctl.h>
44
#include <linux/oom.h>
45
#include <linux/prefetch.h>
L
Linus Torvalds 已提交
46 47 48 49 50 51

#include <asm/tlbflush.h>
#include <asm/div64.h>

#include <linux/swapops.h>

52 53
#include "internal.h"

54 55 56
#define CREATE_TRACE_POINTS
#include <trace/events/vmscan.h>

L
Linus Torvalds 已提交
57 58 59 60
struct scan_control {
	/* Incremented by the number of inactive pages that were scanned */
	unsigned long nr_scanned;

61 62 63
	/* Number of pages freed so far during a call to shrink_zones() */
	unsigned long nr_reclaimed;

64 65 66
	/* How many pages shrink_list() should reclaim */
	unsigned long nr_to_reclaim;

67 68
	unsigned long hibernation_mode;

L
Linus Torvalds 已提交
69
	/* This context's GFP mask */
A
Al Viro 已提交
70
	gfp_t gfp_mask;
L
Linus Torvalds 已提交
71 72 73

	int may_writepage;

74 75
	/* Can mapped pages be reclaimed? */
	int may_unmap;
76

77 78 79
	/* Can pages be swapped as part of reclaim? */
	int may_swap;

A
Andy Whitcroft 已提交
80
	int order;
81

82 83 84
	/* Scan (total_size >> priority) pages at once */
	int priority;

85 86 87 88 89
	/*
	 * The memory cgroup that hit its limit and as a result is the
	 * primary target of this reclaim invocation.
	 */
	struct mem_cgroup *target_mem_cgroup;
90

91 92 93 94 95
	/*
	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
	 * are scanned.
	 */
	nodemask_t	*nodemask;
L
Linus Torvalds 已提交
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
};

#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))

#ifdef ARCH_HAS_PREFETCH
#define prefetch_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetch(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

#ifdef ARCH_HAS_PREFETCHW
#define prefetchw_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetchw(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

/*
 * From 0 .. 100.  Higher means more swappy.
 */
int vm_swappiness = 60;
132
unsigned long vm_total_pages;	/* The total number of pages which the VM controls */
L
Linus Torvalds 已提交
133 134 135 136

static LIST_HEAD(shrinker_list);
static DECLARE_RWSEM(shrinker_rwsem);

A
Andrew Morton 已提交
137
#ifdef CONFIG_MEMCG
138 139
static bool global_reclaim(struct scan_control *sc)
{
140
	return !sc->target_mem_cgroup;
141
}
142
#else
143 144 145 146
static bool global_reclaim(struct scan_control *sc)
{
	return true;
}
147 148
#endif

149
static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
150
{
151
	if (!mem_cgroup_disabled())
152
		return mem_cgroup_get_lru_size(lruvec, lru);
153

154
	return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
155 156
}

L
Linus Torvalds 已提交
157 158 159
/*
 * Add a shrinker callback to be called from the vm
 */
160
void register_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
161
{
162
	atomic_long_set(&shrinker->nr_in_batch, 0);
163 164 165
	down_write(&shrinker_rwsem);
	list_add_tail(&shrinker->list, &shrinker_list);
	up_write(&shrinker_rwsem);
L
Linus Torvalds 已提交
166
}
167
EXPORT_SYMBOL(register_shrinker);
L
Linus Torvalds 已提交
168 169 170 171

/*
 * Remove one
 */
172
void unregister_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
173 174 175 176 177
{
	down_write(&shrinker_rwsem);
	list_del(&shrinker->list);
	up_write(&shrinker_rwsem);
}
178
EXPORT_SYMBOL(unregister_shrinker);
L
Linus Torvalds 已提交
179

180 181 182 183 184 185 186 187
static inline int do_shrinker_shrink(struct shrinker *shrinker,
				     struct shrink_control *sc,
				     unsigned long nr_to_scan)
{
	sc->nr_to_scan = nr_to_scan;
	return (*shrinker->shrink)(shrinker, sc);
}

L
Linus Torvalds 已提交
188 189 190 191 192 193 194 195 196
#define SHRINK_BATCH 128
/*
 * Call the shrink functions to age shrinkable caches
 *
 * Here we assume it costs one seek to replace a lru page and that it also
 * takes a seek to recreate a cache object.  With this in mind we age equal
 * percentages of the lru and ageable caches.  This should balance the seeks
 * generated by these structures.
 *
S
Simon Arlott 已提交
197
 * If the vm encountered mapped pages on the LRU it increase the pressure on
L
Linus Torvalds 已提交
198 199 200 201 202 203 204
 * slab to avoid swapping.
 *
 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
 *
 * `lru_pages' represents the number of on-LRU pages in all the zones which
 * are eligible for the caller's allocation attempt.  It is used for balancing
 * slab reclaim versus page reclaim.
205 206
 *
 * Returns the number of slab objects which we shrunk.
L
Linus Torvalds 已提交
207
 */
208
unsigned long shrink_slab(struct shrink_control *shrink,
209
			  unsigned long nr_pages_scanned,
210
			  unsigned long lru_pages)
L
Linus Torvalds 已提交
211 212
{
	struct shrinker *shrinker;
213
	unsigned long ret = 0;
L
Linus Torvalds 已提交
214

215 216
	if (nr_pages_scanned == 0)
		nr_pages_scanned = SWAP_CLUSTER_MAX;
L
Linus Torvalds 已提交
217

218 219 220 221 222
	if (!down_read_trylock(&shrinker_rwsem)) {
		/* Assume we'll be able to shrink next time */
		ret = 1;
		goto out;
	}
L
Linus Torvalds 已提交
223 224 225

	list_for_each_entry(shrinker, &shrinker_list, list) {
		unsigned long long delta;
226 227
		long total_scan;
		long max_pass;
228
		int shrink_ret = 0;
229 230
		long nr;
		long new_nr;
231 232
		long batch_size = shrinker->batch ? shrinker->batch
						  : SHRINK_BATCH;
L
Linus Torvalds 已提交
233

234 235 236 237
		max_pass = do_shrinker_shrink(shrinker, shrink, 0);
		if (max_pass <= 0)
			continue;

238 239 240 241 242
		/*
		 * copy the current shrinker scan count into a local variable
		 * and zero it so that other concurrent shrinker invocations
		 * don't also do this scanning work.
		 */
243
		nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
244 245

		total_scan = nr;
246
		delta = (4 * nr_pages_scanned) / shrinker->seeks;
247
		delta *= max_pass;
L
Linus Torvalds 已提交
248
		do_div(delta, lru_pages + 1);
249 250
		total_scan += delta;
		if (total_scan < 0) {
251 252
			printk(KERN_ERR "shrink_slab: %pF negative objects to "
			       "delete nr=%ld\n",
253 254
			       shrinker->shrink, total_scan);
			total_scan = max_pass;
255 256
		}

257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
		/*
		 * We need to avoid excessive windup on filesystem shrinkers
		 * due to large numbers of GFP_NOFS allocations causing the
		 * shrinkers to return -1 all the time. This results in a large
		 * nr being built up so when a shrink that can do some work
		 * comes along it empties the entire cache due to nr >>>
		 * max_pass.  This is bad for sustaining a working set in
		 * memory.
		 *
		 * Hence only allow the shrinker to scan the entire cache when
		 * a large delta change is calculated directly.
		 */
		if (delta < max_pass / 4)
			total_scan = min(total_scan, max_pass / 2);

272 273 274 275 276
		/*
		 * Avoid risking looping forever due to too large nr value:
		 * never try to free more than twice the estimate number of
		 * freeable entries.
		 */
277 278
		if (total_scan > max_pass * 2)
			total_scan = max_pass * 2;
L
Linus Torvalds 已提交
279

280
		trace_mm_shrink_slab_start(shrinker, shrink, nr,
281 282 283
					nr_pages_scanned, lru_pages,
					max_pass, delta, total_scan);

284
		while (total_scan >= batch_size) {
285
			int nr_before;
L
Linus Torvalds 已提交
286

287 288
			nr_before = do_shrinker_shrink(shrinker, shrink, 0);
			shrink_ret = do_shrinker_shrink(shrinker, shrink,
289
							batch_size);
L
Linus Torvalds 已提交
290 291
			if (shrink_ret == -1)
				break;
292 293
			if (shrink_ret < nr_before)
				ret += nr_before - shrink_ret;
294 295
			count_vm_events(SLABS_SCANNED, batch_size);
			total_scan -= batch_size;
L
Linus Torvalds 已提交
296 297 298 299

			cond_resched();
		}

300 301 302 303 304
		/*
		 * move the unused scan count back into the shrinker in a
		 * manner that handles concurrent updates. If we exhausted the
		 * scan, there is no need to do an update.
		 */
305 306 307 308 309
		if (total_scan > 0)
			new_nr = atomic_long_add_return(total_scan,
					&shrinker->nr_in_batch);
		else
			new_nr = atomic_long_read(&shrinker->nr_in_batch);
310 311

		trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
L
Linus Torvalds 已提交
312 313
	}
	up_read(&shrinker_rwsem);
314 315
out:
	cond_resched();
316
	return ret;
L
Linus Torvalds 已提交
317 318 319 320
}

static inline int is_page_cache_freeable(struct page *page)
{
321 322 323 324 325
	/*
	 * A freeable page cache page is referenced only by the caller
	 * that isolated the page, the page cache radix tree and
	 * optional buffer heads at page->private.
	 */
326
	return page_count(page) - page_has_private(page) == 2;
L
Linus Torvalds 已提交
327 328
}

329 330
static int may_write_to_queue(struct backing_dev_info *bdi,
			      struct scan_control *sc)
L
Linus Torvalds 已提交
331
{
332
	if (current->flags & PF_SWAPWRITE)
L
Linus Torvalds 已提交
333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
		return 1;
	if (!bdi_write_congested(bdi))
		return 1;
	if (bdi == current->backing_dev_info)
		return 1;
	return 0;
}

/*
 * We detected a synchronous write error writing a page out.  Probably
 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 * fsync(), msync() or close().
 *
 * The tricky part is that after writepage we cannot touch the mapping: nothing
 * prevents it from being freed up.  But we have a ref on the page and once
 * that page is locked, the mapping is pinned.
 *
 * We're allowed to run sleeping lock_page() here because we know the caller has
 * __GFP_FS.
 */
static void handle_write_error(struct address_space *mapping,
				struct page *page, int error)
{
J
Jens Axboe 已提交
356
	lock_page(page);
357 358
	if (page_mapping(page) == mapping)
		mapping_set_error(mapping, error);
L
Linus Torvalds 已提交
359 360 361
	unlock_page(page);
}

362 363 364 365 366 367 368 369 370 371 372 373
/* possible outcome of pageout() */
typedef enum {
	/* failed to write page out, page is locked */
	PAGE_KEEP,
	/* move page to the active list, page is locked */
	PAGE_ACTIVATE,
	/* page has been sent to the disk successfully, page is unlocked */
	PAGE_SUCCESS,
	/* page is clean and locked */
	PAGE_CLEAN,
} pageout_t;

L
Linus Torvalds 已提交
374
/*
A
Andrew Morton 已提交
375 376
 * pageout is called by shrink_page_list() for each dirty page.
 * Calls ->writepage().
L
Linus Torvalds 已提交
377
 */
378
static pageout_t pageout(struct page *page, struct address_space *mapping,
379
			 struct scan_control *sc)
L
Linus Torvalds 已提交
380 381 382 383 384 385 386 387
{
	/*
	 * If the page is dirty, only perform writeback if that write
	 * will be non-blocking.  To prevent this allocation from being
	 * stalled by pagecache activity.  But note that there may be
	 * stalls if we need to run get_block().  We could test
	 * PagePrivate for that.
	 *
388
	 * If this process is currently in __generic_file_aio_write() against
L
Linus Torvalds 已提交
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
	 * this page's queue, we can perform writeback even if that
	 * will block.
	 *
	 * If the page is swapcache, write it back even if that would
	 * block, for some throttling. This happens by accident, because
	 * swap_backing_dev_info is bust: it doesn't reflect the
	 * congestion state of the swapdevs.  Easy to fix, if needed.
	 */
	if (!is_page_cache_freeable(page))
		return PAGE_KEEP;
	if (!mapping) {
		/*
		 * Some data journaling orphaned pages can have
		 * page->mapping == NULL while being dirty with clean buffers.
		 */
404
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
405 406
			if (try_to_free_buffers(page)) {
				ClearPageDirty(page);
407
				printk("%s: orphaned page\n", __func__);
L
Linus Torvalds 已提交
408 409 410 411 412 413 414
				return PAGE_CLEAN;
			}
		}
		return PAGE_KEEP;
	}
	if (mapping->a_ops->writepage == NULL)
		return PAGE_ACTIVATE;
415
	if (!may_write_to_queue(mapping->backing_dev_info, sc))
L
Linus Torvalds 已提交
416 417 418 419 420 421 422
		return PAGE_KEEP;

	if (clear_page_dirty_for_io(page)) {
		int res;
		struct writeback_control wbc = {
			.sync_mode = WB_SYNC_NONE,
			.nr_to_write = SWAP_CLUSTER_MAX,
423 424
			.range_start = 0,
			.range_end = LLONG_MAX,
L
Linus Torvalds 已提交
425 426 427 428 429 430 431
			.for_reclaim = 1,
		};

		SetPageReclaim(page);
		res = mapping->a_ops->writepage(page, &wbc);
		if (res < 0)
			handle_write_error(mapping, page, res);
432
		if (res == AOP_WRITEPAGE_ACTIVATE) {
L
Linus Torvalds 已提交
433 434 435
			ClearPageReclaim(page);
			return PAGE_ACTIVATE;
		}
436

L
Linus Torvalds 已提交
437 438 439 440
		if (!PageWriteback(page)) {
			/* synchronous write or broken a_ops? */
			ClearPageReclaim(page);
		}
M
Mel Gorman 已提交
441
		trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
442
		inc_zone_page_state(page, NR_VMSCAN_WRITE);
L
Linus Torvalds 已提交
443 444 445 446 447 448
		return PAGE_SUCCESS;
	}

	return PAGE_CLEAN;
}

449
/*
N
Nick Piggin 已提交
450 451
 * Same as remove_mapping, but if the page is removed from the mapping, it
 * gets returned with a refcount of 0.
452
 */
N
Nick Piggin 已提交
453
static int __remove_mapping(struct address_space *mapping, struct page *page)
454
{
455 456
	BUG_ON(!PageLocked(page));
	BUG_ON(mapping != page_mapping(page));
457

N
Nick Piggin 已提交
458
	spin_lock_irq(&mapping->tree_lock);
459
	/*
N
Nick Piggin 已提交
460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
	 * The non racy check for a busy page.
	 *
	 * Must be careful with the order of the tests. When someone has
	 * a ref to the page, it may be possible that they dirty it then
	 * drop the reference. So if PageDirty is tested before page_count
	 * here, then the following race may occur:
	 *
	 * get_user_pages(&page);
	 * [user mapping goes away]
	 * write_to(page);
	 *				!PageDirty(page)    [good]
	 * SetPageDirty(page);
	 * put_page(page);
	 *				!page_count(page)   [good, discard it]
	 *
	 * [oops, our write_to data is lost]
	 *
	 * Reversing the order of the tests ensures such a situation cannot
	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
	 * load is not satisfied before that of page->_count.
	 *
	 * Note that if SetPageDirty is always performed via set_page_dirty,
	 * and thus under tree_lock, then this ordering is not required.
483
	 */
N
Nick Piggin 已提交
484
	if (!page_freeze_refs(page, 2))
485
		goto cannot_free;
N
Nick Piggin 已提交
486 487 488
	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
	if (unlikely(PageDirty(page))) {
		page_unfreeze_refs(page, 2);
489
		goto cannot_free;
N
Nick Piggin 已提交
490
	}
491 492 493 494

	if (PageSwapCache(page)) {
		swp_entry_t swap = { .val = page_private(page) };
		__delete_from_swap_cache(page);
N
Nick Piggin 已提交
495
		spin_unlock_irq(&mapping->tree_lock);
496
		swapcache_free(swap, page);
N
Nick Piggin 已提交
497
	} else {
498 499 500 501
		void (*freepage)(struct page *);

		freepage = mapping->a_ops->freepage;

502
		__delete_from_page_cache(page);
N
Nick Piggin 已提交
503
		spin_unlock_irq(&mapping->tree_lock);
504
		mem_cgroup_uncharge_cache_page(page);
505 506 507

		if (freepage != NULL)
			freepage(page);
508 509 510 511 512
	}

	return 1;

cannot_free:
N
Nick Piggin 已提交
513
	spin_unlock_irq(&mapping->tree_lock);
514 515 516
	return 0;
}

N
Nick Piggin 已提交
517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
/*
 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
 * someone else has a ref on the page, abort and return 0.  If it was
 * successfully detached, return 1.  Assumes the caller has a single ref on
 * this page.
 */
int remove_mapping(struct address_space *mapping, struct page *page)
{
	if (__remove_mapping(mapping, page)) {
		/*
		 * Unfreezing the refcount with 1 rather than 2 effectively
		 * drops the pagecache ref for us without requiring another
		 * atomic operation.
		 */
		page_unfreeze_refs(page, 1);
		return 1;
	}
	return 0;
}

L
Lee Schermerhorn 已提交
537 538 539 540 541 542 543 544 545 546 547 548
/**
 * putback_lru_page - put previously isolated page onto appropriate LRU list
 * @page: page to be put back to appropriate lru list
 *
 * Add previously isolated @page to appropriate LRU list.
 * Page may still be unevictable for other reasons.
 *
 * lru_lock must not be held, interrupts must be enabled.
 */
void putback_lru_page(struct page *page)
{
	int lru;
549
	int was_unevictable = PageUnevictable(page);
L
Lee Schermerhorn 已提交
550 551 552 553 554 555

	VM_BUG_ON(PageLRU(page));

redo:
	ClearPageUnevictable(page);

556
	if (page_evictable(page)) {
L
Lee Schermerhorn 已提交
557 558 559 560 561 562
		/*
		 * For evictable pages, we can use the cache.
		 * In event of a race, worst case is we end up with an
		 * unevictable page on [in]active list.
		 * We know how to handle that.
		 */
563 564
		lru = page_lru_base_type(page);
		lru_cache_add(page);
L
Lee Schermerhorn 已提交
565 566 567 568 569 570 571
	} else {
		/*
		 * Put unevictable pages directly on zone's unevictable
		 * list.
		 */
		lru = LRU_UNEVICTABLE;
		add_page_to_unevictable_list(page);
572
		/*
573 574 575
		 * When racing with an mlock or AS_UNEVICTABLE clearing
		 * (page is unlocked) make sure that if the other thread
		 * does not observe our setting of PG_lru and fails
576
		 * isolation/check_move_unevictable_pages,
577
		 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
578 579
		 * the page back to the evictable list.
		 *
580
		 * The other side is TestClearPageMlocked() or shmem_lock().
581 582
		 */
		smp_mb();
L
Lee Schermerhorn 已提交
583 584 585 586 587 588 589
	}

	/*
	 * page's status can change while we move it among lru. If an evictable
	 * page is on unevictable list, it never be freed. To avoid that,
	 * check after we added it to the list, again.
	 */
590
	if (lru == LRU_UNEVICTABLE && page_evictable(page)) {
L
Lee Schermerhorn 已提交
591 592 593 594 595 596 597 598 599 600
		if (!isolate_lru_page(page)) {
			put_page(page);
			goto redo;
		}
		/* This means someone else dropped this page from LRU
		 * So, it will be freed or putback to LRU again. There is
		 * nothing to do here.
		 */
	}

601 602 603 604 605
	if (was_unevictable && lru != LRU_UNEVICTABLE)
		count_vm_event(UNEVICTABLE_PGRESCUED);
	else if (!was_unevictable && lru == LRU_UNEVICTABLE)
		count_vm_event(UNEVICTABLE_PGCULLED);

L
Lee Schermerhorn 已提交
606 607 608
	put_page(page);		/* drop ref from isolate */
}

609 610 611
enum page_references {
	PAGEREF_RECLAIM,
	PAGEREF_RECLAIM_CLEAN,
612
	PAGEREF_KEEP,
613 614 615 616 617 618
	PAGEREF_ACTIVATE,
};

static enum page_references page_check_references(struct page *page,
						  struct scan_control *sc)
{
619
	int referenced_ptes, referenced_page;
620 621
	unsigned long vm_flags;

622 623
	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
					  &vm_flags);
624
	referenced_page = TestClearPageReferenced(page);
625 626 627 628 629 630 631 632

	/*
	 * Mlock lost the isolation race with us.  Let try_to_unmap()
	 * move the page to the unevictable list.
	 */
	if (vm_flags & VM_LOCKED)
		return PAGEREF_RECLAIM;

633
	if (referenced_ptes) {
634
		if (PageSwapBacked(page))
635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651
			return PAGEREF_ACTIVATE;
		/*
		 * All mapped pages start out with page table
		 * references from the instantiating fault, so we need
		 * to look twice if a mapped file page is used more
		 * than once.
		 *
		 * Mark it and spare it for another trip around the
		 * inactive list.  Another page table reference will
		 * lead to its activation.
		 *
		 * Note: the mark is set for activated pages as well
		 * so that recently deactivated but used pages are
		 * quickly recovered.
		 */
		SetPageReferenced(page);

652
		if (referenced_page || referenced_ptes > 1)
653 654
			return PAGEREF_ACTIVATE;

655 656 657 658 659 660
		/*
		 * Activate file-backed executable pages after first usage.
		 */
		if (vm_flags & VM_EXEC)
			return PAGEREF_ACTIVATE;

661 662
		return PAGEREF_KEEP;
	}
663 664

	/* Reclaim if clean, defer dirty pages to writeback */
665
	if (referenced_page && !PageSwapBacked(page))
666 667 668
		return PAGEREF_RECLAIM_CLEAN;

	return PAGEREF_RECLAIM;
669 670
}

671 672 673 674
/* Check if a page is dirty or under writeback */
static void page_check_dirty_writeback(struct page *page,
				       bool *dirty, bool *writeback)
{
675 676
	struct address_space *mapping;

677 678 679 680 681 682 683 684 685 686 687 688 689
	/*
	 * Anonymous pages are not handled by flushers and must be written
	 * from reclaim context. Do not stall reclaim based on them
	 */
	if (!page_is_file_cache(page)) {
		*dirty = false;
		*writeback = false;
		return;
	}

	/* By default assume that the page flags are accurate */
	*dirty = PageDirty(page);
	*writeback = PageWriteback(page);
690 691 692 693 694 695 696 697

	/* Verify dirty/writeback state if the filesystem supports it */
	if (!page_has_private(page))
		return;

	mapping = page_mapping(page);
	if (mapping && mapping->a_ops->is_dirty_writeback)
		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
698 699
}

L
Linus Torvalds 已提交
700
/*
A
Andrew Morton 已提交
701
 * shrink_page_list() returns the number of reclaimed pages
L
Linus Torvalds 已提交
702
 */
A
Andrew Morton 已提交
703
static unsigned long shrink_page_list(struct list_head *page_list,
704
				      struct zone *zone,
705
				      struct scan_control *sc,
706
				      enum ttu_flags ttu_flags,
707
				      unsigned long *ret_nr_dirty,
708
				      unsigned long *ret_nr_unqueued_dirty,
709
				      unsigned long *ret_nr_congested,
710
				      unsigned long *ret_nr_writeback,
711
				      unsigned long *ret_nr_immediate,
712
				      bool force_reclaim)
L
Linus Torvalds 已提交
713 714
{
	LIST_HEAD(ret_pages);
715
	LIST_HEAD(free_pages);
L
Linus Torvalds 已提交
716
	int pgactivate = 0;
717
	unsigned long nr_unqueued_dirty = 0;
718 719
	unsigned long nr_dirty = 0;
	unsigned long nr_congested = 0;
720
	unsigned long nr_reclaimed = 0;
721
	unsigned long nr_writeback = 0;
722
	unsigned long nr_immediate = 0;
L
Linus Torvalds 已提交
723 724 725

	cond_resched();

726
	mem_cgroup_uncharge_start();
L
Linus Torvalds 已提交
727 728 729 730
	while (!list_empty(page_list)) {
		struct address_space *mapping;
		struct page *page;
		int may_enter_fs;
731
		enum page_references references = PAGEREF_RECLAIM_CLEAN;
732
		bool dirty, writeback;
L
Linus Torvalds 已提交
733 734 735 736 737 738

		cond_resched();

		page = lru_to_page(page_list);
		list_del(&page->lru);

N
Nick Piggin 已提交
739
		if (!trylock_page(page))
L
Linus Torvalds 已提交
740 741
			goto keep;

N
Nick Piggin 已提交
742
		VM_BUG_ON(PageActive(page));
743
		VM_BUG_ON(page_zone(page) != zone);
L
Linus Torvalds 已提交
744 745

		sc->nr_scanned++;
746

747
		if (unlikely(!page_evictable(page)))
N
Nick Piggin 已提交
748
			goto cull_mlocked;
L
Lee Schermerhorn 已提交
749

750
		if (!sc->may_unmap && page_mapped(page))
751 752
			goto keep_locked;

L
Linus Torvalds 已提交
753 754 755 756
		/* Double the slab pressure for mapped and swapcache pages */
		if (page_mapped(page) || PageSwapCache(page))
			sc->nr_scanned++;

757 758 759
		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));

760 761 762 763 764 765 766 767 768 769 770 771 772
		/*
		 * The number of dirty pages determines if a zone is marked
		 * reclaim_congested which affects wait_iff_congested. kswapd
		 * will stall and start writing pages if the tail of the LRU
		 * is all dirty unqueued pages.
		 */
		page_check_dirty_writeback(page, &dirty, &writeback);
		if (dirty || writeback)
			nr_dirty++;

		if (dirty && !writeback)
			nr_unqueued_dirty++;

773 774 775 776 777 778
		/*
		 * Treat this page as congested if the underlying BDI is or if
		 * pages are cycling through the LRU so quickly that the
		 * pages marked for immediate reclaim are making it to the
		 * end of the LRU a second time.
		 */
779
		mapping = page_mapping(page);
780 781
		if ((mapping && bdi_write_congested(mapping->backing_dev_info)) ||
		    (writeback && PageReclaim(page)))
782 783
			nr_congested++;

784 785 786 787 788 789 790 791 792 793 794
		/*
		 * If a page at the tail of the LRU is under writeback, there
		 * are three cases to consider.
		 *
		 * 1) If reclaim is encountering an excessive number of pages
		 *    under writeback and this page is both under writeback and
		 *    PageReclaim then it indicates that pages are being queued
		 *    for IO but are being recycled through the LRU before the
		 *    IO can complete. Waiting on the page itself risks an
		 *    indefinite stall if it is impossible to writeback the
		 *    page due to IO error or disconnected storage so instead
795 796
		 *    note that the LRU is being scanned too quickly and the
		 *    caller can stall after page list has been processed.
797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820
		 *
		 * 2) Global reclaim encounters a page, memcg encounters a
		 *    page that is not marked for immediate reclaim or
		 *    the caller does not have __GFP_IO. In this case mark
		 *    the page for immediate reclaim and continue scanning.
		 *
		 *    __GFP_IO is checked  because a loop driver thread might
		 *    enter reclaim, and deadlock if it waits on a page for
		 *    which it is needed to do the write (loop masks off
		 *    __GFP_IO|__GFP_FS for this reason); but more thought
		 *    would probably show more reasons.
		 *
		 *    Don't require __GFP_FS, since we're not going into the
		 *    FS, just waiting on its writeback completion. Worryingly,
		 *    ext4 gfs2 and xfs allocate pages with
		 *    grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so testing
		 *    may_enter_fs here is liable to OOM on them.
		 *
		 * 3) memcg encounters a page that is not already marked
		 *    PageReclaim. memcg does not have any dirty pages
		 *    throttling so we could easily OOM just because too many
		 *    pages are in writeback and there is nothing else to
		 *    reclaim. Wait for the writeback to complete.
		 */
821
		if (PageWriteback(page)) {
822 823 824 825
			/* Case 1 above */
			if (current_is_kswapd() &&
			    PageReclaim(page) &&
			    zone_is_reclaim_writeback(zone)) {
826 827
				nr_immediate++;
				goto keep_locked;
828 829 830

			/* Case 2 above */
			} else if (global_reclaim(sc) ||
831 832 833 834 835 836 837 838 839 840 841 842 843
			    !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) {
				/*
				 * This is slightly racy - end_page_writeback()
				 * might have just cleared PageReclaim, then
				 * setting PageReclaim here end up interpreted
				 * as PageReadahead - but that does not matter
				 * enough to care.  What we do want is for this
				 * page to have PageReclaim set next time memcg
				 * reclaim reaches the tests above, so it will
				 * then wait_on_page_writeback() to avoid OOM;
				 * and it's also appropriate in global reclaim.
				 */
				SetPageReclaim(page);
844
				nr_writeback++;
845

846
				goto keep_locked;
847 848 849 850

			/* Case 3 above */
			} else {
				wait_on_page_writeback(page);
851
			}
852
		}
L
Linus Torvalds 已提交
853

854 855 856
		if (!force_reclaim)
			references = page_check_references(page, sc);

857 858
		switch (references) {
		case PAGEREF_ACTIVATE:
L
Linus Torvalds 已提交
859
			goto activate_locked;
860 861
		case PAGEREF_KEEP:
			goto keep_locked;
862 863 864 865
		case PAGEREF_RECLAIM:
		case PAGEREF_RECLAIM_CLEAN:
			; /* try to reclaim the page below */
		}
L
Linus Torvalds 已提交
866 867 868 869 870

		/*
		 * Anonymous process memory has backing store?
		 * Try to allocate it some swap space here.
		 */
N
Nick Piggin 已提交
871
		if (PageAnon(page) && !PageSwapCache(page)) {
872 873
			if (!(sc->gfp_mask & __GFP_IO))
				goto keep_locked;
874
			if (!add_to_swap(page, page_list))
L
Linus Torvalds 已提交
875
				goto activate_locked;
876
			may_enter_fs = 1;
L
Linus Torvalds 已提交
877

878 879 880
			/* Adding to swap updated mapping */
			mapping = page_mapping(page);
		}
L
Linus Torvalds 已提交
881 882 883 884 885 886

		/*
		 * The page is mapped into the page tables of one or more
		 * processes. Try to unmap it here.
		 */
		if (page_mapped(page) && mapping) {
887
			switch (try_to_unmap(page, ttu_flags)) {
L
Linus Torvalds 已提交
888 889 890 891
			case SWAP_FAIL:
				goto activate_locked;
			case SWAP_AGAIN:
				goto keep_locked;
N
Nick Piggin 已提交
892 893
			case SWAP_MLOCK:
				goto cull_mlocked;
L
Linus Torvalds 已提交
894 895 896 897 898 899
			case SWAP_SUCCESS:
				; /* try to free the page below */
			}
		}

		if (PageDirty(page)) {
900 901
			/*
			 * Only kswapd can writeback filesystem pages to
902 903
			 * avoid risk of stack overflow but only writeback
			 * if many dirty pages have been encountered.
904
			 */
905
			if (page_is_file_cache(page) &&
906
					(!current_is_kswapd() ||
907
					 !zone_is_reclaim_dirty(zone))) {
908 909 910 911 912 913 914 915 916
				/*
				 * Immediately reclaim when written back.
				 * Similar in principal to deactivate_page()
				 * except we already have the page isolated
				 * and know it's dirty
				 */
				inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
				SetPageReclaim(page);

917 918 919
				goto keep_locked;
			}

920
			if (references == PAGEREF_RECLAIM_CLEAN)
L
Linus Torvalds 已提交
921
				goto keep_locked;
922
			if (!may_enter_fs)
L
Linus Torvalds 已提交
923
				goto keep_locked;
924
			if (!sc->may_writepage)
L
Linus Torvalds 已提交
925 926 927
				goto keep_locked;

			/* Page is dirty, try to write it out here */
928
			switch (pageout(page, mapping, sc)) {
L
Linus Torvalds 已提交
929 930 931 932 933
			case PAGE_KEEP:
				goto keep_locked;
			case PAGE_ACTIVATE:
				goto activate_locked;
			case PAGE_SUCCESS:
934
				if (PageWriteback(page))
935
					goto keep;
936
				if (PageDirty(page))
L
Linus Torvalds 已提交
937
					goto keep;
938

L
Linus Torvalds 已提交
939 940 941 942
				/*
				 * A synchronous write - probably a ramdisk.  Go
				 * ahead and try to reclaim the page.
				 */
N
Nick Piggin 已提交
943
				if (!trylock_page(page))
L
Linus Torvalds 已提交
944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962
					goto keep;
				if (PageDirty(page) || PageWriteback(page))
					goto keep_locked;
				mapping = page_mapping(page);
			case PAGE_CLEAN:
				; /* try to free the page below */
			}
		}

		/*
		 * If the page has buffers, try to free the buffer mappings
		 * associated with this page. If we succeed we try to free
		 * the page as well.
		 *
		 * We do this even if the page is PageDirty().
		 * try_to_release_page() does not perform I/O, but it is
		 * possible for a page to have PageDirty set, but it is actually
		 * clean (all its buffers are clean).  This happens if the
		 * buffers were written out directly, with submit_bh(). ext3
L
Lee Schermerhorn 已提交
963
		 * will do this, as well as the blockdev mapping.
L
Linus Torvalds 已提交
964 965 966 967 968 969 970 971 972 973
		 * try_to_release_page() will discover that cleanness and will
		 * drop the buffers and mark the page clean - it can be freed.
		 *
		 * Rarely, pages can have buffers and no ->mapping.  These are
		 * the pages which were not successfully invalidated in
		 * truncate_complete_page().  We try to drop those buffers here
		 * and if that worked, and the page is no longer mapped into
		 * process address space (page_count == 1) it can be freed.
		 * Otherwise, leave the page on the LRU so it is swappable.
		 */
974
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
975 976
			if (!try_to_release_page(page, sc->gfp_mask))
				goto activate_locked;
N
Nick Piggin 已提交
977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992
			if (!mapping && page_count(page) == 1) {
				unlock_page(page);
				if (put_page_testzero(page))
					goto free_it;
				else {
					/*
					 * rare race with speculative reference.
					 * the speculative reference will free
					 * this page shortly, so we may
					 * increment nr_reclaimed here (and
					 * leave it off the LRU).
					 */
					nr_reclaimed++;
					continue;
				}
			}
L
Linus Torvalds 已提交
993 994
		}

N
Nick Piggin 已提交
995
		if (!mapping || !__remove_mapping(mapping, page))
996
			goto keep_locked;
L
Linus Torvalds 已提交
997

N
Nick Piggin 已提交
998 999 1000 1001 1002 1003 1004 1005
		/*
		 * At this point, we have no other references and there is
		 * no way to pick any more up (removed from LRU, removed
		 * from pagecache). Can use non-atomic bitops now (and
		 * we obviously don't have to worry about waking up a process
		 * waiting on the page lock, because there are no references.
		 */
		__clear_page_locked(page);
N
Nick Piggin 已提交
1006
free_it:
1007
		nr_reclaimed++;
1008 1009 1010 1011 1012 1013

		/*
		 * Is there need to periodically free_page_list? It would
		 * appear not as the counts should be low
		 */
		list_add(&page->lru, &free_pages);
L
Linus Torvalds 已提交
1014 1015
		continue;

N
Nick Piggin 已提交
1016
cull_mlocked:
1017 1018
		if (PageSwapCache(page))
			try_to_free_swap(page);
N
Nick Piggin 已提交
1019 1020 1021 1022
		unlock_page(page);
		putback_lru_page(page);
		continue;

L
Linus Torvalds 已提交
1023
activate_locked:
1024 1025
		/* Not a candidate for swapping, so reclaim swap space. */
		if (PageSwapCache(page) && vm_swap_full())
1026
			try_to_free_swap(page);
L
Lee Schermerhorn 已提交
1027
		VM_BUG_ON(PageActive(page));
L
Linus Torvalds 已提交
1028 1029 1030 1031 1032 1033
		SetPageActive(page);
		pgactivate++;
keep_locked:
		unlock_page(page);
keep:
		list_add(&page->lru, &ret_pages);
N
Nick Piggin 已提交
1034
		VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
L
Linus Torvalds 已提交
1035
	}
1036

1037
	free_hot_cold_page_list(&free_pages, 1);
1038

L
Linus Torvalds 已提交
1039
	list_splice(&ret_pages, page_list);
1040
	count_vm_events(PGACTIVATE, pgactivate);
1041
	mem_cgroup_uncharge_end();
1042 1043
	*ret_nr_dirty += nr_dirty;
	*ret_nr_congested += nr_congested;
1044
	*ret_nr_unqueued_dirty += nr_unqueued_dirty;
1045
	*ret_nr_writeback += nr_writeback;
1046
	*ret_nr_immediate += nr_immediate;
1047
	return nr_reclaimed;
L
Linus Torvalds 已提交
1048 1049
}

1050 1051 1052 1053 1054 1055 1056 1057
unsigned long reclaim_clean_pages_from_list(struct zone *zone,
					    struct list_head *page_list)
{
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
		.priority = DEF_PRIORITY,
		.may_unmap = 1,
	};
1058
	unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069
	struct page *page, *next;
	LIST_HEAD(clean_pages);

	list_for_each_entry_safe(page, next, page_list, lru) {
		if (page_is_file_cache(page) && !PageDirty(page)) {
			ClearPageActive(page);
			list_move(&page->lru, &clean_pages);
		}
	}

	ret = shrink_page_list(&clean_pages, zone, &sc,
1070 1071
			TTU_UNMAP|TTU_IGNORE_ACCESS,
			&dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
1072 1073 1074 1075 1076
	list_splice(&clean_pages, page_list);
	__mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
	return ret;
}

A
Andy Whitcroft 已提交
1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
/*
 * Attempt to remove the specified page from its LRU.  Only take this page
 * if it is of the appropriate PageActive status.  Pages which are being
 * freed elsewhere are also ignored.
 *
 * page:	page to consider
 * mode:	one of the LRU isolation modes defined above
 *
 * returns 0 on success, -ve errno on failure.
 */
1087
int __isolate_lru_page(struct page *page, isolate_mode_t mode)
A
Andy Whitcroft 已提交
1088 1089 1090 1091 1092 1093 1094
{
	int ret = -EINVAL;

	/* Only take pages on the LRU. */
	if (!PageLRU(page))
		return ret;

M
Minchan Kim 已提交
1095 1096
	/* Compaction should not handle unevictable pages but CMA can do so */
	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
L
Lee Schermerhorn 已提交
1097 1098
		return ret;

A
Andy Whitcroft 已提交
1099
	ret = -EBUSY;
K
KAMEZAWA Hiroyuki 已提交
1100

1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
	/*
	 * To minimise LRU disruption, the caller can indicate that it only
	 * wants to isolate pages it will be able to operate on without
	 * blocking - clean pages for the most part.
	 *
	 * ISOLATE_CLEAN means that only clean pages should be isolated. This
	 * is used by reclaim when it is cannot write to backing storage
	 *
	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
	 * that it is possible to migrate without blocking
	 */
	if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
		/* All the caller can do on PageWriteback is block */
		if (PageWriteback(page))
			return ret;

		if (PageDirty(page)) {
			struct address_space *mapping;

			/* ISOLATE_CLEAN means only clean pages */
			if (mode & ISOLATE_CLEAN)
				return ret;

			/*
			 * Only pages without mappings or that have a
			 * ->migratepage callback are possible to migrate
			 * without blocking
			 */
			mapping = page_mapping(page);
			if (mapping && !mapping->a_ops->migratepage)
				return ret;
		}
	}
1134

1135 1136 1137
	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
		return ret;

A
Andy Whitcroft 已提交
1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
	if (likely(get_page_unless_zero(page))) {
		/*
		 * Be careful not to clear PageLRU until after we're
		 * sure the page is not being freed elsewhere -- the
		 * page release code relies on it.
		 */
		ClearPageLRU(page);
		ret = 0;
	}

	return ret;
}

L
Linus Torvalds 已提交
1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
/*
 * zone->lru_lock is heavily contended.  Some of the functions that
 * shrink the lists perform better by taking out a batch of pages
 * and working on them outside the LRU lock.
 *
 * For pagecache intensive workloads, this function is the hottest
 * spot in the kernel (apart from copy_*_user functions).
 *
 * Appropriate locks must be held before calling this function.
 *
 * @nr_to_scan:	The number of pages to look through on the list.
1162
 * @lruvec:	The LRU vector to pull pages from.
L
Linus Torvalds 已提交
1163
 * @dst:	The temp list to put pages on to.
H
Hugh Dickins 已提交
1164
 * @nr_scanned:	The number of pages that were scanned.
1165
 * @sc:		The scan_control struct for this reclaim session
A
Andy Whitcroft 已提交
1166
 * @mode:	One of the LRU isolation modes
1167
 * @lru:	LRU list id for isolating
L
Linus Torvalds 已提交
1168 1169 1170
 *
 * returns how many pages were moved onto *@dst.
 */
1171
static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1172
		struct lruvec *lruvec, struct list_head *dst,
1173
		unsigned long *nr_scanned, struct scan_control *sc,
1174
		isolate_mode_t mode, enum lru_list lru)
L
Linus Torvalds 已提交
1175
{
H
Hugh Dickins 已提交
1176
	struct list_head *src = &lruvec->lists[lru];
1177
	unsigned long nr_taken = 0;
1178
	unsigned long scan;
L
Linus Torvalds 已提交
1179

1180
	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
A
Andy Whitcroft 已提交
1181
		struct page *page;
1182
		int nr_pages;
A
Andy Whitcroft 已提交
1183

L
Linus Torvalds 已提交
1184 1185 1186
		page = lru_to_page(src);
		prefetchw_prev_lru_page(page, src, flags);

N
Nick Piggin 已提交
1187
		VM_BUG_ON(!PageLRU(page));
N
Nick Piggin 已提交
1188

1189
		switch (__isolate_lru_page(page, mode)) {
A
Andy Whitcroft 已提交
1190
		case 0:
1191 1192
			nr_pages = hpage_nr_pages(page);
			mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
A
Andy Whitcroft 已提交
1193
			list_move(&page->lru, dst);
1194
			nr_taken += nr_pages;
A
Andy Whitcroft 已提交
1195 1196 1197 1198 1199 1200
			break;

		case -EBUSY:
			/* else it is being freed elsewhere */
			list_move(&page->lru, src);
			continue;
1201

A
Andy Whitcroft 已提交
1202 1203 1204
		default:
			BUG();
		}
L
Linus Torvalds 已提交
1205 1206
	}

H
Hugh Dickins 已提交
1207
	*nr_scanned = scan;
H
Hugh Dickins 已提交
1208 1209
	trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
				    nr_taken, mode, is_file_lru(lru));
L
Linus Torvalds 已提交
1210 1211 1212
	return nr_taken;
}

1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
/**
 * isolate_lru_page - tries to isolate a page from its LRU list
 * @page: page to isolate from its LRU list
 *
 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
 * vmstat statistic corresponding to whatever LRU list the page was on.
 *
 * Returns 0 if the page was removed from an LRU list.
 * Returns -EBUSY if the page was not on an LRU list.
 *
 * The returned page will have PageLRU() cleared.  If it was found on
L
Lee Schermerhorn 已提交
1224 1225 1226
 * the active list, it will have PageActive set.  If it was found on
 * the unevictable list, it will have the PageUnevictable bit set. That flag
 * may need to be cleared by the caller before letting the page go.
1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241
 *
 * The vmstat statistic corresponding to the list on which the page was
 * found will be decremented.
 *
 * Restrictions:
 * (1) Must be called with an elevated refcount on the page. This is a
 *     fundamentnal difference from isolate_lru_pages (which is called
 *     without a stable reference).
 * (2) the lru_lock must not be held.
 * (3) interrupts must be enabled.
 */
int isolate_lru_page(struct page *page)
{
	int ret = -EBUSY;

1242 1243
	VM_BUG_ON(!page_count(page));

1244 1245
	if (PageLRU(page)) {
		struct zone *zone = page_zone(page);
1246
		struct lruvec *lruvec;
1247 1248

		spin_lock_irq(&zone->lru_lock);
1249
		lruvec = mem_cgroup_page_lruvec(page, zone);
1250
		if (PageLRU(page)) {
L
Lee Schermerhorn 已提交
1251
			int lru = page_lru(page);
1252
			get_page(page);
1253
			ClearPageLRU(page);
1254 1255
			del_page_from_lru_list(page, lruvec, lru);
			ret = 0;
1256 1257 1258 1259 1260 1261
		}
		spin_unlock_irq(&zone->lru_lock);
	}
	return ret;
}

1262
/*
F
Fengguang Wu 已提交
1263 1264 1265 1266 1267
 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
 * then get resheduled. When there are massive number of tasks doing page
 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
 * the LRU list will go small and be scanned faster than necessary, leading to
 * unnecessary swapping, thrashing and OOM.
1268 1269 1270 1271 1272 1273 1274 1275 1276
 */
static int too_many_isolated(struct zone *zone, int file,
		struct scan_control *sc)
{
	unsigned long inactive, isolated;

	if (current_is_kswapd())
		return 0;

1277
	if (!global_reclaim(sc))
1278 1279 1280 1281 1282 1283 1284 1285 1286 1287
		return 0;

	if (file) {
		inactive = zone_page_state(zone, NR_INACTIVE_FILE);
		isolated = zone_page_state(zone, NR_ISOLATED_FILE);
	} else {
		inactive = zone_page_state(zone, NR_INACTIVE_ANON);
		isolated = zone_page_state(zone, NR_ISOLATED_ANON);
	}

1288 1289 1290 1291 1292 1293 1294 1295
	/*
	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
	 * won't get blocked by normal direct-reclaimers, forming a circular
	 * deadlock.
	 */
	if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS)
		inactive >>= 3;

1296 1297 1298
	return isolated > inactive;
}

1299
static noinline_for_stack void
H
Hugh Dickins 已提交
1300
putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1301
{
1302 1303
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
	struct zone *zone = lruvec_zone(lruvec);
1304
	LIST_HEAD(pages_to_free);
1305 1306 1307 1308 1309

	/*
	 * Put back any unfreeable pages.
	 */
	while (!list_empty(page_list)) {
1310
		struct page *page = lru_to_page(page_list);
1311
		int lru;
1312

1313 1314
		VM_BUG_ON(PageLRU(page));
		list_del(&page->lru);
1315
		if (unlikely(!page_evictable(page))) {
1316 1317 1318 1319 1320
			spin_unlock_irq(&zone->lru_lock);
			putback_lru_page(page);
			spin_lock_irq(&zone->lru_lock);
			continue;
		}
1321 1322 1323

		lruvec = mem_cgroup_page_lruvec(page, zone);

1324
		SetPageLRU(page);
1325
		lru = page_lru(page);
1326 1327
		add_page_to_lru_list(page, lruvec, lru);

1328 1329
		if (is_active_lru(lru)) {
			int file = is_file_lru(lru);
1330 1331
			int numpages = hpage_nr_pages(page);
			reclaim_stat->recent_rotated[file] += numpages;
1332
		}
1333 1334 1335
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
1336
			del_page_from_lru_list(page, lruvec, lru);
1337 1338 1339 1340 1341 1342 1343

			if (unlikely(PageCompound(page))) {
				spin_unlock_irq(&zone->lru_lock);
				(*get_compound_page_dtor(page))(page);
				spin_lock_irq(&zone->lru_lock);
			} else
				list_add(&page->lru, &pages_to_free);
1344 1345 1346
		}
	}

1347 1348 1349 1350
	/*
	 * To save our caller's stack, now use input list for pages to free.
	 */
	list_splice(&pages_to_free, page_list);
1351 1352
}

L
Linus Torvalds 已提交
1353
/*
A
Andrew Morton 已提交
1354 1355
 * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
 * of reclaimed pages
L
Linus Torvalds 已提交
1356
 */
1357
static noinline_for_stack unsigned long
1358
shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1359
		     struct scan_control *sc, enum lru_list lru)
L
Linus Torvalds 已提交
1360 1361
{
	LIST_HEAD(page_list);
1362
	unsigned long nr_scanned;
1363
	unsigned long nr_reclaimed = 0;
1364
	unsigned long nr_taken;
1365 1366
	unsigned long nr_dirty = 0;
	unsigned long nr_congested = 0;
1367
	unsigned long nr_unqueued_dirty = 0;
1368
	unsigned long nr_writeback = 0;
1369
	unsigned long nr_immediate = 0;
1370
	isolate_mode_t isolate_mode = 0;
1371
	int file = is_file_lru(lru);
1372 1373
	struct zone *zone = lruvec_zone(lruvec);
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1374

1375
	while (unlikely(too_many_isolated(zone, file, sc))) {
1376
		congestion_wait(BLK_RW_ASYNC, HZ/10);
1377 1378 1379 1380 1381 1382

		/* We are about to die and free our memory. Return now. */
		if (fatal_signal_pending(current))
			return SWAP_CLUSTER_MAX;
	}

L
Linus Torvalds 已提交
1383
	lru_add_drain();
1384 1385

	if (!sc->may_unmap)
1386
		isolate_mode |= ISOLATE_UNMAPPED;
1387
	if (!sc->may_writepage)
1388
		isolate_mode |= ISOLATE_CLEAN;
1389

L
Linus Torvalds 已提交
1390
	spin_lock_irq(&zone->lru_lock);
1391

1392 1393
	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
				     &nr_scanned, sc, isolate_mode, lru);
1394 1395 1396 1397

	__mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);

1398
	if (global_reclaim(sc)) {
1399 1400
		zone->pages_scanned += nr_scanned;
		if (current_is_kswapd())
H
Hugh Dickins 已提交
1401
			__count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
1402
		else
H
Hugh Dickins 已提交
1403
			__count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
1404
	}
1405
	spin_unlock_irq(&zone->lru_lock);
1406

1407
	if (nr_taken == 0)
1408
		return 0;
A
Andy Whitcroft 已提交
1409

1410
	nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
1411 1412 1413
				&nr_dirty, &nr_unqueued_dirty, &nr_congested,
				&nr_writeback, &nr_immediate,
				false);
1414

1415 1416
	spin_lock_irq(&zone->lru_lock);

1417
	reclaim_stat->recent_scanned[file] += nr_taken;
1418

Y
Ying Han 已提交
1419 1420 1421 1422 1423 1424 1425 1426
	if (global_reclaim(sc)) {
		if (current_is_kswapd())
			__count_zone_vm_events(PGSTEAL_KSWAPD, zone,
					       nr_reclaimed);
		else
			__count_zone_vm_events(PGSTEAL_DIRECT, zone,
					       nr_reclaimed);
	}
N
Nick Piggin 已提交
1427

1428
	putback_inactive_pages(lruvec, &page_list);
1429

1430
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1431 1432 1433 1434

	spin_unlock_irq(&zone->lru_lock);

	free_hot_cold_page_list(&page_list, 1);
1435

1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446
	/*
	 * If reclaim is isolating dirty pages under writeback, it implies
	 * that the long-lived page allocation rate is exceeding the page
	 * laundering rate. Either the global limits are not being effective
	 * at throttling processes due to the page distribution throughout
	 * zones or there is heavy usage of a slow backing device. The
	 * only option is to throttle from reclaim context which is not ideal
	 * as there is no guarantee the dirtying process is throttled in the
	 * same way balance_dirty_pages() manages.
	 *
	 * This scales the number of dirty pages that must be under writeback
1447
	 * before a zone gets flagged ZONE_WRITEBACK. It is a simple backoff
1448 1449 1450 1451 1452 1453 1454 1455 1456 1457
	 * function that has the most effect in the range DEF_PRIORITY to
	 * DEF_PRIORITY-2 which is the priority reclaim is considered to be
	 * in trouble and reclaim is considered to be in trouble.
	 *
	 * DEF_PRIORITY   100% isolated pages must be PageWriteback to throttle
	 * DEF_PRIORITY-1  50% must be PageWriteback
	 * DEF_PRIORITY-2  25% must be PageWriteback, kswapd in trouble
	 * ...
	 * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any
	 *                     isolated page is PageWriteback
1458 1459 1460 1461
	 *
	 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
	 * of pages under pages flagged for immediate reclaim and stall if any
	 * are encountered in the nr_immediate check below.
1462
	 */
1463
	if (nr_writeback && nr_writeback >=
1464
			(nr_taken >> (DEF_PRIORITY - sc->priority)))
1465
		zone_set_flag(zone, ZONE_WRITEBACK);
1466

1467
	/*
1468 1469
	 * memcg will stall in page writeback so only consider forcibly
	 * stalling for global reclaim
1470
	 */
1471
	if (global_reclaim(sc)) {
1472 1473 1474 1475 1476 1477 1478
		/*
		 * Tag a zone as congested if all the dirty pages scanned were
		 * backed by a congested BDI and wait_iff_congested will stall.
		 */
		if (nr_dirty && nr_dirty == nr_congested)
			zone_set_flag(zone, ZONE_CONGESTED);

1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496
		/*
		 * If dirty pages are scanned that are not queued for IO, it
		 * implies that flushers are not keeping up. In this case, flag
		 * the zone ZONE_TAIL_LRU_DIRTY and kswapd will start writing
		 * pages from reclaim context. It will forcibly stall in the
		 * next check.
		 */
		if (nr_unqueued_dirty == nr_taken)
			zone_set_flag(zone, ZONE_TAIL_LRU_DIRTY);

		/*
		 * In addition, if kswapd scans pages marked marked for
		 * immediate reclaim and under writeback (nr_immediate), it
		 * implies that pages are cycling through the LRU faster than
		 * they are written so also forcibly stall.
		 */
		if (nr_unqueued_dirty == nr_taken || nr_immediate)
			congestion_wait(BLK_RW_ASYNC, HZ/10);
1497
	}
1498

1499 1500 1501 1502 1503 1504 1505 1506
	/*
	 * Stall direct reclaim for IO completions if underlying BDIs or zone
	 * is congested. Allow kswapd to continue until it starts encountering
	 * unqueued dirty pages or cycling through the LRU too quickly.
	 */
	if (!sc->hibernation_mode && !current_is_kswapd())
		wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);

1507 1508 1509
	trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
		zone_idx(zone),
		nr_scanned, nr_reclaimed,
1510
		sc->priority,
M
Mel Gorman 已提交
1511
		trace_shrink_flags(file));
1512
	return nr_reclaimed;
L
Linus Torvalds 已提交
1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531
}

/*
 * This moves pages from the active list to the inactive list.
 *
 * We move them the other way if the page is referenced by one or more
 * processes, from rmap.
 *
 * If the pages are mostly unmapped, the processing is fast and it is
 * appropriate to hold zone->lru_lock across the whole operation.  But if
 * the pages are mapped, the processing is slow (page_referenced()) so we
 * should drop zone->lru_lock around each page.  It's impossible to balance
 * this, so instead we remove the pages from the LRU while processing them.
 * It is safe to rely on PG_active against the non-LRU pages in here because
 * nobody will play with that bit on a non-LRU page.
 *
 * The downside is that we have to touch page->_count against each page.
 * But we had to alter page->flags anyway.
 */
1532

1533
static void move_active_pages_to_lru(struct lruvec *lruvec,
1534
				     struct list_head *list,
1535
				     struct list_head *pages_to_free,
1536 1537
				     enum lru_list lru)
{
1538
	struct zone *zone = lruvec_zone(lruvec);
1539 1540
	unsigned long pgmoved = 0;
	struct page *page;
1541
	int nr_pages;
1542 1543 1544

	while (!list_empty(list)) {
		page = lru_to_page(list);
1545
		lruvec = mem_cgroup_page_lruvec(page, zone);
1546 1547 1548 1549

		VM_BUG_ON(PageLRU(page));
		SetPageLRU(page);

1550 1551
		nr_pages = hpage_nr_pages(page);
		mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
1552
		list_move(&page->lru, &lruvec->lists[lru]);
1553
		pgmoved += nr_pages;
1554

1555 1556 1557
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
1558
			del_page_from_lru_list(page, lruvec, lru);
1559 1560 1561 1562 1563 1564 1565

			if (unlikely(PageCompound(page))) {
				spin_unlock_irq(&zone->lru_lock);
				(*get_compound_page_dtor(page))(page);
				spin_lock_irq(&zone->lru_lock);
			} else
				list_add(&page->lru, pages_to_free);
1566 1567 1568 1569 1570 1571
		}
	}
	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
	if (!is_active_lru(lru))
		__count_vm_events(PGDEACTIVATE, pgmoved);
}
1572

H
Hugh Dickins 已提交
1573
static void shrink_active_list(unsigned long nr_to_scan,
1574
			       struct lruvec *lruvec,
1575
			       struct scan_control *sc,
1576
			       enum lru_list lru)
L
Linus Torvalds 已提交
1577
{
1578
	unsigned long nr_taken;
H
Hugh Dickins 已提交
1579
	unsigned long nr_scanned;
1580
	unsigned long vm_flags;
L
Linus Torvalds 已提交
1581
	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1582
	LIST_HEAD(l_active);
1583
	LIST_HEAD(l_inactive);
L
Linus Torvalds 已提交
1584
	struct page *page;
1585
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1586
	unsigned long nr_rotated = 0;
1587
	isolate_mode_t isolate_mode = 0;
1588
	int file = is_file_lru(lru);
1589
	struct zone *zone = lruvec_zone(lruvec);
L
Linus Torvalds 已提交
1590 1591

	lru_add_drain();
1592 1593

	if (!sc->may_unmap)
1594
		isolate_mode |= ISOLATE_UNMAPPED;
1595
	if (!sc->may_writepage)
1596
		isolate_mode |= ISOLATE_CLEAN;
1597

L
Linus Torvalds 已提交
1598
	spin_lock_irq(&zone->lru_lock);
1599

1600 1601
	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
				     &nr_scanned, sc, isolate_mode, lru);
1602
	if (global_reclaim(sc))
H
Hugh Dickins 已提交
1603
		zone->pages_scanned += nr_scanned;
1604

1605
	reclaim_stat->recent_scanned[file] += nr_taken;
1606

H
Hugh Dickins 已提交
1607
	__count_zone_vm_events(PGREFILL, zone, nr_scanned);
1608
	__mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
K
KOSAKI Motohiro 已提交
1609
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
L
Linus Torvalds 已提交
1610 1611 1612 1613 1614 1615
	spin_unlock_irq(&zone->lru_lock);

	while (!list_empty(&l_hold)) {
		cond_resched();
		page = lru_to_page(&l_hold);
		list_del(&page->lru);
1616

1617
		if (unlikely(!page_evictable(page))) {
L
Lee Schermerhorn 已提交
1618 1619 1620 1621
			putback_lru_page(page);
			continue;
		}

1622 1623 1624 1625 1626 1627 1628 1629
		if (unlikely(buffer_heads_over_limit)) {
			if (page_has_private(page) && trylock_page(page)) {
				if (page_has_private(page))
					try_to_release_page(page, 0);
				unlock_page(page);
			}
		}

1630 1631
		if (page_referenced(page, 0, sc->target_mem_cgroup,
				    &vm_flags)) {
1632
			nr_rotated += hpage_nr_pages(page);
1633 1634 1635 1636 1637 1638 1639 1640 1641
			/*
			 * Identify referenced, file-backed active pages and
			 * give them one more trip around the active list. So
			 * that executable code get better chances to stay in
			 * memory under moderate memory pressure.  Anon pages
			 * are not likely to be evicted by use-once streaming
			 * IO, plus JVM can create lots of anon VM_EXEC pages,
			 * so we ignore them here.
			 */
1642
			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1643 1644 1645 1646
				list_add(&page->lru, &l_active);
				continue;
			}
		}
1647

1648
		ClearPageActive(page);	/* we are de-activating */
L
Linus Torvalds 已提交
1649 1650 1651
		list_add(&page->lru, &l_inactive);
	}

1652
	/*
1653
	 * Move pages back to the lru list.
1654
	 */
1655
	spin_lock_irq(&zone->lru_lock);
1656
	/*
1657 1658 1659 1660
	 * Count referenced pages from currently used mappings as rotated,
	 * even though only some of them are actually re-activated.  This
	 * helps balance scan pressure between file and anonymous pages in
	 * get_scan_ratio.
1661
	 */
1662
	reclaim_stat->recent_rotated[file] += nr_rotated;
1663

1664 1665
	move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
	move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
K
KOSAKI Motohiro 已提交
1666
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1667
	spin_unlock_irq(&zone->lru_lock);
1668 1669

	free_hot_cold_page_list(&l_hold, 1);
L
Linus Torvalds 已提交
1670 1671
}

1672
#ifdef CONFIG_SWAP
1673
static int inactive_anon_is_low_global(struct zone *zone)
1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685
{
	unsigned long active, inactive;

	active = zone_page_state(zone, NR_ACTIVE_ANON);
	inactive = zone_page_state(zone, NR_INACTIVE_ANON);

	if (inactive * zone->inactive_ratio < active)
		return 1;

	return 0;
}

1686 1687
/**
 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1688
 * @lruvec: LRU vector to check
1689 1690 1691 1692
 *
 * Returns true if the zone does not have enough inactive anon pages,
 * meaning some active anon pages need to be deactivated.
 */
1693
static int inactive_anon_is_low(struct lruvec *lruvec)
1694
{
1695 1696 1697 1698 1699 1700 1701
	/*
	 * If we don't have swap space, anonymous page deactivation
	 * is pointless.
	 */
	if (!total_swap_pages)
		return 0;

1702
	if (!mem_cgroup_disabled())
1703
		return mem_cgroup_inactive_anon_is_low(lruvec);
1704

1705
	return inactive_anon_is_low_global(lruvec_zone(lruvec));
1706
}
1707
#else
1708
static inline int inactive_anon_is_low(struct lruvec *lruvec)
1709 1710 1711 1712
{
	return 0;
}
#endif
1713

1714 1715
/**
 * inactive_file_is_low - check if file pages need to be deactivated
1716
 * @lruvec: LRU vector to check
1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727
 *
 * When the system is doing streaming IO, memory pressure here
 * ensures that active file pages get deactivated, until more
 * than half of the file pages are on the inactive list.
 *
 * Once we get to that situation, protect the system's working
 * set from being evicted by disabling active file page aging.
 *
 * This uses a different ratio than the anonymous pages, because
 * the page cache uses a use-once replacement algorithm.
 */
1728
static int inactive_file_is_low(struct lruvec *lruvec)
1729
{
1730 1731 1732 1733 1734
	unsigned long inactive;
	unsigned long active;

	inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE);
	active = get_lru_size(lruvec, LRU_ACTIVE_FILE);
1735

1736
	return active > inactive;
1737 1738
}

H
Hugh Dickins 已提交
1739
static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
1740
{
H
Hugh Dickins 已提交
1741
	if (is_file_lru(lru))
1742
		return inactive_file_is_low(lruvec);
1743
	else
1744
		return inactive_anon_is_low(lruvec);
1745 1746
}

1747
static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1748
				 struct lruvec *lruvec, struct scan_control *sc)
1749
{
1750
	if (is_active_lru(lru)) {
H
Hugh Dickins 已提交
1751
		if (inactive_list_is_low(lruvec, lru))
1752
			shrink_active_list(nr_to_scan, lruvec, sc, lru);
1753 1754 1755
		return 0;
	}

1756
	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
1757 1758
}

1759
static int vmscan_swappiness(struct scan_control *sc)
1760
{
1761
	if (global_reclaim(sc))
1762
		return vm_swappiness;
1763
	return mem_cgroup_swappiness(sc->target_mem_cgroup);
1764 1765
}

1766 1767 1768 1769 1770 1771 1772
enum scan_balance {
	SCAN_EQUAL,
	SCAN_FRACT,
	SCAN_ANON,
	SCAN_FILE,
};

1773 1774 1775 1776 1777 1778
/*
 * Determine how aggressively the anon and file LRU lists should be
 * scanned.  The relative value of each set of LRU lists is determined
 * by looking at the fraction of the pages scanned we did rotate back
 * onto the active list instead of evict.
 *
W
Wanpeng Li 已提交
1779 1780
 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
1781
 */
1782
static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
1783
			   unsigned long *nr)
1784
{
1785 1786 1787 1788
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
	u64 fraction[2];
	u64 denominator = 0;	/* gcc */
	struct zone *zone = lruvec_zone(lruvec);
1789
	unsigned long anon_prio, file_prio;
1790 1791 1792
	enum scan_balance scan_balance;
	unsigned long anon, file, free;
	bool force_scan = false;
1793
	unsigned long ap, fp;
H
Hugh Dickins 已提交
1794
	enum lru_list lru;
1795

1796 1797 1798 1799 1800 1801 1802 1803 1804 1805
	/*
	 * If the zone or memcg is small, nr[l] can be 0.  This
	 * results in no scanning on this priority and a potential
	 * priority drop.  Global direct reclaim can go to the next
	 * zone and tends to have no problems. Global kswapd is for
	 * zone balancing and it needs to scan a minimum amount. When
	 * reclaiming for a memcg, a priority drop can cause high
	 * latencies, so it's better to scan a minimum amount there as
	 * well.
	 */
1806
	if (current_is_kswapd() && zone->all_unreclaimable)
1807
		force_scan = true;
1808
	if (!global_reclaim(sc))
1809
		force_scan = true;
1810 1811

	/* If we have no swap space, do not bother scanning anon pages. */
1812
	if (!sc->may_swap || (get_nr_swap_pages() <= 0)) {
1813
		scan_balance = SCAN_FILE;
1814 1815
		goto out;
	}
1816

1817 1818 1819 1820 1821 1822 1823 1824
	/*
	 * Global reclaim will swap to prevent OOM even with no
	 * swappiness, but memcg users want to use this knob to
	 * disable swapping for individual groups completely when
	 * using the memory controller's swap limit feature would be
	 * too expensive.
	 */
	if (!global_reclaim(sc) && !vmscan_swappiness(sc)) {
1825
		scan_balance = SCAN_FILE;
1826 1827 1828 1829 1830 1831 1832 1833 1834
		goto out;
	}

	/*
	 * Do not apply any pressure balancing cleverness when the
	 * system is close to OOM, scan both anon and file equally
	 * (unless the swappiness setting disagrees with swapping).
	 */
	if (!sc->priority && vmscan_swappiness(sc)) {
1835
		scan_balance = SCAN_EQUAL;
1836 1837 1838
		goto out;
	}

1839 1840 1841 1842
	anon  = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
		get_lru_size(lruvec, LRU_INACTIVE_ANON);
	file  = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
		get_lru_size(lruvec, LRU_INACTIVE_FILE);
1843

1844 1845 1846 1847 1848 1849
	/*
	 * If it's foreseeable that reclaiming the file cache won't be
	 * enough to get the zone back into a desirable shape, we have
	 * to swap.  Better start now and leave the - probably heavily
	 * thrashing - remaining file pages alone.
	 */
1850
	if (global_reclaim(sc)) {
1851
		free = zone_page_state(zone, NR_FREE_PAGES);
1852
		if (unlikely(file + free <= high_wmark_pages(zone))) {
1853
			scan_balance = SCAN_ANON;
1854
			goto out;
1855
		}
1856 1857
	}

1858 1859 1860 1861 1862
	/*
	 * There is enough inactive page cache, do not reclaim
	 * anything from the anonymous working set right now.
	 */
	if (!inactive_file_is_low(lruvec)) {
1863
		scan_balance = SCAN_FILE;
1864 1865 1866
		goto out;
	}

1867 1868
	scan_balance = SCAN_FRACT;

1869 1870 1871 1872
	/*
	 * With swappiness at 100, anonymous and file have the same priority.
	 * This scanning priority is essentially the inverse of IO cost.
	 */
1873
	anon_prio = vmscan_swappiness(sc);
H
Hugh Dickins 已提交
1874
	file_prio = 200 - anon_prio;
1875

1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886
	/*
	 * OK, so we have swap space and a fair amount of page cache
	 * pages.  We use the recently rotated / recently scanned
	 * ratios to determine how valuable each cache is.
	 *
	 * Because workloads change over time (and to avoid overflow)
	 * we keep these statistics as a floating average, which ends
	 * up weighing recent references more than old ones.
	 *
	 * anon in [0], file in [1]
	 */
1887
	spin_lock_irq(&zone->lru_lock);
1888 1889 1890
	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
		reclaim_stat->recent_scanned[0] /= 2;
		reclaim_stat->recent_rotated[0] /= 2;
1891 1892
	}

1893 1894 1895
	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
		reclaim_stat->recent_scanned[1] /= 2;
		reclaim_stat->recent_rotated[1] /= 2;
1896 1897 1898
	}

	/*
1899 1900 1901
	 * The amount of pressure on anon vs file pages is inversely
	 * proportional to the fraction of recently scanned pages on
	 * each list that were recently referenced and in active use.
1902
	 */
1903
	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
1904
	ap /= reclaim_stat->recent_rotated[0] + 1;
1905

1906
	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
1907
	fp /= reclaim_stat->recent_rotated[1] + 1;
1908
	spin_unlock_irq(&zone->lru_lock);
1909

1910 1911 1912 1913
	fraction[0] = ap;
	fraction[1] = fp;
	denominator = ap + fp + 1;
out:
H
Hugh Dickins 已提交
1914 1915
	for_each_evictable_lru(lru) {
		int file = is_file_lru(lru);
1916
		unsigned long size;
1917
		unsigned long scan;
1918

1919
		size = get_lru_size(lruvec, lru);
1920
		scan = size >> sc->priority;
1921

1922 1923
		if (!scan && force_scan)
			scan = min(size, SWAP_CLUSTER_MAX);
1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945

		switch (scan_balance) {
		case SCAN_EQUAL:
			/* Scan lists relative to size */
			break;
		case SCAN_FRACT:
			/*
			 * Scan types proportional to swappiness and
			 * their relative recent reclaim efficiency.
			 */
			scan = div64_u64(scan * fraction[file], denominator);
			break;
		case SCAN_FILE:
		case SCAN_ANON:
			/* Scan one type exclusively */
			if ((scan_balance == SCAN_FILE) != file)
				scan = 0;
			break;
		default:
			/* Look ma, no brain */
			BUG();
		}
H
Hugh Dickins 已提交
1946
		nr[lru] = scan;
1947
	}
1948
}
1949

1950 1951 1952 1953 1954 1955
/*
 * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
 */
static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
{
	unsigned long nr[NR_LRU_LISTS];
1956
	unsigned long targets[NR_LRU_LISTS];
1957 1958 1959 1960 1961
	unsigned long nr_to_scan;
	enum lru_list lru;
	unsigned long nr_reclaimed = 0;
	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
	struct blk_plug plug;
1962
	bool scan_adjusted = false;
1963 1964 1965

	get_scan_count(lruvec, sc, nr);

1966 1967 1968
	/* Record the original scan target for proportional adjustments later */
	memcpy(targets, nr, sizeof(nr));

1969 1970 1971
	blk_start_plug(&plug);
	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
					nr[LRU_INACTIVE_FILE]) {
1972 1973 1974
		unsigned long nr_anon, nr_file, percentage;
		unsigned long nr_scanned;

1975 1976 1977 1978 1979 1980 1981 1982 1983
		for_each_evictable_lru(lru) {
			if (nr[lru]) {
				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
				nr[lru] -= nr_to_scan;

				nr_reclaimed += shrink_list(lru, nr_to_scan,
							    lruvec, sc);
			}
		}
1984 1985 1986 1987

		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
			continue;

1988
		/*
1989 1990 1991 1992
		 * For global direct reclaim, reclaim only the number of pages
		 * requested. Less care is taken to scan proportionally as it
		 * is more important to minimise direct reclaim stall latency
		 * than it is to properly age the LRU lists.
1993
		 */
1994
		if (global_reclaim(sc) && !current_is_kswapd())
1995
			break;
1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037

		/*
		 * For kswapd and memcg, reclaim at least the number of pages
		 * requested. Ensure that the anon and file LRUs shrink
		 * proportionally what was requested by get_scan_count(). We
		 * stop reclaiming one LRU and reduce the amount scanning
		 * proportional to the original scan target.
		 */
		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];

		if (nr_file > nr_anon) {
			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
						targets[LRU_ACTIVE_ANON] + 1;
			lru = LRU_BASE;
			percentage = nr_anon * 100 / scan_target;
		} else {
			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
						targets[LRU_ACTIVE_FILE] + 1;
			lru = LRU_FILE;
			percentage = nr_file * 100 / scan_target;
		}

		/* Stop scanning the smaller of the LRU */
		nr[lru] = 0;
		nr[lru + LRU_ACTIVE] = 0;

		/*
		 * Recalculate the other LRU scan count based on its original
		 * scan target and the percentage scanning already complete
		 */
		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
		nr_scanned = targets[lru] - nr[lru];
		nr[lru] = targets[lru] * (100 - percentage) / 100;
		nr[lru] -= min(nr[lru], nr_scanned);

		lru += LRU_ACTIVE;
		nr_scanned = targets[lru] - nr[lru];
		nr[lru] = targets[lru] * (100 - percentage) / 100;
		nr[lru] -= min(nr[lru], nr_scanned);

		scan_adjusted = true;
2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052
	}
	blk_finish_plug(&plug);
	sc->nr_reclaimed += nr_reclaimed;

	/*
	 * Even if we did not try to evict anon pages at all, we want to
	 * rebalance the anon lru active/inactive ratio.
	 */
	if (inactive_anon_is_low(lruvec))
		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
				   sc, LRU_ACTIVE_ANON);

	throttle_vm_writeout(sc->gfp_mask);
}

M
Mel Gorman 已提交
2053
/* Use reclaim/compaction for costly allocs or under memory pressure */
2054
static bool in_reclaim_compaction(struct scan_control *sc)
M
Mel Gorman 已提交
2055
{
2056
	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
M
Mel Gorman 已提交
2057
			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2058
			 sc->priority < DEF_PRIORITY - 2))
M
Mel Gorman 已提交
2059 2060 2061 2062 2063
		return true;

	return false;
}

2064
/*
M
Mel Gorman 已提交
2065 2066 2067 2068 2069
 * Reclaim/compaction is used for high-order allocation requests. It reclaims
 * order-0 pages before compacting the zone. should_continue_reclaim() returns
 * true if more pages should be reclaimed such that when the page allocator
 * calls try_to_compact_zone() that it will have enough free pages to succeed.
 * It will give up earlier than that if there is difficulty reclaiming pages.
2070
 */
2071
static inline bool should_continue_reclaim(struct zone *zone,
2072 2073 2074 2075 2076 2077 2078 2079
					unsigned long nr_reclaimed,
					unsigned long nr_scanned,
					struct scan_control *sc)
{
	unsigned long pages_for_compaction;
	unsigned long inactive_lru_pages;

	/* If not in reclaim/compaction mode, stop */
2080
	if (!in_reclaim_compaction(sc))
2081 2082
		return false;

2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104
	/* Consider stopping depending on scan and reclaim activity */
	if (sc->gfp_mask & __GFP_REPEAT) {
		/*
		 * For __GFP_REPEAT allocations, stop reclaiming if the
		 * full LRU list has been scanned and we are still failing
		 * to reclaim pages. This full LRU scan is potentially
		 * expensive but a __GFP_REPEAT caller really wants to succeed
		 */
		if (!nr_reclaimed && !nr_scanned)
			return false;
	} else {
		/*
		 * For non-__GFP_REPEAT allocations which can presumably
		 * fail without consequence, stop if we failed to reclaim
		 * any pages from the last SWAP_CLUSTER_MAX number of
		 * pages that were scanned. This will return to the
		 * caller faster at the risk reclaim/compaction and
		 * the resulting allocation attempt fails
		 */
		if (!nr_reclaimed)
			return false;
	}
2105 2106 2107 2108 2109 2110

	/*
	 * If we have not reclaimed enough pages for compaction and the
	 * inactive lists are large enough, continue reclaiming
	 */
	pages_for_compaction = (2UL << sc->order);
2111
	inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
2112
	if (get_nr_swap_pages() > 0)
2113
		inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
2114 2115 2116 2117 2118
	if (sc->nr_reclaimed < pages_for_compaction &&
			inactive_lru_pages > pages_for_compaction)
		return true;

	/* If compaction would go ahead or the allocation would succeed, stop */
2119
	switch (compaction_suitable(zone, sc->order)) {
2120 2121 2122 2123 2124 2125 2126 2127
	case COMPACT_PARTIAL:
	case COMPACT_CONTINUE:
		return false;
	default:
		return true;
	}
}

2128
static void shrink_zone(struct zone *zone, struct scan_control *sc)
L
Linus Torvalds 已提交
2129
{
2130
	unsigned long nr_reclaimed, nr_scanned;
L
Linus Torvalds 已提交
2131

2132 2133 2134 2135 2136 2137 2138
	do {
		struct mem_cgroup *root = sc->target_mem_cgroup;
		struct mem_cgroup_reclaim_cookie reclaim = {
			.zone = zone,
			.priority = sc->priority,
		};
		struct mem_cgroup *memcg;
2139

2140 2141
		nr_reclaimed = sc->nr_reclaimed;
		nr_scanned = sc->nr_scanned;
L
Linus Torvalds 已提交
2142

2143 2144 2145
		memcg = mem_cgroup_iter(root, NULL, &reclaim);
		do {
			struct lruvec *lruvec;
2146

2147
			lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2148

2149
			shrink_lruvec(lruvec, sc);
2150

2151
			/*
2152 2153
			 * Direct reclaim and kswapd have to scan all memory
			 * cgroups to fulfill the overall scan target for the
2154
			 * zone.
2155 2156 2157 2158 2159
			 *
			 * Limit reclaim, on the other hand, only cares about
			 * nr_to_reclaim pages to be reclaimed and it will
			 * retry with decreasing priority if one round over the
			 * whole hierarchy is not sufficient.
2160
			 */
2161 2162
			if (!global_reclaim(sc) &&
					sc->nr_reclaimed >= sc->nr_to_reclaim) {
2163 2164 2165 2166 2167
				mem_cgroup_iter_break(root, memcg);
				break;
			}
			memcg = mem_cgroup_iter(root, memcg, &reclaim);
		} while (memcg);
2168 2169 2170 2171 2172

		vmpressure(sc->gfp_mask, sc->target_mem_cgroup,
			   sc->nr_scanned - nr_scanned,
			   sc->nr_reclaimed - nr_reclaimed);

2173 2174
	} while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
					 sc->nr_scanned - nr_scanned, sc));
2175 2176
}

2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193
/* Returns true if compaction should go ahead for a high-order request */
static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
{
	unsigned long balance_gap, watermark;
	bool watermark_ok;

	/* Do not consider compaction for orders reclaim is meant to satisfy */
	if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
		return false;

	/*
	 * Compaction takes time to run and there are potentially other
	 * callers using the pages just freed. Continue reclaiming until
	 * there is a buffer of free pages available to give compaction
	 * a reasonable chance of completing and allocating the page
	 */
	balance_gap = min(low_wmark_pages(zone),
2194
		(zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2195 2196 2197 2198 2199 2200 2201 2202
			KSWAPD_ZONE_BALANCE_GAP_RATIO);
	watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
	watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);

	/*
	 * If compaction is deferred, reclaim up to a point where
	 * compaction will have a chance of success when re-enabled
	 */
2203
	if (compaction_deferred(zone, sc->order))
2204 2205 2206 2207 2208 2209 2210 2211 2212
		return watermark_ok;

	/* If compaction is not ready to start, keep reclaiming */
	if (!compaction_suitable(zone, sc->order))
		return false;

	return watermark_ok;
}

L
Linus Torvalds 已提交
2213 2214 2215 2216 2217
/*
 * This is the direct reclaim path, for page-allocating processes.  We only
 * try to reclaim pages from zones which will satisfy the caller's allocation
 * request.
 *
2218 2219
 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
 * Because:
L
Linus Torvalds 已提交
2220 2221
 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
 *    allocation or
2222 2223 2224
 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
 *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
 *    zone defense algorithm.
L
Linus Torvalds 已提交
2225 2226 2227
 *
 * If a zone is deemed to be full of pinned pages then just give it a light
 * scan then give up on it.
2228 2229
 *
 * This function returns true if a zone is being reclaimed for a costly
2230
 * high-order allocation and compaction is ready to begin. This indicates to
2231 2232
 * the caller that it should consider retrying the allocation instead of
 * further reclaim.
L
Linus Torvalds 已提交
2233
 */
2234
static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
L
Linus Torvalds 已提交
2235
{
2236
	struct zoneref *z;
2237
	struct zone *zone;
2238 2239
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
2240
	bool aborted_reclaim = false;
2241

2242 2243 2244 2245 2246 2247 2248 2249
	/*
	 * If the number of buffer_heads in the machine exceeds the maximum
	 * allowed level, force direct reclaim to scan the highmem zone as
	 * highmem pages could be pinning lowmem pages storing buffer_heads
	 */
	if (buffer_heads_over_limit)
		sc->gfp_mask |= __GFP_HIGHMEM;

2250 2251
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
					gfp_zone(sc->gfp_mask), sc->nodemask) {
2252
		if (!populated_zone(zone))
L
Linus Torvalds 已提交
2253
			continue;
2254 2255 2256 2257
		/*
		 * Take care memory controller reclaiming has small influence
		 * to global LRU.
		 */
2258
		if (global_reclaim(sc)) {
2259 2260
			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
				continue;
2261 2262
			if (zone->all_unreclaimable &&
					sc->priority != DEF_PRIORITY)
2263
				continue;	/* Let kswapd poll it */
2264
			if (IS_ENABLED(CONFIG_COMPACTION)) {
2265
				/*
2266 2267 2268 2269 2270
				 * If we already have plenty of memory free for
				 * compaction in this zone, don't free any more.
				 * Even though compaction is invoked for any
				 * non-zero order, only frequent costly order
				 * reclamation is disruptive enough to become a
2271 2272
				 * noticeable problem, like transparent huge
				 * page allocations.
2273
				 */
2274
				if (compaction_ready(zone, sc)) {
2275
					aborted_reclaim = true;
2276
					continue;
2277
				}
2278
			}
2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291
			/*
			 * This steals pages from memory cgroups over softlimit
			 * and returns the number of reclaimed pages and
			 * scanned pages. This works for global memory pressure
			 * and balancing, not for a memcg's limit.
			 */
			nr_soft_scanned = 0;
			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
						sc->order, sc->gfp_mask,
						&nr_soft_scanned);
			sc->nr_reclaimed += nr_soft_reclaimed;
			sc->nr_scanned += nr_soft_scanned;
			/* need some check for avoid more shrink_zone() */
2292
		}
2293

2294
		shrink_zone(zone, sc);
L
Linus Torvalds 已提交
2295
	}
2296

2297
	return aborted_reclaim;
2298 2299 2300 2301 2302 2303 2304
}

static bool zone_reclaimable(struct zone *zone)
{
	return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
}

2305
/* All zones in zonelist are unreclaimable? */
2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317
static bool all_unreclaimable(struct zonelist *zonelist,
		struct scan_control *sc)
{
	struct zoneref *z;
	struct zone *zone;

	for_each_zone_zonelist_nodemask(zone, z, zonelist,
			gfp_zone(sc->gfp_mask), sc->nodemask) {
		if (!populated_zone(zone))
			continue;
		if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
			continue;
2318 2319
		if (!zone->all_unreclaimable)
			return false;
2320 2321
	}

2322
	return true;
L
Linus Torvalds 已提交
2323
}
2324

L
Linus Torvalds 已提交
2325 2326 2327 2328 2329 2330 2331 2332
/*
 * This is the main entry point to direct page reclaim.
 *
 * If a full scan of the inactive list fails to free enough memory then we
 * are "out of memory" and something needs to be killed.
 *
 * If the caller is !__GFP_FS then the probability of a failure is reasonably
 * high - the zone may be full of dirty or under-writeback pages, which this
2333 2334 2335 2336
 * caller can't do much about.  We kick the writeback threads and take explicit
 * naps in the hope that some of these pages can be written.  But if the
 * allocating task holds filesystem locks which prevent writeout this might not
 * work, and the allocation attempt will fail.
2337 2338 2339
 *
 * returns:	0, if no pages reclaimed
 * 		else, the number of pages reclaimed
L
Linus Torvalds 已提交
2340
 */
2341
static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2342 2343
					struct scan_control *sc,
					struct shrink_control *shrink)
L
Linus Torvalds 已提交
2344
{
2345
	unsigned long total_scanned = 0;
L
Linus Torvalds 已提交
2346
	struct reclaim_state *reclaim_state = current->reclaim_state;
2347
	struct zoneref *z;
2348
	struct zone *zone;
2349
	unsigned long writeback_threshold;
2350
	bool aborted_reclaim;
L
Linus Torvalds 已提交
2351

2352 2353
	delayacct_freepages_start();

2354
	if (global_reclaim(sc))
2355
		count_vm_event(ALLOCSTALL);
L
Linus Torvalds 已提交
2356

2357
	do {
2358 2359
		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
				sc->priority);
2360
		sc->nr_scanned = 0;
2361
		aborted_reclaim = shrink_zones(zonelist, sc);
2362

2363 2364 2365 2366
		/*
		 * Don't shrink slabs when reclaiming memory from
		 * over limit cgroups
		 */
2367
		if (global_reclaim(sc)) {
2368
			unsigned long lru_pages = 0;
2369 2370
			for_each_zone_zonelist(zone, z, zonelist,
					gfp_zone(sc->gfp_mask)) {
2371 2372 2373 2374 2375 2376
				if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
					continue;

				lru_pages += zone_reclaimable_pages(zone);
			}

2377
			shrink_slab(shrink, sc->nr_scanned, lru_pages);
2378
			if (reclaim_state) {
2379
				sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2380 2381
				reclaim_state->reclaimed_slab = 0;
			}
L
Linus Torvalds 已提交
2382
		}
2383
		total_scanned += sc->nr_scanned;
2384
		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
L
Linus Torvalds 已提交
2385 2386
			goto out;

2387 2388 2389 2390 2391 2392 2393
		/*
		 * If we're getting trouble reclaiming, start doing
		 * writepage even in laptop mode.
		 */
		if (sc->priority < DEF_PRIORITY - 2)
			sc->may_writepage = 1;

L
Linus Torvalds 已提交
2394 2395 2396 2397 2398 2399 2400
		/*
		 * Try to write back as many pages as we just scanned.  This
		 * tends to cause slow streaming writers to write data to the
		 * disk smoothly, at the dirtying rate, which is nice.   But
		 * that's undesirable in laptop mode, where we *want* lumpy
		 * writeout.  So in laptop mode, write out the whole world.
		 */
2401 2402
		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
		if (total_scanned > writeback_threshold) {
2403 2404
			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
						WB_REASON_TRY_TO_FREE_PAGES);
2405
			sc->may_writepage = 1;
L
Linus Torvalds 已提交
2406
		}
2407
	} while (--sc->priority >= 0);
2408

L
Linus Torvalds 已提交
2409
out:
2410 2411
	delayacct_freepages_end();

2412 2413 2414
	if (sc->nr_reclaimed)
		return sc->nr_reclaimed;

2415 2416 2417 2418 2419 2420 2421 2422
	/*
	 * As hibernation is going on, kswapd is freezed so that it can't mark
	 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
	 * check.
	 */
	if (oom_killer_disabled)
		return 0;

2423 2424
	/* Aborted reclaim to try compaction? don't OOM, then */
	if (aborted_reclaim)
2425 2426
		return 1;

2427
	/* top priority shrink_zones still had more to do? don't OOM, then */
2428
	if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
2429 2430 2431
		return 1;

	return 0;
L
Linus Torvalds 已提交
2432 2433
}

2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463
static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
{
	struct zone *zone;
	unsigned long pfmemalloc_reserve = 0;
	unsigned long free_pages = 0;
	int i;
	bool wmark_ok;

	for (i = 0; i <= ZONE_NORMAL; i++) {
		zone = &pgdat->node_zones[i];
		pfmemalloc_reserve += min_wmark_pages(zone);
		free_pages += zone_page_state(zone, NR_FREE_PAGES);
	}

	wmark_ok = free_pages > pfmemalloc_reserve / 2;

	/* kswapd must be awake if processes are being throttled */
	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
		pgdat->classzone_idx = min(pgdat->classzone_idx,
						(enum zone_type)ZONE_NORMAL);
		wake_up_interruptible(&pgdat->kswapd_wait);
	}

	return wmark_ok;
}

/*
 * Throttle direct reclaimers if backing storage is backed by the network
 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
 * depleted. kswapd will continue to make progress and wake the processes
2464 2465 2466 2467
 * when the low watermark is reached.
 *
 * Returns true if a fatal signal was delivered during throttling. If this
 * happens, the page allocator should not consider triggering the OOM killer.
2468
 */
2469
static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483
					nodemask_t *nodemask)
{
	struct zone *zone;
	int high_zoneidx = gfp_zone(gfp_mask);
	pg_data_t *pgdat;

	/*
	 * Kernel threads should not be throttled as they may be indirectly
	 * responsible for cleaning pages necessary for reclaim to make forward
	 * progress. kjournald for example may enter direct reclaim while
	 * committing a transaction where throttling it could forcing other
	 * processes to block on log_wait_commit().
	 */
	if (current->flags & PF_KTHREAD)
2484 2485 2486 2487 2488 2489 2490 2491
		goto out;

	/*
	 * If a fatal signal is pending, this process should not throttle.
	 * It should return quickly so it can exit and free its memory
	 */
	if (fatal_signal_pending(current))
		goto out;
2492 2493 2494 2495 2496

	/* Check if the pfmemalloc reserves are ok */
	first_zones_zonelist(zonelist, high_zoneidx, NULL, &zone);
	pgdat = zone->zone_pgdat;
	if (pfmemalloc_watermark_ok(pgdat))
2497
		goto out;
2498

2499 2500 2501
	/* Account for the throttling */
	count_vm_event(PGSCAN_DIRECT_THROTTLE);

2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512
	/*
	 * If the caller cannot enter the filesystem, it's possible that it
	 * is due to the caller holding an FS lock or performing a journal
	 * transaction in the case of a filesystem like ext[3|4]. In this case,
	 * it is not safe to block on pfmemalloc_wait as kswapd could be
	 * blocked waiting on the same lock. Instead, throttle for up to a
	 * second before continuing.
	 */
	if (!(gfp_mask & __GFP_FS)) {
		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
			pfmemalloc_watermark_ok(pgdat), HZ);
2513 2514

		goto check_pending;
2515 2516 2517 2518 2519
	}

	/* Throttle until kswapd wakes the process */
	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
		pfmemalloc_watermark_ok(pgdat));
2520 2521 2522 2523 2524 2525 2526

check_pending:
	if (fatal_signal_pending(current))
		return true;

out:
	return false;
2527 2528
}

2529
unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2530
				gfp_t gfp_mask, nodemask_t *nodemask)
2531
{
2532
	unsigned long nr_reclaimed;
2533
	struct scan_control sc = {
2534
		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
2535
		.may_writepage = !laptop_mode,
2536
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2537
		.may_unmap = 1,
2538
		.may_swap = 1,
2539
		.order = order,
2540
		.priority = DEF_PRIORITY,
2541
		.target_mem_cgroup = NULL,
2542
		.nodemask = nodemask,
2543
	};
2544 2545 2546
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
	};
2547

2548
	/*
2549 2550 2551
	 * Do not enter reclaim if fatal signal was delivered while throttled.
	 * 1 is returned so that the page allocator does not OOM kill at this
	 * point.
2552
	 */
2553
	if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2554 2555
		return 1;

2556 2557 2558 2559
	trace_mm_vmscan_direct_reclaim_begin(order,
				sc.may_writepage,
				gfp_mask);

2560
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2561 2562 2563 2564

	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
2565 2566
}

A
Andrew Morton 已提交
2567
#ifdef CONFIG_MEMCG
2568

2569
unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2570
						gfp_t gfp_mask, bool noswap,
2571 2572
						struct zone *zone,
						unsigned long *nr_scanned)
2573 2574
{
	struct scan_control sc = {
2575
		.nr_scanned = 0,
2576
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2577 2578 2579 2580
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
		.may_swap = !noswap,
		.order = 0,
2581
		.priority = 0,
2582
		.target_mem_cgroup = memcg,
2583
	};
2584
	struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2585

2586 2587
	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2588

2589
	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2590 2591 2592
						      sc.may_writepage,
						      sc.gfp_mask);

2593 2594 2595 2596 2597 2598 2599
	/*
	 * NOTE: Although we can get the priority field, using it
	 * here is not a good idea, since it limits the pages we can scan.
	 * if we don't reclaim here, the shrink_zone from balance_pgdat
	 * will pick up pages from other mem cgroup's as well. We hack
	 * the priority and make it zero.
	 */
2600
	shrink_lruvec(lruvec, &sc);
2601 2602 2603

	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);

2604
	*nr_scanned = sc.nr_scanned;
2605 2606 2607
	return sc.nr_reclaimed;
}

2608
unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
K
KOSAKI Motohiro 已提交
2609
					   gfp_t gfp_mask,
2610
					   bool noswap)
2611
{
2612
	struct zonelist *zonelist;
2613
	unsigned long nr_reclaimed;
2614
	int nid;
2615 2616
	struct scan_control sc = {
		.may_writepage = !laptop_mode,
2617
		.may_unmap = 1,
2618
		.may_swap = !noswap,
2619
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2620
		.order = 0,
2621
		.priority = DEF_PRIORITY,
2622
		.target_mem_cgroup = memcg,
2623
		.nodemask = NULL, /* we don't care the placement */
2624 2625 2626 2627 2628
		.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
	};
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
2629 2630
	};

2631 2632 2633 2634 2635
	/*
	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
	 * take care of from where we get pages. So the node where we start the
	 * scan does not need to be the current node.
	 */
2636
	nid = mem_cgroup_select_victim_node(memcg);
2637 2638

	zonelist = NODE_DATA(nid)->node_zonelists;
2639 2640 2641 2642 2643

	trace_mm_vmscan_memcg_reclaim_begin(0,
					    sc.may_writepage,
					    sc.gfp_mask);

2644
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2645 2646 2647 2648

	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
2649 2650 2651
}
#endif

2652
static void age_active_anon(struct zone *zone, struct scan_control *sc)
2653
{
2654
	struct mem_cgroup *memcg;
2655

2656 2657 2658 2659 2660
	if (!total_swap_pages)
		return;

	memcg = mem_cgroup_iter(NULL, NULL, NULL);
	do {
2661
		struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2662

2663
		if (inactive_anon_is_low(lruvec))
2664
			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2665
					   sc, LRU_ACTIVE_ANON);
2666 2667 2668

		memcg = mem_cgroup_iter(NULL, memcg, NULL);
	} while (memcg);
2669 2670
}

2671 2672 2673 2674 2675 2676 2677
static bool zone_balanced(struct zone *zone, int order,
			  unsigned long balance_gap, int classzone_idx)
{
	if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
				    balance_gap, classzone_idx, 0))
		return false;

2678 2679
	if (IS_ENABLED(CONFIG_COMPACTION) && order &&
	    !compaction_suitable(zone, order))
2680 2681 2682 2683 2684
		return false;

	return true;
}

2685
/*
2686 2687 2688 2689 2690 2691 2692 2693 2694 2695
 * pgdat_balanced() is used when checking if a node is balanced.
 *
 * For order-0, all zones must be balanced!
 *
 * For high-order allocations only zones that meet watermarks and are in a
 * zone allowed by the callers classzone_idx are added to balanced_pages. The
 * total of balanced pages must be at least 25% of the zones allowed by
 * classzone_idx for the node to be considered balanced. Forcing all zones to
 * be balanced for high orders can cause excessive reclaim when there are
 * imbalanced zones.
2696 2697 2698 2699
 * The choice of 25% is due to
 *   o a 16M DMA zone that is balanced will not balance a zone on any
 *     reasonable sized machine
 *   o On all other machines, the top zone must be at least a reasonable
L
Lucas De Marchi 已提交
2700
 *     percentage of the middle zones. For example, on 32-bit x86, highmem
2701 2702 2703 2704
 *     would need to be at least 256M for it to be balance a whole node.
 *     Similarly, on x86-64 the Normal zone would need to be at least 1G
 *     to balance a node on its own. These seemed like reasonable ratios.
 */
2705
static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
2706
{
2707
	unsigned long managed_pages = 0;
2708
	unsigned long balanced_pages = 0;
2709 2710
	int i;

2711 2712 2713
	/* Check the watermark levels */
	for (i = 0; i <= classzone_idx; i++) {
		struct zone *zone = pgdat->node_zones + i;
2714

2715 2716 2717
		if (!populated_zone(zone))
			continue;

2718
		managed_pages += zone->managed_pages;
2719 2720 2721 2722 2723 2724 2725 2726 2727

		/*
		 * A special case here:
		 *
		 * balance_pgdat() skips over all_unreclaimable after
		 * DEF_PRIORITY. Effectively, it considers them balanced so
		 * they must be considered balanced here as well!
		 */
		if (zone->all_unreclaimable) {
2728
			balanced_pages += zone->managed_pages;
2729 2730 2731 2732
			continue;
		}

		if (zone_balanced(zone, order, 0, i))
2733
			balanced_pages += zone->managed_pages;
2734 2735 2736 2737 2738
		else if (!order)
			return false;
	}

	if (order)
2739
		return balanced_pages >= (managed_pages >> 2);
2740 2741
	else
		return true;
2742 2743
}

2744 2745 2746 2747 2748 2749 2750
/*
 * Prepare kswapd for sleeping. This verifies that there are no processes
 * waiting in throttle_direct_reclaim() and that watermarks have been met.
 *
 * Returns true if kswapd is ready to sleep
 */
static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
2751
					int classzone_idx)
2752 2753 2754
{
	/* If a direct reclaimer woke kswapd within HZ/10, it's premature */
	if (remaining)
2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769
		return false;

	/*
	 * There is a potential race between when kswapd checks its watermarks
	 * and a process gets throttled. There is also a potential race if
	 * processes get throttled, kswapd wakes, a large process exits therby
	 * balancing the zones that causes kswapd to miss a wakeup. If kswapd
	 * is going to sleep, no process should be sleeping on pfmemalloc_wait
	 * so wake them now if necessary. If necessary, processes will wake
	 * kswapd and get throttled again
	 */
	if (waitqueue_active(&pgdat->pfmemalloc_wait)) {
		wake_up(&pgdat->pfmemalloc_wait);
		return false;
	}
2770

2771
	return pgdat_balanced(pgdat, order, classzone_idx);
2772 2773
}

2774 2775 2776
/*
 * kswapd shrinks the zone by the number of pages required to reach
 * the high watermark.
2777 2778
 *
 * Returns true if kswapd scanned at least the requested number of pages to
2779 2780
 * reclaim or if the lack of progress was due to pages under writeback.
 * This is used to determine if the scanning priority needs to be raised.
2781
 */
2782
static bool kswapd_shrink_zone(struct zone *zone,
2783
			       int classzone_idx,
2784
			       struct scan_control *sc,
2785 2786
			       unsigned long lru_pages,
			       unsigned long *nr_attempted)
2787 2788
{
	unsigned long nr_slab;
2789 2790
	int testorder = sc->order;
	unsigned long balance_gap;
2791 2792 2793 2794
	struct reclaim_state *reclaim_state = current->reclaim_state;
	struct shrink_control shrink = {
		.gfp_mask = sc->gfp_mask,
	};
2795
	bool lowmem_pressure;
2796 2797 2798

	/* Reclaim above the high watermark. */
	sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));
2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829

	/*
	 * Kswapd reclaims only single pages with compaction enabled. Trying
	 * too hard to reclaim until contiguous free pages have become
	 * available can hurt performance by evicting too much useful data
	 * from memory. Do not reclaim more than needed for compaction.
	 */
	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
			compaction_suitable(zone, sc->order) !=
				COMPACT_SKIPPED)
		testorder = 0;

	/*
	 * We put equal pressure on every zone, unless one zone has way too
	 * many pages free already. The "too many pages" is defined as the
	 * high wmark plus a "gap" where the gap is either the low
	 * watermark or 1% of the zone, whichever is smaller.
	 */
	balance_gap = min(low_wmark_pages(zone),
		(zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
		KSWAPD_ZONE_BALANCE_GAP_RATIO);

	/*
	 * If there is no low memory pressure or the zone is balanced then no
	 * reclaim is necessary
	 */
	lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone));
	if (!lowmem_pressure && zone_balanced(zone, testorder,
						balance_gap, classzone_idx))
		return true;

2830 2831 2832 2833 2834 2835
	shrink_zone(zone, sc);

	reclaim_state->reclaimed_slab = 0;
	nr_slab = shrink_slab(&shrink, sc->nr_scanned, lru_pages);
	sc->nr_reclaimed += reclaim_state->reclaimed_slab;

2836 2837 2838
	/* Account for the number of pages attempted to reclaim */
	*nr_attempted += sc->nr_to_reclaim;

2839 2840
	if (nr_slab == 0 && !zone_reclaimable(zone))
		zone->all_unreclaimable = 1;
2841

2842 2843
	zone_clear_flag(zone, ZONE_WRITEBACK);

2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855
	/*
	 * If a zone reaches its high watermark, consider it to be no longer
	 * congested. It's possible there are dirty pages backed by congested
	 * BDIs but as pressure is relieved, speculatively avoid congestion
	 * waits.
	 */
	if (!zone->all_unreclaimable &&
	    zone_balanced(zone, testorder, 0, classzone_idx)) {
		zone_clear_flag(zone, ZONE_CONGESTED);
		zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
	}

2856
	return sc->nr_scanned >= sc->nr_to_reclaim;
2857 2858
}

L
Linus Torvalds 已提交
2859 2860
/*
 * For kswapd, balance_pgdat() will work across all this node's zones until
2861
 * they are all at high_wmark_pages(zone).
L
Linus Torvalds 已提交
2862
 *
2863
 * Returns the final order kswapd was reclaiming at
L
Linus Torvalds 已提交
2864 2865 2866 2867 2868 2869 2870 2871 2872 2873
 *
 * There is special handling here for zones which are full of pinned pages.
 * This can happen if the pages are all mlocked, or if they are all used by
 * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
 * What we do is to detect the case where all pages in the zone have been
 * scanned twice and there has been zero successful reclaim.  Mark the zone as
 * dead and from now on, only perform a short scan.  Basically we're polling
 * the zone for when the problem goes away.
 *
 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2874 2875 2876 2877 2878
 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
 * lower zones regardless of the number of free pages in the lower zones. This
 * interoperates with the page allocator fallback scheme to ensure that aging
 * of pages is balanced across the zones.
L
Linus Torvalds 已提交
2879
 */
2880
static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2881
							int *classzone_idx)
L
Linus Torvalds 已提交
2882 2883
{
	int i;
2884
	int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
2885 2886
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
2887 2888
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
2889
		.priority = DEF_PRIORITY,
2890
		.may_unmap = 1,
2891
		.may_swap = 1,
2892
		.may_writepage = !laptop_mode,
A
Andy Whitcroft 已提交
2893
		.order = order,
2894
		.target_mem_cgroup = NULL,
2895
	};
2896
	count_vm_event(PAGEOUTRUN);
L
Linus Torvalds 已提交
2897

2898
	do {
L
Linus Torvalds 已提交
2899
		unsigned long lru_pages = 0;
2900
		unsigned long nr_attempted = 0;
2901
		bool raise_priority = true;
2902
		bool pgdat_needs_compaction = (order > 0);
2903 2904

		sc.nr_reclaimed = 0;
L
Linus Torvalds 已提交
2905

2906 2907 2908 2909 2910 2911
		/*
		 * Scan in the highmem->dma direction for the highest
		 * zone which needs scanning
		 */
		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
			struct zone *zone = pgdat->node_zones + i;
L
Linus Torvalds 已提交
2912

2913 2914
			if (!populated_zone(zone))
				continue;
L
Linus Torvalds 已提交
2915

2916 2917
			if (zone->all_unreclaimable &&
			    sc.priority != DEF_PRIORITY)
2918
				continue;
L
Linus Torvalds 已提交
2919

2920 2921 2922 2923
			/*
			 * Do some background aging of the anon list, to give
			 * pages a chance to be referenced before reclaiming.
			 */
2924
			age_active_anon(zone, &sc);
2925

2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936
			/*
			 * If the number of buffer_heads in the machine
			 * exceeds the maximum allowed level and this node
			 * has a highmem zone, force kswapd to reclaim from
			 * it to relieve lowmem pressure.
			 */
			if (buffer_heads_over_limit && is_highmem_idx(i)) {
				end_zone = i;
				break;
			}

2937
			if (!zone_balanced(zone, order, 0, 0)) {
2938
				end_zone = i;
A
Andrew Morton 已提交
2939
				break;
2940
			} else {
2941 2942 2943 2944
				/*
				 * If balanced, clear the dirty and congested
				 * flags
				 */
2945
				zone_clear_flag(zone, ZONE_CONGESTED);
2946
				zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
L
Linus Torvalds 已提交
2947 2948
			}
		}
2949

2950
		if (i < 0)
A
Andrew Morton 已提交
2951 2952
			goto out;

L
Linus Torvalds 已提交
2953 2954 2955
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;

2956 2957 2958
			if (!populated_zone(zone))
				continue;

2959
			lru_pages += zone_reclaimable_pages(zone);
2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970

			/*
			 * If any zone is currently balanced then kswapd will
			 * not call compaction as it is expected that the
			 * necessary pages are already available.
			 */
			if (pgdat_needs_compaction &&
					zone_watermark_ok(zone, order,
						low_wmark_pages(zone),
						*classzone_idx, 0))
				pgdat_needs_compaction = false;
L
Linus Torvalds 已提交
2971 2972
		}

2973 2974 2975 2976 2977 2978 2979
		/*
		 * If we're getting trouble reclaiming, start doing writepage
		 * even in laptop mode.
		 */
		if (sc.priority < DEF_PRIORITY - 2)
			sc.may_writepage = 1;

L
Linus Torvalds 已提交
2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991
		/*
		 * Now scan the zone in the dma->highmem direction, stopping
		 * at the last zone which needs scanning.
		 *
		 * We do this because the page allocator works in the opposite
		 * direction.  This prevents the page allocator from allocating
		 * pages behind kswapd's direction of progress, which would
		 * cause too much scanning of the lower zones.
		 */
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;

2992
			if (!populated_zone(zone))
L
Linus Torvalds 已提交
2993 2994
				continue;

2995 2996
			if (zone->all_unreclaimable &&
			    sc.priority != DEF_PRIORITY)
L
Linus Torvalds 已提交
2997 2998 2999
				continue;

			sc.nr_scanned = 0;
3000

3001
			nr_soft_scanned = 0;
3002 3003 3004
			/*
			 * Call soft limit reclaim before calling shrink_zone.
			 */
3005 3006 3007 3008
			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
							order, sc.gfp_mask,
							&nr_soft_scanned);
			sc.nr_reclaimed += nr_soft_reclaimed;
3009

3010
			/*
3011 3012 3013 3014
			 * There should be no need to raise the scanning
			 * priority if enough pages are already being scanned
			 * that that high watermark would be met at 100%
			 * efficiency.
3015
			 */
3016 3017 3018
			if (kswapd_shrink_zone(zone, end_zone, &sc,
					lru_pages, &nr_attempted))
				raise_priority = false;
L
Linus Torvalds 已提交
3019
		}
3020 3021 3022 3023 3024 3025 3026 3027 3028 3029

		/*
		 * If the low watermark is met there is no need for processes
		 * to be throttled on pfmemalloc_wait as they should not be
		 * able to safely make forward progress. Wake them
		 */
		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
				pfmemalloc_watermark_ok(pgdat))
			wake_up(&pgdat->pfmemalloc_wait);

L
Linus Torvalds 已提交
3030
		/*
3031 3032 3033 3034 3035 3036
		 * Fragmentation may mean that the system cannot be rebalanced
		 * for high-order allocations in all zones. If twice the
		 * allocation size has been reclaimed and the zones are still
		 * not balanced then recheck the watermarks at order-0 to
		 * prevent kswapd reclaiming excessively. Assume that a
		 * process requested a high-order can direct reclaim/compact.
L
Linus Torvalds 已提交
3037
		 */
3038 3039
		if (order && sc.nr_reclaimed >= 2UL << order)
			order = sc.order = 0;
3040

3041 3042 3043
		/* Check if kswapd should be suspending */
		if (try_to_freeze() || kthread_should_stop())
			break;
3044

3045 3046 3047 3048 3049 3050 3051
		/*
		 * Compact if necessary and kswapd is reclaiming at least the
		 * high watermark number of pages as requsted
		 */
		if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted)
			compact_pgdat(pgdat, order);

3052
		/*
3053 3054
		 * Raise priority if scanning rate is too low or there was no
		 * progress in reclaiming pages
3055
		 */
3056 3057
		if (raise_priority || !sc.nr_reclaimed)
			sc.priority--;
3058
	} while (sc.priority >= 1 &&
3059
		 !pgdat_balanced(pgdat, order, *classzone_idx));
L
Linus Torvalds 已提交
3060

3061
out:
3062
	/*
3063
	 * Return the order we were reclaiming at so prepare_kswapd_sleep()
3064 3065 3066 3067
	 * makes a decision on the order we were last reclaiming at. However,
	 * if another caller entered the allocator slow path while kswapd
	 * was awake, order will remain at the higher level
	 */
3068
	*classzone_idx = end_zone;
3069
	return order;
L
Linus Torvalds 已提交
3070 3071
}

3072
static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3073 3074 3075 3076 3077 3078 3079 3080 3081 3082
{
	long remaining = 0;
	DEFINE_WAIT(wait);

	if (freezing(current) || kthread_should_stop())
		return;

	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);

	/* Try to sleep for a short interval */
3083
	if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3084 3085 3086 3087 3088 3089 3090 3091 3092
		remaining = schedule_timeout(HZ/10);
		finish_wait(&pgdat->kswapd_wait, &wait);
		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
	}

	/*
	 * After a short sleep, check if it was a premature sleep. If not, then
	 * go fully to sleep until explicitly woken up.
	 */
3093
	if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104
		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);

		/*
		 * vmstat counters are not perfectly accurate and the estimated
		 * value for counters such as NR_FREE_PAGES can deviate from the
		 * true value by nr_online_cpus * threshold. To avoid the zone
		 * watermarks being breached while under pressure, we reduce the
		 * per-cpu vmstat threshold while kswapd is awake and restore
		 * them before going back to sleep.
		 */
		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3105

3106 3107 3108 3109 3110 3111 3112 3113
		/*
		 * Compaction records what page blocks it recently failed to
		 * isolate pages from and skips them in the future scanning.
		 * When kswapd is going to sleep, it is reasonable to assume
		 * that pages and compaction may succeed so reset the cache.
		 */
		reset_isolation_suitable(pgdat);

3114 3115 3116
		if (!kthread_should_stop())
			schedule();

3117 3118 3119 3120 3121 3122 3123 3124 3125 3126
		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
	} else {
		if (remaining)
			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
		else
			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
	}
	finish_wait(&pgdat->kswapd_wait, &wait);
}

L
Linus Torvalds 已提交
3127 3128
/*
 * The background pageout daemon, started as a kernel thread
3129
 * from the init process.
L
Linus Torvalds 已提交
3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141
 *
 * This basically trickles out pages so that we have _some_
 * free memory available even if there is no other activity
 * that frees anything up. This is needed for things like routing
 * etc, where we otherwise might have all activity going on in
 * asynchronous contexts that cannot page things out.
 *
 * If there are applications that are active memory-allocators
 * (most normal use), this basically shouldn't matter.
 */
static int kswapd(void *p)
{
3142
	unsigned long order, new_order;
3143
	unsigned balanced_order;
3144
	int classzone_idx, new_classzone_idx;
3145
	int balanced_classzone_idx;
L
Linus Torvalds 已提交
3146 3147
	pg_data_t *pgdat = (pg_data_t*)p;
	struct task_struct *tsk = current;
3148

L
Linus Torvalds 已提交
3149 3150 3151
	struct reclaim_state reclaim_state = {
		.reclaimed_slab = 0,
	};
3152
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
L
Linus Torvalds 已提交
3153

3154 3155
	lockdep_set_current_reclaim_state(GFP_KERNEL);

R
Rusty Russell 已提交
3156
	if (!cpumask_empty(cpumask))
3157
		set_cpus_allowed_ptr(tsk, cpumask);
L
Linus Torvalds 已提交
3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171
	current->reclaim_state = &reclaim_state;

	/*
	 * Tell the memory management that we're a "memory allocator",
	 * and that if we need more memory we should get access to it
	 * regardless (see "__alloc_pages()"). "kswapd" should
	 * never get caught in the normal page freeing logic.
	 *
	 * (Kswapd normally doesn't need memory anyway, but sometimes
	 * you need a small amount of memory in order to be able to
	 * page out something else, and this flag essentially protects
	 * us from recursively trying to free more memory as we're
	 * trying to free the first piece of memory in the first place).
	 */
3172
	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3173
	set_freezable();
L
Linus Torvalds 已提交
3174

3175
	order = new_order = 0;
3176
	balanced_order = 0;
3177
	classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
3178
	balanced_classzone_idx = classzone_idx;
L
Linus Torvalds 已提交
3179
	for ( ; ; ) {
3180
		bool ret;
3181

3182 3183 3184 3185 3186
		/*
		 * If the last balance_pgdat was unsuccessful it's unlikely a
		 * new request of a similar or harder type will succeed soon
		 * so consider going to sleep on the basis we reclaimed at
		 */
3187 3188
		if (balanced_classzone_idx >= new_classzone_idx &&
					balanced_order == new_order) {
3189 3190 3191 3192 3193 3194
			new_order = pgdat->kswapd_max_order;
			new_classzone_idx = pgdat->classzone_idx;
			pgdat->kswapd_max_order =  0;
			pgdat->classzone_idx = pgdat->nr_zones - 1;
		}

3195
		if (order < new_order || classzone_idx > new_classzone_idx) {
L
Linus Torvalds 已提交
3196 3197
			/*
			 * Don't sleep if someone wants a larger 'order'
3198
			 * allocation or has tigher zone constraints
L
Linus Torvalds 已提交
3199 3200
			 */
			order = new_order;
3201
			classzone_idx = new_classzone_idx;
L
Linus Torvalds 已提交
3202
		} else {
3203 3204
			kswapd_try_to_sleep(pgdat, balanced_order,
						balanced_classzone_idx);
L
Linus Torvalds 已提交
3205
			order = pgdat->kswapd_max_order;
3206
			classzone_idx = pgdat->classzone_idx;
3207 3208
			new_order = order;
			new_classzone_idx = classzone_idx;
3209
			pgdat->kswapd_max_order = 0;
3210
			pgdat->classzone_idx = pgdat->nr_zones - 1;
L
Linus Torvalds 已提交
3211 3212
		}

3213 3214 3215 3216 3217 3218 3219 3220
		ret = try_to_freeze();
		if (kthread_should_stop())
			break;

		/*
		 * We can speed up thawing tasks if we don't call balance_pgdat
		 * after returning from the refrigerator
		 */
3221 3222
		if (!ret) {
			trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
3223 3224 3225
			balanced_classzone_idx = classzone_idx;
			balanced_order = balance_pgdat(pgdat, order,
						&balanced_classzone_idx);
3226
		}
L
Linus Torvalds 已提交
3227
	}
3228 3229

	current->reclaim_state = NULL;
L
Linus Torvalds 已提交
3230 3231 3232 3233 3234 3235
	return 0;
}

/*
 * A zone is low on free memory, so wake its kswapd task to service it.
 */
3236
void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
L
Linus Torvalds 已提交
3237 3238 3239
{
	pg_data_t *pgdat;

3240
	if (!populated_zone(zone))
L
Linus Torvalds 已提交
3241 3242
		return;

3243
	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
L
Linus Torvalds 已提交
3244
		return;
3245
	pgdat = zone->zone_pgdat;
3246
	if (pgdat->kswapd_max_order < order) {
L
Linus Torvalds 已提交
3247
		pgdat->kswapd_max_order = order;
3248 3249
		pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
	}
3250
	if (!waitqueue_active(&pgdat->kswapd_wait))
L
Linus Torvalds 已提交
3251
		return;
3252 3253 3254 3255
	if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
		return;

	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3256
	wake_up_interruptible(&pgdat->kswapd_wait);
L
Linus Torvalds 已提交
3257 3258
}

3259 3260 3261 3262 3263 3264 3265 3266
/*
 * The reclaimable count would be mostly accurate.
 * The less reclaimable pages may be
 * - mlocked pages, which will be moved to unevictable list when encountered
 * - mapped pages, which may require several travels to be reclaimed
 * - dirty pages, which is not "instantly" reclaimable
 */
unsigned long global_reclaimable_pages(void)
3267
{
3268 3269 3270 3271 3272
	int nr;

	nr = global_page_state(NR_ACTIVE_FILE) +
	     global_page_state(NR_INACTIVE_FILE);

3273
	if (get_nr_swap_pages() > 0)
3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286
		nr += global_page_state(NR_ACTIVE_ANON) +
		      global_page_state(NR_INACTIVE_ANON);

	return nr;
}

unsigned long zone_reclaimable_pages(struct zone *zone)
{
	int nr;

	nr = zone_page_state(zone, NR_ACTIVE_FILE) +
	     zone_page_state(zone, NR_INACTIVE_FILE);

3287
	if (get_nr_swap_pages() > 0)
3288 3289 3290 3291
		nr += zone_page_state(zone, NR_ACTIVE_ANON) +
		      zone_page_state(zone, NR_INACTIVE_ANON);

	return nr;
3292 3293
}

3294
#ifdef CONFIG_HIBERNATION
L
Linus Torvalds 已提交
3295
/*
3296
 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3297 3298 3299 3300 3301
 * freed pages.
 *
 * Rather than trying to age LRUs the aim is to preserve the overall
 * LRU order by reclaiming preferentially
 * inactive > active > active referenced > active mapped
L
Linus Torvalds 已提交
3302
 */
3303
unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
L
Linus Torvalds 已提交
3304
{
3305 3306
	struct reclaim_state reclaim_state;
	struct scan_control sc = {
3307 3308 3309
		.gfp_mask = GFP_HIGHUSER_MOVABLE,
		.may_swap = 1,
		.may_unmap = 1,
3310
		.may_writepage = 1,
3311 3312 3313
		.nr_to_reclaim = nr_to_reclaim,
		.hibernation_mode = 1,
		.order = 0,
3314
		.priority = DEF_PRIORITY,
L
Linus Torvalds 已提交
3315
	};
3316 3317 3318 3319
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
	};
	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3320 3321
	struct task_struct *p = current;
	unsigned long nr_reclaimed;
L
Linus Torvalds 已提交
3322

3323 3324 3325 3326
	p->flags |= PF_MEMALLOC;
	lockdep_set_current_reclaim_state(sc.gfp_mask);
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
3327

3328
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
3329

3330 3331 3332
	p->reclaim_state = NULL;
	lockdep_clear_current_reclaim_state();
	p->flags &= ~PF_MEMALLOC;
3333

3334
	return nr_reclaimed;
L
Linus Torvalds 已提交
3335
}
3336
#endif /* CONFIG_HIBERNATION */
L
Linus Torvalds 已提交
3337 3338 3339 3340 3341

/* It's optimal to keep kswapds on the same CPUs as their memory, but
   not required for correctness.  So if the last cpu in a node goes
   away, we get changed to run anywhere: as the first one comes back,
   restore their cpu bindings. */
3342 3343
static int cpu_callback(struct notifier_block *nfb, unsigned long action,
			void *hcpu)
L
Linus Torvalds 已提交
3344
{
3345
	int nid;
L
Linus Torvalds 已提交
3346

3347
	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3348
		for_each_node_state(nid, N_MEMORY) {
3349
			pg_data_t *pgdat = NODE_DATA(nid);
3350 3351 3352
			const struct cpumask *mask;

			mask = cpumask_of_node(pgdat->node_id);
3353

3354
			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
L
Linus Torvalds 已提交
3355
				/* One of our CPUs online: restore mask */
3356
				set_cpus_allowed_ptr(pgdat->kswapd, mask);
L
Linus Torvalds 已提交
3357 3358 3359 3360 3361
		}
	}
	return NOTIFY_OK;
}

3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377
/*
 * This kswapd start function will be called by init and node-hot-add.
 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
 */
int kswapd_run(int nid)
{
	pg_data_t *pgdat = NODE_DATA(nid);
	int ret = 0;

	if (pgdat->kswapd)
		return 0;

	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
	if (IS_ERR(pgdat->kswapd)) {
		/* failure at boot is fatal */
		BUG_ON(system_state == SYSTEM_BOOTING);
3378 3379
		pr_err("Failed to start kswapd on node %d\n", nid);
		ret = PTR_ERR(pgdat->kswapd);
3380
		pgdat->kswapd = NULL;
3381 3382 3383 3384
	}
	return ret;
}

3385
/*
3386 3387
 * Called by memory hotplug when all memory in a node is offlined.  Caller must
 * hold lock_memory_hotplug().
3388 3389 3390 3391 3392
 */
void kswapd_stop(int nid)
{
	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;

3393
	if (kswapd) {
3394
		kthread_stop(kswapd);
3395 3396
		NODE_DATA(nid)->kswapd = NULL;
	}
3397 3398
}

L
Linus Torvalds 已提交
3399 3400
static int __init kswapd_init(void)
{
3401
	int nid;
3402

L
Linus Torvalds 已提交
3403
	swap_setup();
3404
	for_each_node_state(nid, N_MEMORY)
3405
 		kswapd_run(nid);
L
Linus Torvalds 已提交
3406 3407 3408 3409 3410
	hotcpu_notifier(cpu_callback, 0);
	return 0;
}

module_init(kswapd_init)
3411 3412 3413 3414 3415 3416 3417 3418 3419 3420

#ifdef CONFIG_NUMA
/*
 * Zone reclaim mode
 *
 * If non-zero call zone_reclaim when the number of free pages falls below
 * the watermarks.
 */
int zone_reclaim_mode __read_mostly;

3421
#define RECLAIM_OFF 0
3422
#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3423 3424 3425
#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
#define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */

3426 3427 3428 3429 3430 3431 3432
/*
 * Priority for ZONE_RECLAIM. This determines the fraction of pages
 * of a node considered for each zone_reclaim. 4 scans 1/16th of
 * a zone.
 */
#define ZONE_RECLAIM_PRIORITY 4

3433 3434 3435 3436 3437 3438
/*
 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
 * occur.
 */
int sysctl_min_unmapped_ratio = 1;

3439 3440 3441 3442 3443 3444
/*
 * If the number of slab pages in a zone grows beyond this percentage then
 * slab reclaim needs to occur.
 */
int sysctl_min_slab_ratio = 5;

3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486
static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
{
	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
	unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
		zone_page_state(zone, NR_ACTIVE_FILE);

	/*
	 * It's possible for there to be more file mapped pages than
	 * accounted for by the pages on the file LRU lists because
	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
	 */
	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
}

/* Work out how many page cache pages we can reclaim in this reclaim_mode */
static long zone_pagecache_reclaimable(struct zone *zone)
{
	long nr_pagecache_reclaimable;
	long delta = 0;

	/*
	 * If RECLAIM_SWAP is set, then all file pages are considered
	 * potentially reclaimable. Otherwise, we have to worry about
	 * pages like swapcache and zone_unmapped_file_pages() provides
	 * a better estimate
	 */
	if (zone_reclaim_mode & RECLAIM_SWAP)
		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
	else
		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);

	/* If we can't clean pages, remove dirty pages from consideration */
	if (!(zone_reclaim_mode & RECLAIM_WRITE))
		delta += zone_page_state(zone, NR_FILE_DIRTY);

	/* Watch for any possible underflows due to delta */
	if (unlikely(delta > nr_pagecache_reclaimable))
		delta = nr_pagecache_reclaimable;

	return nr_pagecache_reclaimable - delta;
}

3487 3488 3489
/*
 * Try to free up some pages from this zone through reclaim.
 */
3490
static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3491
{
3492
	/* Minimum pages needed in order to stay on node */
3493
	const unsigned long nr_pages = 1 << order;
3494 3495
	struct task_struct *p = current;
	struct reclaim_state reclaim_state;
3496 3497
	struct scan_control sc = {
		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3498
		.may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3499
		.may_swap = 1,
3500
		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3501
		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
3502
		.order = order,
3503
		.priority = ZONE_RECLAIM_PRIORITY,
3504
	};
3505 3506 3507
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
	};
3508
	unsigned long nr_slab_pages0, nr_slab_pages1;
3509 3510

	cond_resched();
3511 3512 3513 3514 3515 3516
	/*
	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
	 * and we also need to be able to write out pages for RECLAIM_WRITE
	 * and RECLAIM_SWAP.
	 */
	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3517
	lockdep_set_current_reclaim_state(gfp_mask);
3518 3519
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
3520

3521
	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3522 3523 3524 3525 3526
		/*
		 * Free memory by calling shrink zone with increasing
		 * priorities until we have enough memory freed.
		 */
		do {
3527 3528
			shrink_zone(zone, &sc);
		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3529
	}
3530

3531 3532
	nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
	if (nr_slab_pages0 > zone->min_slab_pages) {
3533
		/*
3534
		 * shrink_slab() does not currently allow us to determine how
3535 3536 3537 3538
		 * many pages were freed in this zone. So we take the current
		 * number of slab pages and shake the slab until it is reduced
		 * by the same nr_pages that we used for reclaiming unmapped
		 * pages.
3539
		 *
3540 3541
		 * Note that shrink_slab will free memory on all zones and may
		 * take a long time.
3542
		 */
3543 3544 3545 3546
		for (;;) {
			unsigned long lru_pages = zone_reclaimable_pages(zone);

			/* No reclaimable slab or very low memory pressure */
3547
			if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3548 3549 3550 3551 3552 3553 3554 3555
				break;

			/* Freed enough memory */
			nr_slab_pages1 = zone_page_state(zone,
							NR_SLAB_RECLAIMABLE);
			if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
				break;
		}
3556 3557 3558 3559 3560

		/*
		 * Update nr_reclaimed by the number of slab pages we
		 * reclaimed from this zone.
		 */
3561 3562 3563
		nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
		if (nr_slab_pages1 < nr_slab_pages0)
			sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3564 3565
	}

3566
	p->reclaim_state = NULL;
3567
	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3568
	lockdep_clear_current_reclaim_state();
3569
	return sc.nr_reclaimed >= nr_pages;
3570
}
3571 3572 3573 3574

int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
{
	int node_id;
3575
	int ret;
3576 3577

	/*
3578 3579
	 * Zone reclaim reclaims unmapped file backed pages and
	 * slab pages if we are over the defined limits.
3580
	 *
3581 3582 3583 3584 3585
	 * A small portion of unmapped file backed pages is needed for
	 * file I/O otherwise pages read by file I/O will be immediately
	 * thrown out if the zone is overallocated. So we do not reclaim
	 * if less than a specified percentage of the zone is used by
	 * unmapped file backed pages.
3586
	 */
3587 3588
	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3589
		return ZONE_RECLAIM_FULL;
3590

3591
	if (zone->all_unreclaimable)
3592
		return ZONE_RECLAIM_FULL;
3593

3594
	/*
3595
	 * Do not scan if the allocation should not be delayed.
3596
	 */
3597
	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3598
		return ZONE_RECLAIM_NOSCAN;
3599 3600 3601 3602 3603 3604 3605

	/*
	 * Only run zone reclaim on the local zone or on zones that do not
	 * have associated processors. This will favor the local processor
	 * over remote processors and spread off node memory allocations
	 * as wide as possible.
	 */
3606
	node_id = zone_to_nid(zone);
3607
	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3608
		return ZONE_RECLAIM_NOSCAN;
3609 3610

	if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3611 3612
		return ZONE_RECLAIM_NOSCAN;

3613 3614 3615
	ret = __zone_reclaim(zone, gfp_mask, order);
	zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);

3616 3617 3618
	if (!ret)
		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);

3619
	return ret;
3620
}
3621
#endif
L
Lee Schermerhorn 已提交
3622 3623 3624 3625 3626 3627

/*
 * page_evictable - test whether a page is evictable
 * @page: the page to test
 *
 * Test whether page is evictable--i.e., should be placed on active/inactive
3628
 * lists vs unevictable list.
L
Lee Schermerhorn 已提交
3629 3630
 *
 * Reasons page might not be evictable:
3631
 * (1) page's mapping marked unevictable
N
Nick Piggin 已提交
3632
 * (2) page is part of an mlocked VMA
3633
 *
L
Lee Schermerhorn 已提交
3634
 */
3635
int page_evictable(struct page *page)
L
Lee Schermerhorn 已提交
3636
{
3637
	return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
L
Lee Schermerhorn 已提交
3638
}
3639

3640
#ifdef CONFIG_SHMEM
3641
/**
3642 3643 3644
 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
 * @pages:	array of pages to check
 * @nr_pages:	number of pages to check
3645
 *
3646
 * Checks pages for evictability and moves them to the appropriate lru list.
3647 3648
 *
 * This function is only used for SysV IPC SHM_UNLOCK.
3649
 */
3650
void check_move_unevictable_pages(struct page **pages, int nr_pages)
3651
{
3652
	struct lruvec *lruvec;
3653 3654 3655 3656
	struct zone *zone = NULL;
	int pgscanned = 0;
	int pgrescued = 0;
	int i;
3657

3658 3659 3660
	for (i = 0; i < nr_pages; i++) {
		struct page *page = pages[i];
		struct zone *pagezone;
3661

3662 3663 3664 3665 3666 3667 3668 3669
		pgscanned++;
		pagezone = page_zone(page);
		if (pagezone != zone) {
			if (zone)
				spin_unlock_irq(&zone->lru_lock);
			zone = pagezone;
			spin_lock_irq(&zone->lru_lock);
		}
3670
		lruvec = mem_cgroup_page_lruvec(page, zone);
3671

3672 3673
		if (!PageLRU(page) || !PageUnevictable(page))
			continue;
3674

3675
		if (page_evictable(page)) {
3676 3677 3678 3679
			enum lru_list lru = page_lru_base_type(page);

			VM_BUG_ON(PageActive(page));
			ClearPageUnevictable(page);
3680 3681
			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
			add_page_to_lru_list(page, lruvec, lru);
3682
			pgrescued++;
3683
		}
3684
	}
3685

3686 3687 3688 3689
	if (zone) {
		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
		spin_unlock_irq(&zone->lru_lock);
3690 3691
	}
}
3692
#endif /* CONFIG_SHMEM */
3693

3694
static void warn_scan_unevictable_pages(void)
3695
{
3696
	printk_once(KERN_WARNING
3697
		    "%s: The scan_unevictable_pages sysctl/node-interface has been "
3698
		    "disabled for lack of a legitimate use case.  If you have "
3699 3700
		    "one, please send an email to linux-mm@kvack.org.\n",
		    current->comm);
3701 3702 3703 3704 3705 3706 3707 3708 3709
}

/*
 * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
 * all nodes' unevictable lists for evictable pages
 */
unsigned long scan_unevictable_pages;

int scan_unevictable_handler(struct ctl_table *table, int write,
3710
			   void __user *buffer,
3711 3712
			   size_t *length, loff_t *ppos)
{
3713
	warn_scan_unevictable_pages();
3714
	proc_doulongvec_minmax(table, write, buffer, length, ppos);
3715 3716 3717 3718
	scan_unevictable_pages = 0;
	return 0;
}

3719
#ifdef CONFIG_NUMA
3720 3721 3722 3723 3724
/*
 * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
 * a specified node's per zone unevictable lists for evictable pages.
 */

3725 3726
static ssize_t read_scan_unevictable_node(struct device *dev,
					  struct device_attribute *attr,
3727 3728
					  char *buf)
{
3729
	warn_scan_unevictable_pages();
3730 3731 3732
	return sprintf(buf, "0\n");	/* always zero; should fit... */
}

3733 3734
static ssize_t write_scan_unevictable_node(struct device *dev,
					   struct device_attribute *attr,
3735 3736
					const char *buf, size_t count)
{
3737
	warn_scan_unevictable_pages();
3738 3739 3740 3741
	return 1;
}


3742
static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3743 3744 3745 3746 3747
			read_scan_unevictable_node,
			write_scan_unevictable_node);

int scan_unevictable_register_node(struct node *node)
{
3748
	return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
3749 3750 3751 3752
}

void scan_unevictable_unregister_node(struct node *node)
{
3753
	device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
3754
}
3755
#endif