time.c 28.3 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
/*
 * Common time routines among all ppc machines.
 *
 * Written by Cort Dougan (cort@cs.nmt.edu) to merge
 * Paul Mackerras' version and mine for PReP and Pmac.
 * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
 * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
 *
 * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
 * to make clock more stable (2.4.0-test5). The only thing
 * that this code assumes is that the timebases have been synchronized
 * by firmware on SMP and are never stopped (never do sleep
 * on SMP then, nap and doze are OK).
 * 
 * Speeded up do_gettimeofday by getting rid of references to
 * xtime (which required locks for consistency). (mikejc@us.ibm.com)
 *
 * TODO (not necessarily in this file):
 * - improve precision and reproducibility of timebase frequency
 * measurement at boot time. (for iSeries, we calibrate the timebase
 * against the Titan chip's clock.)
 * - for astronomical applications: add a new function to get
 * non ambiguous timestamps even around leap seconds. This needs
 * a new timestamp format and a good name.
 *
 * 1997-09-10  Updated NTP code according to technical memorandum Jan '96
 *             "A Kernel Model for Precision Timekeeping" by Dave Mills
 *
 *      This program is free software; you can redistribute it and/or
 *      modify it under the terms of the GNU General Public License
 *      as published by the Free Software Foundation; either version
 *      2 of the License, or (at your option) any later version.
 */

#include <linux/config.h>
#include <linux/errno.h>
#include <linux/module.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/param.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/interrupt.h>
#include <linux/timex.h>
#include <linux/kernel_stat.h>
#include <linux/time.h>
#include <linux/init.h>
#include <linux/profile.h>
#include <linux/cpu.h>
#include <linux/security.h>
51 52
#include <linux/percpu.h>
#include <linux/rtc.h>
L
Linus Torvalds 已提交
53 54 55 56 57 58 59 60 61

#include <asm/io.h>
#include <asm/processor.h>
#include <asm/nvram.h>
#include <asm/cache.h>
#include <asm/machdep.h>
#include <asm/uaccess.h>
#include <asm/time.h>
#include <asm/prom.h>
62 63 64
#include <asm/irq.h>
#include <asm/div64.h>
#ifdef CONFIG_PPC64
L
Linus Torvalds 已提交
65
#include <asm/systemcfg.h>
66
#include <asm/firmware.h>
67 68 69
#endif
#ifdef CONFIG_PPC_ISERIES
#include <asm/iSeries/ItLpQueue.h>
70
#include <asm/iseries/hv_call_xm.h>
71
#endif
L
Linus Torvalds 已提交
72 73 74 75 76 77 78 79 80 81

/* keep track of when we need to update the rtc */
time_t last_rtc_update;
extern int piranha_simulator;
#ifdef CONFIG_PPC_ISERIES
unsigned long iSeries_recal_titan = 0;
unsigned long iSeries_recal_tb = 0; 
static unsigned long first_settimeofday = 1;
#endif

82 83 84
/* The decrementer counts down by 128 every 128ns on a 601. */
#define DECREMENTER_COUNT_601	(1000000000 / HZ)

L
Linus Torvalds 已提交
85 86
#define XSEC_PER_SEC (1024*1024)

87 88 89 90 91 92 93
#ifdef CONFIG_PPC64
#define SCALE_XSEC(xsec, max)	(((xsec) * max) / XSEC_PER_SEC)
#else
/* compute ((xsec << 12) * max) >> 32 */
#define SCALE_XSEC(xsec, max)	mulhwu((xsec) << 12, max)
#endif

L
Linus Torvalds 已提交
94 95 96 97
unsigned long tb_ticks_per_jiffy;
unsigned long tb_ticks_per_usec = 100; /* sane default */
EXPORT_SYMBOL(tb_ticks_per_usec);
unsigned long tb_ticks_per_sec;
98 99
u64 tb_to_xs;
unsigned tb_to_us;
L
Linus Torvalds 已提交
100 101
unsigned long processor_freq;
DEFINE_SPINLOCK(rtc_lock);
102
EXPORT_SYMBOL_GPL(rtc_lock);
L
Linus Torvalds 已提交
103

104 105
u64 tb_to_ns_scale;
unsigned tb_to_ns_shift;
L
Linus Torvalds 已提交
106 107 108 109 110 111

struct gettimeofday_struct do_gtod;

extern unsigned long wall_jiffies;

extern struct timezone sys_tz;
112
static long timezone_offset;
L
Linus Torvalds 已提交
113 114 115 116 117

void ppc_adjtimex(void);

static unsigned adjusting_time = 0;

118 119 120
unsigned long ppc_proc_freq;
unsigned long ppc_tb_freq;

121 122 123 124
#ifdef CONFIG_PPC32	/* XXX for now */
#define boot_cpuid	0
#endif

125 126 127 128 129 130 131 132 133 134
u64 tb_last_jiffy __cacheline_aligned_in_smp;
unsigned long tb_last_stamp;

/*
 * Note that on ppc32 this only stores the bottom 32 bits of
 * the timebase value, but that's enough to tell when a jiffy
 * has passed.
 */
DEFINE_PER_CPU(unsigned long, last_jiffy);

L
Linus Torvalds 已提交
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
static __inline__ void timer_check_rtc(void)
{
        /*
         * update the rtc when needed, this should be performed on the
         * right fraction of a second. Half or full second ?
         * Full second works on mk48t59 clocks, others need testing.
         * Note that this update is basically only used through 
         * the adjtimex system calls. Setting the HW clock in
         * any other way is a /dev/rtc and userland business.
         * This is still wrong by -0.5/+1.5 jiffies because of the
         * timer interrupt resolution and possible delay, but here we 
         * hit a quantization limit which can only be solved by higher
         * resolution timers and decoupling time management from timer
         * interrupts. This is also wrong on the clocks
         * which require being written at the half second boundary.
         * We should have an rtc call that only sets the minutes and
         * seconds like on Intel to avoid problems with non UTC clocks.
         */
153
        if (ppc_md.set_rtc_time && ntp_synced() &&
154 155 156 157 158 159 160 161 162 163 164 165
	    xtime.tv_sec - last_rtc_update >= 659 &&
	    abs((xtime.tv_nsec/1000) - (1000000-1000000/HZ)) < 500000/HZ &&
	    jiffies - wall_jiffies == 1) {
		struct rtc_time tm;
		to_tm(xtime.tv_sec + 1 + timezone_offset, &tm);
		tm.tm_year -= 1900;
		tm.tm_mon -= 1;
		if (ppc_md.set_rtc_time(&tm) == 0)
			last_rtc_update = xtime.tv_sec + 1;
		else
			/* Try again one minute later */
			last_rtc_update += 60;
L
Linus Torvalds 已提交
166 167 168 169 170 171
        }
}

/*
 * This version of gettimeofday has microsecond resolution.
 */
172
static inline void __do_gettimeofday(struct timeval *tv, u64 tb_val)
L
Linus Torvalds 已提交
173
{
174 175 176 177
	unsigned long sec, usec;
	u64 tb_ticks, xsec;
	struct gettimeofday_vars *temp_varp;
	u64 temp_tb_to_xs, temp_stamp_xsec;
L
Linus Torvalds 已提交
178 179 180 181 182 183 184 185 186 187 188

	/*
	 * These calculations are faster (gets rid of divides)
	 * if done in units of 1/2^20 rather than microseconds.
	 * The conversion to microseconds at the end is done
	 * without a divide (and in fact, without a multiply)
	 */
	temp_varp = do_gtod.varp;
	tb_ticks = tb_val - temp_varp->tb_orig_stamp;
	temp_tb_to_xs = temp_varp->tb_to_xs;
	temp_stamp_xsec = temp_varp->stamp_xsec;
189
	xsec = temp_stamp_xsec + mulhdu(tb_ticks, temp_tb_to_xs);
L
Linus Torvalds 已提交
190
	sec = xsec / XSEC_PER_SEC;
191 192
	usec = (unsigned long)xsec & (XSEC_PER_SEC - 1);
	usec = SCALE_XSEC(usec, 1000000);
L
Linus Torvalds 已提交
193 194 195 196 197 198 199

	tv->tv_sec = sec;
	tv->tv_usec = usec;
}

void do_gettimeofday(struct timeval *tv)
{
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
	if (__USE_RTC()) {
		/* do this the old way */
		unsigned long flags, seq;
		unsigned int sec, nsec, usec, lost;

		do {
			seq = read_seqbegin_irqsave(&xtime_lock, flags);
			sec = xtime.tv_sec;
			nsec = xtime.tv_nsec + tb_ticks_since(tb_last_stamp);
			lost = jiffies - wall_jiffies;
		} while (read_seqretry_irqrestore(&xtime_lock, seq, flags));
		usec = nsec / 1000 + lost * (1000000 / HZ);
		while (usec >= 1000000) {
			usec -= 1000000;
			++sec;
		}
		tv->tv_sec = sec;
		tv->tv_usec = usec;
		return;
	}
L
Linus Torvalds 已提交
220 221 222 223 224 225 226 227 228
	__do_gettimeofday(tv, get_tb());
}

EXPORT_SYMBOL(do_gettimeofday);

/* Synchronize xtime with do_gettimeofday */ 

static inline void timer_sync_xtime(unsigned long cur_tb)
{
229 230
#ifdef CONFIG_PPC64
	/* why do we do this? */
L
Linus Torvalds 已提交
231 232 233 234 235 236 237 238
	struct timeval my_tv;

	__do_gettimeofday(&my_tv, cur_tb);

	if (xtime.tv_sec <= my_tv.tv_sec) {
		xtime.tv_sec = my_tv.tv_sec;
		xtime.tv_nsec = my_tv.tv_usec * 1000;
	}
239
#endif
L
Linus Torvalds 已提交
240 241 242
}

/*
243 244 245 246 247 248
 * There are two copies of tb_to_xs and stamp_xsec so that no
 * lock is needed to access and use these values in
 * do_gettimeofday.  We alternate the copies and as long as a
 * reasonable time elapses between changes, there will never
 * be inconsistent values.  ntpd has a minimum of one minute
 * between updates.
L
Linus Torvalds 已提交
249
 */
250
static inline void update_gtod(u64 new_tb_stamp, u64 new_stamp_xsec,
251
			       u64 new_tb_to_xs)
L
Linus Torvalds 已提交
252 253
{
	unsigned temp_idx;
254
	struct gettimeofday_vars *temp_varp;
L
Linus Torvalds 已提交
255 256 257 258

	temp_idx = (do_gtod.var_idx == 0);
	temp_varp = &do_gtod.vars[temp_idx];

259 260
	temp_varp->tb_to_xs = new_tb_to_xs;
	temp_varp->tb_orig_stamp = new_tb_stamp;
L
Linus Torvalds 已提交
261
	temp_varp->stamp_xsec = new_stamp_xsec;
262
	smp_mb();
L
Linus Torvalds 已提交
263 264 265
	do_gtod.varp = temp_varp;
	do_gtod.var_idx = temp_idx;

266 267 268 269 270 271 272 273 274 275
#ifdef CONFIG_PPC64
	/*
	 * tb_update_count is used to allow the userspace gettimeofday code
	 * to assure itself that it sees a consistent view of the tb_to_xs and
	 * stamp_xsec variables.  It reads the tb_update_count, then reads
	 * tb_to_xs and stamp_xsec and then reads tb_update_count again.  If
	 * the two values of tb_update_count match and are even then the
	 * tb_to_xs and stamp_xsec values are consistent.  If not, then it
	 * loops back and reads them again until this criteria is met.
	 */
L
Linus Torvalds 已提交
276
	++(systemcfg->tb_update_count);
277
	smp_wmb();
278
	systemcfg->tb_orig_stamp = new_tb_stamp;
L
Linus Torvalds 已提交
279
	systemcfg->stamp_xsec = new_stamp_xsec;
280
	systemcfg->tb_to_xs = new_tb_to_xs;
281
	smp_wmb();
L
Linus Torvalds 已提交
282
	++(systemcfg->tb_update_count);
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
#endif
}

/*
 * When the timebase - tb_orig_stamp gets too big, we do a manipulation
 * between tb_orig_stamp and stamp_xsec. The goal here is to keep the
 * difference tb - tb_orig_stamp small enough to always fit inside a
 * 32 bits number. This is a requirement of our fast 32 bits userland
 * implementation in the vdso. If we "miss" a call to this function
 * (interrupt latency, CPU locked in a spinlock, ...) and we end up
 * with a too big difference, then the vdso will fallback to calling
 * the syscall
 */
static __inline__ void timer_recalc_offset(u64 cur_tb)
{
	unsigned long offset;
	u64 new_stamp_xsec;

301 302
	if (__USE_RTC())
		return;
303 304 305 306 307 308
	offset = cur_tb - do_gtod.varp->tb_orig_stamp;
	if ((offset & 0x80000000u) == 0)
		return;
	new_stamp_xsec = do_gtod.varp->stamp_xsec
		+ mulhdu(offset, do_gtod.varp->tb_to_xs);
	update_gtod(cur_tb, new_stamp_xsec, do_gtod.varp->tb_to_xs);
L
Linus Torvalds 已提交
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
}

#ifdef CONFIG_SMP
unsigned long profile_pc(struct pt_regs *regs)
{
	unsigned long pc = instruction_pointer(regs);

	if (in_lock_functions(pc))
		return regs->link;

	return pc;
}
EXPORT_SYMBOL(profile_pc);
#endif

#ifdef CONFIG_PPC_ISERIES

/* 
 * This function recalibrates the timebase based on the 49-bit time-of-day
 * value in the Titan chip.  The Titan is much more accurate than the value
 * returned by the service processor for the timebase frequency.  
 */

static void iSeries_tb_recal(void)
{
	struct div_result divres;
	unsigned long titan, tb;
	tb = get_tb();
	titan = HvCallXm_loadTod();
	if ( iSeries_recal_titan ) {
		unsigned long tb_ticks = tb - iSeries_recal_tb;
		unsigned long titan_usec = (titan - iSeries_recal_titan) >> 12;
		unsigned long new_tb_ticks_per_sec   = (tb_ticks * USEC_PER_SEC)/titan_usec;
		unsigned long new_tb_ticks_per_jiffy = (new_tb_ticks_per_sec+(HZ/2))/HZ;
		long tick_diff = new_tb_ticks_per_jiffy - tb_ticks_per_jiffy;
		char sign = '+';		
		/* make sure tb_ticks_per_sec and tb_ticks_per_jiffy are consistent */
		new_tb_ticks_per_sec = new_tb_ticks_per_jiffy * HZ;

		if ( tick_diff < 0 ) {
			tick_diff = -tick_diff;
			sign = '-';
		}
		if ( tick_diff ) {
			if ( tick_diff < tb_ticks_per_jiffy/25 ) {
				printk( "Titan recalibrate: new tb_ticks_per_jiffy = %lu (%c%ld)\n",
						new_tb_ticks_per_jiffy, sign, tick_diff );
				tb_ticks_per_jiffy = new_tb_ticks_per_jiffy;
				tb_ticks_per_sec   = new_tb_ticks_per_sec;
				div128_by_32( XSEC_PER_SEC, 0, tb_ticks_per_sec, &divres );
				do_gtod.tb_ticks_per_sec = tb_ticks_per_sec;
				tb_to_xs = divres.result_low;
				do_gtod.varp->tb_to_xs = tb_to_xs;
				systemcfg->tb_ticks_per_sec = tb_ticks_per_sec;
				systemcfg->tb_to_xs = tb_to_xs;
			}
			else {
				printk( "Titan recalibrate: FAILED (difference > 4 percent)\n"
					"                   new tb_ticks_per_jiffy = %lu\n"
					"                   old tb_ticks_per_jiffy = %lu\n",
					new_tb_ticks_per_jiffy, tb_ticks_per_jiffy );
			}
		}
	}
	iSeries_recal_titan = titan;
	iSeries_recal_tb = tb;
}
#endif

/*
 * For iSeries shared processors, we have to let the hypervisor
 * set the hardware decrementer.  We set a virtual decrementer
 * in the lppaca and call the hypervisor if the virtual
 * decrementer is less than the current value in the hardware
 * decrementer. (almost always the new decrementer value will
 * be greater than the current hardware decementer so the hypervisor
 * call will not be needed)
 */

/*
 * timer_interrupt - gets called when the decrementer overflows,
 * with interrupts disabled.
 */
392
void timer_interrupt(struct pt_regs * regs)
L
Linus Torvalds 已提交
393 394
{
	int next_dec;
395 396 397 398 399 400 401
	int cpu = smp_processor_id();
	unsigned long ticks;

#ifdef CONFIG_PPC32
	if (atomic_read(&ppc_n_lost_interrupts) != 0)
		do_IRQ(regs);
#endif
L
Linus Torvalds 已提交
402 403 404 405 406

	irq_enter();

	profile_tick(CPU_PROFILING, regs);

407 408 409 410 411 412 413 414 415 416 417
#ifdef CONFIG_PPC_ISERIES
	get_paca()->lppaca.int_dword.fields.decr_int = 0;
#endif

	while ((ticks = tb_ticks_since(per_cpu(last_jiffy, cpu)))
	       >= tb_ticks_per_jiffy) {
		/* Update last_jiffy */
		per_cpu(last_jiffy, cpu) += tb_ticks_per_jiffy;
		/* Handle RTCL overflow on 601 */
		if (__USE_RTC() && per_cpu(last_jiffy, cpu) >= 1000000000)
			per_cpu(last_jiffy, cpu) -= 1000000000;
L
Linus Torvalds 已提交
418 419 420 421 422 423 424 425 426 427

		/*
		 * We cannot disable the decrementer, so in the period
		 * between this cpu's being marked offline in cpu_online_map
		 * and calling stop-self, it is taking timer interrupts.
		 * Avoid calling into the scheduler rebalancing code if this
		 * is the case.
		 */
		if (!cpu_is_offline(cpu))
			update_process_times(user_mode(regs));
428

L
Linus Torvalds 已提交
429 430 431 432
		/*
		 * No need to check whether cpu is offline here; boot_cpuid
		 * should have been fixed up by now.
		 */
433 434 435 436
		if (cpu != boot_cpuid)
			continue;

		write_seqlock(&xtime_lock);
437 438 439
		tb_last_jiffy += tb_ticks_per_jiffy;
		tb_last_stamp = per_cpu(last_jiffy, cpu);
		timer_recalc_offset(tb_last_jiffy);
440
		do_timer(regs);
441
		timer_sync_xtime(tb_last_jiffy);
442 443 444 445
		timer_check_rtc();
		write_sequnlock(&xtime_lock);
		if (adjusting_time && (time_adjust == 0))
			ppc_adjtimex();
L
Linus Torvalds 已提交
446 447
	}
	
448
	next_dec = tb_ticks_per_jiffy - ticks;
L
Linus Torvalds 已提交
449 450 451
	set_dec(next_dec);

#ifdef CONFIG_PPC_ISERIES
452
	if (hvlpevent_is_pending())
453
		process_hvlpevents(regs);
L
Linus Torvalds 已提交
454 455
#endif

456
#ifdef CONFIG_PPC64
457
	/* collect purr register values often, for accurate calculations */
458
	if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
L
Linus Torvalds 已提交
459 460 461
		struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
		cu->current_tb = mfspr(SPRN_PURR);
	}
462
#endif
L
Linus Torvalds 已提交
463 464 465 466

	irq_exit();
}

467 468 469 470 471 472 473 474 475
void wakeup_decrementer(void)
{
	int i;

	set_dec(tb_ticks_per_jiffy);
	/*
	 * We don't expect this to be called on a machine with a 601,
	 * so using get_tbl is fine.
	 */
476
	tb_last_stamp = tb_last_jiffy = get_tb();
477 478 479 480
	for_each_cpu(i)
		per_cpu(last_jiffy, i) = tb_last_stamp;
}

481
#ifdef CONFIG_SMP
482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
void __init smp_space_timers(unsigned int max_cpus)
{
	int i;
	unsigned long offset = tb_ticks_per_jiffy / max_cpus;
	unsigned long previous_tb = per_cpu(last_jiffy, boot_cpuid);

	for_each_cpu(i) {
		if (i != boot_cpuid) {
			previous_tb += offset;
			per_cpu(last_jiffy, i) = previous_tb;
		}
	}
}
#endif

L
Linus Torvalds 已提交
497 498 499 500 501 502 503 504 505
/*
 * Scheduler clock - returns current time in nanosec units.
 *
 * Note: mulhdu(a, b) (multiply high double unsigned) returns
 * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
 * are 64-bit unsigned numbers.
 */
unsigned long long sched_clock(void)
{
506 507
	if (__USE_RTC())
		return get_rtc();
L
Linus Torvalds 已提交
508 509 510 511 512 513 514 515 516
	return mulhdu(get_tb(), tb_to_ns_scale) << tb_to_ns_shift;
}

int do_settimeofday(struct timespec *tv)
{
	time_t wtm_sec, new_sec = tv->tv_sec;
	long wtm_nsec, new_nsec = tv->tv_nsec;
	unsigned long flags;
	long int tb_delta;
517
	u64 new_xsec, tb_delta_xs;
L
Linus Torvalds 已提交
518 519 520 521 522

	if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
		return -EINVAL;

	write_seqlock_irqsave(&xtime_lock, flags);
523 524 525 526 527

	/*
	 * Updating the RTC is not the job of this code. If the time is
	 * stepped under NTP, the RTC will be updated after STA_UNSYNC
	 * is cleared.  Tools like clock/hwclock either copy the RTC
L
Linus Torvalds 已提交
528 529 530 531 532
	 * to the system time, in which case there is no point in writing
	 * to the RTC again, or write to the RTC but then they don't call
	 * settimeofday to perform this operation.
	 */
#ifdef CONFIG_PPC_ISERIES
533
	if (first_settimeofday) {
L
Linus Torvalds 已提交
534 535 536 537 538 539
		iSeries_tb_recal();
		first_settimeofday = 0;
	}
#endif
	tb_delta = tb_ticks_since(tb_last_stamp);
	tb_delta += (jiffies - wall_jiffies) * tb_ticks_per_jiffy;
540
	tb_delta_xs = mulhdu(tb_delta, do_gtod.varp->tb_to_xs);
L
Linus Torvalds 已提交
541 542 543 544 545 546 547 548 549 550 551 552

	wtm_sec  = wall_to_monotonic.tv_sec + (xtime.tv_sec - new_sec);
	wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - new_nsec);

 	set_normalized_timespec(&xtime, new_sec, new_nsec);
	set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);

	/* In case of a large backwards jump in time with NTP, we want the 
	 * clock to be updated as soon as the PLL is again in lock.
	 */
	last_rtc_update = new_sec - 658;

J
john stultz 已提交
553
	ntp_clear();
L
Linus Torvalds 已提交
554

555 556 557 558 559 560
	new_xsec = 0;
	if (new_nsec != 0) {
		new_xsec = (u64)new_nsec * XSEC_PER_SEC;
		do_div(new_xsec, NSEC_PER_SEC);
	}
	new_xsec += (u64)new_sec * XSEC_PER_SEC - tb_delta_xs;
561
	update_gtod(tb_last_jiffy, new_xsec, do_gtod.varp->tb_to_xs);
L
Linus Torvalds 已提交
562

563
#ifdef CONFIG_PPC64
L
Linus Torvalds 已提交
564 565
	systemcfg->tz_minuteswest = sys_tz.tz_minuteswest;
	systemcfg->tz_dsttime = sys_tz.tz_dsttime;
566
#endif
L
Linus Torvalds 已提交
567 568 569 570 571 572 573 574

	write_sequnlock_irqrestore(&xtime_lock, flags);
	clock_was_set();
	return 0;
}

EXPORT_SYMBOL(do_settimeofday);

575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610
void __init generic_calibrate_decr(void)
{
	struct device_node *cpu;
	unsigned int *fp;
	int node_found;

	/*
	 * The cpu node should have a timebase-frequency property
	 * to tell us the rate at which the decrementer counts.
	 */
	cpu = of_find_node_by_type(NULL, "cpu");

	ppc_tb_freq = DEFAULT_TB_FREQ;		/* hardcoded default */
	node_found = 0;
	if (cpu != 0) {
		fp = (unsigned int *)get_property(cpu, "timebase-frequency",
						  NULL);
		if (fp != 0) {
			node_found = 1;
			ppc_tb_freq = *fp;
		}
	}
	if (!node_found)
		printk(KERN_ERR "WARNING: Estimating decrementer frequency "
				"(not found)\n");

	ppc_proc_freq = DEFAULT_PROC_FREQ;
	node_found = 0;
	if (cpu != 0) {
		fp = (unsigned int *)get_property(cpu, "clock-frequency",
						  NULL);
		if (fp != 0) {
			node_found = 1;
			ppc_proc_freq = *fp;
		}
	}
611 612 613 614 615 616 617 618 619 620 621
#ifdef CONFIG_BOOKE
	/* Set the time base to zero */
	mtspr(SPRN_TBWL, 0);
	mtspr(SPRN_TBWU, 0);

	/* Clear any pending timer interrupts */
	mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);

	/* Enable decrementer interrupt */
	mtspr(SPRN_TCR, TCR_DIE);
#endif
622 623 624 625 626 627 628
	if (!node_found)
		printk(KERN_ERR "WARNING: Estimating processor frequency "
				"(not found)\n");

	of_node_put(cpu);
}

629 630 631 632 633 634 635 636 637 638 639 640 641 642
unsigned long get_boot_time(void)
{
	struct rtc_time tm;

	if (ppc_md.get_boot_time)
		return ppc_md.get_boot_time();
	if (!ppc_md.get_rtc_time)
		return 0;
	ppc_md.get_rtc_time(&tm);
	return mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
		      tm.tm_hour, tm.tm_min, tm.tm_sec);
}

/* This function is only called on the boot processor */
L
Linus Torvalds 已提交
643 644 645
void __init time_init(void)
{
	unsigned long flags;
646
	unsigned long tm = 0;
L
Linus Torvalds 已提交
647
	struct div_result res;
648 649 650 651 652
	u64 scale;
	unsigned shift;

        if (ppc_md.time_init != NULL)
                timezone_offset = ppc_md.time_init();
L
Linus Torvalds 已提交
653

654 655 656 657 658 659 660 661 662 663 664 665 666 667
	if (__USE_RTC()) {
		/* 601 processor: dec counts down by 128 every 128ns */
		ppc_tb_freq = 1000000000;
		tb_last_stamp = get_rtcl();
		tb_last_jiffy = tb_last_stamp;
	} else {
		/* Normal PowerPC with timebase register */
		ppc_md.calibrate_decr();
		printk(KERN_INFO "time_init: decrementer frequency = %lu.%.6lu MHz\n",
		       ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
		printk(KERN_INFO "time_init: processor frequency   = %lu.%.6lu MHz\n",
		       ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
		tb_last_stamp = tb_last_jiffy = get_tb();
	}
668 669 670 671 672 673 674 675

	tb_ticks_per_jiffy = ppc_tb_freq / HZ;
	tb_ticks_per_sec = tb_ticks_per_jiffy * HZ;
	tb_ticks_per_usec = ppc_tb_freq / 1000000;
	tb_to_us = mulhwu_scale_factor(ppc_tb_freq, 1000000);
	div128_by_32(1024*1024, 0, tb_ticks_per_sec, &res);
	tb_to_xs = res.result_low;

676 677 678 679
#ifdef CONFIG_PPC64
	get_paca()->default_decr = tb_ticks_per_jiffy;
#endif

L
Linus Torvalds 已提交
680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701
	/*
	 * Compute scale factor for sched_clock.
	 * The calibrate_decr() function has set tb_ticks_per_sec,
	 * which is the timebase frequency.
	 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
	 * the 128-bit result as a 64.64 fixed-point number.
	 * We then shift that number right until it is less than 1.0,
	 * giving us the scale factor and shift count to use in
	 * sched_clock().
	 */
	div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
	scale = res.result_low;
	for (shift = 0; res.result_high != 0; ++shift) {
		scale = (scale >> 1) | (res.result_high << 63);
		res.result_high >>= 1;
	}
	tb_to_ns_scale = scale;
	tb_to_ns_shift = shift;

#ifdef CONFIG_PPC_ISERIES
	if (!piranha_simulator)
#endif
702
		tm = get_boot_time();
L
Linus Torvalds 已提交
703 704

	write_seqlock_irqsave(&xtime_lock, flags);
705 706
	xtime.tv_sec = tm;
	xtime.tv_nsec = 0;
L
Linus Torvalds 已提交
707 708
	do_gtod.varp = &do_gtod.vars[0];
	do_gtod.var_idx = 0;
709
	do_gtod.varp->tb_orig_stamp = tb_last_jiffy;
710 711
	__get_cpu_var(last_jiffy) = tb_last_stamp;
	do_gtod.varp->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
L
Linus Torvalds 已提交
712 713 714
	do_gtod.tb_ticks_per_sec = tb_ticks_per_sec;
	do_gtod.varp->tb_to_xs = tb_to_xs;
	do_gtod.tb_to_us = tb_to_us;
715
#ifdef CONFIG_PPC64
716
	systemcfg->tb_orig_stamp = tb_last_jiffy;
L
Linus Torvalds 已提交
717 718 719 720
	systemcfg->tb_update_count = 0;
	systemcfg->tb_ticks_per_sec = tb_ticks_per_sec;
	systemcfg->stamp_xsec = xtime.tv_sec * XSEC_PER_SEC;
	systemcfg->tb_to_xs = tb_to_xs;
721
#endif
L
Linus Torvalds 已提交
722 723 724

	time_freq = 0;

725 726 727 728 729 730 731
	/* If platform provided a timezone (pmac), we correct the time */
        if (timezone_offset) {
		sys_tz.tz_minuteswest = -timezone_offset / 60;
		sys_tz.tz_dsttime = 0;
		xtime.tv_sec -= timezone_offset;
        }

L
Linus Torvalds 已提交
732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
	last_rtc_update = xtime.tv_sec;
	set_normalized_timespec(&wall_to_monotonic,
	                        -xtime.tv_sec, -xtime.tv_nsec);
	write_sequnlock_irqrestore(&xtime_lock, flags);

	/* Not exact, but the timer interrupt takes care of this */
	set_dec(tb_ticks_per_jiffy);
}

/* 
 * After adjtimex is called, adjust the conversion of tb ticks
 * to microseconds to keep do_gettimeofday synchronized 
 * with ntpd.
 *
 * Use the time_adjust, time_freq and time_offset computed by adjtimex to 
 * adjust the frequency.
 */

/* #define DEBUG_PPC_ADJTIMEX 1 */

void ppc_adjtimex(void)
{
754 755 756
#ifdef CONFIG_PPC64
	unsigned long den, new_tb_ticks_per_sec, tb_ticks, old_xsec,
		new_tb_to_xs, new_xsec, new_stamp_xsec;
L
Linus Torvalds 已提交
757 758 759 760 761 762
	unsigned long tb_ticks_per_sec_delta;
	long delta_freq, ltemp;
	struct div_result divres; 
	unsigned long flags;
	long singleshot_ppm = 0;

763 764 765 766 767 768 769
	/*
	 * Compute parts per million frequency adjustment to
	 * accomplish the time adjustment implied by time_offset to be
	 * applied over the elapsed time indicated by time_constant.
	 * Use SHIFT_USEC to get it into the same units as
	 * time_freq.
	 */
L
Linus Torvalds 已提交
770 771 772 773 774
	if ( time_offset < 0 ) {
		ltemp = -time_offset;
		ltemp <<= SHIFT_USEC - SHIFT_UPDATE;
		ltemp >>= SHIFT_KG + time_constant;
		ltemp = -ltemp;
775
	} else {
L
Linus Torvalds 已提交
776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791
		ltemp = time_offset;
		ltemp <<= SHIFT_USEC - SHIFT_UPDATE;
		ltemp >>= SHIFT_KG + time_constant;
	}
	
	/* If there is a single shot time adjustment in progress */
	if ( time_adjust ) {
#ifdef DEBUG_PPC_ADJTIMEX
		printk("ppc_adjtimex: ");
		if ( adjusting_time == 0 )
			printk("starting ");
		printk("single shot time_adjust = %ld\n", time_adjust);
#endif	
	
		adjusting_time = 1;
		
792 793 794 795
		/*
		 * Compute parts per million frequency adjustment
		 * to match time_adjust
		 */
L
Linus Torvalds 已提交
796 797 798 799 800 801 802
		singleshot_ppm = tickadj * HZ;	
		/*
		 * The adjustment should be tickadj*HZ to match the code in
		 * linux/kernel/timer.c, but experiments show that this is too
		 * large. 3/4 of tickadj*HZ seems about right
		 */
		singleshot_ppm -= singleshot_ppm / 4;
803
		/* Use SHIFT_USEC to get it into the same units as time_freq */
L
Linus Torvalds 已提交
804 805 806 807 808 809 810 811 812 813 814 815 816 817 818
		singleshot_ppm <<= SHIFT_USEC;
		if ( time_adjust < 0 )
			singleshot_ppm = -singleshot_ppm;
	}
	else {
#ifdef DEBUG_PPC_ADJTIMEX
		if ( adjusting_time )
			printk("ppc_adjtimex: ending single shot time_adjust\n");
#endif
		adjusting_time = 0;
	}
	
	/* Add up all of the frequency adjustments */
	delta_freq = time_freq + ltemp + singleshot_ppm;
	
819 820 821 822
	/*
	 * Compute a new value for tb_ticks_per_sec based on
	 * the frequency adjustment
	 */
L
Linus Torvalds 已提交
823 824 825 826 827 828 829 830 831 832 833 834 835 836
	den = 1000000 * (1 << (SHIFT_USEC - 8));
	if ( delta_freq < 0 ) {
		tb_ticks_per_sec_delta = ( tb_ticks_per_sec * ( (-delta_freq) >> (SHIFT_USEC - 8))) / den;
		new_tb_ticks_per_sec = tb_ticks_per_sec + tb_ticks_per_sec_delta;
	}
	else {
		tb_ticks_per_sec_delta = ( tb_ticks_per_sec * ( delta_freq >> (SHIFT_USEC - 8))) / den;
		new_tb_ticks_per_sec = tb_ticks_per_sec - tb_ticks_per_sec_delta;
	}
	
#ifdef DEBUG_PPC_ADJTIMEX
	printk("ppc_adjtimex: ltemp = %ld, time_freq = %ld, singleshot_ppm = %ld\n", ltemp, time_freq, singleshot_ppm);
	printk("ppc_adjtimex: tb_ticks_per_sec - base = %ld  new = %ld\n", tb_ticks_per_sec, new_tb_ticks_per_sec);
#endif
837 838 839 840 841 842 843 844 845

	/*
	 * Compute a new value of tb_to_xs (used to convert tb to
	 * microseconds) and a new value of stamp_xsec which is the
	 * time (in 1/2^20 second units) corresponding to
	 * tb_orig_stamp.  This new value of stamp_xsec compensates
	 * for the change in frequency (implied by the new tb_to_xs)
	 * which guarantees that the current time remains the same.
	 */
L
Linus Torvalds 已提交
846 847
	write_seqlock_irqsave( &xtime_lock, flags );
	tb_ticks = get_tb() - do_gtod.varp->tb_orig_stamp;
848
	div128_by_32(1024*1024, 0, new_tb_ticks_per_sec, &divres);
L
Linus Torvalds 已提交
849
	new_tb_to_xs = divres.result_low;
850
	new_xsec = mulhdu(tb_ticks, new_tb_to_xs);
L
Linus Torvalds 已提交
851

852
	old_xsec = mulhdu(tb_ticks, do_gtod.varp->tb_to_xs);
L
Linus Torvalds 已提交
853 854
	new_stamp_xsec = do_gtod.varp->stamp_xsec + old_xsec - new_xsec;

855
	update_gtod(do_gtod.varp->tb_orig_stamp, new_stamp_xsec, new_tb_to_xs);
L
Linus Torvalds 已提交
856 857

	write_sequnlock_irqrestore( &xtime_lock, flags );
858
#endif /* CONFIG_PPC64 */
L
Linus Torvalds 已提交
859 860 861 862 863 864 865
}


#define FEBRUARY	2
#define	STARTOFTIME	1970
#define SECDAY		86400L
#define SECYR		(SECDAY * 365)
866 867
#define	leapyear(year)		((year) % 4 == 0 && \
				 ((year) % 100 != 0 || (year) % 400 == 0))
L
Linus Torvalds 已提交
868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884
#define	days_in_year(a) 	(leapyear(a) ? 366 : 365)
#define	days_in_month(a) 	(month_days[(a) - 1])

static int month_days[12] = {
	31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
};

/*
 * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
 */
void GregorianDay(struct rtc_time * tm)
{
	int leapsToDate;
	int lastYear;
	int day;
	int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };

885
	lastYear = tm->tm_year - 1;
L
Linus Torvalds 已提交
886 887 888 889

	/*
	 * Number of leap corrections to apply up to end of last year
	 */
890
	leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
L
Linus Torvalds 已提交
891 892 893 894 895

	/*
	 * This year is a leap year if it is divisible by 4 except when it is
	 * divisible by 100 unless it is divisible by 400
	 *
896
	 * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
L
Linus Torvalds 已提交
897
	 */
898
	day = tm->tm_mon > 2 && leapyear(tm->tm_year);
L
Linus Torvalds 已提交
899 900 901 902

	day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
		   tm->tm_mday;

903
	tm->tm_wday = day % 7;
L
Linus Torvalds 已提交
904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948
}

void to_tm(int tim, struct rtc_time * tm)
{
	register int    i;
	register long   hms, day;

	day = tim / SECDAY;
	hms = tim % SECDAY;

	/* Hours, minutes, seconds are easy */
	tm->tm_hour = hms / 3600;
	tm->tm_min = (hms % 3600) / 60;
	tm->tm_sec = (hms % 3600) % 60;

	/* Number of years in days */
	for (i = STARTOFTIME; day >= days_in_year(i); i++)
		day -= days_in_year(i);
	tm->tm_year = i;

	/* Number of months in days left */
	if (leapyear(tm->tm_year))
		days_in_month(FEBRUARY) = 29;
	for (i = 1; day >= days_in_month(i); i++)
		day -= days_in_month(i);
	days_in_month(FEBRUARY) = 28;
	tm->tm_mon = i;

	/* Days are what is left over (+1) from all that. */
	tm->tm_mday = day + 1;

	/*
	 * Determine the day of week
	 */
	GregorianDay(tm);
}

/* Auxiliary function to compute scaling factors */
/* Actually the choice of a timebase running at 1/4 the of the bus
 * frequency giving resolution of a few tens of nanoseconds is quite nice.
 * It makes this computation very precise (27-28 bits typically) which
 * is optimistic considering the stability of most processor clock
 * oscillators and the precision with which the timebase frequency
 * is measured but does not harm.
 */
949 950
unsigned mulhwu_scale_factor(unsigned inscale, unsigned outscale)
{
L
Linus Torvalds 已提交
951 952 953 954 955 956
        unsigned mlt=0, tmp, err;
        /* No concern for performance, it's done once: use a stupid
         * but safe and compact method to find the multiplier.
         */
  
        for (tmp = 1U<<31; tmp != 0; tmp >>= 1) {
957 958
                if (mulhwu(inscale, mlt|tmp) < outscale)
			mlt |= tmp;
L
Linus Torvalds 已提交
959 960 961 962 963 964 965 966 967
        }
  
        /* We might still be off by 1 for the best approximation.
         * A side effect of this is that if outscale is too large
         * the returned value will be zero.
         * Many corner cases have been checked and seem to work,
         * some might have been forgotten in the test however.
         */
  
968 969 970
        err = inscale * (mlt+1);
        if (err <= inscale/2)
		mlt++;
L
Linus Torvalds 已提交
971
        return mlt;
972
}
L
Linus Torvalds 已提交
973 974 975 976 977

/*
 * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
 * result.
 */
978 979
void div128_by_32(u64 dividend_high, u64 dividend_low,
		  unsigned divisor, struct div_result *dr)
L
Linus Torvalds 已提交
980
{
981 982 983
	unsigned long a, b, c, d;
	unsigned long w, x, y, z;
	u64 ra, rb, rc;
L
Linus Torvalds 已提交
984 985 986 987 988 989

	a = dividend_high >> 32;
	b = dividend_high & 0xffffffff;
	c = dividend_low >> 32;
	d = dividend_low & 0xffffffff;

990 991 992 993 994
	w = a / divisor;
	ra = ((u64)(a - (w * divisor)) << 32) + b;

	rb = ((u64) do_div(ra, divisor) << 32) + c;
	x = ra;
L
Linus Torvalds 已提交
995

996 997 998 999 1000
	rc = ((u64) do_div(rb, divisor) << 32) + d;
	y = rb;

	do_div(rc, divisor);
	z = rc;
L
Linus Torvalds 已提交
1001

1002 1003
	dr->result_high = ((u64)w << 32) + x;
	dr->result_low  = ((u64)y << 32) + z;
L
Linus Torvalds 已提交
1004 1005

}