cpufreq_ondemand.c 16.2 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/*
 *  drivers/cpufreq/cpufreq_ondemand.c
 *
 *  Copyright (C)  2001 Russell King
 *            (C)  2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
 *                      Jun Nakajima <jun.nakajima@intel.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/cpufreq.h>
A
Andrew Morton 已提交
17
#include <linux/cpu.h>
L
Linus Torvalds 已提交
18 19
#include <linux/jiffies.h>
#include <linux/kernel_stat.h>
20
#include <linux/mutex.h>
L
Linus Torvalds 已提交
21 22 23 24 25 26 27

/*
 * dbs is used in this file as a shortform for demandbased switching
 * It helps to keep variable names smaller, simpler
 */

#define DEF_FREQUENCY_UP_THRESHOLD		(80)
28
#define MIN_FREQUENCY_UP_THRESHOLD		(11)
L
Linus Torvalds 已提交
29 30
#define MAX_FREQUENCY_UP_THRESHOLD		(100)

31 32
/*
 * The polling frequency of this governor depends on the capability of
L
Linus Torvalds 已提交
33
 * the processor. Default polling frequency is 1000 times the transition
34 35
 * latency of the processor. The governor will work on any processor with
 * transition latency <= 10mS, using appropriate sampling
L
Linus Torvalds 已提交
36 37 38 39 40
 * rate.
 * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
 * this governor will not work.
 * All times here are in uS.
 */
41
static unsigned int def_sampling_rate;
42 43 44 45
#define MIN_SAMPLING_RATE_RATIO			(2)
/* for correct statistics, we need at least 10 ticks between each measure */
#define MIN_STAT_SAMPLING_RATE			(MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10))
#define MIN_SAMPLING_RATE			(def_sampling_rate / MIN_SAMPLING_RATE_RATIO)
L
Linus Torvalds 已提交
46 47 48 49 50 51 52
#define MAX_SAMPLING_RATE			(500 * def_sampling_rate)
#define DEF_SAMPLING_RATE_LATENCY_MULTIPLIER	(1000)
#define TRANSITION_LATENCY_LIMIT		(10 * 1000)

static void do_dbs_timer(void *data);

struct cpu_dbs_info_s {
53 54
	cputime64_t prev_cpu_idle;
	cputime64_t prev_cpu_wall;
55
	struct cpufreq_policy *cur_policy;
56
 	struct work_struct work;
57
	unsigned int enable;
58 59 60 61
	struct cpufreq_frequency_table *freq_table;
	unsigned int freq_lo;
	unsigned int freq_lo_jiffies;
	unsigned int freq_hi_jiffies;
L
Linus Torvalds 已提交
62 63 64 65 66
};
static DEFINE_PER_CPU(struct cpu_dbs_info_s, cpu_dbs_info);

static unsigned int dbs_enable;	/* number of CPUs using this policy */

67 68 69 70 71 72 73 74
/*
 * DEADLOCK ALERT! There is a ordering requirement between cpu_hotplug
 * lock and dbs_mutex. cpu_hotplug lock should always be held before
 * dbs_mutex. If any function that can potentially take cpu_hotplug lock
 * (like __cpufreq_driver_target()) is being called with dbs_mutex taken, then
 * cpu_hotplug lock should be taken before that. Note that cpu_hotplug lock
 * is recursive for the same process. -Venki
 */
75
static DEFINE_MUTEX(dbs_mutex);
L
Linus Torvalds 已提交
76

77
static struct workqueue_struct	*kondemand_wq;
78

79
static struct dbs_tuners {
80 81 82
	unsigned int sampling_rate;
	unsigned int up_threshold;
	unsigned int ignore_nice;
83 84
	unsigned int powersave_bias;
} dbs_tuners_ins = {
85
	.up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
86
	.ignore_nice = 0,
87
	.powersave_bias = 0,
L
Linus Torvalds 已提交
88 89
};

90
static inline cputime64_t get_cpu_idle_time(unsigned int cpu)
91
{
92 93 94 95 96 97 98 99 100
	cputime64_t retval;

	retval = cputime64_add(kstat_cpu(cpu).cpustat.idle,
			kstat_cpu(cpu).cpustat.iowait);

	if (dbs_tuners_ins.ignore_nice)
		retval = cputime64_add(retval, kstat_cpu(cpu).cpustat.nice);

	return retval;
101 102
}

103 104 105 106 107
/*
 * Find right freq to be set now with powersave_bias on.
 * Returns the freq_hi to be used right now and will set freq_hi_jiffies,
 * freq_lo, and freq_lo_jiffies in percpu area for averaging freqs.
 */
108 109 110
static unsigned int powersave_bias_target(struct cpufreq_policy *policy,
					  unsigned int freq_next,
					  unsigned int relation)
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
{
	unsigned int freq_req, freq_reduc, freq_avg;
	unsigned int freq_hi, freq_lo;
	unsigned int index = 0;
	unsigned int jiffies_total, jiffies_hi, jiffies_lo;
	struct cpu_dbs_info_s *dbs_info = &per_cpu(cpu_dbs_info, policy->cpu);

	if (!dbs_info->freq_table) {
		dbs_info->freq_lo = 0;
		dbs_info->freq_lo_jiffies = 0;
		return freq_next;
	}

	cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_next,
			relation, &index);
	freq_req = dbs_info->freq_table[index].frequency;
	freq_reduc = freq_req * dbs_tuners_ins.powersave_bias / 1000;
	freq_avg = freq_req - freq_reduc;

	/* Find freq bounds for freq_avg in freq_table */
	index = 0;
	cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
			CPUFREQ_RELATION_H, &index);
	freq_lo = dbs_info->freq_table[index].frequency;
	index = 0;
	cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
			CPUFREQ_RELATION_L, &index);
	freq_hi = dbs_info->freq_table[index].frequency;

	/* Find out how long we have to be in hi and lo freqs */
	if (freq_hi == freq_lo) {
		dbs_info->freq_lo = 0;
		dbs_info->freq_lo_jiffies = 0;
		return freq_lo;
	}
	jiffies_total = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
	jiffies_hi = (freq_avg - freq_lo) * jiffies_total;
	jiffies_hi += ((freq_hi - freq_lo) / 2);
	jiffies_hi /= (freq_hi - freq_lo);
	jiffies_lo = jiffies_total - jiffies_hi;
	dbs_info->freq_lo = freq_lo;
	dbs_info->freq_lo_jiffies = jiffies_lo;
	dbs_info->freq_hi_jiffies = jiffies_hi;
	return freq_hi;
}

static void ondemand_powersave_bias_init(void)
{
	int i;
	for_each_online_cpu(i) {
		struct cpu_dbs_info_s *dbs_info = &per_cpu(cpu_dbs_info, i);
		dbs_info->freq_table = cpufreq_frequency_get_table(i);
		dbs_info->freq_lo = 0;
	}
}

L
Linus Torvalds 已提交
167 168 169 170 171 172 173 174 175 176 177
/************************** sysfs interface ************************/
static ssize_t show_sampling_rate_max(struct cpufreq_policy *policy, char *buf)
{
	return sprintf (buf, "%u\n", MAX_SAMPLING_RATE);
}

static ssize_t show_sampling_rate_min(struct cpufreq_policy *policy, char *buf)
{
	return sprintf (buf, "%u\n", MIN_SAMPLING_RATE);
}

178 179
#define define_one_ro(_name)		\
static struct freq_attr _name =		\
L
Linus Torvalds 已提交
180 181 182 183 184 185 186 187 188 189 190 191 192 193
__ATTR(_name, 0444, show_##_name, NULL)

define_one_ro(sampling_rate_max);
define_one_ro(sampling_rate_min);

/* cpufreq_ondemand Governor Tunables */
#define show_one(file_name, object)					\
static ssize_t show_##file_name						\
(struct cpufreq_policy *unused, char *buf)				\
{									\
	return sprintf(buf, "%u\n", dbs_tuners_ins.object);		\
}
show_one(sampling_rate, sampling_rate);
show_one(up_threshold, up_threshold);
194
show_one(ignore_nice_load, ignore_nice);
195
show_one(powersave_bias, powersave_bias);
L
Linus Torvalds 已提交
196

197
static ssize_t store_sampling_rate(struct cpufreq_policy *unused,
L
Linus Torvalds 已提交
198 199 200 201
		const char *buf, size_t count)
{
	unsigned int input;
	int ret;
202
	ret = sscanf(buf, "%u", &input);
L
Linus Torvalds 已提交
203

204
	mutex_lock(&dbs_mutex);
L
Linus Torvalds 已提交
205
	if (ret != 1 || input > MAX_SAMPLING_RATE || input < MIN_SAMPLING_RATE) {
206
		mutex_unlock(&dbs_mutex);
L
Linus Torvalds 已提交
207 208 209 210
		return -EINVAL;
	}

	dbs_tuners_ins.sampling_rate = input;
211
	mutex_unlock(&dbs_mutex);
L
Linus Torvalds 已提交
212 213 214 215

	return count;
}

216
static ssize_t store_up_threshold(struct cpufreq_policy *unused,
L
Linus Torvalds 已提交
217 218 219 220
		const char *buf, size_t count)
{
	unsigned int input;
	int ret;
221
	ret = sscanf(buf, "%u", &input);
L
Linus Torvalds 已提交
222

223
	mutex_lock(&dbs_mutex);
224
	if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
225
			input < MIN_FREQUENCY_UP_THRESHOLD) {
226
		mutex_unlock(&dbs_mutex);
L
Linus Torvalds 已提交
227 228 229 230
		return -EINVAL;
	}

	dbs_tuners_ins.up_threshold = input;
231
	mutex_unlock(&dbs_mutex);
L
Linus Torvalds 已提交
232 233 234 235

	return count;
}

236
static ssize_t store_ignore_nice_load(struct cpufreq_policy *policy,
237 238 239 240 241 242
		const char *buf, size_t count)
{
	unsigned int input;
	int ret;

	unsigned int j;
243

244
	ret = sscanf(buf, "%u", &input);
245 246 247 248 249
	if ( ret != 1 )
		return -EINVAL;

	if ( input > 1 )
		input = 1;
250

251
	mutex_lock(&dbs_mutex);
252
	if ( input == dbs_tuners_ins.ignore_nice ) { /* nothing to do */
253
		mutex_unlock(&dbs_mutex);
254 255 256 257
		return count;
	}
	dbs_tuners_ins.ignore_nice = input;

258
	/* we need to re-evaluate prev_cpu_idle */
259
	for_each_online_cpu(j) {
260 261 262 263
		struct cpu_dbs_info_s *dbs_info;
		dbs_info = &per_cpu(cpu_dbs_info, j);
		dbs_info->prev_cpu_idle = get_cpu_idle_time(j);
		dbs_info->prev_cpu_wall = get_jiffies_64();
264
	}
265
	mutex_unlock(&dbs_mutex);
266 267 268 269

	return count;
}

270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
static ssize_t store_powersave_bias(struct cpufreq_policy *unused,
		const char *buf, size_t count)
{
	unsigned int input;
	int ret;
	ret = sscanf(buf, "%u", &input);

	if (ret != 1)
		return -EINVAL;

	if (input > 1000)
		input = 1000;

	mutex_lock(&dbs_mutex);
	dbs_tuners_ins.powersave_bias = input;
	ondemand_powersave_bias_init();
	mutex_unlock(&dbs_mutex);

	return count;
}

L
Linus Torvalds 已提交
291 292 293 294 295 296
#define define_one_rw(_name) \
static struct freq_attr _name = \
__ATTR(_name, 0644, show_##_name, store_##_name)

define_one_rw(sampling_rate);
define_one_rw(up_threshold);
297
define_one_rw(ignore_nice_load);
298
define_one_rw(powersave_bias);
L
Linus Torvalds 已提交
299 300 301 302 303 304

static struct attribute * dbs_attributes[] = {
	&sampling_rate_max.attr,
	&sampling_rate_min.attr,
	&sampling_rate.attr,
	&up_threshold.attr,
305
	&ignore_nice_load.attr,
306
	&powersave_bias.attr,
L
Linus Torvalds 已提交
307 308 309 310 311 312 313 314 315 316
	NULL
};

static struct attribute_group dbs_attr_group = {
	.attrs = dbs_attributes,
	.name = "ondemand",
};

/************************** sysfs end ************************/

317
static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info)
L
Linus Torvalds 已提交
318
{
319 320 321
	unsigned int idle_ticks, total_ticks;
	unsigned int load;
	cputime64_t cur_jiffies;
L
Linus Torvalds 已提交
322 323 324 325 326 327 328

	struct cpufreq_policy *policy;
	unsigned int j;

	if (!this_dbs_info->enable)
		return;

329
	this_dbs_info->freq_lo = 0;
L
Linus Torvalds 已提交
330
	policy = this_dbs_info->cur_policy;
331 332 333 334
	cur_jiffies = jiffies64_to_cputime64(get_jiffies_64());
	total_ticks = (unsigned int) cputime64_sub(cur_jiffies,
			this_dbs_info->prev_cpu_wall);
	this_dbs_info->prev_cpu_wall = cur_jiffies;
335 336
	if (!total_ticks)
		return;
337
	/*
338 339
	 * Every sampling_rate, we check, if current idle time is less
	 * than 20% (default), then we try to increase frequency
340
	 * Every sampling_rate, we look for a the lowest
341 342
	 * frequency which can sustain the load while keeping idle time over
	 * 30%. If such a frequency exist, we try to decrease to this frequency.
L
Linus Torvalds 已提交
343
	 *
344 345 346
	 * Any frequency increase takes it to the maximum frequency.
	 * Frequency reduction happens at minimum steps of
	 * 5% (default) of current frequency
L
Linus Torvalds 已提交
347 348
	 */

349
	/* Get Idle Time */
350
	idle_ticks = UINT_MAX;
L
Linus Torvalds 已提交
351
	for_each_cpu_mask(j, policy->cpus) {
352 353
		cputime64_t total_idle_ticks;
		unsigned int tmp_idle_ticks;
L
Linus Torvalds 已提交
354 355 356
		struct cpu_dbs_info_s *j_dbs_info;

		j_dbs_info = &per_cpu(cpu_dbs_info, j);
357
		total_idle_ticks = get_cpu_idle_time(j);
358 359 360
		tmp_idle_ticks = (unsigned int) cputime64_sub(total_idle_ticks,
				j_dbs_info->prev_cpu_idle);
		j_dbs_info->prev_cpu_idle = total_idle_ticks;
L
Linus Torvalds 已提交
361 362 363 364

		if (tmp_idle_ticks < idle_ticks)
			idle_ticks = tmp_idle_ticks;
	}
365
	load = (100 * (total_ticks - idle_ticks)) / total_ticks;
L
Linus Torvalds 已提交
366

367 368
	/* Check for frequency increase */
	if (load > dbs_tuners_ins.up_threshold) {
369
		/* if we are already at full speed then break out early */
370 371 372 373 374 375 376 377 378 379 380 381
		if (!dbs_tuners_ins.powersave_bias) {
			if (policy->cur == policy->max)
				return;

			__cpufreq_driver_target(policy, policy->max,
				CPUFREQ_RELATION_H);
		} else {
			int freq = powersave_bias_target(policy, policy->max,
					CPUFREQ_RELATION_H);
			__cpufreq_driver_target(policy, freq,
				CPUFREQ_RELATION_L);
		}
L
Linus Torvalds 已提交
382 383 384 385
		return;
	}

	/* Check for frequency decrease */
386 387 388
	/* if we cannot reduce the frequency anymore, break out early */
	if (policy->cur == policy->min)
		return;
L
Linus Torvalds 已提交
389

390 391 392 393 394
	/*
	 * The optimal frequency is the frequency that is the lowest that
	 * can support the current CPU usage without triggering the up
	 * policy. To be safe, we focus 10 points under the threshold.
	 */
395
	if (load < (dbs_tuners_ins.up_threshold - 10)) {
396
		unsigned int freq_next = (policy->cur * load) /
397
			(dbs_tuners_ins.up_threshold - 10);
398 399 400 401 402 403 404 405 406
		if (!dbs_tuners_ins.powersave_bias) {
			__cpufreq_driver_target(policy, freq_next,
					CPUFREQ_RELATION_L);
		} else {
			int freq = powersave_bias_target(policy, freq_next,
					CPUFREQ_RELATION_L);
			__cpufreq_driver_target(policy, freq,
				CPUFREQ_RELATION_L);
		}
407
	}
L
Linus Torvalds 已提交
408 409
}

410 411 412
/* Sampling types */
enum {DBS_NORMAL_SAMPLE, DBS_SUB_SAMPLE};

L
Linus Torvalds 已提交
413
static void do_dbs_timer(void *data)
414
{
415 416
	unsigned int cpu = smp_processor_id();
	struct cpu_dbs_info_s *dbs_info = &per_cpu(cpu_dbs_info, cpu);
417 418 419
	/* We want all CPUs to do sampling nearly on same jiffy */
	int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
	delay -= jiffies % delay;
420

421 422
	if (!dbs_info->enable)
		return;
423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
	/* Common NORMAL_SAMPLE setup */
	INIT_WORK(&dbs_info->work, do_dbs_timer, (void *)DBS_NORMAL_SAMPLE);
	if (!dbs_tuners_ins.powersave_bias ||
	    (unsigned long) data == DBS_NORMAL_SAMPLE) {
		lock_cpu_hotplug();
		dbs_check_cpu(dbs_info);
		unlock_cpu_hotplug();
		if (dbs_info->freq_lo) {
			/* Setup timer for SUB_SAMPLE */
			INIT_WORK(&dbs_info->work, do_dbs_timer,
					(void *)DBS_SUB_SAMPLE);
			delay = dbs_info->freq_hi_jiffies;
		}
	} else {
		__cpufreq_driver_target(dbs_info->cur_policy,
	                        	dbs_info->freq_lo,
	                        	CPUFREQ_RELATION_H);
	}
441
	queue_delayed_work_on(cpu, kondemand_wq, &dbs_info->work, delay);
442
}
L
Linus Torvalds 已提交
443

444
static inline void dbs_timer_init(unsigned int cpu)
L
Linus Torvalds 已提交
445
{
446
	struct cpu_dbs_info_s *dbs_info = &per_cpu(cpu_dbs_info, cpu);
447 448 449
	/* We want all CPUs to do sampling nearly on same jiffy */
	int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
	delay -= jiffies % delay;
450

451
	ondemand_powersave_bias_init();
452
	INIT_WORK(&dbs_info->work, do_dbs_timer, NULL);
453
	queue_delayed_work_on(cpu, kondemand_wq, &dbs_info->work, delay);
L
Linus Torvalds 已提交
454 455
}

456
static inline void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info)
L
Linus Torvalds 已提交
457
{
458 459 460
	dbs_info->enable = 0;
	cancel_delayed_work(&dbs_info->work);
	flush_workqueue(kondemand_wq);
L
Linus Torvalds 已提交
461 462 463 464 465 466 467 468 469 470 471 472 473
}

static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
				   unsigned int event)
{
	unsigned int cpu = policy->cpu;
	struct cpu_dbs_info_s *this_dbs_info;
	unsigned int j;

	this_dbs_info = &per_cpu(cpu_dbs_info, cpu);

	switch (event) {
	case CPUFREQ_GOV_START:
474
		if ((!cpu_online(cpu)) || (!policy->cur))
L
Linus Torvalds 已提交
475 476 477
			return -EINVAL;

		if (policy->cpuinfo.transition_latency >
478 479 480
				(TRANSITION_LATENCY_LIMIT * 1000)) {
			printk(KERN_WARNING "ondemand governor failed to load "
			       "due to too long transition latency\n");
L
Linus Torvalds 已提交
481
			return -EINVAL;
482
		}
L
Linus Torvalds 已提交
483 484
		if (this_dbs_info->enable) /* Already enabled */
			break;
485

486
		mutex_lock(&dbs_mutex);
487 488 489 490 491 492 493 494 495 496
		dbs_enable++;
		if (dbs_enable == 1) {
			kondemand_wq = create_workqueue("kondemand");
			if (!kondemand_wq) {
				printk(KERN_ERR "Creation of kondemand failed\n");
				dbs_enable--;
				mutex_unlock(&dbs_mutex);
				return -ENOSPC;
			}
		}
L
Linus Torvalds 已提交
497 498 499 500
		for_each_cpu_mask(j, policy->cpus) {
			struct cpu_dbs_info_s *j_dbs_info;
			j_dbs_info = &per_cpu(cpu_dbs_info, j);
			j_dbs_info->cur_policy = policy;
501

502 503
			j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j);
			j_dbs_info->prev_cpu_wall = get_jiffies_64();
L
Linus Torvalds 已提交
504 505 506 507 508 509 510 511 512 513
		}
		this_dbs_info->enable = 1;
		sysfs_create_group(&policy->kobj, &dbs_attr_group);
		/*
		 * Start the timerschedule work, when this governor
		 * is used for first time
		 */
		if (dbs_enable == 1) {
			unsigned int latency;
			/* policy latency is in nS. Convert it to uS first */
514 515 516
			latency = policy->cpuinfo.transition_latency / 1000;
			if (latency == 0)
				latency = 1;
L
Linus Torvalds 已提交
517

518
			def_sampling_rate = latency *
L
Linus Torvalds 已提交
519
					DEF_SAMPLING_RATE_LATENCY_MULTIPLIER;
520 521 522 523

			if (def_sampling_rate < MIN_STAT_SAMPLING_RATE)
				def_sampling_rate = MIN_STAT_SAMPLING_RATE;

L
Linus Torvalds 已提交
524 525
			dbs_tuners_ins.sampling_rate = def_sampling_rate;
		}
526
		dbs_timer_init(policy->cpu);
527

528
		mutex_unlock(&dbs_mutex);
L
Linus Torvalds 已提交
529 530 531
		break;

	case CPUFREQ_GOV_STOP:
532
		mutex_lock(&dbs_mutex);
533
		dbs_timer_exit(this_dbs_info);
L
Linus Torvalds 已提交
534 535
		sysfs_remove_group(&policy->kobj, &dbs_attr_group);
		dbs_enable--;
536
		if (dbs_enable == 0)
537
			destroy_workqueue(kondemand_wq);
538

539
		mutex_unlock(&dbs_mutex);
L
Linus Torvalds 已提交
540 541 542 543

		break;

	case CPUFREQ_GOV_LIMITS:
544
		mutex_lock(&dbs_mutex);
L
Linus Torvalds 已提交
545
		if (policy->max < this_dbs_info->cur_policy->cur)
546 547 548
			__cpufreq_driver_target(this_dbs_info->cur_policy,
			                        policy->max,
			                        CPUFREQ_RELATION_H);
L
Linus Torvalds 已提交
549
		else if (policy->min > this_dbs_info->cur_policy->cur)
550 551 552
			__cpufreq_driver_target(this_dbs_info->cur_policy,
			                        policy->min,
			                        CPUFREQ_RELATION_L);
553
		mutex_unlock(&dbs_mutex);
L
Linus Torvalds 已提交
554 555 556 557 558
		break;
	}
	return 0;
}

559
static struct cpufreq_governor cpufreq_gov_dbs = {
560 561 562
	.name = "ondemand",
	.governor = cpufreq_governor_dbs,
	.owner = THIS_MODULE,
L
Linus Torvalds 已提交
563 564 565 566 567 568 569 570 571 572 573 574 575
};

static int __init cpufreq_gov_dbs_init(void)
{
	return cpufreq_register_governor(&cpufreq_gov_dbs);
}

static void __exit cpufreq_gov_dbs_exit(void)
{
	cpufreq_unregister_governor(&cpufreq_gov_dbs);
}


576 577 578 579 580
MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
                   "Low Latency Frequency Transition capable processors");
MODULE_LICENSE("GPL");
L
Linus Torvalds 已提交
581 582 583

module_init(cpufreq_gov_dbs_init);
module_exit(cpufreq_gov_dbs_exit);