cpufreq_ondemand.c 20.9 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/*
 *  drivers/cpufreq/cpufreq_ondemand.c
 *
 *  Copyright (C)  2001 Russell King
 *            (C)  2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
 *                      Jun Nakajima <jun.nakajima@intel.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/cpufreq.h>
A
Andrew Morton 已提交
17
#include <linux/cpu.h>
L
Linus Torvalds 已提交
18 19
#include <linux/jiffies.h>
#include <linux/kernel_stat.h>
20
#include <linux/mutex.h>
21 22 23
#include <linux/hrtimer.h>
#include <linux/tick.h>
#include <linux/ktime.h>
24
#include <linux/sched.h>
L
Linus Torvalds 已提交
25 26 27 28 29 30

/*
 * dbs is used in this file as a shortform for demandbased switching
 * It helps to keep variable names smaller, simpler
 */

31
#define DEF_FREQUENCY_DOWN_DIFFERENTIAL		(10)
L
Linus Torvalds 已提交
32
#define DEF_FREQUENCY_UP_THRESHOLD		(80)
33 34
#define DEF_SAMPLING_DOWN_FACTOR		(1)
#define MAX_SAMPLING_DOWN_FACTOR		(100000)
35 36
#define MICRO_FREQUENCY_DOWN_DIFFERENTIAL	(3)
#define MICRO_FREQUENCY_UP_THRESHOLD		(95)
37
#define MICRO_FREQUENCY_MIN_SAMPLE_RATE		(10000)
38
#define MIN_FREQUENCY_UP_THRESHOLD		(11)
L
Linus Torvalds 已提交
39 40
#define MAX_FREQUENCY_UP_THRESHOLD		(100)

41 42
/*
 * The polling frequency of this governor depends on the capability of
L
Linus Torvalds 已提交
43
 * the processor. Default polling frequency is 1000 times the transition
44 45
 * latency of the processor. The governor will work on any processor with
 * transition latency <= 10mS, using appropriate sampling
L
Linus Torvalds 已提交
46 47 48 49 50
 * rate.
 * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
 * this governor will not work.
 * All times here are in uS.
 */
51
#define MIN_SAMPLING_RATE_RATIO			(2)
52

53 54
static unsigned int min_sampling_rate;

55
#define LATENCY_MULTIPLIER			(1000)
56
#define MIN_LATENCY_MULTIPLIER			(100)
57
#define TRANSITION_LATENCY_LIMIT		(10 * 1000 * 1000)
L
Linus Torvalds 已提交
58

D
David Howells 已提交
59
static void do_dbs_timer(struct work_struct *work);
60 61 62 63 64 65 66 67 68 69 70 71
static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
				unsigned int event);

#ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
static
#endif
struct cpufreq_governor cpufreq_gov_ondemand = {
       .name                   = "ondemand",
       .governor               = cpufreq_governor_dbs,
       .max_transition_latency = TRANSITION_LATENCY_LIMIT,
       .owner                  = THIS_MODULE,
};
D
David Howells 已提交
72 73

/* Sampling types */
74
enum {DBS_NORMAL_SAMPLE, DBS_SUB_SAMPLE};
L
Linus Torvalds 已提交
75 76

struct cpu_dbs_info_s {
77
	cputime64_t prev_cpu_idle;
78
	cputime64_t prev_cpu_iowait;
79
	cputime64_t prev_cpu_wall;
80
	cputime64_t prev_cpu_nice;
81
	struct cpufreq_policy *cur_policy;
82
	struct delayed_work work;
83 84 85 86
	struct cpufreq_frequency_table *freq_table;
	unsigned int freq_lo;
	unsigned int freq_lo_jiffies;
	unsigned int freq_hi_jiffies;
87
	unsigned int rate_mult;
88
	int cpu;
89 90 91 92 93 94 95
	unsigned int sample_type:1;
	/*
	 * percpu mutex that serializes governor limit change with
	 * do_dbs_timer invocation. We do not want do_dbs_timer to run
	 * when user is changing the governor or limits.
	 */
	struct mutex timer_mutex;
L
Linus Torvalds 已提交
96
};
97
static DEFINE_PER_CPU(struct cpu_dbs_info_s, od_cpu_dbs_info);
L
Linus Torvalds 已提交
98 99 100

static unsigned int dbs_enable;	/* number of CPUs using this policy */

101
/*
102
 * dbs_mutex protects dbs_enable in governor start/stop.
103
 */
104
static DEFINE_MUTEX(dbs_mutex);
L
Linus Torvalds 已提交
105

106
static struct dbs_tuners {
107 108
	unsigned int sampling_rate;
	unsigned int up_threshold;
109
	unsigned int down_differential;
110
	unsigned int ignore_nice;
111
	unsigned int sampling_down_factor;
112
	unsigned int powersave_bias;
113
	unsigned int io_is_busy;
114
} dbs_tuners_ins = {
115
	.up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
116
	.sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR,
117
	.down_differential = DEF_FREQUENCY_DOWN_DIFFERENTIAL,
118
	.ignore_nice = 0,
119
	.powersave_bias = 0,
L
Linus Torvalds 已提交
120 121
};

122 123
static inline cputime64_t get_cpu_idle_time_jiffy(unsigned int cpu,
							cputime64_t *wall)
124
{
125
	cputime64_t idle_time;
126
	cputime64_t cur_wall_time;
127
	cputime64_t busy_time;
128

129
	cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
130 131 132 133 134 135 136 137
	busy_time  = kstat_cpu(cpu).cpustat.user;
	busy_time += kstat_cpu(cpu).cpustat.system;
	busy_time += kstat_cpu(cpu).cpustat.irq;
	busy_time += kstat_cpu(cpu).cpustat.softirq;
	busy_time += kstat_cpu(cpu).cpustat.steal;
	busy_time += kstat_cpu(cpu).cpustat.nice;

	idle_time = cur_wall_time - busy_time;
138
	if (wall)
139
		*wall = (cputime64_t)jiffies_to_usecs(cur_wall_time);
140

141
	return (cputime64_t)jiffies_to_usecs(idle_time);
142 143
}

144 145
static inline cputime64_t get_cpu_idle_time(unsigned int cpu, cputime64_t *wall)
{
146
	u64 idle_time = get_cpu_idle_time_us(cpu, NULL);
147 148 149

	if (idle_time == -1ULL)
		return get_cpu_idle_time_jiffy(cpu, wall);
150 151
	else
		idle_time += get_cpu_iowait_time_us(cpu, wall);
152 153 154 155

	return idle_time;
}

156 157 158 159 160 161 162 163 164 165
static inline cputime64_t get_cpu_iowait_time(unsigned int cpu, cputime64_t *wall)
{
	u64 iowait_time = get_cpu_iowait_time_us(cpu, wall);

	if (iowait_time == -1ULL)
		return 0;

	return iowait_time;
}

166 167 168 169 170
/*
 * Find right freq to be set now with powersave_bias on.
 * Returns the freq_hi to be used right now and will set freq_hi_jiffies,
 * freq_lo, and freq_lo_jiffies in percpu area for averaging freqs.
 */
171 172 173
static unsigned int powersave_bias_target(struct cpufreq_policy *policy,
					  unsigned int freq_next,
					  unsigned int relation)
174 175 176 177 178
{
	unsigned int freq_req, freq_reduc, freq_avg;
	unsigned int freq_hi, freq_lo;
	unsigned int index = 0;
	unsigned int jiffies_total, jiffies_hi, jiffies_lo;
179 180
	struct cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
						   policy->cpu);
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220

	if (!dbs_info->freq_table) {
		dbs_info->freq_lo = 0;
		dbs_info->freq_lo_jiffies = 0;
		return freq_next;
	}

	cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_next,
			relation, &index);
	freq_req = dbs_info->freq_table[index].frequency;
	freq_reduc = freq_req * dbs_tuners_ins.powersave_bias / 1000;
	freq_avg = freq_req - freq_reduc;

	/* Find freq bounds for freq_avg in freq_table */
	index = 0;
	cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
			CPUFREQ_RELATION_H, &index);
	freq_lo = dbs_info->freq_table[index].frequency;
	index = 0;
	cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
			CPUFREQ_RELATION_L, &index);
	freq_hi = dbs_info->freq_table[index].frequency;

	/* Find out how long we have to be in hi and lo freqs */
	if (freq_hi == freq_lo) {
		dbs_info->freq_lo = 0;
		dbs_info->freq_lo_jiffies = 0;
		return freq_lo;
	}
	jiffies_total = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
	jiffies_hi = (freq_avg - freq_lo) * jiffies_total;
	jiffies_hi += ((freq_hi - freq_lo) / 2);
	jiffies_hi /= (freq_hi - freq_lo);
	jiffies_lo = jiffies_total - jiffies_hi;
	dbs_info->freq_lo = freq_lo;
	dbs_info->freq_lo_jiffies = jiffies_lo;
	dbs_info->freq_hi_jiffies = jiffies_hi;
	return freq_hi;
}

221 222
static void ondemand_powersave_bias_init_cpu(int cpu)
{
223
	struct cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
224 225 226 227
	dbs_info->freq_table = cpufreq_frequency_get_table(cpu);
	dbs_info->freq_lo = 0;
}

228 229 230 231
static void ondemand_powersave_bias_init(void)
{
	int i;
	for_each_online_cpu(i) {
232
		ondemand_powersave_bias_init_cpu(i);
233 234 235
	}
}

L
Linus Torvalds 已提交
236
/************************** sysfs interface ************************/
237 238 239

static ssize_t show_sampling_rate_min(struct kobject *kobj,
				      struct attribute *attr, char *buf)
L
Linus Torvalds 已提交
240
{
241
	return sprintf(buf, "%u\n", min_sampling_rate);
L
Linus Torvalds 已提交
242 243
}

244
define_one_global_ro(sampling_rate_min);
L
Linus Torvalds 已提交
245 246 247 248

/* cpufreq_ondemand Governor Tunables */
#define show_one(file_name, object)					\
static ssize_t show_##file_name						\
249
(struct kobject *kobj, struct attribute *attr, char *buf)              \
L
Linus Torvalds 已提交
250 251 252 253
{									\
	return sprintf(buf, "%u\n", dbs_tuners_ins.object);		\
}
show_one(sampling_rate, sampling_rate);
254
show_one(io_is_busy, io_is_busy);
L
Linus Torvalds 已提交
255
show_one(up_threshold, up_threshold);
256
show_one(sampling_down_factor, sampling_down_factor);
257
show_one(ignore_nice_load, ignore_nice);
258
show_one(powersave_bias, powersave_bias);
L
Linus Torvalds 已提交
259

260 261
static ssize_t store_sampling_rate(struct kobject *a, struct attribute *b,
				   const char *buf, size_t count)
L
Linus Torvalds 已提交
262 263 264
{
	unsigned int input;
	int ret;
265
	ret = sscanf(buf, "%u", &input);
266 267
	if (ret != 1)
		return -EINVAL;
268
	dbs_tuners_ins.sampling_rate = max(input, min_sampling_rate);
L
Linus Torvalds 已提交
269 270 271
	return count;
}

272 273 274 275 276 277 278 279 280 281 282 283 284
static ssize_t store_io_is_busy(struct kobject *a, struct attribute *b,
				   const char *buf, size_t count)
{
	unsigned int input;
	int ret;

	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
	dbs_tuners_ins.io_is_busy = !!input;
	return count;
}

285 286
static ssize_t store_up_threshold(struct kobject *a, struct attribute *b,
				  const char *buf, size_t count)
L
Linus Torvalds 已提交
287 288 289
{
	unsigned int input;
	int ret;
290
	ret = sscanf(buf, "%u", &input);
L
Linus Torvalds 已提交
291

292
	if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
293
			input < MIN_FREQUENCY_UP_THRESHOLD) {
L
Linus Torvalds 已提交
294 295 296 297 298 299
		return -EINVAL;
	}
	dbs_tuners_ins.up_threshold = input;
	return count;
}

300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
static ssize_t store_sampling_down_factor(struct kobject *a,
			struct attribute *b, const char *buf, size_t count)
{
	unsigned int input, j;
	int ret;
	ret = sscanf(buf, "%u", &input);

	if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
		return -EINVAL;
	dbs_tuners_ins.sampling_down_factor = input;

	/* Reset down sampling multiplier in case it was active */
	for_each_online_cpu(j) {
		struct cpu_dbs_info_s *dbs_info;
		dbs_info = &per_cpu(od_cpu_dbs_info, j);
		dbs_info->rate_mult = 1;
	}
	return count;
}

320 321
static ssize_t store_ignore_nice_load(struct kobject *a, struct attribute *b,
				      const char *buf, size_t count)
322 323 324 325 326
{
	unsigned int input;
	int ret;

	unsigned int j;
327

328
	ret = sscanf(buf, "%u", &input);
329
	if (ret != 1)
330 331
		return -EINVAL;

332
	if (input > 1)
333
		input = 1;
334

335
	if (input == dbs_tuners_ins.ignore_nice) { /* nothing to do */
336 337 338 339
		return count;
	}
	dbs_tuners_ins.ignore_nice = input;

340
	/* we need to re-evaluate prev_cpu_idle */
341
	for_each_online_cpu(j) {
342
		struct cpu_dbs_info_s *dbs_info;
343
		dbs_info = &per_cpu(od_cpu_dbs_info, j);
344 345
		dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
						&dbs_info->prev_cpu_wall);
346 347 348
		if (dbs_tuners_ins.ignore_nice)
			dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;

349 350 351 352
	}
	return count;
}

353 354
static ssize_t store_powersave_bias(struct kobject *a, struct attribute *b,
				    const char *buf, size_t count)
355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
{
	unsigned int input;
	int ret;
	ret = sscanf(buf, "%u", &input);

	if (ret != 1)
		return -EINVAL;

	if (input > 1000)
		input = 1000;

	dbs_tuners_ins.powersave_bias = input;
	ondemand_powersave_bias_init();
	return count;
}

371
define_one_global_rw(sampling_rate);
372
define_one_global_rw(io_is_busy);
373
define_one_global_rw(up_threshold);
374
define_one_global_rw(sampling_down_factor);
375 376
define_one_global_rw(ignore_nice_load);
define_one_global_rw(powersave_bias);
L
Linus Torvalds 已提交
377

378
static struct attribute *dbs_attributes[] = {
L
Linus Torvalds 已提交
379 380 381
	&sampling_rate_min.attr,
	&sampling_rate.attr,
	&up_threshold.attr,
382
	&sampling_down_factor.attr,
383
	&ignore_nice_load.attr,
384
	&powersave_bias.attr,
385
	&io_is_busy.attr,
L
Linus Torvalds 已提交
386 387 388 389 390 391 392 393 394 395
	NULL
};

static struct attribute_group dbs_attr_group = {
	.attrs = dbs_attributes,
	.name = "ondemand",
};

/************************** sysfs end ************************/

396 397 398 399 400 401 402 403 404 405 406
static void dbs_freq_increase(struct cpufreq_policy *p, unsigned int freq)
{
	if (dbs_tuners_ins.powersave_bias)
		freq = powersave_bias_target(p, freq, CPUFREQ_RELATION_H);
	else if (p->cur == p->max)
		return;

	__cpufreq_driver_target(p, freq, dbs_tuners_ins.powersave_bias ?
			CPUFREQ_RELATION_L : CPUFREQ_RELATION_H);
}

407
static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info)
L
Linus Torvalds 已提交
408
{
409
	unsigned int max_load_freq;
L
Linus Torvalds 已提交
410 411 412 413

	struct cpufreq_policy *policy;
	unsigned int j;

414
	this_dbs_info->freq_lo = 0;
L
Linus Torvalds 已提交
415
	policy = this_dbs_info->cur_policy;
416

417
	/*
418 419
	 * Every sampling_rate, we check, if current idle time is less
	 * than 20% (default), then we try to increase frequency
420
	 * Every sampling_rate, we look for a the lowest
421 422
	 * frequency which can sustain the load while keeping idle time over
	 * 30%. If such a frequency exist, we try to decrease to this frequency.
L
Linus Torvalds 已提交
423
	 *
424 425 426
	 * Any frequency increase takes it to the maximum frequency.
	 * Frequency reduction happens at minimum steps of
	 * 5% (default) of current frequency
L
Linus Torvalds 已提交
427 428
	 */

429 430 431
	/* Get Absolute Load - in terms of freq */
	max_load_freq = 0;

432
	for_each_cpu(j, policy->cpus) {
L
Linus Torvalds 已提交
433
		struct cpu_dbs_info_s *j_dbs_info;
434 435
		cputime64_t cur_wall_time, cur_idle_time, cur_iowait_time;
		unsigned int idle_time, wall_time, iowait_time;
436 437
		unsigned int load, load_freq;
		int freq_avg;
L
Linus Torvalds 已提交
438

439
		j_dbs_info = &per_cpu(od_cpu_dbs_info, j);
440 441

		cur_idle_time = get_cpu_idle_time(j, &cur_wall_time);
442
		cur_iowait_time = get_cpu_iowait_time(j, &cur_wall_time);
443

444 445
		wall_time = (unsigned int)
			(cur_wall_time - j_dbs_info->prev_cpu_wall);
446 447
		j_dbs_info->prev_cpu_wall = cur_wall_time;

448 449
		idle_time = (unsigned int)
			(cur_idle_time - j_dbs_info->prev_cpu_idle);
450
		j_dbs_info->prev_cpu_idle = cur_idle_time;
L
Linus Torvalds 已提交
451

452 453
		iowait_time = (unsigned int)
			(cur_iowait_time - j_dbs_info->prev_cpu_iowait);
454 455
		j_dbs_info->prev_cpu_iowait = cur_iowait_time;

456 457 458 459
		if (dbs_tuners_ins.ignore_nice) {
			cputime64_t cur_nice;
			unsigned long cur_nice_jiffies;

460 461
			cur_nice = kstat_cpu(j).cpustat.nice -
					j_dbs_info->prev_cpu_nice;
462 463 464 465 466 467 468 469 470 471 472
			/*
			 * Assumption: nice time between sampling periods will
			 * be less than 2^32 jiffies for 32 bit sys
			 */
			cur_nice_jiffies = (unsigned long)
					cputime64_to_jiffies64(cur_nice);

			j_dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
			idle_time += jiffies_to_usecs(cur_nice_jiffies);
		}

473 474 475 476 477 478 479
		/*
		 * For the purpose of ondemand, waiting for disk IO is an
		 * indication that you're performance critical, and not that
		 * the system is actually idle. So subtract the iowait time
		 * from the cpu idle time.
		 */

480
		if (dbs_tuners_ins.io_is_busy && idle_time >= iowait_time)
481 482
			idle_time -= iowait_time;

483
		if (unlikely(!wall_time || wall_time < idle_time))
484 485 486 487 488 489 490 491 492 493 494
			continue;

		load = 100 * (wall_time - idle_time) / wall_time;

		freq_avg = __cpufreq_driver_getavg(policy, j);
		if (freq_avg <= 0)
			freq_avg = policy->cur;

		load_freq = load * freq_avg;
		if (load_freq > max_load_freq)
			max_load_freq = load_freq;
L
Linus Torvalds 已提交
495 496
	}

497
	/* Check for frequency increase */
498
	if (max_load_freq > dbs_tuners_ins.up_threshold * policy->cur) {
499 500 501 502
		/* If switching to max speed, apply sampling_down_factor */
		if (policy->cur < policy->max)
			this_dbs_info->rate_mult =
				dbs_tuners_ins.sampling_down_factor;
503
		dbs_freq_increase(policy, policy->max);
L
Linus Torvalds 已提交
504 505 506 507
		return;
	}

	/* Check for frequency decrease */
508 509 510
	/* if we cannot reduce the frequency anymore, break out early */
	if (policy->cur == policy->min)
		return;
L
Linus Torvalds 已提交
511

512 513 514 515 516
	/*
	 * The optimal frequency is the frequency that is the lowest that
	 * can support the current CPU usage without triggering the up
	 * policy. To be safe, we focus 10 points under the threshold.
	 */
517 518 519
	if (max_load_freq <
	    (dbs_tuners_ins.up_threshold - dbs_tuners_ins.down_differential) *
	     policy->cur) {
520
		unsigned int freq_next;
521 522 523
		freq_next = max_load_freq /
				(dbs_tuners_ins.up_threshold -
				 dbs_tuners_ins.down_differential);
524

525 526 527
		/* No longer fully busy, reset rate_mult */
		this_dbs_info->rate_mult = 1;

528 529 530
		if (freq_next < policy->min)
			freq_next = policy->min;

531 532 533 534 535 536 537 538 539
		if (!dbs_tuners_ins.powersave_bias) {
			__cpufreq_driver_target(policy, freq_next,
					CPUFREQ_RELATION_L);
		} else {
			int freq = powersave_bias_target(policy, freq_next,
					CPUFREQ_RELATION_L);
			__cpufreq_driver_target(policy, freq,
				CPUFREQ_RELATION_L);
		}
540
	}
L
Linus Torvalds 已提交
541 542
}

D
David Howells 已提交
543
static void do_dbs_timer(struct work_struct *work)
544
{
545 546 547 548 549
	struct cpu_dbs_info_s *dbs_info =
		container_of(work, struct cpu_dbs_info_s, work.work);
	unsigned int cpu = dbs_info->cpu;
	int sample_type = dbs_info->sample_type;

550
	int delay;
551

552
	mutex_lock(&dbs_info->timer_mutex);
553

554
	/* Common NORMAL_SAMPLE setup */
D
David Howells 已提交
555
	dbs_info->sample_type = DBS_NORMAL_SAMPLE;
556
	if (!dbs_tuners_ins.powersave_bias ||
D
David Howells 已提交
557
	    sample_type == DBS_NORMAL_SAMPLE) {
558 559 560
		dbs_check_cpu(dbs_info);
		if (dbs_info->freq_lo) {
			/* Setup timer for SUB_SAMPLE */
D
David Howells 已提交
561
			dbs_info->sample_type = DBS_SUB_SAMPLE;
562
			delay = dbs_info->freq_hi_jiffies;
563 564 565 566 567 568 569 570 571
		} else {
			/* We want all CPUs to do sampling nearly on
			 * same jiffy
			 */
			delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate
				* dbs_info->rate_mult);

			if (num_online_cpus() > 1)
				delay -= jiffies % delay;
572 573 574
		}
	} else {
		__cpufreq_driver_target(dbs_info->cur_policy,
575
			dbs_info->freq_lo, CPUFREQ_RELATION_H);
576
		delay = dbs_info->freq_lo_jiffies;
577
	}
578
	schedule_delayed_work_on(cpu, &dbs_info->work, delay);
579
	mutex_unlock(&dbs_info->timer_mutex);
580
}
L
Linus Torvalds 已提交
581

582
static inline void dbs_timer_init(struct cpu_dbs_info_s *dbs_info)
L
Linus Torvalds 已提交
583
{
584 585
	/* We want all CPUs to do sampling nearly on same jiffy */
	int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
586 587 588

	if (num_online_cpus() > 1)
		delay -= jiffies % delay;
589

D
David Howells 已提交
590
	dbs_info->sample_type = DBS_NORMAL_SAMPLE;
591
	INIT_DELAYED_WORK_DEFERRABLE(&dbs_info->work, do_dbs_timer);
592
	schedule_delayed_work_on(dbs_info->cpu, &dbs_info->work, delay);
L
Linus Torvalds 已提交
593 594
}

595
static inline void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info)
L
Linus Torvalds 已提交
596
{
597
	cancel_delayed_work_sync(&dbs_info->work);
L
Linus Torvalds 已提交
598 599
}

600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622
/*
 * Not all CPUs want IO time to be accounted as busy; this dependson how
 * efficient idling at a higher frequency/voltage is.
 * Pavel Machek says this is not so for various generations of AMD and old
 * Intel systems.
 * Mike Chan (androidlcom) calis this is also not true for ARM.
 * Because of this, whitelist specific known (series) of CPUs by default, and
 * leave all others up to the user.
 */
static int should_io_be_busy(void)
{
#if defined(CONFIG_X86)
	/*
	 * For Intel, Core 2 (model 15) andl later have an efficient idle.
	 */
	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
	    boot_cpu_data.x86 == 6 &&
	    boot_cpu_data.x86_model >= 15)
		return 1;
#endif
	return 0;
}

L
Linus Torvalds 已提交
623 624 625 626 627 628
static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
				   unsigned int event)
{
	unsigned int cpu = policy->cpu;
	struct cpu_dbs_info_s *this_dbs_info;
	unsigned int j;
J
Jeff Garzik 已提交
629
	int rc;
L
Linus Torvalds 已提交
630

631
	this_dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
L
Linus Torvalds 已提交
632 633 634

	switch (event) {
	case CPUFREQ_GOV_START:
635
		if ((!cpu_online(cpu)) || (!policy->cur))
L
Linus Torvalds 已提交
636 637
			return -EINVAL;

638
		mutex_lock(&dbs_mutex);
J
Jeff Garzik 已提交
639

640
		dbs_enable++;
641
		for_each_cpu(j, policy->cpus) {
L
Linus Torvalds 已提交
642
			struct cpu_dbs_info_s *j_dbs_info;
643
			j_dbs_info = &per_cpu(od_cpu_dbs_info, j);
L
Linus Torvalds 已提交
644
			j_dbs_info->cur_policy = policy;
645

646 647
			j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
						&j_dbs_info->prev_cpu_wall);
648 649 650 651
			if (dbs_tuners_ins.ignore_nice) {
				j_dbs_info->prev_cpu_nice =
						kstat_cpu(j).cpustat.nice;
			}
L
Linus Torvalds 已提交
652
		}
653
		this_dbs_info->cpu = cpu;
654
		this_dbs_info->rate_mult = 1;
655
		ondemand_powersave_bias_init_cpu(cpu);
L
Linus Torvalds 已提交
656 657 658 659 660 661
		/*
		 * Start the timerschedule work, when this governor
		 * is used for first time
		 */
		if (dbs_enable == 1) {
			unsigned int latency;
662 663 664 665 666 667 668 669

			rc = sysfs_create_group(cpufreq_global_kobject,
						&dbs_attr_group);
			if (rc) {
				mutex_unlock(&dbs_mutex);
				return rc;
			}

L
Linus Torvalds 已提交
670
			/* policy latency is in nS. Convert it to uS first */
671 672 673
			latency = policy->cpuinfo.transition_latency / 1000;
			if (latency == 0)
				latency = 1;
674 675 676 677 678 679
			/* Bring kernel and HW constraints together */
			min_sampling_rate = max(min_sampling_rate,
					MIN_LATENCY_MULTIPLIER * latency);
			dbs_tuners_ins.sampling_rate =
				max(min_sampling_rate,
				    latency * LATENCY_MULTIPLIER);
680
			dbs_tuners_ins.io_is_busy = should_io_be_busy();
L
Linus Torvalds 已提交
681
		}
682
		mutex_unlock(&dbs_mutex);
683

684
		mutex_init(&this_dbs_info->timer_mutex);
685
		dbs_timer_init(this_dbs_info);
L
Linus Torvalds 已提交
686 687 688
		break;

	case CPUFREQ_GOV_STOP:
689
		dbs_timer_exit(this_dbs_info);
690 691

		mutex_lock(&dbs_mutex);
692
		mutex_destroy(&this_dbs_info->timer_mutex);
L
Linus Torvalds 已提交
693
		dbs_enable--;
694
		mutex_unlock(&dbs_mutex);
695 696 697
		if (!dbs_enable)
			sysfs_remove_group(cpufreq_global_kobject,
					   &dbs_attr_group);
L
Linus Torvalds 已提交
698 699 700 701

		break;

	case CPUFREQ_GOV_LIMITS:
702
		mutex_lock(&this_dbs_info->timer_mutex);
L
Linus Torvalds 已提交
703
		if (policy->max < this_dbs_info->cur_policy->cur)
704
			__cpufreq_driver_target(this_dbs_info->cur_policy,
705
				policy->max, CPUFREQ_RELATION_H);
L
Linus Torvalds 已提交
706
		else if (policy->min > this_dbs_info->cur_policy->cur)
707
			__cpufreq_driver_target(this_dbs_info->cur_policy,
708
				policy->min, CPUFREQ_RELATION_L);
709
		mutex_unlock(&this_dbs_info->timer_mutex);
L
Linus Torvalds 已提交
710 711 712 713 714 715 716
		break;
	}
	return 0;
}

static int __init cpufreq_gov_dbs_init(void)
{
717
	cputime64_t wall;
718 719
	u64 idle_time;
	int cpu = get_cpu();
720

721 722
	idle_time = get_cpu_idle_time_us(cpu, &wall);
	put_cpu();
723 724 725 726 727
	if (idle_time != -1ULL) {
		/* Idle micro accounting is supported. Use finer thresholds */
		dbs_tuners_ins.up_threshold = MICRO_FREQUENCY_UP_THRESHOLD;
		dbs_tuners_ins.down_differential =
					MICRO_FREQUENCY_DOWN_DIFFERENTIAL;
728
		/*
729
		 * In nohz/micro accounting case we set the minimum frequency
730 731 732 733 734 735 736 737
		 * not depending on HZ, but fixed (very low). The deferred
		 * timer might skip some samples if idle/sleeping as needed.
		*/
		min_sampling_rate = MICRO_FREQUENCY_MIN_SAMPLE_RATE;
	} else {
		/* For correct statistics, we need 10 ticks for each measure */
		min_sampling_rate =
			MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10);
738
	}
739

740
	return cpufreq_register_governor(&cpufreq_gov_ondemand);
L
Linus Torvalds 已提交
741 742 743 744
}

static void __exit cpufreq_gov_dbs_exit(void)
{
745
	cpufreq_unregister_governor(&cpufreq_gov_ondemand);
L
Linus Torvalds 已提交
746 747 748
}


749 750 751
MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
752
	"Low Latency Frequency Transition capable processors");
753
MODULE_LICENSE("GPL");
L
Linus Torvalds 已提交
754

755 756 757
#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
fs_initcall(cpufreq_gov_dbs_init);
#else
L
Linus Torvalds 已提交
758
module_init(cpufreq_gov_dbs_init);
759
#endif
L
Linus Torvalds 已提交
760
module_exit(cpufreq_gov_dbs_exit);