time.c 26.6 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
/*
 * Common time routines among all ppc machines.
 *
 * Written by Cort Dougan (cort@cs.nmt.edu) to merge
 * Paul Mackerras' version and mine for PReP and Pmac.
 * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
 * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
 *
 * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
 * to make clock more stable (2.4.0-test5). The only thing
 * that this code assumes is that the timebases have been synchronized
 * by firmware on SMP and are never stopped (never do sleep
 * on SMP then, nap and doze are OK).
 * 
 * Speeded up do_gettimeofday by getting rid of references to
 * xtime (which required locks for consistency). (mikejc@us.ibm.com)
 *
 * TODO (not necessarily in this file):
 * - improve precision and reproducibility of timebase frequency
 * measurement at boot time. (for iSeries, we calibrate the timebase
 * against the Titan chip's clock.)
 * - for astronomical applications: add a new function to get
 * non ambiguous timestamps even around leap seconds. This needs
 * a new timestamp format and a good name.
 *
 * 1997-09-10  Updated NTP code according to technical memorandum Jan '96
 *             "A Kernel Model for Precision Timekeeping" by Dave Mills
 *
 *      This program is free software; you can redistribute it and/or
 *      modify it under the terms of the GNU General Public License
 *      as published by the Free Software Foundation; either version
 *      2 of the License, or (at your option) any later version.
 */

#include <linux/config.h>
#include <linux/errno.h>
#include <linux/module.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/param.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/interrupt.h>
#include <linux/timex.h>
#include <linux/kernel_stat.h>
#include <linux/time.h>
#include <linux/init.h>
#include <linux/profile.h>
#include <linux/cpu.h>
#include <linux/security.h>
51 52
#include <linux/percpu.h>
#include <linux/rtc.h>
53
#include <linux/jiffies.h>
L
Linus Torvalds 已提交
54 55 56 57 58 59 60 61 62

#include <asm/io.h>
#include <asm/processor.h>
#include <asm/nvram.h>
#include <asm/cache.h>
#include <asm/machdep.h>
#include <asm/uaccess.h>
#include <asm/time.h>
#include <asm/prom.h>
63 64
#include <asm/irq.h>
#include <asm/div64.h>
P
Paul Mackerras 已提交
65
#include <asm/smp.h>
66
#include <asm/vdso_datapage.h>
67
#ifdef CONFIG_PPC64
68
#include <asm/firmware.h>
69 70
#endif
#ifdef CONFIG_PPC_ISERIES
71
#include <asm/iseries/it_lp_queue.h>
72
#include <asm/iseries/hv_call_xm.h>
73
#endif
74
#include <asm/smp.h>
L
Linus Torvalds 已提交
75 76 77 78 79 80 81 82 83 84

/* keep track of when we need to update the rtc */
time_t last_rtc_update;
extern int piranha_simulator;
#ifdef CONFIG_PPC_ISERIES
unsigned long iSeries_recal_titan = 0;
unsigned long iSeries_recal_tb = 0; 
static unsigned long first_settimeofday = 1;
#endif

85 86 87
/* The decrementer counts down by 128 every 128ns on a 601. */
#define DECREMENTER_COUNT_601	(1000000000 / HZ)

L
Linus Torvalds 已提交
88 89
#define XSEC_PER_SEC (1024*1024)

90 91 92 93 94 95 96
#ifdef CONFIG_PPC64
#define SCALE_XSEC(xsec, max)	(((xsec) * max) / XSEC_PER_SEC)
#else
/* compute ((xsec << 12) * max) >> 32 */
#define SCALE_XSEC(xsec, max)	mulhwu((xsec) << 12, max)
#endif

L
Linus Torvalds 已提交
97 98 99 100
unsigned long tb_ticks_per_jiffy;
unsigned long tb_ticks_per_usec = 100; /* sane default */
EXPORT_SYMBOL(tb_ticks_per_usec);
unsigned long tb_ticks_per_sec;
101 102
u64 tb_to_xs;
unsigned tb_to_us;
103 104 105 106 107 108 109 110 111

#define TICKLEN_SCALE	(SHIFT_SCALE - 10)
u64 last_tick_len;	/* units are ns / 2^TICKLEN_SCALE */
u64 ticklen_to_xs;	/* 0.64 fraction */

/* If last_tick_len corresponds to about 1/HZ seconds, then
   last_tick_len << TICKLEN_SHIFT will be about 2^63. */
#define TICKLEN_SHIFT	(63 - 30 - TICKLEN_SCALE + SHIFT_HZ)

L
Linus Torvalds 已提交
112
DEFINE_SPINLOCK(rtc_lock);
113
EXPORT_SYMBOL_GPL(rtc_lock);
L
Linus Torvalds 已提交
114

115 116
u64 tb_to_ns_scale;
unsigned tb_to_ns_shift;
L
Linus Torvalds 已提交
117 118 119 120 121 122

struct gettimeofday_struct do_gtod;

extern unsigned long wall_jiffies;

extern struct timezone sys_tz;
123
static long timezone_offset;
L
Linus Torvalds 已提交
124

125 126 127
unsigned long ppc_proc_freq;
unsigned long ppc_tb_freq;

128 129 130 131 132 133 134 135 136 137
u64 tb_last_jiffy __cacheline_aligned_in_smp;
unsigned long tb_last_stamp;

/*
 * Note that on ppc32 this only stores the bottom 32 bits of
 * the timebase value, but that's enough to tell when a jiffy
 * has passed.
 */
DEFINE_PER_CPU(unsigned long, last_jiffy);

138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
void __delay(unsigned long loops)
{
	unsigned long start;
	int diff;

	if (__USE_RTC()) {
		start = get_rtcl();
		do {
			/* the RTCL register wraps at 1000000000 */
			diff = get_rtcl() - start;
			if (diff < 0)
				diff += 1000000000;
		} while (diff < loops);
	} else {
		start = get_tbl();
		while (get_tbl() - start < loops)
			HMT_low();
		HMT_medium();
	}
}
EXPORT_SYMBOL(__delay);

void udelay(unsigned long usecs)
{
	__delay(tb_ticks_per_usec * usecs);
}
EXPORT_SYMBOL(udelay);

L
Linus Torvalds 已提交
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
static __inline__ void timer_check_rtc(void)
{
        /*
         * update the rtc when needed, this should be performed on the
         * right fraction of a second. Half or full second ?
         * Full second works on mk48t59 clocks, others need testing.
         * Note that this update is basically only used through 
         * the adjtimex system calls. Setting the HW clock in
         * any other way is a /dev/rtc and userland business.
         * This is still wrong by -0.5/+1.5 jiffies because of the
         * timer interrupt resolution and possible delay, but here we 
         * hit a quantization limit which can only be solved by higher
         * resolution timers and decoupling time management from timer
         * interrupts. This is also wrong on the clocks
         * which require being written at the half second boundary.
         * We should have an rtc call that only sets the minutes and
         * seconds like on Intel to avoid problems with non UTC clocks.
         */
184
        if (ppc_md.set_rtc_time && ntp_synced() &&
185
	    xtime.tv_sec - last_rtc_update >= 659 &&
186
	    abs((xtime.tv_nsec/1000) - (1000000-1000000/HZ)) < 500000/HZ) {
187 188 189 190 191 192 193 194 195
		struct rtc_time tm;
		to_tm(xtime.tv_sec + 1 + timezone_offset, &tm);
		tm.tm_year -= 1900;
		tm.tm_mon -= 1;
		if (ppc_md.set_rtc_time(&tm) == 0)
			last_rtc_update = xtime.tv_sec + 1;
		else
			/* Try again one minute later */
			last_rtc_update += 60;
L
Linus Torvalds 已提交
196 197 198 199 200 201
        }
}

/*
 * This version of gettimeofday has microsecond resolution.
 */
202
static inline void __do_gettimeofday(struct timeval *tv, u64 tb_val)
L
Linus Torvalds 已提交
203
{
204 205 206 207
	unsigned long sec, usec;
	u64 tb_ticks, xsec;
	struct gettimeofday_vars *temp_varp;
	u64 temp_tb_to_xs, temp_stamp_xsec;
L
Linus Torvalds 已提交
208 209 210 211 212 213 214 215 216 217 218

	/*
	 * These calculations are faster (gets rid of divides)
	 * if done in units of 1/2^20 rather than microseconds.
	 * The conversion to microseconds at the end is done
	 * without a divide (and in fact, without a multiply)
	 */
	temp_varp = do_gtod.varp;
	tb_ticks = tb_val - temp_varp->tb_orig_stamp;
	temp_tb_to_xs = temp_varp->tb_to_xs;
	temp_stamp_xsec = temp_varp->stamp_xsec;
219
	xsec = temp_stamp_xsec + mulhdu(tb_ticks, temp_tb_to_xs);
L
Linus Torvalds 已提交
220
	sec = xsec / XSEC_PER_SEC;
221 222
	usec = (unsigned long)xsec & (XSEC_PER_SEC - 1);
	usec = SCALE_XSEC(usec, 1000000);
L
Linus Torvalds 已提交
223 224 225 226 227 228 229

	tv->tv_sec = sec;
	tv->tv_usec = usec;
}

void do_gettimeofday(struct timeval *tv)
{
230 231 232
	if (__USE_RTC()) {
		/* do this the old way */
		unsigned long flags, seq;
233
		unsigned int sec, nsec, usec;
234 235 236 237 238 239

		do {
			seq = read_seqbegin_irqsave(&xtime_lock, flags);
			sec = xtime.tv_sec;
			nsec = xtime.tv_nsec + tb_ticks_since(tb_last_stamp);
		} while (read_seqretry_irqrestore(&xtime_lock, seq, flags));
240
		usec = nsec / 1000;
241 242 243 244 245 246 247 248
		while (usec >= 1000000) {
			usec -= 1000000;
			++sec;
		}
		tv->tv_sec = sec;
		tv->tv_usec = usec;
		return;
	}
L
Linus Torvalds 已提交
249 250 251 252 253 254
	__do_gettimeofday(tv, get_tb());
}

EXPORT_SYMBOL(do_gettimeofday);

/*
255 256 257 258 259 260
 * There are two copies of tb_to_xs and stamp_xsec so that no
 * lock is needed to access and use these values in
 * do_gettimeofday.  We alternate the copies and as long as a
 * reasonable time elapses between changes, there will never
 * be inconsistent values.  ntpd has a minimum of one minute
 * between updates.
L
Linus Torvalds 已提交
261
 */
262
static inline void update_gtod(u64 new_tb_stamp, u64 new_stamp_xsec,
263
			       u64 new_tb_to_xs)
L
Linus Torvalds 已提交
264 265
{
	unsigned temp_idx;
266
	struct gettimeofday_vars *temp_varp;
L
Linus Torvalds 已提交
267 268 269 270

	temp_idx = (do_gtod.var_idx == 0);
	temp_varp = &do_gtod.vars[temp_idx];

271 272
	temp_varp->tb_to_xs = new_tb_to_xs;
	temp_varp->tb_orig_stamp = new_tb_stamp;
L
Linus Torvalds 已提交
273
	temp_varp->stamp_xsec = new_stamp_xsec;
274
	smp_mb();
L
Linus Torvalds 已提交
275 276 277
	do_gtod.varp = temp_varp;
	do_gtod.var_idx = temp_idx;

278 279 280 281 282 283 284 285 286
	/*
	 * tb_update_count is used to allow the userspace gettimeofday code
	 * to assure itself that it sees a consistent view of the tb_to_xs and
	 * stamp_xsec variables.  It reads the tb_update_count, then reads
	 * tb_to_xs and stamp_xsec and then reads tb_update_count again.  If
	 * the two values of tb_update_count match and are even then the
	 * tb_to_xs and stamp_xsec values are consistent.  If not, then it
	 * loops back and reads them again until this criteria is met.
	 */
287
	++(vdso_data->tb_update_count);
288
	smp_wmb();
289 290 291 292 293
	vdso_data->tb_orig_stamp = new_tb_stamp;
	vdso_data->stamp_xsec = new_stamp_xsec;
	vdso_data->tb_to_xs = new_tb_to_xs;
	vdso_data->wtom_clock_sec = wall_to_monotonic.tv_sec;
	vdso_data->wtom_clock_nsec = wall_to_monotonic.tv_nsec;
294
	smp_wmb();
295
	++(vdso_data->tb_update_count);
296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
}

/*
 * When the timebase - tb_orig_stamp gets too big, we do a manipulation
 * between tb_orig_stamp and stamp_xsec. The goal here is to keep the
 * difference tb - tb_orig_stamp small enough to always fit inside a
 * 32 bits number. This is a requirement of our fast 32 bits userland
 * implementation in the vdso. If we "miss" a call to this function
 * (interrupt latency, CPU locked in a spinlock, ...) and we end up
 * with a too big difference, then the vdso will fallback to calling
 * the syscall
 */
static __inline__ void timer_recalc_offset(u64 cur_tb)
{
	unsigned long offset;
	u64 new_stamp_xsec;
312
	u64 tlen, t2x;
313

314 315
	if (__USE_RTC())
		return;
316
	tlen = current_tick_length();
317
	offset = cur_tb - do_gtod.varp->tb_orig_stamp;
318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
	if (tlen == last_tick_len && offset < 0x80000000u) {
		/* check that we're still in sync; if not, resync */
		struct timeval tv;
		__do_gettimeofday(&tv, cur_tb);
		if (tv.tv_sec <= xtime.tv_sec &&
		    (tv.tv_sec < xtime.tv_sec ||
		     tv.tv_usec * 1000 <= xtime.tv_nsec))
			return;
	}
	if (tlen != last_tick_len) {
		t2x = mulhdu(tlen << TICKLEN_SHIFT, ticklen_to_xs);
		last_tick_len = tlen;
	} else
		t2x = do_gtod.varp->tb_to_xs;
	new_stamp_xsec = (u64) xtime.tv_nsec * XSEC_PER_SEC;
	do_div(new_stamp_xsec, 1000000000);
	new_stamp_xsec += (u64) xtime.tv_sec * XSEC_PER_SEC;
	update_gtod(cur_tb, new_stamp_xsec, t2x);
L
Linus Torvalds 已提交
336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
}

#ifdef CONFIG_SMP
unsigned long profile_pc(struct pt_regs *regs)
{
	unsigned long pc = instruction_pointer(regs);

	if (in_lock_functions(pc))
		return regs->link;

	return pc;
}
EXPORT_SYMBOL(profile_pc);
#endif

#ifdef CONFIG_PPC_ISERIES

/* 
 * This function recalibrates the timebase based on the 49-bit time-of-day
 * value in the Titan chip.  The Titan is much more accurate than the value
 * returned by the service processor for the timebase frequency.  
 */

static void iSeries_tb_recal(void)
{
	struct div_result divres;
	unsigned long titan, tb;
	tb = get_tb();
	titan = HvCallXm_loadTod();
	if ( iSeries_recal_titan ) {
		unsigned long tb_ticks = tb - iSeries_recal_tb;
		unsigned long titan_usec = (titan - iSeries_recal_titan) >> 12;
		unsigned long new_tb_ticks_per_sec   = (tb_ticks * USEC_PER_SEC)/titan_usec;
		unsigned long new_tb_ticks_per_jiffy = (new_tb_ticks_per_sec+(HZ/2))/HZ;
		long tick_diff = new_tb_ticks_per_jiffy - tb_ticks_per_jiffy;
		char sign = '+';		
		/* make sure tb_ticks_per_sec and tb_ticks_per_jiffy are consistent */
		new_tb_ticks_per_sec = new_tb_ticks_per_jiffy * HZ;

		if ( tick_diff < 0 ) {
			tick_diff = -tick_diff;
			sign = '-';
		}
		if ( tick_diff ) {
			if ( tick_diff < tb_ticks_per_jiffy/25 ) {
				printk( "Titan recalibrate: new tb_ticks_per_jiffy = %lu (%c%ld)\n",
						new_tb_ticks_per_jiffy, sign, tick_diff );
				tb_ticks_per_jiffy = new_tb_ticks_per_jiffy;
				tb_ticks_per_sec   = new_tb_ticks_per_sec;
				div128_by_32( XSEC_PER_SEC, 0, tb_ticks_per_sec, &divres );
				do_gtod.tb_ticks_per_sec = tb_ticks_per_sec;
				tb_to_xs = divres.result_low;
				do_gtod.varp->tb_to_xs = tb_to_xs;
389 390
				vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
				vdso_data->tb_to_xs = tb_to_xs;
L
Linus Torvalds 已提交
391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
			}
			else {
				printk( "Titan recalibrate: FAILED (difference > 4 percent)\n"
					"                   new tb_ticks_per_jiffy = %lu\n"
					"                   old tb_ticks_per_jiffy = %lu\n",
					new_tb_ticks_per_jiffy, tb_ticks_per_jiffy );
			}
		}
	}
	iSeries_recal_titan = titan;
	iSeries_recal_tb = tb;
}
#endif

/*
 * For iSeries shared processors, we have to let the hypervisor
 * set the hardware decrementer.  We set a virtual decrementer
 * in the lppaca and call the hypervisor if the virtual
 * decrementer is less than the current value in the hardware
 * decrementer. (almost always the new decrementer value will
 * be greater than the current hardware decementer so the hypervisor
 * call will not be needed)
 */

/*
 * timer_interrupt - gets called when the decrementer overflows,
 * with interrupts disabled.
 */
419
void timer_interrupt(struct pt_regs * regs)
L
Linus Torvalds 已提交
420 421
{
	int next_dec;
422 423 424 425 426 427 428
	int cpu = smp_processor_id();
	unsigned long ticks;

#ifdef CONFIG_PPC32
	if (atomic_read(&ppc_n_lost_interrupts) != 0)
		do_IRQ(regs);
#endif
L
Linus Torvalds 已提交
429 430 431 432 433

	irq_enter();

	profile_tick(CPU_PROFILING, regs);

434
#ifdef CONFIG_PPC_ISERIES
435
	get_lppaca()->int_dword.fields.decr_int = 0;
436 437 438 439 440 441 442 443 444
#endif

	while ((ticks = tb_ticks_since(per_cpu(last_jiffy, cpu)))
	       >= tb_ticks_per_jiffy) {
		/* Update last_jiffy */
		per_cpu(last_jiffy, cpu) += tb_ticks_per_jiffy;
		/* Handle RTCL overflow on 601 */
		if (__USE_RTC() && per_cpu(last_jiffy, cpu) >= 1000000000)
			per_cpu(last_jiffy, cpu) -= 1000000000;
L
Linus Torvalds 已提交
445 446 447 448 449 450 451 452 453 454

		/*
		 * We cannot disable the decrementer, so in the period
		 * between this cpu's being marked offline in cpu_online_map
		 * and calling stop-self, it is taking timer interrupts.
		 * Avoid calling into the scheduler rebalancing code if this
		 * is the case.
		 */
		if (!cpu_is_offline(cpu))
			update_process_times(user_mode(regs));
455

L
Linus Torvalds 已提交
456 457 458 459
		/*
		 * No need to check whether cpu is offline here; boot_cpuid
		 * should have been fixed up by now.
		 */
460 461 462 463
		if (cpu != boot_cpuid)
			continue;

		write_seqlock(&xtime_lock);
464 465
		tb_last_jiffy += tb_ticks_per_jiffy;
		tb_last_stamp = per_cpu(last_jiffy, cpu);
466
		do_timer(regs);
467
		timer_recalc_offset(tb_last_jiffy);
468 469
		timer_check_rtc();
		write_sequnlock(&xtime_lock);
L
Linus Torvalds 已提交
470 471
	}
	
472
	next_dec = tb_ticks_per_jiffy - ticks;
L
Linus Torvalds 已提交
473 474 475
	set_dec(next_dec);

#ifdef CONFIG_PPC_ISERIES
476
	if (hvlpevent_is_pending())
477
		process_hvlpevents(regs);
L
Linus Torvalds 已提交
478 479
#endif

480
#ifdef CONFIG_PPC64
481
	/* collect purr register values often, for accurate calculations */
482
	if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
L
Linus Torvalds 已提交
483 484 485
		struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
		cu->current_tb = mfspr(SPRN_PURR);
	}
486
#endif
L
Linus Torvalds 已提交
487 488 489 490

	irq_exit();
}

491 492
void wakeup_decrementer(void)
{
493
	unsigned long ticks;
494 495

	/*
496 497
	 * The timebase gets saved on sleep and restored on wakeup,
	 * so all we need to do is to reset the decrementer.
498
	 */
499 500 501 502 503 504
	ticks = tb_ticks_since(__get_cpu_var(last_jiffy));
	if (ticks < tb_ticks_per_jiffy)
		ticks = tb_ticks_per_jiffy - ticks;
	else
		ticks = 1;
	set_dec(ticks);
505 506
}

507
#ifdef CONFIG_SMP
508 509 510 511 512 513
void __init smp_space_timers(unsigned int max_cpus)
{
	int i;
	unsigned long offset = tb_ticks_per_jiffy / max_cpus;
	unsigned long previous_tb = per_cpu(last_jiffy, boot_cpuid);

514 515
	/* make sure tb > per_cpu(last_jiffy, cpu) for all cpus always */
	previous_tb -= tb_ticks_per_jiffy;
516 517 518 519 520 521 522 523 524
	for_each_cpu(i) {
		if (i != boot_cpuid) {
			previous_tb += offset;
			per_cpu(last_jiffy, i) = previous_tb;
		}
	}
}
#endif

L
Linus Torvalds 已提交
525 526 527 528 529 530 531 532 533
/*
 * Scheduler clock - returns current time in nanosec units.
 *
 * Note: mulhdu(a, b) (multiply high double unsigned) returns
 * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
 * are 64-bit unsigned numbers.
 */
unsigned long long sched_clock(void)
{
534 535
	if (__USE_RTC())
		return get_rtc();
L
Linus Torvalds 已提交
536 537 538 539 540 541 542 543
	return mulhdu(get_tb(), tb_to_ns_scale) << tb_to_ns_shift;
}

int do_settimeofday(struct timespec *tv)
{
	time_t wtm_sec, new_sec = tv->tv_sec;
	long wtm_nsec, new_nsec = tv->tv_nsec;
	unsigned long flags;
544 545
	u64 new_xsec;
	unsigned long tb_delta;
L
Linus Torvalds 已提交
546 547 548 549 550

	if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
		return -EINVAL;

	write_seqlock_irqsave(&xtime_lock, flags);
551 552 553 554 555

	/*
	 * Updating the RTC is not the job of this code. If the time is
	 * stepped under NTP, the RTC will be updated after STA_UNSYNC
	 * is cleared.  Tools like clock/hwclock either copy the RTC
L
Linus Torvalds 已提交
556 557 558 559 560
	 * to the system time, in which case there is no point in writing
	 * to the RTC again, or write to the RTC but then they don't call
	 * settimeofday to perform this operation.
	 */
#ifdef CONFIG_PPC_ISERIES
561
	if (first_settimeofday) {
L
Linus Torvalds 已提交
562 563 564 565
		iSeries_tb_recal();
		first_settimeofday = 0;
	}
#endif
566 567 568 569 570 571 572 573 574 575

	/*
	 * Subtract off the number of nanoseconds since the
	 * beginning of the last tick.
	 * Note that since we don't increment jiffies_64 anywhere other
	 * than in do_timer (since we don't have a lost tick problem),
	 * wall_jiffies will always be the same as jiffies,
	 * and therefore the (jiffies - wall_jiffies) computation
	 * has been removed.
	 */
L
Linus Torvalds 已提交
576
	tb_delta = tb_ticks_since(tb_last_stamp);
577 578
	tb_delta = mulhdu(tb_delta, do_gtod.varp->tb_to_xs); /* in xsec */
	new_nsec -= SCALE_XSEC(tb_delta, 1000000000);
L
Linus Torvalds 已提交
579 580 581 582 583 584 585 586 587 588 589 590

	wtm_sec  = wall_to_monotonic.tv_sec + (xtime.tv_sec - new_sec);
	wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - new_nsec);

 	set_normalized_timespec(&xtime, new_sec, new_nsec);
	set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);

	/* In case of a large backwards jump in time with NTP, we want the 
	 * clock to be updated as soon as the PLL is again in lock.
	 */
	last_rtc_update = new_sec - 658;

J
john stultz 已提交
591
	ntp_clear();
L
Linus Torvalds 已提交
592

593 594 595
	new_xsec = xtime.tv_nsec;
	if (new_xsec != 0) {
		new_xsec *= XSEC_PER_SEC;
596 597
		do_div(new_xsec, NSEC_PER_SEC);
	}
598
	new_xsec += (u64)xtime.tv_sec * XSEC_PER_SEC;
599
	update_gtod(tb_last_jiffy, new_xsec, do_gtod.varp->tb_to_xs);
L
Linus Torvalds 已提交
600

601 602
	vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
	vdso_data->tz_dsttime = sys_tz.tz_dsttime;
L
Linus Torvalds 已提交
603 604 605 606 607 608 609 610

	write_sequnlock_irqrestore(&xtime_lock, flags);
	clock_was_set();
	return 0;
}

EXPORT_SYMBOL(do_settimeofday);

611 612 613 614 615 616 617 618 619 620 621 622 623 624
void __init generic_calibrate_decr(void)
{
	struct device_node *cpu;
	unsigned int *fp;
	int node_found;

	/*
	 * The cpu node should have a timebase-frequency property
	 * to tell us the rate at which the decrementer counts.
	 */
	cpu = of_find_node_by_type(NULL, "cpu");

	ppc_tb_freq = DEFAULT_TB_FREQ;		/* hardcoded default */
	node_found = 0;
625
	if (cpu) {
626 627
		fp = (unsigned int *)get_property(cpu, "timebase-frequency",
						  NULL);
628
		if (fp) {
629 630 631 632 633 634 635 636 637 638
			node_found = 1;
			ppc_tb_freq = *fp;
		}
	}
	if (!node_found)
		printk(KERN_ERR "WARNING: Estimating decrementer frequency "
				"(not found)\n");

	ppc_proc_freq = DEFAULT_PROC_FREQ;
	node_found = 0;
639
	if (cpu) {
640 641
		fp = (unsigned int *)get_property(cpu, "clock-frequency",
						  NULL);
642
		if (fp) {
643 644 645 646
			node_found = 1;
			ppc_proc_freq = *fp;
		}
	}
647 648 649 650 651 652 653 654 655 656 657
#ifdef CONFIG_BOOKE
	/* Set the time base to zero */
	mtspr(SPRN_TBWL, 0);
	mtspr(SPRN_TBWU, 0);

	/* Clear any pending timer interrupts */
	mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);

	/* Enable decrementer interrupt */
	mtspr(SPRN_TCR, TCR_DIE);
#endif
658 659 660 661 662 663 664
	if (!node_found)
		printk(KERN_ERR "WARNING: Estimating processor frequency "
				"(not found)\n");

	of_node_put(cpu);
}

665 666 667 668 669 670 671 672 673 674 675 676 677 678
unsigned long get_boot_time(void)
{
	struct rtc_time tm;

	if (ppc_md.get_boot_time)
		return ppc_md.get_boot_time();
	if (!ppc_md.get_rtc_time)
		return 0;
	ppc_md.get_rtc_time(&tm);
	return mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
		      tm.tm_hour, tm.tm_min, tm.tm_sec);
}

/* This function is only called on the boot processor */
L
Linus Torvalds 已提交
679 680 681
void __init time_init(void)
{
	unsigned long flags;
682
	unsigned long tm = 0;
L
Linus Torvalds 已提交
683
	struct div_result res;
684
	u64 scale, x;
685 686 687 688
	unsigned shift;

        if (ppc_md.time_init != NULL)
                timezone_offset = ppc_md.time_init();
L
Linus Torvalds 已提交
689

690 691 692 693 694 695 696 697 698 699 700 701 702 703
	if (__USE_RTC()) {
		/* 601 processor: dec counts down by 128 every 128ns */
		ppc_tb_freq = 1000000000;
		tb_last_stamp = get_rtcl();
		tb_last_jiffy = tb_last_stamp;
	} else {
		/* Normal PowerPC with timebase register */
		ppc_md.calibrate_decr();
		printk(KERN_INFO "time_init: decrementer frequency = %lu.%.6lu MHz\n",
		       ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
		printk(KERN_INFO "time_init: processor frequency   = %lu.%.6lu MHz\n",
		       ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
		tb_last_stamp = tb_last_jiffy = get_tb();
	}
704 705

	tb_ticks_per_jiffy = ppc_tb_freq / HZ;
706
	tb_ticks_per_sec = ppc_tb_freq;
707 708
	tb_ticks_per_usec = ppc_tb_freq / 1000000;
	tb_to_us = mulhwu_scale_factor(ppc_tb_freq, 1000000);
709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735

	/*
	 * Calculate the length of each tick in ns.  It will not be
	 * exactly 1e9/HZ unless ppc_tb_freq is divisible by HZ.
	 * We compute 1e9 * tb_ticks_per_jiffy / ppc_tb_freq,
	 * rounded up.
	 */
	x = (u64) NSEC_PER_SEC * tb_ticks_per_jiffy + ppc_tb_freq - 1;
	do_div(x, ppc_tb_freq);
	tick_nsec = x;
	last_tick_len = x << TICKLEN_SCALE;

	/*
	 * Compute ticklen_to_xs, which is a factor which gets multiplied
	 * by (last_tick_len << TICKLEN_SHIFT) to get a tb_to_xs value.
	 * It is computed as:
	 * ticklen_to_xs = 2^N / (tb_ticks_per_jiffy * 1e9)
	 * where N = 64 + 20 - TICKLEN_SCALE - TICKLEN_SHIFT
	 * so as to give the result as a 0.64 fixed-point fraction.
	 */
	div128_by_32(1ULL << (64 + 20 - TICKLEN_SCALE - TICKLEN_SHIFT), 0,
		     tb_ticks_per_jiffy, &res);
	div128_by_32(res.result_high, res.result_low, NSEC_PER_SEC, &res);
	ticklen_to_xs = res.result_low;

	/* Compute tb_to_xs from tick_nsec */
	tb_to_xs = mulhdu(last_tick_len << TICKLEN_SHIFT, ticklen_to_xs);
736

L
Linus Torvalds 已提交
737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758
	/*
	 * Compute scale factor for sched_clock.
	 * The calibrate_decr() function has set tb_ticks_per_sec,
	 * which is the timebase frequency.
	 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
	 * the 128-bit result as a 64.64 fixed-point number.
	 * We then shift that number right until it is less than 1.0,
	 * giving us the scale factor and shift count to use in
	 * sched_clock().
	 */
	div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
	scale = res.result_low;
	for (shift = 0; res.result_high != 0; ++shift) {
		scale = (scale >> 1) | (res.result_high << 63);
		res.result_high >>= 1;
	}
	tb_to_ns_scale = scale;
	tb_to_ns_shift = shift;

#ifdef CONFIG_PPC_ISERIES
	if (!piranha_simulator)
#endif
759
		tm = get_boot_time();
L
Linus Torvalds 已提交
760 761

	write_seqlock_irqsave(&xtime_lock, flags);
762 763 764 765 766 767 768 769

	/* If platform provided a timezone (pmac), we correct the time */
        if (timezone_offset) {
		sys_tz.tz_minuteswest = -timezone_offset / 60;
		sys_tz.tz_dsttime = 0;
		tm -= timezone_offset;
        }

770 771
	xtime.tv_sec = tm;
	xtime.tv_nsec = 0;
L
Linus Torvalds 已提交
772 773
	do_gtod.varp = &do_gtod.vars[0];
	do_gtod.var_idx = 0;
774
	do_gtod.varp->tb_orig_stamp = tb_last_jiffy;
775 776
	__get_cpu_var(last_jiffy) = tb_last_stamp;
	do_gtod.varp->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
L
Linus Torvalds 已提交
777 778 779
	do_gtod.tb_ticks_per_sec = tb_ticks_per_sec;
	do_gtod.varp->tb_to_xs = tb_to_xs;
	do_gtod.tb_to_us = tb_to_us;
780 781 782 783

	vdso_data->tb_orig_stamp = tb_last_jiffy;
	vdso_data->tb_update_count = 0;
	vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
784
	vdso_data->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
785
	vdso_data->tb_to_xs = tb_to_xs;
L
Linus Torvalds 已提交
786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802

	time_freq = 0;

	last_rtc_update = xtime.tv_sec;
	set_normalized_timespec(&wall_to_monotonic,
	                        -xtime.tv_sec, -xtime.tv_nsec);
	write_sequnlock_irqrestore(&xtime_lock, flags);

	/* Not exact, but the timer interrupt takes care of this */
	set_dec(tb_ticks_per_jiffy);
}


#define FEBRUARY	2
#define	STARTOFTIME	1970
#define SECDAY		86400L
#define SECYR		(SECDAY * 365)
803 804
#define	leapyear(year)		((year) % 4 == 0 && \
				 ((year) % 100 != 0 || (year) % 400 == 0))
L
Linus Torvalds 已提交
805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821
#define	days_in_year(a) 	(leapyear(a) ? 366 : 365)
#define	days_in_month(a) 	(month_days[(a) - 1])

static int month_days[12] = {
	31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
};

/*
 * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
 */
void GregorianDay(struct rtc_time * tm)
{
	int leapsToDate;
	int lastYear;
	int day;
	int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };

822
	lastYear = tm->tm_year - 1;
L
Linus Torvalds 已提交
823 824 825 826

	/*
	 * Number of leap corrections to apply up to end of last year
	 */
827
	leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
L
Linus Torvalds 已提交
828 829 830 831 832

	/*
	 * This year is a leap year if it is divisible by 4 except when it is
	 * divisible by 100 unless it is divisible by 400
	 *
833
	 * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
L
Linus Torvalds 已提交
834
	 */
835
	day = tm->tm_mon > 2 && leapyear(tm->tm_year);
L
Linus Torvalds 已提交
836 837 838 839

	day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
		   tm->tm_mday;

840
	tm->tm_wday = day % 7;
L
Linus Torvalds 已提交
841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885
}

void to_tm(int tim, struct rtc_time * tm)
{
	register int    i;
	register long   hms, day;

	day = tim / SECDAY;
	hms = tim % SECDAY;

	/* Hours, minutes, seconds are easy */
	tm->tm_hour = hms / 3600;
	tm->tm_min = (hms % 3600) / 60;
	tm->tm_sec = (hms % 3600) % 60;

	/* Number of years in days */
	for (i = STARTOFTIME; day >= days_in_year(i); i++)
		day -= days_in_year(i);
	tm->tm_year = i;

	/* Number of months in days left */
	if (leapyear(tm->tm_year))
		days_in_month(FEBRUARY) = 29;
	for (i = 1; day >= days_in_month(i); i++)
		day -= days_in_month(i);
	days_in_month(FEBRUARY) = 28;
	tm->tm_mon = i;

	/* Days are what is left over (+1) from all that. */
	tm->tm_mday = day + 1;

	/*
	 * Determine the day of week
	 */
	GregorianDay(tm);
}

/* Auxiliary function to compute scaling factors */
/* Actually the choice of a timebase running at 1/4 the of the bus
 * frequency giving resolution of a few tens of nanoseconds is quite nice.
 * It makes this computation very precise (27-28 bits typically) which
 * is optimistic considering the stability of most processor clock
 * oscillators and the precision with which the timebase frequency
 * is measured but does not harm.
 */
886 887
unsigned mulhwu_scale_factor(unsigned inscale, unsigned outscale)
{
L
Linus Torvalds 已提交
888 889 890 891 892 893
        unsigned mlt=0, tmp, err;
        /* No concern for performance, it's done once: use a stupid
         * but safe and compact method to find the multiplier.
         */
  
        for (tmp = 1U<<31; tmp != 0; tmp >>= 1) {
894 895
                if (mulhwu(inscale, mlt|tmp) < outscale)
			mlt |= tmp;
L
Linus Torvalds 已提交
896 897 898 899 900 901 902 903 904
        }
  
        /* We might still be off by 1 for the best approximation.
         * A side effect of this is that if outscale is too large
         * the returned value will be zero.
         * Many corner cases have been checked and seem to work,
         * some might have been forgotten in the test however.
         */
  
905 906 907
        err = inscale * (mlt+1);
        if (err <= inscale/2)
		mlt++;
L
Linus Torvalds 已提交
908
        return mlt;
909
}
L
Linus Torvalds 已提交
910 911 912 913 914

/*
 * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
 * result.
 */
915 916
void div128_by_32(u64 dividend_high, u64 dividend_low,
		  unsigned divisor, struct div_result *dr)
L
Linus Torvalds 已提交
917
{
918 919 920
	unsigned long a, b, c, d;
	unsigned long w, x, y, z;
	u64 ra, rb, rc;
L
Linus Torvalds 已提交
921 922 923 924 925 926

	a = dividend_high >> 32;
	b = dividend_high & 0xffffffff;
	c = dividend_low >> 32;
	d = dividend_low & 0xffffffff;

927 928 929 930 931
	w = a / divisor;
	ra = ((u64)(a - (w * divisor)) << 32) + b;

	rb = ((u64) do_div(ra, divisor) << 32) + c;
	x = ra;
L
Linus Torvalds 已提交
932

933 934 935 936 937
	rc = ((u64) do_div(rb, divisor) << 32) + d;
	y = rb;

	do_div(rc, divisor);
	z = rc;
L
Linus Torvalds 已提交
938

939 940
	dr->result_high = ((u64)w << 32) + x;
	dr->result_low  = ((u64)y << 32) + z;
L
Linus Torvalds 已提交
941 942

}