fw-ohci.c 53.9 KB
Newer Older
1 2
/*
 * Driver for OHCI 1394 controllers
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
 *
 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/pci.h>
#include <linux/delay.h>
A
Andrew Morton 已提交
27
#include <linux/dma-mapping.h>
S
Stefan Richter 已提交
28
#include <linux/gfp.h>
A
Al Viro 已提交
29
#include <linux/mm.h>
S
Stefan Richter 已提交
30
#include <linux/spinlock.h>
A
Andrew Morton 已提交
31

S
Stefan Richter 已提交
32
#include <asm/page.h>
33
#include <asm/system.h>
34 35 36 37

#include "fw-transaction.h"
#include "fw-ohci.h"

38 39 40 41 42 43 44 45 46 47 48 49 50
#define DESCRIPTOR_OUTPUT_MORE		0
#define DESCRIPTOR_OUTPUT_LAST		(1 << 12)
#define DESCRIPTOR_INPUT_MORE		(2 << 12)
#define DESCRIPTOR_INPUT_LAST		(3 << 12)
#define DESCRIPTOR_STATUS		(1 << 11)
#define DESCRIPTOR_KEY_IMMEDIATE	(2 << 8)
#define DESCRIPTOR_PING			(1 << 7)
#define DESCRIPTOR_YY			(1 << 6)
#define DESCRIPTOR_NO_IRQ		(0 << 4)
#define DESCRIPTOR_IRQ_ERROR		(1 << 4)
#define DESCRIPTOR_IRQ_ALWAYS		(3 << 4)
#define DESCRIPTOR_BRANCH_ALWAYS	(3 << 2)
#define DESCRIPTOR_WAIT			(3 << 0)
51 52 53 54 55 56 57 58 59 60

struct descriptor {
	__le16 req_count;
	__le16 control;
	__le32 data_address;
	__le32 branch_address;
	__le16 res_count;
	__le16 transfer_status;
} __attribute__((aligned(16)));

61 62 63 64 65 66 67 68 69 70 71 72 73 74
struct db_descriptor {
	__le16 first_size;
	__le16 control;
	__le16 second_req_count;
	__le16 first_req_count;
	__le32 branch_address;
	__le16 second_res_count;
	__le16 first_res_count;
	__le32 reserved0;
	__le32 first_buffer;
	__le32 second_buffer;
	__le32 reserved1;
} __attribute__((aligned(16)));

75 76 77 78
#define CONTROL_SET(regs)	(regs)
#define CONTROL_CLEAR(regs)	((regs) + 4)
#define COMMAND_PTR(regs)	((regs) + 12)
#define CONTEXT_MATCH(regs)	((regs) + 16)
79

80
struct ar_buffer {
81
	struct descriptor descriptor;
82 83 84
	struct ar_buffer *next;
	__le32 data[0];
};
85

86 87 88 89 90
struct ar_context {
	struct fw_ohci *ohci;
	struct ar_buffer *current_buffer;
	struct ar_buffer *last_buffer;
	void *pointer;
91
	u32 regs;
92 93 94
	struct tasklet_struct tasklet;
};

95 96 97 98 99 100
struct context;

typedef int (*descriptor_callback_t)(struct context *ctx,
				     struct descriptor *d,
				     struct descriptor *last);
struct context {
S
Stefan Richter 已提交
101
	struct fw_ohci *ohci;
102
	u32 regs;
S
Stefan Richter 已提交
103

104 105 106 107 108 109 110 111 112 113
	struct descriptor *buffer;
	dma_addr_t buffer_bus;
	size_t buffer_size;
	struct descriptor *head_descriptor;
	struct descriptor *tail_descriptor;
	struct descriptor *tail_descriptor_last;
	struct descriptor *prev_descriptor;

	descriptor_callback_t callback;

S
Stefan Richter 已提交
114
	struct tasklet_struct tasklet;
115 116
};

117 118 119 120 121 122
#define IT_HEADER_SY(v)          ((v) <<  0)
#define IT_HEADER_TCODE(v)       ((v) <<  4)
#define IT_HEADER_CHANNEL(v)     ((v) <<  8)
#define IT_HEADER_TAG(v)         ((v) << 14)
#define IT_HEADER_SPEED(v)       ((v) << 16)
#define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
123 124 125

struct iso_context {
	struct fw_iso_context base;
126
	struct context context;
127 128
	void *header;
	size_t header_length;
129 130 131 132 133 134 135
};

#define CONFIG_ROM_SIZE 1024

struct fw_ohci {
	struct fw_card card;

136
	u32 version;
137 138 139 140
	__iomem char *registers;
	dma_addr_t self_id_bus;
	__le32 *self_id_cpu;
	struct tasklet_struct bus_reset_tasklet;
141
	int node_id;
142 143
	int generation;
	int request_generation;
144
	u32 bus_seconds;
145

146 147 148 149
	/*
	 * Spinlock for accessing fw_ohci data.  Never call out of
	 * this driver with this lock held.
	 */
150 151 152 153 154 155 156 157 158 159 160 161
	spinlock_t lock;
	u32 self_id_buffer[512];

	/* Config rom buffers */
	__be32 *config_rom;
	dma_addr_t config_rom_bus;
	__be32 *next_config_rom;
	dma_addr_t next_config_rom_bus;
	u32 next_header;

	struct ar_context ar_request_ctx;
	struct ar_context ar_response_ctx;
162 163
	struct context at_request_ctx;
	struct context at_response_ctx;
164 165 166 167 168 169 170

	u32 it_context_mask;
	struct iso_context *it_context_list;
	u32 ir_context_mask;
	struct iso_context *ir_context_list;
};

A
Adrian Bunk 已提交
171
static inline struct fw_ohci *fw_ohci(struct fw_card *card)
172 173 174 175
{
	return container_of(card, struct fw_ohci, card);
}

176 177 178 179 180 181
#define IT_CONTEXT_CYCLE_MATCH_ENABLE	0x80000000
#define IR_CONTEXT_BUFFER_FILL		0x80000000
#define IR_CONTEXT_ISOCH_HEADER		0x40000000
#define IR_CONTEXT_CYCLE_MATCH_ENABLE	0x20000000
#define IR_CONTEXT_MULTI_CHANNEL_MODE	0x10000000
#define IR_CONTEXT_DUAL_BUFFER_MODE	0x08000000
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196

#define CONTEXT_RUN	0x8000
#define CONTEXT_WAKE	0x1000
#define CONTEXT_DEAD	0x0800
#define CONTEXT_ACTIVE	0x0400

#define OHCI1394_MAX_AT_REQ_RETRIES	0x2
#define OHCI1394_MAX_AT_RESP_RETRIES	0x2
#define OHCI1394_MAX_PHYS_RESP_RETRIES	0x8

#define FW_OHCI_MAJOR			240
#define OHCI1394_REGISTER_SIZE		0x800
#define OHCI_LOOP_COUNT			500
#define OHCI1394_PCI_HCI_Control	0x40
#define SELF_ID_BUF_SIZE		0x800
197
#define OHCI_TCODE_PHY_PACKET		0x0e
198
#define OHCI_VERSION_1_1		0x010010
199 200
#define ISO_BUFFER_SIZE			(64 * 1024)
#define AT_BUFFER_SIZE			4096
201

202 203
static char ohci_driver_name[] = KBUILD_MODNAME;

A
Adrian Bunk 已提交
204
static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
205 206 207 208
{
	writel(data, ohci->registers + offset);
}

A
Adrian Bunk 已提交
209
static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
210 211 212 213
{
	return readl(ohci->registers + offset);
}

A
Adrian Bunk 已提交
214
static inline void flush_writes(const struct fw_ohci *ohci)
215 216 217 218 219 220 221 222 223 224 225 226 227
{
	/* Do a dummy read to flush writes. */
	reg_read(ohci, OHCI1394_Version);
}

static int
ohci_update_phy_reg(struct fw_card *card, int addr,
		    int clear_bits, int set_bits)
{
	struct fw_ohci *ohci = fw_ohci(card);
	u32 val, old;

	reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
228
	flush_writes(ohci);
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
	msleep(2);
	val = reg_read(ohci, OHCI1394_PhyControl);
	if ((val & OHCI1394_PhyControl_ReadDone) == 0) {
		fw_error("failed to set phy reg bits.\n");
		return -EBUSY;
	}

	old = OHCI1394_PhyControl_ReadData(val);
	old = (old & ~clear_bits) | set_bits;
	reg_write(ohci, OHCI1394_PhyControl,
		  OHCI1394_PhyControl_Write(addr, old));

	return 0;
}

244
static int ar_context_add_page(struct ar_context *ctx)
245
{
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
	struct device *dev = ctx->ohci->card.device;
	struct ar_buffer *ab;
	dma_addr_t ab_bus;
	size_t offset;

	ab = (struct ar_buffer *) __get_free_page(GFP_ATOMIC);
	if (ab == NULL)
		return -ENOMEM;

	ab_bus = dma_map_single(dev, ab, PAGE_SIZE, DMA_BIDIRECTIONAL);
	if (dma_mapping_error(ab_bus)) {
		free_page((unsigned long) ab);
		return -ENOMEM;
	}

261
	memset(&ab->descriptor, 0, sizeof(ab->descriptor));
262 263 264
	ab->descriptor.control        = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
						    DESCRIPTOR_STATUS |
						    DESCRIPTOR_BRANCH_ALWAYS);
265 266 267 268 269 270 271 272
	offset = offsetof(struct ar_buffer, data);
	ab->descriptor.req_count      = cpu_to_le16(PAGE_SIZE - offset);
	ab->descriptor.data_address   = cpu_to_le32(ab_bus + offset);
	ab->descriptor.res_count      = cpu_to_le16(PAGE_SIZE - offset);
	ab->descriptor.branch_address = 0;

	dma_sync_single_for_device(dev, ab_bus, PAGE_SIZE, DMA_BIDIRECTIONAL);

273
	ctx->last_buffer->descriptor.branch_address = cpu_to_le32(ab_bus | 1);
274 275 276
	ctx->last_buffer->next = ab;
	ctx->last_buffer = ab;

277
	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
278
	flush_writes(ctx->ohci);
279 280

	return 0;
281 282
}

283
static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
284 285
{
	struct fw_ohci *ohci = ctx->ohci;
286 287 288
	struct fw_packet p;
	u32 status, length, tcode;

289 290 291
	p.header[0] = le32_to_cpu(buffer[0]);
	p.header[1] = le32_to_cpu(buffer[1]);
	p.header[2] = le32_to_cpu(buffer[2]);
292 293 294 295 296

	tcode = (p.header[0] >> 4) & 0x0f;
	switch (tcode) {
	case TCODE_WRITE_QUADLET_REQUEST:
	case TCODE_READ_QUADLET_RESPONSE:
297
		p.header[3] = (__force __u32) buffer[3];
298
		p.header_length = 16;
299
		p.payload_length = 0;
300 301 302
		break;

	case TCODE_READ_BLOCK_REQUEST :
303 304 305 306 307 308
		p.header[3] = le32_to_cpu(buffer[3]);
		p.header_length = 16;
		p.payload_length = 0;
		break;

	case TCODE_WRITE_BLOCK_REQUEST:
309 310 311
	case TCODE_READ_BLOCK_RESPONSE:
	case TCODE_LOCK_REQUEST:
	case TCODE_LOCK_RESPONSE:
312
		p.header[3] = le32_to_cpu(buffer[3]);
313
		p.header_length = 16;
314
		p.payload_length = p.header[3] >> 16;
315 316 317 318
		break;

	case TCODE_WRITE_RESPONSE:
	case TCODE_READ_QUADLET_REQUEST:
319
	case OHCI_TCODE_PHY_PACKET:
320
		p.header_length = 12;
321
		p.payload_length = 0;
322 323
		break;
	}
324

325 326 327 328 329 330 331 332 333 334
	p.payload = (void *) buffer + p.header_length;

	/* FIXME: What to do about evt_* errors? */
	length = (p.header_length + p.payload_length + 3) / 4;
	status = le32_to_cpu(buffer[length]);

	p.ack        = ((status >> 16) & 0x1f) - 16;
	p.speed      = (status >> 21) & 0x7;
	p.timestamp  = status & 0xffff;
	p.generation = ohci->request_generation;
335

336 337
	/*
	 * The OHCI bus reset handler synthesizes a phy packet with
338 339 340 341 342
	 * the new generation number when a bus reset happens (see
	 * section 8.4.2.3).  This helps us determine when a request
	 * was received and make sure we send the response in the same
	 * generation.  We only need this for requests; for responses
	 * we use the unique tlabel for finding the matching
343 344
	 * request.
	 */
345

346
	if (p.ack + 16 == 0x09)
347
		ohci->request_generation = (buffer[2] >> 16) & 0xff;
348
	else if (ctx == &ohci->ar_request_ctx)
349
		fw_core_handle_request(&ohci->card, &p);
350
	else
351
		fw_core_handle_response(&ohci->card, &p);
352

353 354
	return buffer + length + 1;
}
355

356 357 358 359 360 361 362 363 364 365 366 367 368 369
static void ar_context_tasklet(unsigned long data)
{
	struct ar_context *ctx = (struct ar_context *)data;
	struct fw_ohci *ohci = ctx->ohci;
	struct ar_buffer *ab;
	struct descriptor *d;
	void *buffer, *end;

	ab = ctx->current_buffer;
	d = &ab->descriptor;

	if (d->res_count == 0) {
		size_t size, rest, offset;

370 371
		/*
		 * This descriptor is finished and we may have a
372
		 * packet split across this and the next buffer. We
373 374
		 * reuse the page for reassembling the split packet.
		 */
375 376 377

		offset = offsetof(struct ar_buffer, data);
		dma_unmap_single(ohci->card.device,
378 379
			le32_to_cpu(ab->descriptor.data_address) - offset,
			PAGE_SIZE, DMA_BIDIRECTIONAL);
380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404

		buffer = ab;
		ab = ab->next;
		d = &ab->descriptor;
		size = buffer + PAGE_SIZE - ctx->pointer;
		rest = le16_to_cpu(d->req_count) - le16_to_cpu(d->res_count);
		memmove(buffer, ctx->pointer, size);
		memcpy(buffer + size, ab->data, rest);
		ctx->current_buffer = ab;
		ctx->pointer = (void *) ab->data + rest;
		end = buffer + size + rest;

		while (buffer < end)
			buffer = handle_ar_packet(ctx, buffer);

		free_page((unsigned long)buffer);
		ar_context_add_page(ctx);
	} else {
		buffer = ctx->pointer;
		ctx->pointer = end =
			(void *) ab + PAGE_SIZE - le16_to_cpu(d->res_count);

		while (buffer < end)
			buffer = handle_ar_packet(ctx, buffer);
	}
405 406 407
}

static int
408
ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci, u32 regs)
409
{
410
	struct ar_buffer ab;
411

412 413 414
	ctx->regs        = regs;
	ctx->ohci        = ohci;
	ctx->last_buffer = &ab;
415 416
	tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);

417 418 419 420 421
	ar_context_add_page(ctx);
	ar_context_add_page(ctx);
	ctx->current_buffer = ab.next;
	ctx->pointer = ctx->current_buffer->data;

422 423 424 425 426 427 428 429 430 431
	return 0;
}

static void ar_context_run(struct ar_context *ctx)
{
	struct ar_buffer *ab = ctx->current_buffer;
	dma_addr_t ab_bus;
	size_t offset;

	offset = offsetof(struct ar_buffer, data);
432
	ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
433 434

	reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ab_bus | 1);
435
	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
436
	flush_writes(ctx->ohci);
437
}
S
Stefan Richter 已提交
438

439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
static void context_tasklet(unsigned long data)
{
	struct context *ctx = (struct context *) data;
	struct fw_ohci *ohci = ctx->ohci;
	struct descriptor *d, *last;
	u32 address;
	int z;

	dma_sync_single_for_cpu(ohci->card.device, ctx->buffer_bus,
				ctx->buffer_size, DMA_TO_DEVICE);

	d    = ctx->tail_descriptor;
	last = ctx->tail_descriptor_last;

	while (last->branch_address != 0) {
		address = le32_to_cpu(last->branch_address);
		z = address & 0xf;
456
		d = ctx->buffer + (address - ctx->buffer_bus) / sizeof(*d);
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
		last = (z == 2) ? d : d + z - 1;

		if (!ctx->callback(ctx, d, last))
			break;

		ctx->tail_descriptor      = d;
		ctx->tail_descriptor_last = last;
	}
}

static int
context_init(struct context *ctx, struct fw_ohci *ohci,
	     size_t buffer_size, u32 regs,
	     descriptor_callback_t callback)
{
	ctx->ohci = ohci;
	ctx->regs = regs;
	ctx->buffer_size = buffer_size;
	ctx->buffer = kmalloc(buffer_size, GFP_KERNEL);
	if (ctx->buffer == NULL)
		return -ENOMEM;

	tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
	ctx->callback = callback;

	ctx->buffer_bus =
		dma_map_single(ohci->card.device, ctx->buffer,
			       buffer_size, DMA_TO_DEVICE);
	if (dma_mapping_error(ctx->buffer_bus)) {
		kfree(ctx->buffer);
		return -ENOMEM;
	}

	ctx->head_descriptor      = ctx->buffer;
	ctx->prev_descriptor      = ctx->buffer;
	ctx->tail_descriptor      = ctx->buffer;
	ctx->tail_descriptor_last = ctx->buffer;

495 496
	/*
	 * We put a dummy descriptor in the buffer that has a NULL
497 498 499
	 * branch address and looks like it's been sent.  That way we
	 * have a descriptor to append DMA programs to.  Also, the
	 * ring buffer invariant is that it always has at least one
500 501
	 * element so that head == tail means buffer full.
	 */
502

503
	memset(ctx->head_descriptor, 0, sizeof(*ctx->head_descriptor));
504
	ctx->head_descriptor->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
505 506 507 508 509 510
	ctx->head_descriptor->transfer_status = cpu_to_le16(0x8011);
	ctx->head_descriptor++;

	return 0;
}

511
static void
512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
context_release(struct context *ctx)
{
	struct fw_card *card = &ctx->ohci->card;

	dma_unmap_single(card->device, ctx->buffer_bus,
			 ctx->buffer_size, DMA_TO_DEVICE);
	kfree(ctx->buffer);
}

static struct descriptor *
context_get_descriptors(struct context *ctx, int z, dma_addr_t *d_bus)
{
	struct descriptor *d, *tail, *end;

	d = ctx->head_descriptor;
	tail = ctx->tail_descriptor;
528
	end = ctx->buffer + ctx->buffer_size / sizeof(*d);
529 530 531 532 533 534 535 536 537 538 539 540 541

	if (d + z <= tail) {
		goto has_space;
	} else if (d > tail && d + z <= end) {
		goto has_space;
	} else if (d > tail && ctx->buffer + z <= tail) {
		d = ctx->buffer;
		goto has_space;
	}

	return NULL;

 has_space:
542 543
	memset(d, 0, z * sizeof(*d));
	*d_bus = ctx->buffer_bus + (d - ctx->buffer) * sizeof(*d);
544 545 546 547

	return d;
}

548
static void context_run(struct context *ctx, u32 extra)
549 550 551
{
	struct fw_ohci *ohci = ctx->ohci;

552
	reg_write(ohci, COMMAND_PTR(ctx->regs),
553
		  le32_to_cpu(ctx->tail_descriptor_last->branch_address));
554 555
	reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
	reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
556 557 558 559 560 561 562 563
	flush_writes(ohci);
}

static void context_append(struct context *ctx,
			   struct descriptor *d, int z, int extra)
{
	dma_addr_t d_bus;

564
	d_bus = ctx->buffer_bus + (d - ctx->buffer) * sizeof(*d);
565 566 567 568 569 570 571 572

	ctx->head_descriptor = d + z + extra;
	ctx->prev_descriptor->branch_address = cpu_to_le32(d_bus | z);
	ctx->prev_descriptor = z == 2 ? d : d + z - 1;

	dma_sync_single_for_device(ctx->ohci->card.device, ctx->buffer_bus,
				   ctx->buffer_size, DMA_TO_DEVICE);

573
	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
574 575 576 577 578 579
	flush_writes(ctx->ohci);
}

static void context_stop(struct context *ctx)
{
	u32 reg;
580
	int i;
581

582
	reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
583
	flush_writes(ctx->ohci);
584

585
	for (i = 0; i < 10; i++) {
586
		reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
587 588 589 590
		if ((reg & CONTEXT_ACTIVE) == 0)
			break;

		fw_notify("context_stop: still active (0x%08x)\n", reg);
591
		mdelay(1);
592
	}
593
}
594

595 596 597
struct driver_data {
	struct fw_packet *packet;
};
598

599 600
/*
 * This function apppends a packet to the DMA queue for transmission.
601
 * Must always be called with the ochi->lock held to ensure proper
602 603
 * generation handling and locking around packet queue manipulation.
 */
604 605
static int
at_context_queue_packet(struct context *ctx, struct fw_packet *packet)
606 607
{
	struct fw_ohci *ohci = ctx->ohci;
608 609 610 611
	dma_addr_t d_bus, payload_bus;
	struct driver_data *driver_data;
	struct descriptor *d, *last;
	__le32 *header;
612
	int z, tcode;
613
	u32 reg;
614

615 616 617 618
	d = context_get_descriptors(ctx, 4, &d_bus);
	if (d == NULL) {
		packet->ack = RCODE_SEND_ERROR;
		return -1;
619 620
	}

621
	d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
622 623
	d[0].res_count = cpu_to_le16(packet->timestamp);

624 625
	/*
	 * The DMA format for asyncronous link packets is different
626 627
	 * from the IEEE1394 layout, so shift the fields around
	 * accordingly.  If header_length is 8, it's a PHY packet, to
628 629
	 * which we need to prepend an extra quadlet.
	 */
630 631

	header = (__le32 *) &d[1];
632
	if (packet->header_length > 8) {
633 634 635 636 637
		header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
					(packet->speed << 16));
		header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
					(packet->header[0] & 0xffff0000));
		header[2] = cpu_to_le32(packet->header[2]);
638 639 640

		tcode = (packet->header[0] >> 4) & 0x0f;
		if (TCODE_IS_BLOCK_PACKET(tcode))
641
			header[3] = cpu_to_le32(packet->header[3]);
642
		else
643 644 645
			header[3] = (__force __le32) packet->header[3];

		d[0].req_count = cpu_to_le16(packet->header_length);
646
	} else {
647 648 649 650 651
		header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
					(packet->speed << 16));
		header[1] = cpu_to_le32(packet->header[0]);
		header[2] = cpu_to_le32(packet->header[1]);
		d[0].req_count = cpu_to_le16(12);
652 653
	}

654 655
	driver_data = (struct driver_data *) &d[3];
	driver_data->packet = packet;
656
	packet->driver_data = driver_data;
657 658 659 660 661 662 663 664 665 666 667 668 669 670
	
	if (packet->payload_length > 0) {
		payload_bus =
			dma_map_single(ohci->card.device, packet->payload,
				       packet->payload_length, DMA_TO_DEVICE);
		if (dma_mapping_error(payload_bus)) {
			packet->ack = RCODE_SEND_ERROR;
			return -1;
		}

		d[2].req_count    = cpu_to_le16(packet->payload_length);
		d[2].data_address = cpu_to_le32(payload_bus);
		last = &d[2];
		z = 3;
671
	} else {
672 673
		last = &d[0];
		z = 2;
674 675
	}

676 677 678
	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
				     DESCRIPTOR_IRQ_ALWAYS |
				     DESCRIPTOR_BRANCH_ALWAYS);
679

680 681 682 683 684 685 686
	/* FIXME: Document how the locking works. */
	if (ohci->generation != packet->generation) {
		packet->ack = RCODE_GENERATION;
		return -1;
	}

	context_append(ctx, d, z, 4 - z);
687

688
	/* If the context isn't already running, start it up. */
689
	reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
690
	if ((reg & CONTEXT_RUN) == 0)
691 692 693
		context_run(ctx, 0);

	return 0;
694 695
}

696 697 698
static int handle_at_packet(struct context *context,
			    struct descriptor *d,
			    struct descriptor *last)
699
{
700
	struct driver_data *driver_data;
701
	struct fw_packet *packet;
702 703
	struct fw_ohci *ohci = context->ohci;
	dma_addr_t payload_bus;
704 705
	int evt;

706 707 708
	if (last->transfer_status == 0)
		/* This descriptor isn't done yet, stop iteration. */
		return 0;
709

710 711 712 713 714
	driver_data = (struct driver_data *) &d[3];
	packet = driver_data->packet;
	if (packet == NULL)
		/* This packet was cancelled, just continue. */
		return 1;
715

716 717 718
	payload_bus = le32_to_cpu(last->data_address);
	if (payload_bus != 0)
		dma_unmap_single(ohci->card.device, payload_bus,
719 720
				 packet->payload_length, DMA_TO_DEVICE);

721 722
	evt = le16_to_cpu(last->transfer_status) & 0x1f;
	packet->timestamp = le16_to_cpu(last->res_count);
723

724 725 726 727 728
	switch (evt) {
	case OHCI1394_evt_timeout:
		/* Async response transmit timed out. */
		packet->ack = RCODE_CANCELLED;
		break;
729

730
	case OHCI1394_evt_flushed:
731 732 733 734
		/*
		 * The packet was flushed should give same error as
		 * when we try to use a stale generation count.
		 */
735 736
		packet->ack = RCODE_GENERATION;
		break;
737

738
	case OHCI1394_evt_missing_ack:
739 740 741 742
		/*
		 * Using a valid (current) generation count, but the
		 * node is not on the bus or not sending acks.
		 */
743 744
		packet->ack = RCODE_NO_ACK;
		break;
745

746 747 748 749 750 751 752 753 754
	case ACK_COMPLETE + 0x10:
	case ACK_PENDING + 0x10:
	case ACK_BUSY_X + 0x10:
	case ACK_BUSY_A + 0x10:
	case ACK_BUSY_B + 0x10:
	case ACK_DATA_ERROR + 0x10:
	case ACK_TYPE_ERROR + 0x10:
		packet->ack = evt - 0x10;
		break;
755

756 757 758 759
	default:
		packet->ack = RCODE_SEND_ERROR;
		break;
	}
760

761
	packet->callback(packet, &ohci->card, packet->ack);
762

763
	return 1;
764 765
}

766 767 768 769 770
#define HEADER_GET_DESTINATION(q)	(((q) >> 16) & 0xffff)
#define HEADER_GET_TCODE(q)		(((q) >> 4) & 0x0f)
#define HEADER_GET_OFFSET_HIGH(q)	(((q) >> 0) & 0xffff)
#define HEADER_GET_DATA_LENGTH(q)	(((q) >> 16) & 0xffff)
#define HEADER_GET_EXTENDED_TCODE(q)	(((q) >> 0) & 0xffff)
771 772 773 774 775 776 777

static void
handle_local_rom(struct fw_ohci *ohci, struct fw_packet *packet, u32 csr)
{
	struct fw_packet response;
	int tcode, length, i;

778
	tcode = HEADER_GET_TCODE(packet->header[0]);
779
	if (TCODE_IS_BLOCK_PACKET(tcode))
780
		length = HEADER_GET_DATA_LENGTH(packet->header[3]);
781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806
	else
		length = 4;

	i = csr - CSR_CONFIG_ROM;
	if (i + length > CONFIG_ROM_SIZE) {
		fw_fill_response(&response, packet->header,
				 RCODE_ADDRESS_ERROR, NULL, 0);
	} else if (!TCODE_IS_READ_REQUEST(tcode)) {
		fw_fill_response(&response, packet->header,
				 RCODE_TYPE_ERROR, NULL, 0);
	} else {
		fw_fill_response(&response, packet->header, RCODE_COMPLETE,
				 (void *) ohci->config_rom + i, length);
	}

	fw_core_handle_response(&ohci->card, &response);
}

static void
handle_local_lock(struct fw_ohci *ohci, struct fw_packet *packet, u32 csr)
{
	struct fw_packet response;
	int tcode, length, ext_tcode, sel;
	__be32 *payload, lock_old;
	u32 lock_arg, lock_data;

807 808
	tcode = HEADER_GET_TCODE(packet->header[0]);
	length = HEADER_GET_DATA_LENGTH(packet->header[3]);
809
	payload = packet->payload;
810
	ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835

	if (tcode == TCODE_LOCK_REQUEST &&
	    ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
		lock_arg = be32_to_cpu(payload[0]);
		lock_data = be32_to_cpu(payload[1]);
	} else if (tcode == TCODE_READ_QUADLET_REQUEST) {
		lock_arg = 0;
		lock_data = 0;
	} else {
		fw_fill_response(&response, packet->header,
				 RCODE_TYPE_ERROR, NULL, 0);
		goto out;
	}

	sel = (csr - CSR_BUS_MANAGER_ID) / 4;
	reg_write(ohci, OHCI1394_CSRData, lock_data);
	reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
	reg_write(ohci, OHCI1394_CSRControl, sel);

	if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000)
		lock_old = cpu_to_be32(reg_read(ohci, OHCI1394_CSRData));
	else
		fw_notify("swap not done yet\n");

	fw_fill_response(&response, packet->header,
836
			 RCODE_COMPLETE, &lock_old, sizeof(lock_old));
837 838 839 840 841
 out:
	fw_core_handle_response(&ohci->card, &response);
}

static void
842
handle_local_request(struct context *ctx, struct fw_packet *packet)
843 844 845 846
{
	u64 offset;
	u32 csr;

847 848 849 850
	if (ctx == &ctx->ohci->at_request_ctx) {
		packet->ack = ACK_PENDING;
		packet->callback(packet, &ctx->ohci->card, packet->ack);
	}
851 852 853

	offset =
		((unsigned long long)
854
		 HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874
		packet->header[2];
	csr = offset - CSR_REGISTER_BASE;

	/* Handle config rom reads. */
	if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
		handle_local_rom(ctx->ohci, packet, csr);
	else switch (csr) {
	case CSR_BUS_MANAGER_ID:
	case CSR_BANDWIDTH_AVAILABLE:
	case CSR_CHANNELS_AVAILABLE_HI:
	case CSR_CHANNELS_AVAILABLE_LO:
		handle_local_lock(ctx->ohci, packet, csr);
		break;
	default:
		if (ctx == &ctx->ohci->at_request_ctx)
			fw_core_handle_request(&ctx->ohci->card, packet);
		else
			fw_core_handle_response(&ctx->ohci->card, packet);
		break;
	}
875 876 877 878 879

	if (ctx == &ctx->ohci->at_response_ctx) {
		packet->ack = ACK_COMPLETE;
		packet->callback(packet, &ctx->ohci->card, packet->ack);
	}
880
}
881

882
static void
883
at_context_transmit(struct context *ctx, struct fw_packet *packet)
884 885
{
	unsigned long flags;
886
	int retval;
887 888 889

	spin_lock_irqsave(&ctx->ohci->lock, flags);

890
	if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
891
	    ctx->ohci->generation == packet->generation) {
892 893 894
		spin_unlock_irqrestore(&ctx->ohci->lock, flags);
		handle_local_request(ctx, packet);
		return;
895
	}
896

897
	retval = at_context_queue_packet(ctx, packet);
898 899
	spin_unlock_irqrestore(&ctx->ohci->lock, flags);

900 901 902
	if (retval < 0)
		packet->callback(packet, &ctx->ohci->card, packet->ack);
	
903 904 905 906 907
}

static void bus_reset_tasklet(unsigned long data)
{
	struct fw_ohci *ohci = (struct fw_ohci *)data;
908
	int self_id_count, i, j, reg;
909 910
	int generation, new_generation;
	unsigned long flags;
911 912
	void *free_rom = NULL;
	dma_addr_t free_rom_bus = 0;
913 914 915 916 917 918

	reg = reg_read(ohci, OHCI1394_NodeID);
	if (!(reg & OHCI1394_NodeID_idValid)) {
		fw_error("node ID not valid, new bus reset in progress\n");
		return;
	}
919
	ohci->node_id = reg & 0xffff;
920

921 922
	/*
	 * The count in the SelfIDCount register is the number of
923 924
	 * bytes in the self ID receive buffer.  Since we also receive
	 * the inverted quadlets and a header quadlet, we shift one
925 926
	 * bit extra to get the actual number of self IDs.
	 */
927 928 929

	self_id_count = (reg_read(ohci, OHCI1394_SelfIDCount) >> 3) & 0x3ff;
	generation = (le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
930
	rmb();
931 932 933 934 935 936

	for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
		if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1])
			fw_error("inconsistent self IDs\n");
		ohci->self_id_buffer[j] = le32_to_cpu(ohci->self_id_cpu[i]);
	}
937
	rmb();
938

939 940
	/*
	 * Check the consistency of the self IDs we just read.  The
941 942 943 944 945 946 947 948 949
	 * problem we face is that a new bus reset can start while we
	 * read out the self IDs from the DMA buffer. If this happens,
	 * the DMA buffer will be overwritten with new self IDs and we
	 * will read out inconsistent data.  The OHCI specification
	 * (section 11.2) recommends a technique similar to
	 * linux/seqlock.h, where we remember the generation of the
	 * self IDs in the buffer before reading them out and compare
	 * it to the current generation after reading them out.  If
	 * the two generations match we know we have a consistent set
950 951
	 * of self IDs.
	 */
952 953 954 955 956 957 958 959 960 961 962 963

	new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
	if (new_generation != generation) {
		fw_notify("recursive bus reset detected, "
			  "discarding self ids\n");
		return;
	}

	/* FIXME: Document how the locking works. */
	spin_lock_irqsave(&ohci->lock, flags);

	ohci->generation = generation;
964 965
	context_stop(&ohci->at_request_ctx);
	context_stop(&ohci->at_response_ctx);
966 967
	reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);

968 969
	/*
	 * This next bit is unrelated to the AT context stuff but we
970 971 972 973
	 * have to do it under the spinlock also.  If a new config rom
	 * was set up before this reset, the old one is now no longer
	 * in use and we can free it. Update the config rom pointers
	 * to point to the current config rom and clear the
974 975
	 * next_config_rom pointer so a new udpate can take place.
	 */
976 977

	if (ohci->next_config_rom != NULL) {
978 979
		free_rom     = ohci->config_rom;
		free_rom_bus = ohci->config_rom_bus;
980 981 982 983
		ohci->config_rom      = ohci->next_config_rom;
		ohci->config_rom_bus  = ohci->next_config_rom_bus;
		ohci->next_config_rom = NULL;

984 985
		/*
		 * Restore config_rom image and manually update
986 987
		 * config_rom registers.  Writing the header quadlet
		 * will indicate that the config rom is ready, so we
988 989
		 * do that last.
		 */
990 991 992 993 994 995 996 997
		reg_write(ohci, OHCI1394_BusOptions,
			  be32_to_cpu(ohci->config_rom[2]));
		ohci->config_rom[0] = cpu_to_be32(ohci->next_header);
		reg_write(ohci, OHCI1394_ConfigROMhdr, ohci->next_header);
	}

	spin_unlock_irqrestore(&ohci->lock, flags);

998 999 1000 1001
	if (free_rom)
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  free_rom, free_rom_bus);

1002
	fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
1003 1004 1005 1006 1007 1008
				 self_id_count, ohci->self_id_buffer);
}

static irqreturn_t irq_handler(int irq, void *data)
{
	struct fw_ohci *ohci = data;
1009
	u32 event, iso_event, cycle_time;
1010 1011 1012 1013
	int i;

	event = reg_read(ohci, OHCI1394_IntEventClear);

1014
	if (!event || !~event)
1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
		return IRQ_NONE;

	reg_write(ohci, OHCI1394_IntEventClear, event);

	if (event & OHCI1394_selfIDComplete)
		tasklet_schedule(&ohci->bus_reset_tasklet);

	if (event & OHCI1394_RQPkt)
		tasklet_schedule(&ohci->ar_request_ctx.tasklet);

	if (event & OHCI1394_RSPkt)
		tasklet_schedule(&ohci->ar_response_ctx.tasklet);

	if (event & OHCI1394_reqTxComplete)
		tasklet_schedule(&ohci->at_request_ctx.tasklet);

	if (event & OHCI1394_respTxComplete)
		tasklet_schedule(&ohci->at_response_ctx.tasklet);

1034
	iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
1035 1036 1037 1038
	reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);

	while (iso_event) {
		i = ffs(iso_event) - 1;
1039
		tasklet_schedule(&ohci->ir_context_list[i].context.tasklet);
1040 1041 1042
		iso_event &= ~(1 << i);
	}

1043
	iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
1044 1045 1046 1047
	reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);

	while (iso_event) {
		i = ffs(iso_event) - 1;
1048
		tasklet_schedule(&ohci->it_context_list[i].context.tasklet);
1049 1050 1051
		iso_event &= ~(1 << i);
	}

1052 1053 1054 1055 1056 1057
	if (event & OHCI1394_cycle64Seconds) {
		cycle_time = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
		if ((cycle_time & 0x80000000) == 0)
			ohci->bus_seconds++;
	}

1058 1059 1060
	return IRQ_HANDLED;
}

1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
static int software_reset(struct fw_ohci *ohci)
{
	int i;

	reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);

	for (i = 0; i < OHCI_LOOP_COUNT; i++) {
		if ((reg_read(ohci, OHCI1394_HCControlSet) &
		     OHCI1394_HCControl_softReset) == 0)
			return 0;
		msleep(1);
	}

	return -EBUSY;
}

1077 1078 1079 1080 1081
static int ohci_enable(struct fw_card *card, u32 *config_rom, size_t length)
{
	struct fw_ohci *ohci = fw_ohci(card);
	struct pci_dev *dev = to_pci_dev(card->device);

1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
	if (software_reset(ohci)) {
		fw_error("Failed to reset ohci card.\n");
		return -EBUSY;
	}

	/*
	 * Now enable LPS, which we need in order to start accessing
	 * most of the registers.  In fact, on some cards (ALI M5251),
	 * accessing registers in the SClk domain without LPS enabled
	 * will lock up the machine.  Wait 50msec to make sure we have
	 * full link enabled.
	 */
	reg_write(ohci, OHCI1394_HCControlSet,
		  OHCI1394_HCControl_LPS |
		  OHCI1394_HCControl_postedWriteEnable);
	flush_writes(ohci);
	msleep(50);

	reg_write(ohci, OHCI1394_HCControlClear,
		  OHCI1394_HCControl_noByteSwapData);

	reg_write(ohci, OHCI1394_LinkControlSet,
		  OHCI1394_LinkControl_rcvSelfID |
		  OHCI1394_LinkControl_cycleTimerEnable |
		  OHCI1394_LinkControl_cycleMaster);

	reg_write(ohci, OHCI1394_ATRetries,
		  OHCI1394_MAX_AT_REQ_RETRIES |
		  (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
		  (OHCI1394_MAX_PHYS_RESP_RETRIES << 8));

	ar_context_run(&ohci->ar_request_ctx);
	ar_context_run(&ohci->ar_response_ctx);

	reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
	reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
	reg_write(ohci, OHCI1394_IntEventClear, ~0);
	reg_write(ohci, OHCI1394_IntMaskClear, ~0);
	reg_write(ohci, OHCI1394_IntMaskSet,
		  OHCI1394_selfIDComplete |
		  OHCI1394_RQPkt | OHCI1394_RSPkt |
		  OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
		  OHCI1394_isochRx | OHCI1394_isochTx |
		  OHCI1394_masterIntEnable |
		  OHCI1394_cycle64Seconds);

	/* Activate link_on bit and contender bit in our self ID packets.*/
	if (ohci_update_phy_reg(card, 4, 0,
				PHY_LINK_ACTIVE | PHY_CONTENDER) < 0)
		return -EIO;

1133 1134
	/*
	 * When the link is not yet enabled, the atomic config rom
1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
	 * update mechanism described below in ohci_set_config_rom()
	 * is not active.  We have to update ConfigRomHeader and
	 * BusOptions manually, and the write to ConfigROMmap takes
	 * effect immediately.  We tie this to the enabling of the
	 * link, so we have a valid config rom before enabling - the
	 * OHCI requires that ConfigROMhdr and BusOptions have valid
	 * values before enabling.
	 *
	 * However, when the ConfigROMmap is written, some controllers
	 * always read back quadlets 0 and 2 from the config rom to
	 * the ConfigRomHeader and BusOptions registers on bus reset.
	 * They shouldn't do that in this initial case where the link
	 * isn't enabled.  This means we have to use the same
	 * workaround here, setting the bus header to 0 and then write
	 * the right values in the bus reset tasklet.
	 */

	ohci->next_config_rom =
		dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				   &ohci->next_config_rom_bus, GFP_KERNEL);
	if (ohci->next_config_rom == NULL)
		return -ENOMEM;

	memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
	fw_memcpy_to_be32(ohci->next_config_rom, config_rom, length * 4);

	ohci->next_header = config_rom[0];
	ohci->next_config_rom[0] = 0;
	reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
	reg_write(ohci, OHCI1394_BusOptions, config_rom[2]);
	reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);

	reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);

	if (request_irq(dev->irq, irq_handler,
1170
			IRQF_SHARED, ohci_driver_name, ohci)) {
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
		fw_error("Failed to allocate shared interrupt %d.\n",
			 dev->irq);
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  ohci->config_rom, ohci->config_rom_bus);
		return -EIO;
	}

	reg_write(ohci, OHCI1394_HCControlSet,
		  OHCI1394_HCControl_linkEnable |
		  OHCI1394_HCControl_BIBimageValid);
	flush_writes(ohci);

1183 1184 1185 1186
	/*
	 * We are ready to go, initiate bus reset to finish the
	 * initialization.
	 */
1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197

	fw_core_initiate_bus_reset(&ohci->card, 1);

	return 0;
}

static int
ohci_set_config_rom(struct fw_card *card, u32 *config_rom, size_t length)
{
	struct fw_ohci *ohci;
	unsigned long flags;
1198
	int retval = -EBUSY;
1199 1200 1201 1202 1203
	__be32 *next_config_rom;
	dma_addr_t next_config_rom_bus;

	ohci = fw_ohci(card);

1204 1205
	/*
	 * When the OHCI controller is enabled, the config rom update
1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251
	 * mechanism is a bit tricky, but easy enough to use.  See
	 * section 5.5.6 in the OHCI specification.
	 *
	 * The OHCI controller caches the new config rom address in a
	 * shadow register (ConfigROMmapNext) and needs a bus reset
	 * for the changes to take place.  When the bus reset is
	 * detected, the controller loads the new values for the
	 * ConfigRomHeader and BusOptions registers from the specified
	 * config rom and loads ConfigROMmap from the ConfigROMmapNext
	 * shadow register. All automatically and atomically.
	 *
	 * Now, there's a twist to this story.  The automatic load of
	 * ConfigRomHeader and BusOptions doesn't honor the
	 * noByteSwapData bit, so with a be32 config rom, the
	 * controller will load be32 values in to these registers
	 * during the atomic update, even on litte endian
	 * architectures.  The workaround we use is to put a 0 in the
	 * header quadlet; 0 is endian agnostic and means that the
	 * config rom isn't ready yet.  In the bus reset tasklet we
	 * then set up the real values for the two registers.
	 *
	 * We use ohci->lock to avoid racing with the code that sets
	 * ohci->next_config_rom to NULL (see bus_reset_tasklet).
	 */

	next_config_rom =
		dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				   &next_config_rom_bus, GFP_KERNEL);
	if (next_config_rom == NULL)
		return -ENOMEM;

	spin_lock_irqsave(&ohci->lock, flags);

	if (ohci->next_config_rom == NULL) {
		ohci->next_config_rom = next_config_rom;
		ohci->next_config_rom_bus = next_config_rom_bus;

		memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
		fw_memcpy_to_be32(ohci->next_config_rom, config_rom,
				  length * 4);

		ohci->next_header = config_rom[0];
		ohci->next_config_rom[0] = 0;

		reg_write(ohci, OHCI1394_ConfigROMmap,
			  ohci->next_config_rom_bus);
1252
		retval = 0;
1253 1254 1255 1256
	}

	spin_unlock_irqrestore(&ohci->lock, flags);

1257 1258
	/*
	 * Now initiate a bus reset to have the changes take
1259 1260 1261
	 * effect. We clean up the old config rom memory and DMA
	 * mappings in the bus reset tasklet, since the OHCI
	 * controller could need to access it before the bus reset
1262 1263
	 * takes effect.
	 */
1264 1265
	if (retval == 0)
		fw_core_initiate_bus_reset(&ohci->card, 1);
1266 1267 1268
	else
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  next_config_rom, next_config_rom_bus);
1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286

	return retval;
}

static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);

	at_context_transmit(&ohci->at_request_ctx, packet);
}

static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);

	at_context_transmit(&ohci->at_response_ctx, packet);
}

1287 1288 1289
static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);
1290 1291 1292
	struct context *ctx = &ohci->at_request_ctx;
	struct driver_data *driver_data = packet->driver_data;
	int retval = -ENOENT;
1293

1294
	tasklet_disable(&ctx->tasklet);
1295

1296 1297
	if (packet->ack != 0)
		goto out;
1298

1299 1300 1301 1302
	driver_data->packet = NULL;
	packet->ack = RCODE_CANCELLED;
	packet->callback(packet, &ohci->card, packet->ack);
	retval = 0;
1303

1304 1305
 out:
	tasklet_enable(&ctx->tasklet);
1306

1307
	return retval;
1308 1309
}

1310 1311 1312 1313 1314
static int
ohci_enable_phys_dma(struct fw_card *card, int node_id, int generation)
{
	struct fw_ohci *ohci = fw_ohci(card);
	unsigned long flags;
1315
	int n, retval = 0;
1316

1317 1318 1319 1320
	/*
	 * FIXME:  Make sure this bitmask is cleared when we clear the busReset
	 * interrupt bit.  Clear physReqResourceAllBuses on bus reset.
	 */
1321 1322 1323 1324 1325 1326 1327 1328

	spin_lock_irqsave(&ohci->lock, flags);

	if (ohci->generation != generation) {
		retval = -ESTALE;
		goto out;
	}

1329 1330 1331 1332
	/*
	 * Note, if the node ID contains a non-local bus ID, physical DMA is
	 * enabled for _all_ nodes on remote buses.
	 */
1333 1334 1335 1336 1337 1338 1339

	n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
	if (n < 32)
		reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
	else
		reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));

1340 1341
	flush_writes(ohci);
 out:
1342
	spin_unlock_irqrestore(&ohci->lock, flags);
1343 1344
	return retval;
}
S
Stefan Richter 已提交
1345

1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358
static u64
ohci_get_bus_time(struct fw_card *card)
{
	struct fw_ohci *ohci = fw_ohci(card);
	u32 cycle_time;
	u64 bus_time;

	cycle_time = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
	bus_time = ((u64) ohci->bus_seconds << 32) | cycle_time;

	return bus_time;
}

1359 1360 1361
static int handle_ir_dualbuffer_packet(struct context *context,
				       struct descriptor *d,
				       struct descriptor *last)
1362
{
1363 1364 1365
	struct iso_context *ctx =
		container_of(context, struct iso_context, context);
	struct db_descriptor *db = (struct db_descriptor *) d;
1366
	__le32 *ir_header;
1367
	size_t header_length;
1368 1369
	void *p, *end;
	int i;
1370

1371 1372 1373 1374
	if (db->first_res_count > 0 && db->second_res_count > 0)
		/* This descriptor isn't done yet, stop iteration. */
		return 0;

1375 1376 1377 1378 1379 1380 1381
	header_length = le16_to_cpu(db->first_req_count) -
		le16_to_cpu(db->first_res_count);

	i = ctx->header_length;
	p = db + 1;
	end = p + header_length;
	while (p < end && i + ctx->base.header_size <= PAGE_SIZE) {
1382 1383
		/*
		 * The iso header is byteswapped to little endian by
1384 1385 1386
		 * the controller, but the remaining header quadlets
		 * are big endian.  We want to present all the headers
		 * as big endian, so we have to swap the first
1387 1388
		 * quadlet.
		 */
1389 1390
		*(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
		memcpy(ctx->header + i + 4, p + 8, ctx->base.header_size - 4);
1391 1392 1393 1394 1395
		i += ctx->base.header_size;
		p += ctx->base.header_size + 4;
	}

	ctx->header_length = i;
1396

1397
	if (le16_to_cpu(db->control) & DESCRIPTOR_IRQ_ALWAYS) {
1398 1399 1400
		ir_header = (__le32 *) (db + 1);
		ctx->base.callback(&ctx->base,
				   le32_to_cpu(ir_header[0]) & 0xffff,
1401
				   ctx->header_length, ctx->header,
1402
				   ctx->base.callback_data);
1403 1404
		ctx->header_length = 0;
	}
1405

1406
	return 1;
1407 1408
}

1409 1410 1411
static int handle_it_packet(struct context *context,
			    struct descriptor *d,
			    struct descriptor *last)
1412
{
1413 1414
	struct iso_context *ctx =
		container_of(context, struct iso_context, context);
S
Stefan Richter 已提交
1415

1416 1417 1418 1419
	if (last->transfer_status == 0)
		/* This descriptor isn't done yet, stop iteration. */
		return 0;

1420
	if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS)
1421 1422
		ctx->base.callback(&ctx->base, le16_to_cpu(last->res_count),
				   0, NULL, ctx->base.callback_data);
1423 1424

	return 1;
1425 1426
}

1427
static struct fw_iso_context *
1428
ohci_allocate_iso_context(struct fw_card *card, int type, size_t header_size)
1429 1430 1431
{
	struct fw_ohci *ohci = fw_ohci(card);
	struct iso_context *ctx, *list;
1432
	descriptor_callback_t callback;
1433
	u32 *mask, regs;
1434
	unsigned long flags;
1435
	int index, retval = -ENOMEM;
1436 1437 1438 1439

	if (type == FW_ISO_CONTEXT_TRANSMIT) {
		mask = &ohci->it_context_mask;
		list = ohci->it_context_list;
1440
		callback = handle_it_packet;
1441
	} else {
S
Stefan Richter 已提交
1442 1443
		mask = &ohci->ir_context_mask;
		list = ohci->ir_context_list;
1444
		callback = handle_ir_dualbuffer_packet;
1445 1446
	}

1447
	/* FIXME: We need a fallback for pre 1.1 OHCI. */
1448 1449 1450 1451
	if (callback == handle_ir_dualbuffer_packet &&
	    ohci->version < OHCI_VERSION_1_1)
		return ERR_PTR(-EINVAL);

1452 1453 1454 1455 1456 1457 1458 1459 1460
	spin_lock_irqsave(&ohci->lock, flags);
	index = ffs(*mask) - 1;
	if (index >= 0)
		*mask &= ~(1 << index);
	spin_unlock_irqrestore(&ohci->lock, flags);

	if (index < 0)
		return ERR_PTR(-EBUSY);

S
Stefan Richter 已提交
1461 1462 1463 1464 1465
	if (type == FW_ISO_CONTEXT_TRANSMIT)
		regs = OHCI1394_IsoXmitContextBase(index);
	else
		regs = OHCI1394_IsoRcvContextBase(index);

1466
	ctx = &list[index];
1467
	memset(ctx, 0, sizeof(*ctx));
1468 1469 1470 1471 1472
	ctx->header_length = 0;
	ctx->header = (void *) __get_free_page(GFP_KERNEL);
	if (ctx->header == NULL)
		goto out;

1473
	retval = context_init(&ctx->context, ohci, ISO_BUFFER_SIZE,
1474
			      regs, callback);
1475 1476
	if (retval < 0)
		goto out_with_header;
1477 1478

	return &ctx->base;
1479 1480 1481 1482 1483 1484 1485 1486 1487

 out_with_header:
	free_page((unsigned long)ctx->header);
 out:
	spin_lock_irqsave(&ohci->lock, flags);
	*mask |= 1 << index;
	spin_unlock_irqrestore(&ohci->lock, flags);

	return ERR_PTR(retval);
1488 1489
}

1490 1491
static int ohci_start_iso(struct fw_iso_context *base,
			  s32 cycle, u32 sync, u32 tags)
1492
{
S
Stefan Richter 已提交
1493
	struct iso_context *ctx = container_of(base, struct iso_context, base);
1494
	struct fw_ohci *ohci = ctx->context.ohci;
1495
	u32 control, match;
1496 1497
	int index;

1498 1499
	if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
		index = ctx - ohci->it_context_list;
1500 1501 1502
		match = 0;
		if (cycle >= 0)
			match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
1503
				(cycle & 0x7fff) << 16;
1504

1505 1506
		reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
		reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
1507
		context_run(&ctx->context, match);
1508 1509
	} else {
		index = ctx - ohci->ir_context_list;
1510 1511 1512 1513 1514 1515
		control = IR_CONTEXT_DUAL_BUFFER_MODE | IR_CONTEXT_ISOCH_HEADER;
		match = (tags << 28) | (sync << 8) | ctx->base.channel;
		if (cycle >= 0) {
			match |= (cycle & 0x07fff) << 12;
			control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
		}
1516

1517 1518
		reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
		reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
1519
		reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
1520
		context_run(&ctx->context, control);
1521
	}
1522 1523 1524 1525

	return 0;
}

1526 1527 1528
static int ohci_stop_iso(struct fw_iso_context *base)
{
	struct fw_ohci *ohci = fw_ohci(base->card);
S
Stefan Richter 已提交
1529
	struct iso_context *ctx = container_of(base, struct iso_context, base);
1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544
	int index;

	if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
		index = ctx - ohci->it_context_list;
		reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
	} else {
		index = ctx - ohci->ir_context_list;
		reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
	}
	flush_writes(ohci);
	context_stop(&ctx->context);

	return 0;
}

1545 1546 1547
static void ohci_free_iso_context(struct fw_iso_context *base)
{
	struct fw_ohci *ohci = fw_ohci(base->card);
S
Stefan Richter 已提交
1548
	struct iso_context *ctx = container_of(base, struct iso_context, base);
1549 1550 1551
	unsigned long flags;
	int index;

1552 1553
	ohci_stop_iso(base);
	context_release(&ctx->context);
1554
	free_page((unsigned long)ctx->header);
1555

1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569
	spin_lock_irqsave(&ohci->lock, flags);

	if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
		index = ctx - ohci->it_context_list;
		ohci->it_context_mask |= 1 << index;
	} else {
		index = ctx - ohci->ir_context_list;
		ohci->ir_context_mask |= 1 << index;
	}

	spin_unlock_irqrestore(&ohci->lock, flags);
}

static int
1570 1571 1572 1573
ohci_queue_iso_transmit(struct fw_iso_context *base,
			struct fw_iso_packet *packet,
			struct fw_iso_buffer *buffer,
			unsigned long payload)
1574
{
S
Stefan Richter 已提交
1575
	struct iso_context *ctx = container_of(base, struct iso_context, base);
1576
	struct descriptor *d, *last, *pd;
1577 1578
	struct fw_iso_packet *p;
	__le32 *header;
1579
	dma_addr_t d_bus, page_bus;
1580 1581
	u32 z, header_z, payload_z, irq;
	u32 payload_index, payload_end_index, next_page_index;
1582
	int page, end_page, i, length, offset;
1583

1584 1585 1586 1587
	/*
	 * FIXME: Cycle lost behavior should be configurable: lose
	 * packet, retransmit or terminate..
	 */
1588 1589

	p = packet;
1590
	payload_index = payload;
1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608

	if (p->skip)
		z = 1;
	else
		z = 2;
	if (p->header_length > 0)
		z++;

	/* Determine the first page the payload isn't contained in. */
	end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
	if (p->payload_length > 0)
		payload_z = end_page - (payload_index >> PAGE_SHIFT);
	else
		payload_z = 0;

	z += payload_z;

	/* Get header size in number of descriptors. */
1609
	header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
1610

1611 1612 1613
	d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
	if (d == NULL)
		return -ENOMEM;
1614 1615

	if (!p->skip) {
1616
		d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1617 1618 1619
		d[0].req_count = cpu_to_le16(8);

		header = (__le32 *) &d[1];
1620 1621 1622 1623 1624
		header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
					IT_HEADER_TAG(p->tag) |
					IT_HEADER_TCODE(TCODE_STREAM_DATA) |
					IT_HEADER_CHANNEL(ctx->base.channel) |
					IT_HEADER_SPEED(ctx->base.speed));
1625
		header[1] =
1626
			cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
1627 1628 1629 1630 1631
							  p->payload_length));
	}

	if (p->header_length > 0) {
		d[2].req_count    = cpu_to_le16(p->header_length);
1632
		d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644
		memcpy(&d[z], p->header, p->header_length);
	}

	pd = d + z - payload_z;
	payload_end_index = payload_index + p->payload_length;
	for (i = 0; i < payload_z; i++) {
		page               = payload_index >> PAGE_SHIFT;
		offset             = payload_index & ~PAGE_MASK;
		next_page_index    = (page + 1) << PAGE_SHIFT;
		length             =
			min(next_page_index, payload_end_index) - payload_index;
		pd[i].req_count    = cpu_to_le16(length);
1645 1646 1647

		page_bus = page_private(buffer->pages[page]);
		pd[i].data_address = cpu_to_le32(page_bus + offset);
1648 1649 1650 1651 1652

		payload_index += length;
	}

	if (p->interrupt)
1653
		irq = DESCRIPTOR_IRQ_ALWAYS;
1654
	else
1655
		irq = DESCRIPTOR_NO_IRQ;
1656

1657
	last = z == 2 ? d : d + z - 1;
1658 1659 1660
	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
				     DESCRIPTOR_STATUS |
				     DESCRIPTOR_BRANCH_ALWAYS |
1661
				     irq);
1662

1663
	context_append(&ctx->context, d, z, header_z);
1664 1665 1666

	return 0;
}
S
Stefan Richter 已提交
1667

1668
static int
1669 1670 1671 1672
ohci_queue_iso_receive_dualbuffer(struct fw_iso_context *base,
				  struct fw_iso_packet *packet,
				  struct fw_iso_buffer *buffer,
				  unsigned long payload)
1673 1674 1675 1676 1677 1678 1679
{
	struct iso_context *ctx = container_of(base, struct iso_context, base);
	struct db_descriptor *db = NULL;
	struct descriptor *d;
	struct fw_iso_packet *p;
	dma_addr_t d_bus, page_bus;
	u32 z, header_z, length, rest;
1680
	int page, offset, packet_count, header_size;
S
Stefan Richter 已提交
1681

1682 1683 1684 1685
	/*
	 * FIXME: Cycle lost behavior should be configurable: lose
	 * packet, retransmit or terminate..
	 */
1686

1687 1688 1689 1690 1691 1692
	if (packet->skip) {
		d = context_get_descriptors(&ctx->context, 2, &d_bus);
		if (d == NULL)
			return -ENOMEM;

		db = (struct db_descriptor *) d;
1693 1694 1695
		db->control = cpu_to_le16(DESCRIPTOR_STATUS |
					  DESCRIPTOR_BRANCH_ALWAYS |
					  DESCRIPTOR_WAIT);
1696 1697 1698
		db->first_size = cpu_to_le16(ctx->base.header_size + 4);
		context_append(&ctx->context, d, 2, 0);
	}
1699

1700 1701 1702
	p = packet;
	z = 2;

1703 1704 1705 1706
	/*
	 * The OHCI controller puts the status word in the header
	 * buffer too, so we need 4 extra bytes per packet.
	 */
1707 1708 1709
	packet_count = p->header_length / ctx->base.header_size;
	header_size = packet_count * (ctx->base.header_size + 4);

1710
	/* Get header size in number of descriptors. */
1711
	header_z = DIV_ROUND_UP(header_size, sizeof(*d));
1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724
	page     = payload >> PAGE_SHIFT;
	offset   = payload & ~PAGE_MASK;
	rest     = p->payload_length;

	/* FIXME: OHCI 1.0 doesn't support dual buffer receive */
	/* FIXME: make packet-per-buffer/dual-buffer a context option */
	while (rest > 0) {
		d = context_get_descriptors(&ctx->context,
					    z + header_z, &d_bus);
		if (d == NULL)
			return -ENOMEM;

		db = (struct db_descriptor *) d;
1725 1726
		db->control = cpu_to_le16(DESCRIPTOR_STATUS |
					  DESCRIPTOR_BRANCH_ALWAYS);
1727 1728
		db->first_size = cpu_to_le16(ctx->base.header_size + 4);
		db->first_req_count = cpu_to_le16(header_size);
1729
		db->first_res_count = db->first_req_count;
1730
		db->first_buffer = cpu_to_le32(d_bus + sizeof(*db));
S
Stefan Richter 已提交
1731

1732 1733 1734 1735 1736
		if (offset + rest < PAGE_SIZE)
			length = rest;
		else
			length = PAGE_SIZE - offset;

1737 1738
		db->second_req_count = cpu_to_le16(length);
		db->second_res_count = db->second_req_count;
1739 1740 1741
		page_bus = page_private(buffer->pages[page]);
		db->second_buffer = cpu_to_le32(page_bus + offset);

1742
		if (p->interrupt && length == rest)
1743
			db->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
1744

1745 1746 1747 1748 1749 1750
		context_append(&ctx->context, d, z, header_z);
		offset = (offset + length) & ~PAGE_MASK;
		rest -= length;
		page++;
	}

1751 1752
	return 0;
}
1753

1754 1755 1756 1757 1758 1759
static int
ohci_queue_iso(struct fw_iso_context *base,
	       struct fw_iso_packet *packet,
	       struct fw_iso_buffer *buffer,
	       unsigned long payload)
{
1760 1761
	struct iso_context *ctx = container_of(base, struct iso_context, base);

1762 1763
	if (base->type == FW_ISO_CONTEXT_TRANSMIT)
		return ohci_queue_iso_transmit(base, packet, buffer, payload);
1764
	else if (ctx->context.ohci->version >= OHCI_VERSION_1_1)
1765 1766
		return ohci_queue_iso_receive_dualbuffer(base, packet,
							 buffer, payload);
1767 1768 1769
	else
		/* FIXME: Implement fallback for OHCI 1.0 controllers. */
		return -EINVAL;
1770 1771
}

1772
static const struct fw_card_driver ohci_driver = {
1773 1774 1775 1776 1777 1778
	.name			= ohci_driver_name,
	.enable			= ohci_enable,
	.update_phy_reg		= ohci_update_phy_reg,
	.set_config_rom		= ohci_set_config_rom,
	.send_request		= ohci_send_request,
	.send_response		= ohci_send_response,
1779
	.cancel_packet		= ohci_cancel_packet,
1780
	.enable_phys_dma	= ohci_enable_phys_dma,
1781
	.get_bus_time		= ohci_get_bus_time,
1782 1783 1784 1785

	.allocate_iso_context	= ohci_allocate_iso_context,
	.free_iso_context	= ohci_free_iso_context,
	.queue_iso		= ohci_queue_iso,
1786
	.start_iso		= ohci_start_iso,
1787
	.stop_iso		= ohci_stop_iso,
1788 1789 1790 1791 1792 1793
};

static int __devinit
pci_probe(struct pci_dev *dev, const struct pci_device_id *ent)
{
	struct fw_ohci *ohci;
1794
	u32 bus_options, max_receive, link_speed;
1795
	u64 guid;
1796
	int err;
1797 1798
	size_t size;

1799
	ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
1800 1801 1802 1803 1804 1805 1806
	if (ohci == NULL) {
		fw_error("Could not malloc fw_ohci data.\n");
		return -ENOMEM;
	}

	fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);

1807 1808
	err = pci_enable_device(dev);
	if (err) {
1809
		fw_error("Failed to enable OHCI hardware.\n");
1810
		goto fail_put_card;
1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821
	}

	pci_set_master(dev);
	pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
	pci_set_drvdata(dev, ohci);

	spin_lock_init(&ohci->lock);

	tasklet_init(&ohci->bus_reset_tasklet,
		     bus_reset_tasklet, (unsigned long)ohci);

1822 1823
	err = pci_request_region(dev, 0, ohci_driver_name);
	if (err) {
1824
		fw_error("MMIO resource unavailable\n");
1825
		goto fail_disable;
1826 1827 1828 1829 1830
	}

	ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
	if (ohci->registers == NULL) {
		fw_error("Failed to remap registers\n");
1831 1832
		err = -ENXIO;
		goto fail_iomem;
1833 1834 1835 1836 1837 1838 1839 1840
	}

	ar_context_init(&ohci->ar_request_ctx, ohci,
			OHCI1394_AsReqRcvContextControlSet);

	ar_context_init(&ohci->ar_response_ctx, ohci,
			OHCI1394_AsRspRcvContextControlSet);

1841 1842
	context_init(&ohci->at_request_ctx, ohci, AT_BUFFER_SIZE,
		     OHCI1394_AsReqTrContextControlSet, handle_at_packet);
1843

1844 1845
	context_init(&ohci->at_response_ctx, ohci, AT_BUFFER_SIZE,
		     OHCI1394_AsRspTrContextControlSet, handle_at_packet);
1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860

	reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
	ohci->it_context_mask = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
	reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
	size = sizeof(struct iso_context) * hweight32(ohci->it_context_mask);
	ohci->it_context_list = kzalloc(size, GFP_KERNEL);

	reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
	ohci->ir_context_mask = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
	reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
	size = sizeof(struct iso_context) * hweight32(ohci->ir_context_mask);
	ohci->ir_context_list = kzalloc(size, GFP_KERNEL);

	if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
		fw_error("Out of memory for it/ir contexts.\n");
1861 1862
		err = -ENOMEM;
		goto fail_registers;
1863 1864 1865 1866 1867 1868 1869 1870 1871
	}

	/* self-id dma buffer allocation */
	ohci->self_id_cpu = dma_alloc_coherent(ohci->card.device,
					       SELF_ID_BUF_SIZE,
					       &ohci->self_id_bus,
					       GFP_KERNEL);
	if (ohci->self_id_cpu == NULL) {
		fw_error("Out of memory for self ID buffer.\n");
1872 1873
		err = -ENOMEM;
		goto fail_registers;
1874 1875 1876 1877 1878 1879 1880 1881
	}

	bus_options = reg_read(ohci, OHCI1394_BusOptions);
	max_receive = (bus_options >> 12) & 0xf;
	link_speed = bus_options & 0x7;
	guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
		reg_read(ohci, OHCI1394_GUIDLo);

1882 1883 1884
	err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
	if (err < 0)
		goto fail_self_id;
1885

1886
	ohci->version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
1887
	fw_notify("Added fw-ohci device %s, OHCI version %x.%x\n",
1888
		  dev->dev.bus_id, ohci->version >> 16, ohci->version & 0xff);
1889 1890

	return 0;
1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906

 fail_self_id:
	dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
			  ohci->self_id_cpu, ohci->self_id_bus);
 fail_registers:
	kfree(ohci->it_context_list);
	kfree(ohci->ir_context_list);
	pci_iounmap(dev, ohci->registers);
 fail_iomem:
	pci_release_region(dev, 0);
 fail_disable:
	pci_disable_device(dev);
 fail_put_card:
	fw_card_put(&ohci->card);

	return err;
1907 1908 1909 1910 1911 1912 1913
}

static void pci_remove(struct pci_dev *dev)
{
	struct fw_ohci *ohci;

	ohci = pci_get_drvdata(dev);
1914 1915
	reg_write(ohci, OHCI1394_IntMaskClear, ~0);
	flush_writes(ohci);
1916 1917
	fw_core_remove_card(&ohci->card);

1918 1919 1920 1921
	/*
	 * FIXME: Fail all pending packets here, now that the upper
	 * layers can't queue any more.
	 */
1922 1923 1924

	software_reset(ohci);
	free_irq(dev->irq, ohci);
1925 1926 1927 1928 1929 1930 1931 1932
	dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
			  ohci->self_id_cpu, ohci->self_id_bus);
	kfree(ohci->it_context_list);
	kfree(ohci->ir_context_list);
	pci_iounmap(dev, ohci->registers);
	pci_release_region(dev, 0);
	pci_disable_device(dev);
	fw_card_put(&ohci->card);
1933 1934 1935 1936

	fw_notify("Removed fw-ohci device.\n");
}

1937 1938 1939 1940 1941 1942 1943 1944 1945 1946
#ifdef CONFIG_PM
static int pci_suspend(struct pci_dev *pdev, pm_message_t state)
{
	struct fw_ohci *ohci = pci_get_drvdata(pdev);
	int err;

	software_reset(ohci);
	free_irq(pdev->irq, ohci);
	err = pci_save_state(pdev);
	if (err) {
1947
		fw_error("pci_save_state failed\n");
1948 1949 1950
		return err;
	}
	err = pci_set_power_state(pdev, pci_choose_state(pdev, state));
1951 1952
	if (err)
		fw_error("pci_set_power_state failed with %d\n", err);
1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965

	return 0;
}

static int pci_resume(struct pci_dev *pdev)
{
	struct fw_ohci *ohci = pci_get_drvdata(pdev);
	int err;

	pci_set_power_state(pdev, PCI_D0);
	pci_restore_state(pdev);
	err = pci_enable_device(pdev);
	if (err) {
1966
		fw_error("pci_enable_device failed\n");
1967 1968 1969 1970 1971 1972 1973
		return err;
	}

	return ohci_enable(&ohci->card, ohci->config_rom, CONFIG_ROM_SIZE);
}
#endif

1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985
static struct pci_device_id pci_table[] = {
	{ PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
	{ }
};

MODULE_DEVICE_TABLE(pci, pci_table);

static struct pci_driver fw_ohci_pci_driver = {
	.name		= ohci_driver_name,
	.id_table	= pci_table,
	.probe		= pci_probe,
	.remove		= pci_remove,
1986 1987 1988 1989
#ifdef CONFIG_PM
	.resume		= pci_resume,
	.suspend	= pci_suspend,
#endif
1990 1991 1992 1993 1994 1995
};

MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
MODULE_LICENSE("GPL");

1996 1997 1998 1999 2000
/* Provide a module alias so root-on-sbp2 initrds don't break. */
#ifndef CONFIG_IEEE1394_OHCI1394_MODULE
MODULE_ALIAS("ohci1394");
#endif

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
static int __init fw_ohci_init(void)
{
	return pci_register_driver(&fw_ohci_pci_driver);
}

static void __exit fw_ohci_cleanup(void)
{
	pci_unregister_driver(&fw_ohci_pci_driver);
}

module_init(fw_ohci_init);
module_exit(fw_ohci_cleanup);