time.c 30.3 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
/*
 * Common time routines among all ppc machines.
 *
 * Written by Cort Dougan (cort@cs.nmt.edu) to merge
 * Paul Mackerras' version and mine for PReP and Pmac.
 * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
 * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
 *
 * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
 * to make clock more stable (2.4.0-test5). The only thing
 * that this code assumes is that the timebases have been synchronized
 * by firmware on SMP and are never stopped (never do sleep
 * on SMP then, nap and doze are OK).
 * 
 * Speeded up do_gettimeofday by getting rid of references to
 * xtime (which required locks for consistency). (mikejc@us.ibm.com)
 *
 * TODO (not necessarily in this file):
 * - improve precision and reproducibility of timebase frequency
 * measurement at boot time. (for iSeries, we calibrate the timebase
 * against the Titan chip's clock.)
 * - for astronomical applications: add a new function to get
 * non ambiguous timestamps even around leap seconds. This needs
 * a new timestamp format and a good name.
 *
 * 1997-09-10  Updated NTP code according to technical memorandum Jan '96
 *             "A Kernel Model for Precision Timekeeping" by Dave Mills
 *
 *      This program is free software; you can redistribute it and/or
 *      modify it under the terms of the GNU General Public License
 *      as published by the Free Software Foundation; either version
 *      2 of the License, or (at your option) any later version.
 */

#include <linux/errno.h>
#include <linux/module.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/param.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/interrupt.h>
#include <linux/timex.h>
#include <linux/kernel_stat.h>
#include <linux/time.h>
#include <linux/init.h>
#include <linux/profile.h>
#include <linux/cpu.h>
#include <linux/security.h>
50 51
#include <linux/percpu.h>
#include <linux/rtc.h>
52
#include <linux/jiffies.h>
53
#include <linux/posix-timers.h>
54
#include <linux/irq.h>
L
Linus Torvalds 已提交
55 56 57 58 59 60 61 62 63

#include <asm/io.h>
#include <asm/processor.h>
#include <asm/nvram.h>
#include <asm/cache.h>
#include <asm/machdep.h>
#include <asm/uaccess.h>
#include <asm/time.h>
#include <asm/prom.h>
64 65
#include <asm/irq.h>
#include <asm/div64.h>
P
Paul Mackerras 已提交
66
#include <asm/smp.h>
67
#include <asm/vdso_datapage.h>
68
#include <asm/firmware.h>
69
#ifdef CONFIG_PPC_ISERIES
70
#include <asm/iseries/it_lp_queue.h>
71
#include <asm/iseries/hv_call_xm.h>
72
#endif
L
Linus Torvalds 已提交
73

74 75
/* powerpc clocksource/clockevent code */

76
#include <linux/clockchips.h>
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
#include <linux/clocksource.h>

static cycle_t rtc_read(void);
static struct clocksource clocksource_rtc = {
	.name         = "rtc",
	.rating       = 400,
	.flags        = CLOCK_SOURCE_IS_CONTINUOUS,
	.mask         = CLOCKSOURCE_MASK(64),
	.shift        = 22,
	.mult         = 0,	/* To be filled in */
	.read         = rtc_read,
};

static cycle_t timebase_read(void);
static struct clocksource clocksource_timebase = {
	.name         = "timebase",
	.rating       = 400,
	.flags        = CLOCK_SOURCE_IS_CONTINUOUS,
	.mask         = CLOCKSOURCE_MASK(64),
	.shift        = 22,
	.mult         = 0,	/* To be filled in */
	.read         = timebase_read,
};

101 102 103 104 105 106 107 108 109 110
#define DECREMENTER_MAX	0x7fffffff

static int decrementer_set_next_event(unsigned long evt,
				      struct clock_event_device *dev);
static void decrementer_set_mode(enum clock_event_mode mode,
				 struct clock_event_device *dev);

static struct clock_event_device decrementer_clockevent = {
       .name           = "decrementer",
       .rating         = 200,
111
       .shift          = 16,
112 113 114 115 116 117 118 119 120
       .mult           = 0,	/* To be filled in */
       .irq            = 0,
       .set_next_event = decrementer_set_next_event,
       .set_mode       = decrementer_set_mode,
       .features       = CLOCK_EVT_FEAT_ONESHOT,
};

static DEFINE_PER_CPU(struct clock_event_device, decrementers);
void init_decrementer_clockevent(void);
121
static DEFINE_PER_CPU(u64, decrementer_next_tb);
122

L
Linus Torvalds 已提交
123
#ifdef CONFIG_PPC_ISERIES
124 125
static unsigned long __initdata iSeries_recal_titan;
static signed long __initdata iSeries_recal_tb;
126 127 128

/* Forward declaration is only needed for iSereis compiles */
void __init clocksource_init(void);
L
Linus Torvalds 已提交
129 130 131 132
#endif

#define XSEC_PER_SEC (1024*1024)

133 134 135 136 137 138 139
#ifdef CONFIG_PPC64
#define SCALE_XSEC(xsec, max)	(((xsec) * max) / XSEC_PER_SEC)
#else
/* compute ((xsec << 12) * max) >> 32 */
#define SCALE_XSEC(xsec, max)	mulhwu((xsec) << 12, max)
#endif

L
Linus Torvalds 已提交
140 141 142 143
unsigned long tb_ticks_per_jiffy;
unsigned long tb_ticks_per_usec = 100; /* sane default */
EXPORT_SYMBOL(tb_ticks_per_usec);
unsigned long tb_ticks_per_sec;
144
EXPORT_SYMBOL(tb_ticks_per_sec);	/* for cputime_t conversions */
145 146
u64 tb_to_xs;
unsigned tb_to_us;
147

148
#define TICKLEN_SCALE	TICK_LENGTH_SHIFT
149 150 151 152 153 154 155
u64 last_tick_len;	/* units are ns / 2^TICKLEN_SCALE */
u64 ticklen_to_xs;	/* 0.64 fraction */

/* If last_tick_len corresponds to about 1/HZ seconds, then
   last_tick_len << TICKLEN_SHIFT will be about 2^63. */
#define TICKLEN_SHIFT	(63 - 30 - TICKLEN_SCALE + SHIFT_HZ)

L
Linus Torvalds 已提交
156
DEFINE_SPINLOCK(rtc_lock);
157
EXPORT_SYMBOL_GPL(rtc_lock);
L
Linus Torvalds 已提交
158

159 160 161
static u64 tb_to_ns_scale __read_mostly;
static unsigned tb_to_ns_shift __read_mostly;
static unsigned long boot_tb __read_mostly;
L
Linus Torvalds 已提交
162 163 164 165

struct gettimeofday_struct do_gtod;

extern struct timezone sys_tz;
166
static long timezone_offset;
L
Linus Torvalds 已提交
167

168
unsigned long ppc_proc_freq;
169
EXPORT_SYMBOL(ppc_proc_freq);
170 171
unsigned long ppc_tb_freq;

172 173
static u64 tb_last_jiffy __cacheline_aligned_in_smp;
static DEFINE_PER_CPU(u64, last_jiffy);
174

175 176 177 178 179 180 181
#ifdef CONFIG_VIRT_CPU_ACCOUNTING
/*
 * Factors for converting from cputime_t (timebase ticks) to
 * jiffies, milliseconds, seconds, and clock_t (1/USER_HZ seconds).
 * These are all stored as 0.64 fixed-point binary fractions.
 */
u64 __cputime_jiffies_factor;
182
EXPORT_SYMBOL(__cputime_jiffies_factor);
183
u64 __cputime_msec_factor;
184
EXPORT_SYMBOL(__cputime_msec_factor);
185
u64 __cputime_sec_factor;
186
EXPORT_SYMBOL(__cputime_sec_factor);
187
u64 __cputime_clockt_factor;
188
EXPORT_SYMBOL(__cputime_clockt_factor);
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213

static void calc_cputime_factors(void)
{
	struct div_result res;

	div128_by_32(HZ, 0, tb_ticks_per_sec, &res);
	__cputime_jiffies_factor = res.result_low;
	div128_by_32(1000, 0, tb_ticks_per_sec, &res);
	__cputime_msec_factor = res.result_low;
	div128_by_32(1, 0, tb_ticks_per_sec, &res);
	__cputime_sec_factor = res.result_low;
	div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res);
	__cputime_clockt_factor = res.result_low;
}

/*
 * Read the PURR on systems that have it, otherwise the timebase.
 */
static u64 read_purr(void)
{
	if (cpu_has_feature(CPU_FTR_PURR))
		return mfspr(SPRN_PURR);
	return mftb();
}

214 215 216 217 218 219 220 221 222 223
/*
 * Read the SPURR on systems that have it, otherwise the purr
 */
static u64 read_spurr(u64 purr)
{
	if (cpu_has_feature(CPU_FTR_SPURR))
		return mfspr(SPRN_SPURR);
	return purr;
}

224 225 226 227 228 229
/*
 * Account time for a transition between system, hard irq
 * or soft irq state.
 */
void account_system_vtime(struct task_struct *tsk)
{
230
	u64 now, nowscaled, delta, deltascaled;
231 232 233 234 235 236
	unsigned long flags;

	local_irq_save(flags);
	now = read_purr();
	delta = now - get_paca()->startpurr;
	get_paca()->startpurr = now;
237 238 239
	nowscaled = read_spurr(now);
	deltascaled = nowscaled - get_paca()->startspurr;
	get_paca()->startspurr = nowscaled;
240
	if (!in_interrupt()) {
241 242 243 244 245
		/* deltascaled includes both user and system time.
		 * Hence scale it based on the purr ratio to estimate
		 * the system time */
		deltascaled = deltascaled * get_paca()->system_time /
			(get_paca()->system_time + get_paca()->user_time);
246 247 248 249
		delta += get_paca()->system_time;
		get_paca()->system_time = 0;
	}
	account_system_time(tsk, 0, delta);
250 251 252
	get_paca()->purrdelta = delta;
	account_system_time_scaled(tsk, deltascaled);
	get_paca()->spurrdelta = deltascaled;
253 254 255 256 257 258 259 260 261
	local_irq_restore(flags);
}

/*
 * Transfer the user and system times accumulated in the paca
 * by the exception entry and exit code to the generic process
 * user and system time records.
 * Must be called with interrupts disabled.
 */
262
void account_process_tick(struct task_struct *tsk, int user_tick)
263
{
264
	cputime_t utime, utimescaled;
265 266 267 268

	utime = get_paca()->user_time;
	get_paca()->user_time = 0;
	account_user_time(tsk, utime);
269 270 271 272 273 274

	/* Estimate the scaled utime by scaling the real utime based
	 * on the last spurr to purr ratio */
	utimescaled = utime * get_paca()->spurrdelta / get_paca()->purrdelta;
	get_paca()->spurrdelta = get_paca()->purrdelta = 0;
	account_user_time_scaled(tsk, utimescaled);
275 276 277 278 279 280 281 282 283
}

/*
 * Stuff for accounting stolen time.
 */
struct cpu_purr_data {
	int	initialized;			/* thread is running */
	u64	tb;			/* last TB value read */
	u64	purr;			/* last PURR value read */
284
	u64	spurr;			/* last SPURR value read */
285 286
};

287 288 289 290 291 292 293
/*
 * Each entry in the cpu_purr_data array is manipulated only by its
 * "owner" cpu -- usually in the timer interrupt but also occasionally
 * in process context for cpu online.  As long as cpus do not touch
 * each others' cpu_purr_data, disabling local interrupts is
 * sufficient to serialize accesses.
 */
294 295 296 297
static DEFINE_PER_CPU(struct cpu_purr_data, cpu_purr_data);

static void snapshot_tb_and_purr(void *data)
{
298
	unsigned long flags;
299 300
	struct cpu_purr_data *p = &__get_cpu_var(cpu_purr_data);

301
	local_irq_save(flags);
302
	p->tb = get_tb_or_rtc();
303
	p->purr = mfspr(SPRN_PURR);
304 305
	wmb();
	p->initialized = 1;
306
	local_irq_restore(flags);
307 308 309 310 311 312 313 314 315 316 317 318
}

/*
 * Called during boot when all cpus have come up.
 */
void snapshot_timebases(void)
{
	if (!cpu_has_feature(CPU_FTR_PURR))
		return;
	on_each_cpu(snapshot_tb_and_purr, NULL, 0, 1);
}

319 320 321
/*
 * Must be called with interrupts disabled.
 */
322 323
void calculate_steal_time(void)
{
324
	u64 tb, purr;
325
	s64 stolen;
326
	struct cpu_purr_data *pme;
327 328 329

	if (!cpu_has_feature(CPU_FTR_PURR))
		return;
330
	pme = &per_cpu(cpu_purr_data, smp_processor_id());
331 332 333
	if (!pme->initialized)
		return;		/* this can happen in early boot */
	tb = mftb();
334 335 336
	purr = mfspr(SPRN_PURR);
	stolen = (tb - pme->tb) - (purr - pme->purr);
	if (stolen > 0)
337 338 339 340 341
		account_steal_time(current, stolen);
	pme->tb = tb;
	pme->purr = purr;
}

342
#ifdef CONFIG_PPC_SPLPAR
343 344 345 346 347 348
/*
 * Must be called before the cpu is added to the online map when
 * a cpu is being brought up at runtime.
 */
static void snapshot_purr(void)
{
349
	struct cpu_purr_data *pme;
350 351 352 353
	unsigned long flags;

	if (!cpu_has_feature(CPU_FTR_PURR))
		return;
354
	local_irq_save(flags);
355 356 357
	pme = &per_cpu(cpu_purr_data, smp_processor_id());
	pme->tb = mftb();
	pme->purr = mfspr(SPRN_PURR);
358
	pme->initialized = 1;
359
	local_irq_restore(flags);
360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
}

#endif /* CONFIG_PPC_SPLPAR */

#else /* ! CONFIG_VIRT_CPU_ACCOUNTING */
#define calc_cputime_factors()
#define calculate_steal_time()		do { } while (0)
#endif

#if !(defined(CONFIG_VIRT_CPU_ACCOUNTING) && defined(CONFIG_PPC_SPLPAR))
#define snapshot_purr()			do { } while (0)
#endif

/*
 * Called when a cpu comes up after the system has finished booting,
 * i.e. as a result of a hotplug cpu action.
 */
void snapshot_timebase(void)
{
379
	__get_cpu_var(last_jiffy) = get_tb_or_rtc();
380 381 382
	snapshot_purr();
}

383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
void __delay(unsigned long loops)
{
	unsigned long start;
	int diff;

	if (__USE_RTC()) {
		start = get_rtcl();
		do {
			/* the RTCL register wraps at 1000000000 */
			diff = get_rtcl() - start;
			if (diff < 0)
				diff += 1000000000;
		} while (diff < loops);
	} else {
		start = get_tbl();
		while (get_tbl() - start < loops)
			HMT_low();
		HMT_medium();
	}
}
EXPORT_SYMBOL(__delay);

void udelay(unsigned long usecs)
{
	__delay(tb_ticks_per_usec * usecs);
}
EXPORT_SYMBOL(udelay);

L
Linus Torvalds 已提交
411 412

/*
413 414 415 416 417 418
 * There are two copies of tb_to_xs and stamp_xsec so that no
 * lock is needed to access and use these values in
 * do_gettimeofday.  We alternate the copies and as long as a
 * reasonable time elapses between changes, there will never
 * be inconsistent values.  ntpd has a minimum of one minute
 * between updates.
L
Linus Torvalds 已提交
419
 */
420
static inline void update_gtod(u64 new_tb_stamp, u64 new_stamp_xsec,
421
			       u64 new_tb_to_xs)
L
Linus Torvalds 已提交
422 423
{
	unsigned temp_idx;
424
	struct gettimeofday_vars *temp_varp;
L
Linus Torvalds 已提交
425 426 427 428

	temp_idx = (do_gtod.var_idx == 0);
	temp_varp = &do_gtod.vars[temp_idx];

429 430
	temp_varp->tb_to_xs = new_tb_to_xs;
	temp_varp->tb_orig_stamp = new_tb_stamp;
L
Linus Torvalds 已提交
431
	temp_varp->stamp_xsec = new_stamp_xsec;
432
	smp_mb();
L
Linus Torvalds 已提交
433 434 435
	do_gtod.varp = temp_varp;
	do_gtod.var_idx = temp_idx;

436 437 438 439 440 441 442 443
	/*
	 * tb_update_count is used to allow the userspace gettimeofday code
	 * to assure itself that it sees a consistent view of the tb_to_xs and
	 * stamp_xsec variables.  It reads the tb_update_count, then reads
	 * tb_to_xs and stamp_xsec and then reads tb_update_count again.  If
	 * the two values of tb_update_count match and are even then the
	 * tb_to_xs and stamp_xsec values are consistent.  If not, then it
	 * loops back and reads them again until this criteria is met.
444 445
	 * We expect the caller to have done the first increment of
	 * vdso_data->tb_update_count already.
446
	 */
447 448 449 450 451
	vdso_data->tb_orig_stamp = new_tb_stamp;
	vdso_data->stamp_xsec = new_stamp_xsec;
	vdso_data->tb_to_xs = new_tb_to_xs;
	vdso_data->wtom_clock_sec = wall_to_monotonic.tv_sec;
	vdso_data->wtom_clock_nsec = wall_to_monotonic.tv_nsec;
452
	smp_wmb();
453
	++(vdso_data->tb_update_count);
454 455
}

L
Linus Torvalds 已提交
456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
#ifdef CONFIG_SMP
unsigned long profile_pc(struct pt_regs *regs)
{
	unsigned long pc = instruction_pointer(regs);

	if (in_lock_functions(pc))
		return regs->link;

	return pc;
}
EXPORT_SYMBOL(profile_pc);
#endif

#ifdef CONFIG_PPC_ISERIES

/* 
 * This function recalibrates the timebase based on the 49-bit time-of-day
 * value in the Titan chip.  The Titan is much more accurate than the value
 * returned by the service processor for the timebase frequency.  
 */

477
static int __init iSeries_tb_recal(void)
L
Linus Torvalds 已提交
478 479 480
{
	struct div_result divres;
	unsigned long titan, tb;
481 482 483 484 485

	/* Make sure we only run on iSeries */
	if (!firmware_has_feature(FW_FEATURE_ISERIES))
		return -ENODEV;

L
Linus Torvalds 已提交
486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
	tb = get_tb();
	titan = HvCallXm_loadTod();
	if ( iSeries_recal_titan ) {
		unsigned long tb_ticks = tb - iSeries_recal_tb;
		unsigned long titan_usec = (titan - iSeries_recal_titan) >> 12;
		unsigned long new_tb_ticks_per_sec   = (tb_ticks * USEC_PER_SEC)/titan_usec;
		unsigned long new_tb_ticks_per_jiffy = (new_tb_ticks_per_sec+(HZ/2))/HZ;
		long tick_diff = new_tb_ticks_per_jiffy - tb_ticks_per_jiffy;
		char sign = '+';		
		/* make sure tb_ticks_per_sec and tb_ticks_per_jiffy are consistent */
		new_tb_ticks_per_sec = new_tb_ticks_per_jiffy * HZ;

		if ( tick_diff < 0 ) {
			tick_diff = -tick_diff;
			sign = '-';
		}
		if ( tick_diff ) {
			if ( tick_diff < tb_ticks_per_jiffy/25 ) {
				printk( "Titan recalibrate: new tb_ticks_per_jiffy = %lu (%c%ld)\n",
						new_tb_ticks_per_jiffy, sign, tick_diff );
				tb_ticks_per_jiffy = new_tb_ticks_per_jiffy;
				tb_ticks_per_sec   = new_tb_ticks_per_sec;
508
				calc_cputime_factors();
L
Linus Torvalds 已提交
509 510 511 512
				div128_by_32( XSEC_PER_SEC, 0, tb_ticks_per_sec, &divres );
				do_gtod.tb_ticks_per_sec = tb_ticks_per_sec;
				tb_to_xs = divres.result_low;
				do_gtod.varp->tb_to_xs = tb_to_xs;
513 514
				vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
				vdso_data->tb_to_xs = tb_to_xs;
L
Linus Torvalds 已提交
515 516 517 518 519 520 521 522 523 524 525
			}
			else {
				printk( "Titan recalibrate: FAILED (difference > 4 percent)\n"
					"                   new tb_ticks_per_jiffy = %lu\n"
					"                   old tb_ticks_per_jiffy = %lu\n",
					new_tb_ticks_per_jiffy, tb_ticks_per_jiffy );
			}
		}
	}
	iSeries_recal_titan = titan;
	iSeries_recal_tb = tb;
526

527 528
	/* Called here as now we know accurate values for the timebase */
	clocksource_init();
529
	return 0;
L
Linus Torvalds 已提交
530
}
531 532 533 534 535 536 537 538 539
late_initcall(iSeries_tb_recal);

/* Called from platform early init */
void __init iSeries_time_init_early(void)
{
	iSeries_recal_tb = get_tb();
	iSeries_recal_titan = HvCallXm_loadTod();
}
#endif /* CONFIG_PPC_ISERIES */
L
Linus Torvalds 已提交
540 541 542 543 544 545 546 547 548 549 550 551 552 553 554

/*
 * For iSeries shared processors, we have to let the hypervisor
 * set the hardware decrementer.  We set a virtual decrementer
 * in the lppaca and call the hypervisor if the virtual
 * decrementer is less than the current value in the hardware
 * decrementer. (almost always the new decrementer value will
 * be greater than the current hardware decementer so the hypervisor
 * call will not be needed)
 */

/*
 * timer_interrupt - gets called when the decrementer overflows,
 * with interrupts disabled.
 */
555
void timer_interrupt(struct pt_regs * regs)
L
Linus Torvalds 已提交
556
{
557
	struct pt_regs *old_regs;
558
	int cpu = smp_processor_id();
559
	struct clock_event_device *evt = &per_cpu(decrementers, cpu);
560
	u64 now;
561 562 563 564

	/* Ensure a positive value is written to the decrementer, or else
	 * some CPUs will continuue to take decrementer exceptions */
	set_dec(DECREMENTER_MAX);
565 566 567 568 569

#ifdef CONFIG_PPC32
	if (atomic_read(&ppc_n_lost_interrupts) != 0)
		do_IRQ(regs);
#endif
L
Linus Torvalds 已提交
570

571 572 573 574 575
	now = get_tb_or_rtc();
	if (now < per_cpu(decrementer_next_tb, cpu)) {
		/* not time for this event yet */
		now = per_cpu(decrementer_next_tb, cpu) - now;
		if (now <= DECREMENTER_MAX)
576
			set_dec((int)now);
577 578
		return;
	}
579
	old_regs = set_irq_regs(regs);
L
Linus Torvalds 已提交
580 581
	irq_enter();

582
	calculate_steal_time();
L
Linus Torvalds 已提交
583

584
#ifdef CONFIG_PPC_ISERIES
585 586
	if (firmware_has_feature(FW_FEATURE_ISERIES))
		get_lppaca()->int_dword.fields.decr_int = 0;
587 588
#endif

589 590
	if (evt->event_handler)
		evt->event_handler(evt);
L
Linus Torvalds 已提交
591 592

#ifdef CONFIG_PPC_ISERIES
593
	if (firmware_has_feature(FW_FEATURE_ISERIES) && hvlpevent_is_pending())
O
Olaf Hering 已提交
594
		process_hvlpevents();
L
Linus Torvalds 已提交
595 596
#endif

597
#ifdef CONFIG_PPC64
598
	/* collect purr register values often, for accurate calculations */
599
	if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
L
Linus Torvalds 已提交
600 601 602
		struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
		cu->current_tb = mfspr(SPRN_PURR);
	}
603
#endif
L
Linus Torvalds 已提交
604 605

	irq_exit();
606
	set_irq_regs(old_regs);
L
Linus Torvalds 已提交
607 608
}

609 610
void wakeup_decrementer(void)
{
611
	unsigned long ticks;
612 613

	/*
614 615
	 * The timebase gets saved on sleep and restored on wakeup,
	 * so all we need to do is to reset the decrementer.
616
	 */
617 618 619 620 621 622
	ticks = tb_ticks_since(__get_cpu_var(last_jiffy));
	if (ticks < tb_ticks_per_jiffy)
		ticks = tb_ticks_per_jiffy - ticks;
	else
		ticks = 1;
	set_dec(ticks);
623 624
}

625
#ifdef CONFIG_SMP
626 627 628
void __init smp_space_timers(unsigned int max_cpus)
{
	int i;
629
	u64 previous_tb = per_cpu(last_jiffy, boot_cpuid);
630

631 632
	/* make sure tb > per_cpu(last_jiffy, cpu) for all cpus always */
	previous_tb -= tb_ticks_per_jiffy;
633

634
	for_each_possible_cpu(i) {
635 636
		if (i == boot_cpuid)
			continue;
637
		per_cpu(last_jiffy, i) = previous_tb;
638 639 640 641
	}
}
#endif

L
Linus Torvalds 已提交
642 643 644 645 646 647 648 649 650
/*
 * Scheduler clock - returns current time in nanosec units.
 *
 * Note: mulhdu(a, b) (multiply high double unsigned) returns
 * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
 * are 64-bit unsigned numbers.
 */
unsigned long long sched_clock(void)
{
651 652
	if (__USE_RTC())
		return get_rtc();
653
	return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
L
Linus Torvalds 已提交
654 655
}

656
static int __init get_freq(char *name, int cells, unsigned long *val)
657 658
{
	struct device_node *cpu;
659
	const unsigned int *fp;
660
	int found = 0;
661

662
	/* The cpu node should have timebase and clock frequency properties */
663 664
	cpu = of_find_node_by_type(NULL, "cpu");

665
	if (cpu) {
666
		fp = of_get_property(cpu, name, NULL);
667
		if (fp) {
668
			found = 1;
669
			*val = of_read_ulong(fp, cells);
670
		}
671 672

		of_node_put(cpu);
673
	}
674 675 676 677 678 679 680 681 682 683 684

	return found;
}

void __init generic_calibrate_decr(void)
{
	ppc_tb_freq = DEFAULT_TB_FREQ;		/* hardcoded default */

	if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
	    !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {

685 686
		printk(KERN_ERR "WARNING: Estimating decrementer frequency "
				"(not found)\n");
687
	}
688

689 690 691 692 693 694 695
	ppc_proc_freq = DEFAULT_PROC_FREQ;	/* hardcoded default */

	if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
	    !get_freq("clock-frequency", 1, &ppc_proc_freq)) {

		printk(KERN_ERR "WARNING: Estimating processor frequency "
				"(not found)\n");
696
	}
697

J
Josh Boyer 已提交
698
#if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
699 700 701 702 703 704 705 706 707 708
	/* Set the time base to zero */
	mtspr(SPRN_TBWL, 0);
	mtspr(SPRN_TBWU, 0);

	/* Clear any pending timer interrupts */
	mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);

	/* Enable decrementer interrupt */
	mtspr(SPRN_TCR, TCR_DIE);
#endif
709 710
}

711
int update_persistent_clock(struct timespec now)
712 713 714
{
	struct rtc_time tm;

715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739
	if (!ppc_md.set_rtc_time)
		return 0;

	to_tm(now.tv_sec + 1 + timezone_offset, &tm);
	tm.tm_year -= 1900;
	tm.tm_mon -= 1;

	return ppc_md.set_rtc_time(&tm);
}

unsigned long read_persistent_clock(void)
{
	struct rtc_time tm;
	static int first = 1;

	/* XXX this is a litle fragile but will work okay in the short term */
	if (first) {
		first = 0;
		if (ppc_md.time_init)
			timezone_offset = ppc_md.time_init();

		/* get_boot_time() isn't guaranteed to be safe to call late */
		if (ppc_md.get_boot_time)
			return ppc_md.get_boot_time() -timezone_offset;
	}
740 741 742 743 744 745 746
	if (!ppc_md.get_rtc_time)
		return 0;
	ppc_md.get_rtc_time(&tm);
	return mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
		      tm.tm_hour, tm.tm_min, tm.tm_sec);
}

747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809
/* clocksource code */
static cycle_t rtc_read(void)
{
	return (cycle_t)get_rtc();
}

static cycle_t timebase_read(void)
{
	return (cycle_t)get_tb();
}

void update_vsyscall(struct timespec *wall_time, struct clocksource *clock)
{
	u64 t2x, stamp_xsec;

	if (clock != &clocksource_timebase)
		return;

	/* Make userspace gettimeofday spin until we're done. */
	++vdso_data->tb_update_count;
	smp_mb();

	/* XXX this assumes clock->shift == 22 */
	/* 4611686018 ~= 2^(20+64-22) / 1e9 */
	t2x = (u64) clock->mult * 4611686018ULL;
	stamp_xsec = (u64) xtime.tv_nsec * XSEC_PER_SEC;
	do_div(stamp_xsec, 1000000000);
	stamp_xsec += (u64) xtime.tv_sec * XSEC_PER_SEC;
	update_gtod(clock->cycle_last, stamp_xsec, t2x);
}

void update_vsyscall_tz(void)
{
	/* Make userspace gettimeofday spin until we're done. */
	++vdso_data->tb_update_count;
	smp_mb();
	vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
	vdso_data->tz_dsttime = sys_tz.tz_dsttime;
	smp_mb();
	++vdso_data->tb_update_count;
}

void __init clocksource_init(void)
{
	struct clocksource *clock;

	if (__USE_RTC())
		clock = &clocksource_rtc;
	else
		clock = &clocksource_timebase;

	clock->mult = clocksource_hz2mult(tb_ticks_per_sec, clock->shift);

	if (clocksource_register(clock)) {
		printk(KERN_ERR "clocksource: %s is already registered\n",
		       clock->name);
		return;
	}

	printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
	       clock->name, clock->mult, clock->shift);
}

810 811 812
static int decrementer_set_next_event(unsigned long evt,
				      struct clock_event_device *dev)
{
813
	__get_cpu_var(decrementer_next_tb) = get_tb_or_rtc() + evt;
814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831
	set_dec(evt);
	return 0;
}

static void decrementer_set_mode(enum clock_event_mode mode,
				 struct clock_event_device *dev)
{
	if (mode != CLOCK_EVT_MODE_ONESHOT)
		decrementer_set_next_event(DECREMENTER_MAX, dev);
}

static void register_decrementer_clockevent(int cpu)
{
	struct clock_event_device *dec = &per_cpu(decrementers, cpu);

	*dec = decrementer_clockevent;
	dec->cpumask = cpumask_of_cpu(cpu);

832
	printk(KERN_DEBUG "clockevent: %s mult[%lx] shift[%d] cpu[%d]\n",
833 834 835 836 837 838 839 840 841 842 843 844 845
	       dec->name, dec->mult, dec->shift, cpu);

	clockevents_register_device(dec);
}

void init_decrementer_clockevent(void)
{
	int cpu = smp_processor_id();

	decrementer_clockevent.mult = div_sc(ppc_tb_freq, NSEC_PER_SEC,
					     decrementer_clockevent.shift);
	decrementer_clockevent.max_delta_ns =
		clockevent_delta2ns(DECREMENTER_MAX, &decrementer_clockevent);
846 847
	decrementer_clockevent.min_delta_ns =
		clockevent_delta2ns(2, &decrementer_clockevent);
848 849 850 851 852 853 854 855 856 857 858

	register_decrementer_clockevent(cpu);
}

void secondary_cpu_time_init(void)
{
	/* FIME: Should make unrelatred change to move snapshot_timebase
	 * call here ! */
	register_decrementer_clockevent(smp_processor_id());
}

859
/* This function is only called on the boot processor */
L
Linus Torvalds 已提交
860 861 862 863
void __init time_init(void)
{
	unsigned long flags;
	struct div_result res;
864
	u64 scale, x;
865 866
	unsigned shift;

867 868 869
	if (__USE_RTC()) {
		/* 601 processor: dec counts down by 128 every 128ns */
		ppc_tb_freq = 1000000000;
870
		tb_last_jiffy = get_rtcl();
871 872 873
	} else {
		/* Normal PowerPC with timebase register */
		ppc_md.calibrate_decr();
874
		printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
875
		       ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
876
		printk(KERN_DEBUG "time_init: processor frequency   = %lu.%.6lu MHz\n",
877
		       ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
878
		tb_last_jiffy = get_tb();
879
	}
880 881

	tb_ticks_per_jiffy = ppc_tb_freq / HZ;
882
	tb_ticks_per_sec = ppc_tb_freq;
883 884
	tb_ticks_per_usec = ppc_tb_freq / 1000000;
	tb_to_us = mulhwu_scale_factor(ppc_tb_freq, 1000000);
885
	calc_cputime_factors();
886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903

	/*
	 * Calculate the length of each tick in ns.  It will not be
	 * exactly 1e9/HZ unless ppc_tb_freq is divisible by HZ.
	 * We compute 1e9 * tb_ticks_per_jiffy / ppc_tb_freq,
	 * rounded up.
	 */
	x = (u64) NSEC_PER_SEC * tb_ticks_per_jiffy + ppc_tb_freq - 1;
	do_div(x, ppc_tb_freq);
	tick_nsec = x;
	last_tick_len = x << TICKLEN_SCALE;

	/*
	 * Compute ticklen_to_xs, which is a factor which gets multiplied
	 * by (last_tick_len << TICKLEN_SHIFT) to get a tb_to_xs value.
	 * It is computed as:
	 * ticklen_to_xs = 2^N / (tb_ticks_per_jiffy * 1e9)
	 * where N = 64 + 20 - TICKLEN_SCALE - TICKLEN_SHIFT
904 905 906 907 908 909 910
	 * which turns out to be N = 51 - SHIFT_HZ.
	 * This gives the result as a 0.64 fixed-point fraction.
	 * That value is reduced by an offset amounting to 1 xsec per
	 * 2^31 timebase ticks to avoid problems with time going backwards
	 * by 1 xsec when we do timer_recalc_offset due to losing the
	 * fractional xsec.  That offset is equal to ppc_tb_freq/2^51
	 * since there are 2^20 xsec in a second.
911
	 */
912 913
	div128_by_32((1ULL << 51) - ppc_tb_freq, 0,
		     tb_ticks_per_jiffy << SHIFT_HZ, &res);
914 915 916 917 918
	div128_by_32(res.result_high, res.result_low, NSEC_PER_SEC, &res);
	ticklen_to_xs = res.result_low;

	/* Compute tb_to_xs from tick_nsec */
	tb_to_xs = mulhdu(last_tick_len << TICKLEN_SHIFT, ticklen_to_xs);
919

L
Linus Torvalds 已提交
920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937
	/*
	 * Compute scale factor for sched_clock.
	 * The calibrate_decr() function has set tb_ticks_per_sec,
	 * which is the timebase frequency.
	 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
	 * the 128-bit result as a 64.64 fixed-point number.
	 * We then shift that number right until it is less than 1.0,
	 * giving us the scale factor and shift count to use in
	 * sched_clock().
	 */
	div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
	scale = res.result_low;
	for (shift = 0; res.result_high != 0; ++shift) {
		scale = (scale >> 1) | (res.result_high << 63);
		res.result_high >>= 1;
	}
	tb_to_ns_scale = scale;
	tb_to_ns_shift = shift;
938
	/* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
939
	boot_tb = get_tb_or_rtc();
L
Linus Torvalds 已提交
940 941

	write_seqlock_irqsave(&xtime_lock, flags);
942 943 944 945 946 947 948

	/* If platform provided a timezone (pmac), we correct the time */
        if (timezone_offset) {
		sys_tz.tz_minuteswest = -timezone_offset / 60;
		sys_tz.tz_dsttime = 0;
        }

L
Linus Torvalds 已提交
949 950
	do_gtod.varp = &do_gtod.vars[0];
	do_gtod.var_idx = 0;
951
	do_gtod.varp->tb_orig_stamp = tb_last_jiffy;
952
	__get_cpu_var(last_jiffy) = tb_last_jiffy;
953
	do_gtod.varp->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
L
Linus Torvalds 已提交
954 955 956
	do_gtod.tb_ticks_per_sec = tb_ticks_per_sec;
	do_gtod.varp->tb_to_xs = tb_to_xs;
	do_gtod.tb_to_us = tb_to_us;
957 958 959 960

	vdso_data->tb_orig_stamp = tb_last_jiffy;
	vdso_data->tb_update_count = 0;
	vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
961
	vdso_data->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
962
	vdso_data->tb_to_xs = tb_to_xs;
L
Linus Torvalds 已提交
963 964 965 966 967

	time_freq = 0;

	write_sequnlock_irqrestore(&xtime_lock, flags);

968 969 970 971
	/* Register the clocksource, if we're not running on iSeries */
	if (!firmware_has_feature(FW_FEATURE_ISERIES))
		clocksource_init();

972
	init_decrementer_clockevent();
L
Linus Torvalds 已提交
973 974 975 976 977 978 979
}


#define FEBRUARY	2
#define	STARTOFTIME	1970
#define SECDAY		86400L
#define SECYR		(SECDAY * 365)
980 981
#define	leapyear(year)		((year) % 4 == 0 && \
				 ((year) % 100 != 0 || (year) % 400 == 0))
L
Linus Torvalds 已提交
982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998
#define	days_in_year(a) 	(leapyear(a) ? 366 : 365)
#define	days_in_month(a) 	(month_days[(a) - 1])

static int month_days[12] = {
	31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
};

/*
 * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
 */
void GregorianDay(struct rtc_time * tm)
{
	int leapsToDate;
	int lastYear;
	int day;
	int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };

999
	lastYear = tm->tm_year - 1;
L
Linus Torvalds 已提交
1000 1001 1002 1003

	/*
	 * Number of leap corrections to apply up to end of last year
	 */
1004
	leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
L
Linus Torvalds 已提交
1005 1006 1007 1008 1009

	/*
	 * This year is a leap year if it is divisible by 4 except when it is
	 * divisible by 100 unless it is divisible by 400
	 *
1010
	 * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
L
Linus Torvalds 已提交
1011
	 */
1012
	day = tm->tm_mon > 2 && leapyear(tm->tm_year);
L
Linus Torvalds 已提交
1013 1014 1015 1016

	day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
		   tm->tm_mday;

1017
	tm->tm_wday = day % 7;
L
Linus Torvalds 已提交
1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
}

void to_tm(int tim, struct rtc_time * tm)
{
	register int    i;
	register long   hms, day;

	day = tim / SECDAY;
	hms = tim % SECDAY;

	/* Hours, minutes, seconds are easy */
	tm->tm_hour = hms / 3600;
	tm->tm_min = (hms % 3600) / 60;
	tm->tm_sec = (hms % 3600) % 60;

	/* Number of years in days */
	for (i = STARTOFTIME; day >= days_in_year(i); i++)
		day -= days_in_year(i);
	tm->tm_year = i;

	/* Number of months in days left */
	if (leapyear(tm->tm_year))
		days_in_month(FEBRUARY) = 29;
	for (i = 1; day >= days_in_month(i); i++)
		day -= days_in_month(i);
	days_in_month(FEBRUARY) = 28;
	tm->tm_mon = i;

	/* Days are what is left over (+1) from all that. */
	tm->tm_mday = day + 1;

	/*
	 * Determine the day of week
	 */
	GregorianDay(tm);
}

/* Auxiliary function to compute scaling factors */
/* Actually the choice of a timebase running at 1/4 the of the bus
 * frequency giving resolution of a few tens of nanoseconds is quite nice.
 * It makes this computation very precise (27-28 bits typically) which
 * is optimistic considering the stability of most processor clock
 * oscillators and the precision with which the timebase frequency
 * is measured but does not harm.
 */
1063 1064
unsigned mulhwu_scale_factor(unsigned inscale, unsigned outscale)
{
L
Linus Torvalds 已提交
1065 1066 1067 1068 1069 1070
        unsigned mlt=0, tmp, err;
        /* No concern for performance, it's done once: use a stupid
         * but safe and compact method to find the multiplier.
         */
  
        for (tmp = 1U<<31; tmp != 0; tmp >>= 1) {
1071 1072
                if (mulhwu(inscale, mlt|tmp) < outscale)
			mlt |= tmp;
L
Linus Torvalds 已提交
1073 1074 1075 1076 1077 1078 1079 1080 1081
        }
  
        /* We might still be off by 1 for the best approximation.
         * A side effect of this is that if outscale is too large
         * the returned value will be zero.
         * Many corner cases have been checked and seem to work,
         * some might have been forgotten in the test however.
         */
  
1082 1083 1084
        err = inscale * (mlt+1);
        if (err <= inscale/2)
		mlt++;
L
Linus Torvalds 已提交
1085
        return mlt;
1086
}
L
Linus Torvalds 已提交
1087 1088 1089 1090 1091

/*
 * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
 * result.
 */
1092 1093
void div128_by_32(u64 dividend_high, u64 dividend_low,
		  unsigned divisor, struct div_result *dr)
L
Linus Torvalds 已提交
1094
{
1095 1096 1097
	unsigned long a, b, c, d;
	unsigned long w, x, y, z;
	u64 ra, rb, rc;
L
Linus Torvalds 已提交
1098 1099 1100 1101 1102 1103

	a = dividend_high >> 32;
	b = dividend_high & 0xffffffff;
	c = dividend_low >> 32;
	d = dividend_low & 0xffffffff;

1104 1105 1106 1107 1108
	w = a / divisor;
	ra = ((u64)(a - (w * divisor)) << 32) + b;

	rb = ((u64) do_div(ra, divisor) << 32) + c;
	x = ra;
L
Linus Torvalds 已提交
1109

1110 1111 1112 1113 1114
	rc = ((u64) do_div(rb, divisor) << 32) + d;
	y = rb;

	do_div(rc, divisor);
	z = rc;
L
Linus Torvalds 已提交
1115

1116 1117
	dr->result_high = ((u64)w << 32) + x;
	dr->result_low  = ((u64)y << 32) + z;
L
Linus Torvalds 已提交
1118 1119

}