fw-ohci.c 51.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*						-*- c-basic-offset: 8 -*-
 *
 * fw-ohci.c - Driver for OHCI 1394 boards
 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/pci.h>
#include <linux/delay.h>
#include <linux/poll.h>
A
Andrew Morton 已提交
28 29
#include <linux/dma-mapping.h>

30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
#include <asm/uaccess.h>
#include <asm/semaphore.h>

#include "fw-transaction.h"
#include "fw-ohci.h"

#define descriptor_output_more		0
#define descriptor_output_last		(1 << 12)
#define descriptor_input_more		(2 << 12)
#define descriptor_input_last		(3 << 12)
#define descriptor_status		(1 << 11)
#define descriptor_key_immediate	(2 << 8)
#define descriptor_ping			(1 << 7)
#define descriptor_yy			(1 << 6)
#define descriptor_no_irq		(0 << 4)
#define descriptor_irq_error		(1 << 4)
#define descriptor_irq_always		(3 << 4)
#define descriptor_branch_always	(3 << 2)
48
#define descriptor_wait			(3 << 0)
49 50 51 52 53 54 55 56 57 58

struct descriptor {
	__le16 req_count;
	__le16 control;
	__le32 data_address;
	__le32 branch_address;
	__le16 res_count;
	__le16 transfer_status;
} __attribute__((aligned(16)));

59 60 61 62 63 64 65 66 67 68 69 70 71 72
struct db_descriptor {
	__le16 first_size;
	__le16 control;
	__le16 second_req_count;
	__le16 first_req_count;
	__le32 branch_address;
	__le16 second_res_count;
	__le16 first_res_count;
	__le32 reserved0;
	__le32 first_buffer;
	__le32 second_buffer;
	__le32 reserved1;
} __attribute__((aligned(16)));

73 74 75 76 77
#define control_set(regs)	(regs)
#define control_clear(regs)	((regs) + 4)
#define command_ptr(regs)	((regs) + 12)
#define context_match(regs)	((regs) + 16)

78
struct ar_buffer {
79
	struct descriptor descriptor;
80 81 82
	struct ar_buffer *next;
	__le32 data[0];
};
83

84 85 86 87 88
struct ar_context {
	struct fw_ohci *ohci;
	struct ar_buffer *current_buffer;
	struct ar_buffer *last_buffer;
	void *pointer;
89
	u32 regs;
90 91 92
	struct tasklet_struct tasklet;
};

93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
struct context;

typedef int (*descriptor_callback_t)(struct context *ctx,
				     struct descriptor *d,
				     struct descriptor *last);
struct context {
 	struct fw_ohci *ohci;
	u32 regs;
 
	struct descriptor *buffer;
	dma_addr_t buffer_bus;
	size_t buffer_size;
	struct descriptor *head_descriptor;
	struct descriptor *tail_descriptor;
	struct descriptor *tail_descriptor_last;
	struct descriptor *prev_descriptor;

	descriptor_callback_t callback;

 	struct tasklet_struct tasklet;
};
 


117 118 119 120
struct at_context {
	struct fw_ohci *ohci;
	dma_addr_t descriptor_bus;
	dma_addr_t buffer_bus;
121
	struct fw_packet *current_packet;
122 123 124 125 126 127 128 129 130

	struct list_head list;

	struct {
		struct descriptor more;
		__le32 header[4];
		struct descriptor last;
	} d;

131
	u32 regs;
132 133 134 135 136 137 138 139 140 141 142 143 144

	struct tasklet_struct tasklet;
};

#define it_header_sy(v)          ((v) <<  0)
#define it_header_tcode(v)       ((v) <<  4)
#define it_header_channel(v)     ((v) <<  8)
#define it_header_tag(v)         ((v) << 14)
#define it_header_speed(v)       ((v) << 16)
#define it_header_data_length(v) ((v) << 16)

struct iso_context {
	struct fw_iso_context base;
145
	struct context context;
146 147 148 149 150 151 152 153 154 155 156
};

#define CONFIG_ROM_SIZE 1024

struct fw_ohci {
	struct fw_card card;

	__iomem char *registers;
	dma_addr_t self_id_bus;
	__le32 *self_id_cpu;
	struct tasklet_struct bus_reset_tasklet;
157
	int node_id;
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
	int generation;
	int request_generation;

	/* Spinlock for accessing fw_ohci data.  Never call out of
	 * this driver with this lock held. */
	spinlock_t lock;
	u32 self_id_buffer[512];

	/* Config rom buffers */
	__be32 *config_rom;
	dma_addr_t config_rom_bus;
	__be32 *next_config_rom;
	dma_addr_t next_config_rom_bus;
	u32 next_header;

	struct ar_context ar_request_ctx;
	struct ar_context ar_response_ctx;
	struct at_context at_request_ctx;
	struct at_context at_response_ctx;

	u32 it_context_mask;
	struct iso_context *it_context_list;
	u32 ir_context_mask;
	struct iso_context *ir_context_list;
};

A
Adrian Bunk 已提交
184
static inline struct fw_ohci *fw_ohci(struct fw_card *card)
185 186 187 188
{
	return container_of(card, struct fw_ohci, card);
}

189 190 191 192 193 194
#define IT_CONTEXT_CYCLE_MATCH_ENABLE	0x80000000
#define IR_CONTEXT_BUFFER_FILL		0x80000000
#define IR_CONTEXT_ISOCH_HEADER		0x40000000
#define IR_CONTEXT_CYCLE_MATCH_ENABLE	0x20000000
#define IR_CONTEXT_MULTI_CHANNEL_MODE	0x10000000
#define IR_CONTEXT_DUAL_BUFFER_MODE	0x08000000
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209

#define CONTEXT_RUN	0x8000
#define CONTEXT_WAKE	0x1000
#define CONTEXT_DEAD	0x0800
#define CONTEXT_ACTIVE	0x0400

#define OHCI1394_MAX_AT_REQ_RETRIES	0x2
#define OHCI1394_MAX_AT_RESP_RETRIES	0x2
#define OHCI1394_MAX_PHYS_RESP_RETRIES	0x8

#define FW_OHCI_MAJOR			240
#define OHCI1394_REGISTER_SIZE		0x800
#define OHCI_LOOP_COUNT			500
#define OHCI1394_PCI_HCI_Control	0x40
#define SELF_ID_BUF_SIZE		0x800
210
#define OHCI_TCODE_PHY_PACKET		0x0e
211

212 213
static char ohci_driver_name[] = KBUILD_MODNAME;

A
Adrian Bunk 已提交
214
static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
215 216 217 218
{
	writel(data, ohci->registers + offset);
}

A
Adrian Bunk 已提交
219
static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
220 221 222 223
{
	return readl(ohci->registers + offset);
}

A
Adrian Bunk 已提交
224
static inline void flush_writes(const struct fw_ohci *ohci)
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
{
	/* Do a dummy read to flush writes. */
	reg_read(ohci, OHCI1394_Version);
}

static int
ohci_update_phy_reg(struct fw_card *card, int addr,
		    int clear_bits, int set_bits)
{
	struct fw_ohci *ohci = fw_ohci(card);
	u32 val, old;

	reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
	msleep(2);
	val = reg_read(ohci, OHCI1394_PhyControl);
	if ((val & OHCI1394_PhyControl_ReadDone) == 0) {
		fw_error("failed to set phy reg bits.\n");
		return -EBUSY;
	}

	old = OHCI1394_PhyControl_ReadData(val);
	old = (old & ~clear_bits) | set_bits;
	reg_write(ohci, OHCI1394_PhyControl,
		  OHCI1394_PhyControl_Write(addr, old));

	return 0;
}

253
static int ar_context_add_page(struct ar_context *ctx)
254
{
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
	struct device *dev = ctx->ohci->card.device;
	struct ar_buffer *ab;
	dma_addr_t ab_bus;
	size_t offset;

	ab = (struct ar_buffer *) __get_free_page(GFP_ATOMIC);
	if (ab == NULL)
		return -ENOMEM;

	ab_bus = dma_map_single(dev, ab, PAGE_SIZE, DMA_BIDIRECTIONAL);
	if (dma_mapping_error(ab_bus)) {
		free_page((unsigned long) ab);
		return -ENOMEM;
	}

	memset(&ab->descriptor, 0, sizeof ab->descriptor);
	ab->descriptor.control        = cpu_to_le16(descriptor_input_more |
						    descriptor_status |
						    descriptor_branch_always);
	offset = offsetof(struct ar_buffer, data);
	ab->descriptor.req_count      = cpu_to_le16(PAGE_SIZE - offset);
	ab->descriptor.data_address   = cpu_to_le32(ab_bus + offset);
	ab->descriptor.res_count      = cpu_to_le16(PAGE_SIZE - offset);
	ab->descriptor.branch_address = 0;

	dma_sync_single_for_device(dev, ab_bus, PAGE_SIZE, DMA_BIDIRECTIONAL);

	ctx->last_buffer->descriptor.branch_address = ab_bus | 1;
	ctx->last_buffer->next = ab;
	ctx->last_buffer = ab;

286
	reg_write(ctx->ohci, control_set(ctx->regs), CONTEXT_WAKE);
287
	flush_writes(ctx->ohci);
288 289

	return 0;
290 291
}

292
static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
293 294
{
	struct fw_ohci *ohci = ctx->ohci;
295 296 297
	struct fw_packet p;
	u32 status, length, tcode;

298 299 300
	p.header[0] = le32_to_cpu(buffer[0]);
	p.header[1] = le32_to_cpu(buffer[1]);
	p.header[2] = le32_to_cpu(buffer[2]);
301 302 303 304 305

	tcode = (p.header[0] >> 4) & 0x0f;
	switch (tcode) {
	case TCODE_WRITE_QUADLET_REQUEST:
	case TCODE_READ_QUADLET_RESPONSE:
306
		p.header[3] = (__force __u32) buffer[3];
307
		p.header_length = 16;
308
		p.payload_length = 0;
309 310 311
		break;

	case TCODE_READ_BLOCK_REQUEST :
312 313 314 315 316 317
		p.header[3] = le32_to_cpu(buffer[3]);
		p.header_length = 16;
		p.payload_length = 0;
		break;

	case TCODE_WRITE_BLOCK_REQUEST:
318 319 320
	case TCODE_READ_BLOCK_RESPONSE:
	case TCODE_LOCK_REQUEST:
	case TCODE_LOCK_RESPONSE:
321
		p.header[3] = le32_to_cpu(buffer[3]);
322
		p.header_length = 16;
323
		p.payload_length = p.header[3] >> 16;
324 325 326 327
		break;

	case TCODE_WRITE_RESPONSE:
	case TCODE_READ_QUADLET_REQUEST:
328
	case OHCI_TCODE_PHY_PACKET:
329
		p.header_length = 12;
330
		p.payload_length = 0;
331 332
		break;
	}
333

334 335 336 337 338 339 340 341 342 343
	p.payload = (void *) buffer + p.header_length;

	/* FIXME: What to do about evt_* errors? */
	length = (p.header_length + p.payload_length + 3) / 4;
	status = le32_to_cpu(buffer[length]);

	p.ack        = ((status >> 16) & 0x1f) - 16;
	p.speed      = (status >> 21) & 0x7;
	p.timestamp  = status & 0xffff;
	p.generation = ohci->request_generation;
344 345 346 347 348 349 350 351 352

	/* The OHCI bus reset handler synthesizes a phy packet with
	 * the new generation number when a bus reset happens (see
	 * section 8.4.2.3).  This helps us determine when a request
	 * was received and make sure we send the response in the same
	 * generation.  We only need this for requests; for responses
	 * we use the unique tlabel for finding the matching
	 * request. */

353
	if (p.ack + 16 == 0x09)
354
		ohci->request_generation = (buffer[2] >> 16) & 0xff;
355
	else if (ctx == &ohci->ar_request_ctx)
356
		fw_core_handle_request(&ohci->card, &p);
357
	else
358
		fw_core_handle_response(&ohci->card, &p);
359

360 361
	return buffer + length + 1;
}
362

363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
static void ar_context_tasklet(unsigned long data)
{
	struct ar_context *ctx = (struct ar_context *)data;
	struct fw_ohci *ohci = ctx->ohci;
	struct ar_buffer *ab;
	struct descriptor *d;
	void *buffer, *end;

	ab = ctx->current_buffer;
	d = &ab->descriptor;

	if (d->res_count == 0) {
		size_t size, rest, offset;

		/* This descriptor is finished and we may have a
		 * packet split across this and the next buffer. We
		 * reuse the page for reassembling the split packet. */

		offset = offsetof(struct ar_buffer, data);
		dma_unmap_single(ohci->card.device,
				 ab->descriptor.data_address - offset,
				 PAGE_SIZE, DMA_BIDIRECTIONAL);

		buffer = ab;
		ab = ab->next;
		d = &ab->descriptor;
		size = buffer + PAGE_SIZE - ctx->pointer;
		rest = le16_to_cpu(d->req_count) - le16_to_cpu(d->res_count);
		memmove(buffer, ctx->pointer, size);
		memcpy(buffer + size, ab->data, rest);
		ctx->current_buffer = ab;
		ctx->pointer = (void *) ab->data + rest;
		end = buffer + size + rest;

		while (buffer < end)
			buffer = handle_ar_packet(ctx, buffer);

		free_page((unsigned long)buffer);
		ar_context_add_page(ctx);
	} else {
		buffer = ctx->pointer;
		ctx->pointer = end =
			(void *) ab + PAGE_SIZE - le16_to_cpu(d->res_count);

		while (buffer < end)
			buffer = handle_ar_packet(ctx, buffer);
	}
410 411 412
}

static int
413
ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci, u32 regs)
414
{
415
	struct ar_buffer ab;
416

417 418 419
	ctx->regs        = regs;
	ctx->ohci        = ohci;
	ctx->last_buffer = &ab;
420 421
	tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);

422 423 424 425 426
	ar_context_add_page(ctx);
	ar_context_add_page(ctx);
	ctx->current_buffer = ab.next;
	ctx->pointer = ctx->current_buffer->data;

427 428
	reg_write(ctx->ohci, command_ptr(ctx->regs), ab.descriptor.branch_address);
	reg_write(ctx->ohci, control_set(ctx->regs), CONTEXT_RUN);
429
	flush_writes(ctx->ohci);
430 431 432

	return 0;
}
433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
 
static void context_tasklet(unsigned long data)
{
	struct context *ctx = (struct context *) data;
	struct fw_ohci *ohci = ctx->ohci;
	struct descriptor *d, *last;
	u32 address;
	int z;

	dma_sync_single_for_cpu(ohci->card.device, ctx->buffer_bus,
				ctx->buffer_size, DMA_TO_DEVICE);

	d    = ctx->tail_descriptor;
	last = ctx->tail_descriptor_last;

	while (last->branch_address != 0) {
		address = le32_to_cpu(last->branch_address);
		z = address & 0xf;
		d = ctx->buffer + (address - ctx->buffer_bus) / sizeof *d;
		last = (z == 2) ? d : d + z - 1;

		if (!ctx->callback(ctx, d, last))
			break;

		ctx->tail_descriptor      = d;
		ctx->tail_descriptor_last = last;
	}
}

static int
context_init(struct context *ctx, struct fw_ohci *ohci,
	     size_t buffer_size, u32 regs,
	     descriptor_callback_t callback)
{
	ctx->ohci = ohci;
	ctx->regs = regs;
	ctx->buffer_size = buffer_size;
	ctx->buffer = kmalloc(buffer_size, GFP_KERNEL);
	if (ctx->buffer == NULL)
		return -ENOMEM;

	tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
	ctx->callback = callback;

	ctx->buffer_bus =
		dma_map_single(ohci->card.device, ctx->buffer,
			       buffer_size, DMA_TO_DEVICE);
	if (dma_mapping_error(ctx->buffer_bus)) {
		kfree(ctx->buffer);
		return -ENOMEM;
	}

	ctx->head_descriptor      = ctx->buffer;
	ctx->prev_descriptor      = ctx->buffer;
	ctx->tail_descriptor      = ctx->buffer;
	ctx->tail_descriptor_last = ctx->buffer;

	/* We put a dummy descriptor in the buffer that has a NULL
	 * branch address and looks like it's been sent.  That way we
	 * have a descriptor to append DMA programs to.  Also, the
	 * ring buffer invariant is that it always has at least one
	 * element so that head == tail means buffer full. */

	memset(ctx->head_descriptor, 0, sizeof *ctx->head_descriptor);
	ctx->head_descriptor->control = cpu_to_le16(descriptor_output_last);
	ctx->head_descriptor->transfer_status = cpu_to_le16(0x8011);
	ctx->head_descriptor++;

	return 0;
}

 static void
context_release(struct context *ctx)
{
	struct fw_card *card = &ctx->ohci->card;

	dma_unmap_single(card->device, ctx->buffer_bus,
			 ctx->buffer_size, DMA_TO_DEVICE);
	kfree(ctx->buffer);
}

static struct descriptor *
context_get_descriptors(struct context *ctx, int z, dma_addr_t *d_bus)
{
	struct descriptor *d, *tail, *end;

	d = ctx->head_descriptor;
	tail = ctx->tail_descriptor;
	end = ctx->buffer + ctx->buffer_size / sizeof(struct descriptor);

	if (d + z <= tail) {
		goto has_space;
	} else if (d > tail && d + z <= end) {
		goto has_space;
	} else if (d > tail && ctx->buffer + z <= tail) {
		d = ctx->buffer;
		goto has_space;
	}

	return NULL;

 has_space:
	memset(d, 0, z * sizeof *d);
	*d_bus = ctx->buffer_bus + (d - ctx->buffer) * sizeof *d;

	return d;
}

541
static void context_run(struct context *ctx, u32 extra)
542 543 544 545 546 547
{
	struct fw_ohci *ohci = ctx->ohci;

	reg_write(ohci, command_ptr(ctx->regs),
		  le32_to_cpu(ctx->tail_descriptor_last->branch_address));
	reg_write(ohci, control_clear(ctx->regs), ~0);
548
	reg_write(ohci, control_set(ctx->regs), CONTEXT_RUN | extra);
549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572
	flush_writes(ohci);
}

static void context_append(struct context *ctx,
			   struct descriptor *d, int z, int extra)
{
	dma_addr_t d_bus;

	d_bus = ctx->buffer_bus + (d - ctx->buffer) * sizeof *d;

	ctx->head_descriptor = d + z + extra;
	ctx->prev_descriptor->branch_address = cpu_to_le32(d_bus | z);
	ctx->prev_descriptor = z == 2 ? d : d + z - 1;

	dma_sync_single_for_device(ctx->ohci->card.device, ctx->buffer_bus,
				   ctx->buffer_size, DMA_TO_DEVICE);

	reg_write(ctx->ohci, control_set(ctx->regs), CONTEXT_WAKE);
	flush_writes(ctx->ohci);
}

static void context_stop(struct context *ctx)
{
	u32 reg;
573
	int i;
574 575

	reg_write(ctx->ohci, control_clear(ctx->regs), CONTEXT_RUN);
576
	flush_writes(ctx->ohci);
577

578 579 580 581 582 583 584 585
	for (i = 0; i < 10; i++) {
		reg = reg_read(ctx->ohci, control_set(ctx->regs));
		if ((reg & CONTEXT_ACTIVE) == 0)
			break;

		fw_notify("context_stop: still active (0x%08x)\n", reg);
		msleep(1);
	}
586
}
587 588 589 590 591 592 593

static void
do_packet_callbacks(struct fw_ohci *ohci, struct list_head *list)
{
	struct fw_packet *p, *next;

	list_for_each_entry_safe(p, next, list, link)
594
		p->callback(p, &ohci->card, p->ack);
595 596 597 598
}

static void
complete_transmission(struct fw_packet *packet,
599
		      int ack, struct list_head *list)
600 601
{
	list_move_tail(&packet->link, list);
602
	packet->ack = ack;
603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623
}

/* This function prepares the first packet in the context queue for
 * transmission.  Must always be called with the ochi->lock held to
 * ensure proper generation handling and locking around packet queue
 * manipulation. */
static void
at_context_setup_packet(struct at_context *ctx, struct list_head *list)
{
	struct fw_packet *packet;
	struct fw_ohci *ohci = ctx->ohci;
	int z, tcode;

	packet = fw_packet(ctx->list.next);

	memset(&ctx->d, 0, sizeof ctx->d);
	if (packet->payload_length > 0) {
		packet->payload_bus = dma_map_single(ohci->card.device,
						     packet->payload,
						     packet->payload_length,
						     DMA_TO_DEVICE);
624
		if (dma_mapping_error(packet->payload_bus)) {
625
			complete_transmission(packet, RCODE_SEND_ERROR, list);
626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678
			return;
		}

		ctx->d.more.control      =
			cpu_to_le16(descriptor_output_more |
				    descriptor_key_immediate);
		ctx->d.more.req_count    = cpu_to_le16(packet->header_length);
		ctx->d.more.res_count    = cpu_to_le16(packet->timestamp);
		ctx->d.last.control      =
			cpu_to_le16(descriptor_output_last |
				    descriptor_irq_always |
				    descriptor_branch_always);
		ctx->d.last.req_count    = cpu_to_le16(packet->payload_length);
		ctx->d.last.data_address = cpu_to_le32(packet->payload_bus);
		z = 3;
	} else {
		ctx->d.more.control   =
			cpu_to_le16(descriptor_output_last |
				    descriptor_key_immediate |
				    descriptor_irq_always |
				    descriptor_branch_always);
		ctx->d.more.req_count = cpu_to_le16(packet->header_length);
		ctx->d.more.res_count = cpu_to_le16(packet->timestamp);
		z = 2;
	}

	/* The DMA format for asyncronous link packets is different
	 * from the IEEE1394 layout, so shift the fields around
	 * accordingly.  If header_length is 8, it's a PHY packet, to
	 * which we need to prepend an extra quadlet. */
	if (packet->header_length > 8) {
		ctx->d.header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
					       (packet->speed << 16));
		ctx->d.header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
					       (packet->header[0] & 0xffff0000));
		ctx->d.header[2] = cpu_to_le32(packet->header[2]);

		tcode = (packet->header[0] >> 4) & 0x0f;
		if (TCODE_IS_BLOCK_PACKET(tcode))
			ctx->d.header[3] = cpu_to_le32(packet->header[3]);
		else
			ctx->d.header[3] = packet->header[3];
	} else {
		ctx->d.header[0] =
			cpu_to_le32((OHCI1394_phy_tcode << 4) |
				    (packet->speed << 16));
		ctx->d.header[1] = cpu_to_le32(packet->header[0]);
		ctx->d.header[2] = cpu_to_le32(packet->header[1]);
		ctx->d.more.req_count = cpu_to_le16(12);
	}

	/* FIXME: Document how the locking works. */
	if (ohci->generation == packet->generation) {
679
		reg_write(ctx->ohci, command_ptr(ctx->regs),
680
			  ctx->descriptor_bus | z);
681
		reg_write(ctx->ohci, control_set(ctx->regs),
682
			  CONTEXT_RUN | CONTEXT_WAKE);
683
		ctx->current_packet = packet;
684 685 686 687
	} else {
		/* We dont return error codes from this function; all
		 * transmission errors are reported through the
		 * callback. */
688
		complete_transmission(packet, RCODE_GENERATION, list);
689 690 691 692 693 694 695
	}
}

static void at_context_stop(struct at_context *ctx)
{
	u32 reg;

696
	reg_write(ctx->ohci, control_clear(ctx->regs), CONTEXT_RUN);
697

698
	reg = reg_read(ctx->ohci, control_set(ctx->regs));
699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718
	if (reg & CONTEXT_ACTIVE)
		fw_notify("Tried to stop context, but it is still active "
			  "(0x%08x).\n", reg);
}

static void at_context_tasklet(unsigned long data)
{
	struct at_context *ctx = (struct at_context *)data;
	struct fw_ohci *ohci = ctx->ohci;
	struct fw_packet *packet;
	LIST_HEAD(list);
	unsigned long flags;
	int evt;

	spin_lock_irqsave(&ohci->lock, flags);

	packet = fw_packet(ctx->list.next);

	at_context_stop(ctx);

719 720 721 722 723 724
	/* If the head of the list isn't the packet that just got
	 * transmitted, the packet got cancelled before we finished
	 * transmitting it. */
	if (ctx->current_packet != packet)
		goto skip_to_next;

725 726 727 728 729 730 731 732 733 734 735 736 737 738 739
	if (packet->payload_length > 0) {
		dma_unmap_single(ohci->card.device, packet->payload_bus,
				 packet->payload_length, DMA_TO_DEVICE);
		evt = le16_to_cpu(ctx->d.last.transfer_status) & 0x1f;
		packet->timestamp = le16_to_cpu(ctx->d.last.res_count);
	}
	else {
		evt = le16_to_cpu(ctx->d.more.transfer_status) & 0x1f;
		packet->timestamp = le16_to_cpu(ctx->d.more.res_count);
	}

	if (evt < 16) {
		switch (evt) {
		case OHCI1394_evt_timeout:
			/* Async response transmit timed out. */
740
			complete_transmission(packet, RCODE_CANCELLED, &list);
741 742 743 744 745 746
			break;

		case OHCI1394_evt_flushed:
			/* The packet was flushed should give same
			 * error as when we try to use a stale
			 * generation count. */
747 748
			complete_transmission(packet,
					      RCODE_GENERATION, &list);
749 750 751
			break;

		case OHCI1394_evt_missing_ack:
752 753 754 755
			/* Using a valid (current) generation count,
			 * but the node is not on the bus or not
			 * sending acks. */
			complete_transmission(packet, RCODE_NO_ACK, &list);
756 757 758
			break;

		default:
759
			complete_transmission(packet, RCODE_SEND_ERROR, &list);
760 761 762 763 764
			break;
		}
	} else
		complete_transmission(packet, evt - 16, &list);

765
 skip_to_next:
766 767 768 769 770 771 772 773 774 775
	/* If more packets are queued, set up the next one. */
	if (!list_empty(&ctx->list))
		at_context_setup_packet(ctx, &list);

	spin_unlock_irqrestore(&ohci->lock, flags);

	do_packet_callbacks(ohci, &list);
}

static int
776
at_context_init(struct at_context *ctx, struct fw_ohci *ohci, u32 regs)
777 778 779 780 781 782
{
	INIT_LIST_HEAD(&ctx->list);

	ctx->descriptor_bus =
		dma_map_single(ohci->card.device, &ctx->d,
			       sizeof ctx->d, DMA_TO_DEVICE);
783
	if (dma_mapping_error(ctx->descriptor_bus))
784 785
		return -ENOMEM;

786 787
	ctx->regs = regs;
	ctx->ohci = ohci;
788 789 790 791 792 793

	tasklet_init(&ctx->tasklet, at_context_tasklet, (unsigned long)ctx);

	return 0;
}

794
#define header_get_destination(q)	(((q) >> 16) & 0xffff)
795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901
#define header_get_tcode(q)		(((q) >> 4) & 0x0f)
#define header_get_offset_high(q)	(((q) >> 0) & 0xffff)
#define header_get_data_length(q)	(((q) >> 16) & 0xffff)
#define header_get_extended_tcode(q)	(((q) >> 0) & 0xffff)

static void
handle_local_rom(struct fw_ohci *ohci, struct fw_packet *packet, u32 csr)
{
	struct fw_packet response;
	int tcode, length, i;

	tcode = header_get_tcode(packet->header[0]);
	if (TCODE_IS_BLOCK_PACKET(tcode))
		length = header_get_data_length(packet->header[3]);
	else
		length = 4;

	i = csr - CSR_CONFIG_ROM;
	if (i + length > CONFIG_ROM_SIZE) {
		fw_fill_response(&response, packet->header,
				 RCODE_ADDRESS_ERROR, NULL, 0);
	} else if (!TCODE_IS_READ_REQUEST(tcode)) {
		fw_fill_response(&response, packet->header,
				 RCODE_TYPE_ERROR, NULL, 0);
	} else {
		fw_fill_response(&response, packet->header, RCODE_COMPLETE,
				 (void *) ohci->config_rom + i, length);
	}

	fw_core_handle_response(&ohci->card, &response);
}

static void
handle_local_lock(struct fw_ohci *ohci, struct fw_packet *packet, u32 csr)
{
	struct fw_packet response;
	int tcode, length, ext_tcode, sel;
	__be32 *payload, lock_old;
	u32 lock_arg, lock_data;

	tcode = header_get_tcode(packet->header[0]);
	length = header_get_data_length(packet->header[3]);
	payload = packet->payload;
	ext_tcode = header_get_extended_tcode(packet->header[3]);

	if (tcode == TCODE_LOCK_REQUEST &&
	    ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
		lock_arg = be32_to_cpu(payload[0]);
		lock_data = be32_to_cpu(payload[1]);
	} else if (tcode == TCODE_READ_QUADLET_REQUEST) {
		lock_arg = 0;
		lock_data = 0;
	} else {
		fw_fill_response(&response, packet->header,
				 RCODE_TYPE_ERROR, NULL, 0);
		goto out;
	}

	sel = (csr - CSR_BUS_MANAGER_ID) / 4;
	reg_write(ohci, OHCI1394_CSRData, lock_data);
	reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
	reg_write(ohci, OHCI1394_CSRControl, sel);

	if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000)
		lock_old = cpu_to_be32(reg_read(ohci, OHCI1394_CSRData));
	else
		fw_notify("swap not done yet\n");

	fw_fill_response(&response, packet->header,
			 RCODE_COMPLETE, &lock_old, sizeof lock_old);
 out:
	fw_core_handle_response(&ohci->card, &response);
}

static void
handle_local_request(struct at_context *ctx, struct fw_packet *packet)
{
	u64 offset;
	u32 csr;

	packet->ack = ACK_PENDING;
	packet->callback(packet, &ctx->ohci->card, packet->ack);

	offset =
		((unsigned long long)
		 header_get_offset_high(packet->header[1]) << 32) |
		packet->header[2];
	csr = offset - CSR_REGISTER_BASE;

	/* Handle config rom reads. */
	if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
		handle_local_rom(ctx->ohci, packet, csr);
	else switch (csr) {
	case CSR_BUS_MANAGER_ID:
	case CSR_BANDWIDTH_AVAILABLE:
	case CSR_CHANNELS_AVAILABLE_HI:
	case CSR_CHANNELS_AVAILABLE_LO:
		handle_local_lock(ctx->ohci, packet, csr);
		break;
	default:
		if (ctx == &ctx->ohci->at_request_ctx)
			fw_core_handle_request(&ctx->ohci->card, packet);
		else
			fw_core_handle_response(&ctx->ohci->card, packet);
		break;
	}
}
902

903 904 905 906 907 908 909 910
static void
at_context_transmit(struct at_context *ctx, struct fw_packet *packet)
{
	LIST_HEAD(list);
	unsigned long flags;

	spin_lock_irqsave(&ctx->ohci->lock, flags);

911 912
	if (header_get_destination(packet->header[0]) == ctx->ohci->node_id &&
	    ctx->ohci->generation == packet->generation) {
913 914 915
		spin_unlock_irqrestore(&ctx->ohci->lock, flags);
		handle_local_request(ctx, packet);
		return;
916
	}
917

918 919 920 921
	list_add_tail(&packet->link, &ctx->list);
	if (ctx->list.next == &packet->link)
		at_context_setup_packet(ctx, &list);

922 923 924 925 926 927 928 929
	spin_unlock_irqrestore(&ctx->ohci->lock, flags);

	do_packet_callbacks(ctx->ohci, &list);
}

static void bus_reset_tasklet(unsigned long data)
{
	struct fw_ohci *ohci = (struct fw_ohci *)data;
930
	int self_id_count, i, j, reg;
931 932 933 934 935 936 937 938
	int generation, new_generation;
	unsigned long flags;

	reg = reg_read(ohci, OHCI1394_NodeID);
	if (!(reg & OHCI1394_NodeID_idValid)) {
		fw_error("node ID not valid, new bus reset in progress\n");
		return;
	}
939
	ohci->node_id = reg & 0xffff;
940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007

	/* The count in the SelfIDCount register is the number of
	 * bytes in the self ID receive buffer.  Since we also receive
	 * the inverted quadlets and a header quadlet, we shift one
	 * bit extra to get the actual number of self IDs. */

	self_id_count = (reg_read(ohci, OHCI1394_SelfIDCount) >> 3) & 0x3ff;
	generation = (le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;

	for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
		if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1])
			fw_error("inconsistent self IDs\n");
		ohci->self_id_buffer[j] = le32_to_cpu(ohci->self_id_cpu[i]);
	}

	/* Check the consistency of the self IDs we just read.  The
	 * problem we face is that a new bus reset can start while we
	 * read out the self IDs from the DMA buffer. If this happens,
	 * the DMA buffer will be overwritten with new self IDs and we
	 * will read out inconsistent data.  The OHCI specification
	 * (section 11.2) recommends a technique similar to
	 * linux/seqlock.h, where we remember the generation of the
	 * self IDs in the buffer before reading them out and compare
	 * it to the current generation after reading them out.  If
	 * the two generations match we know we have a consistent set
	 * of self IDs. */

	new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
	if (new_generation != generation) {
		fw_notify("recursive bus reset detected, "
			  "discarding self ids\n");
		return;
	}

	/* FIXME: Document how the locking works. */
	spin_lock_irqsave(&ohci->lock, flags);

	ohci->generation = generation;
	at_context_stop(&ohci->at_request_ctx);
	at_context_stop(&ohci->at_response_ctx);
	reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);

	/* This next bit is unrelated to the AT context stuff but we
	 * have to do it under the spinlock also.  If a new config rom
	 * was set up before this reset, the old one is now no longer
	 * in use and we can free it. Update the config rom pointers
	 * to point to the current config rom and clear the
	 * next_config_rom pointer so a new udpate can take place. */

	if (ohci->next_config_rom != NULL) {
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  ohci->config_rom, ohci->config_rom_bus);
		ohci->config_rom      = ohci->next_config_rom;
		ohci->config_rom_bus  = ohci->next_config_rom_bus;
		ohci->next_config_rom = NULL;

		/* Restore config_rom image and manually update
		 * config_rom registers.  Writing the header quadlet
		 * will indicate that the config rom is ready, so we
		 * do that last. */
		reg_write(ohci, OHCI1394_BusOptions,
			  be32_to_cpu(ohci->config_rom[2]));
		ohci->config_rom[0] = cpu_to_be32(ohci->next_header);
		reg_write(ohci, OHCI1394_ConfigROMhdr, ohci->next_header);
	}

	spin_unlock_irqrestore(&ohci->lock, flags);

1008
	fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
				 self_id_count, ohci->self_id_buffer);
}

static irqreturn_t irq_handler(int irq, void *data)
{
	struct fw_ohci *ohci = data;
	u32 event, iso_event;
	int i;

	event = reg_read(ohci, OHCI1394_IntEventClear);

	if (!event)
		return IRQ_NONE;

	reg_write(ohci, OHCI1394_IntEventClear, event);

	if (event & OHCI1394_selfIDComplete)
		tasklet_schedule(&ohci->bus_reset_tasklet);

	if (event & OHCI1394_RQPkt)
		tasklet_schedule(&ohci->ar_request_ctx.tasklet);

	if (event & OHCI1394_RSPkt)
		tasklet_schedule(&ohci->ar_response_ctx.tasklet);

	if (event & OHCI1394_reqTxComplete)
		tasklet_schedule(&ohci->at_request_ctx.tasklet);

	if (event & OHCI1394_respTxComplete)
		tasklet_schedule(&ohci->at_response_ctx.tasklet);

1040
	iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
1041 1042 1043 1044
	reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);

	while (iso_event) {
		i = ffs(iso_event) - 1;
1045
		tasklet_schedule(&ohci->ir_context_list[i].context.tasklet);
1046 1047 1048
		iso_event &= ~(1 << i);
	}

1049
	iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
1050 1051 1052 1053
	reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);

	while (iso_event) {
		i = ffs(iso_event) - 1;
1054
		tasklet_schedule(&ohci->it_context_list[i].context.tasklet);
1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213
		iso_event &= ~(1 << i);
	}

	return IRQ_HANDLED;
}

static int ohci_enable(struct fw_card *card, u32 *config_rom, size_t length)
{
	struct fw_ohci *ohci = fw_ohci(card);
	struct pci_dev *dev = to_pci_dev(card->device);

	/* When the link is not yet enabled, the atomic config rom
	 * update mechanism described below in ohci_set_config_rom()
	 * is not active.  We have to update ConfigRomHeader and
	 * BusOptions manually, and the write to ConfigROMmap takes
	 * effect immediately.  We tie this to the enabling of the
	 * link, so we have a valid config rom before enabling - the
	 * OHCI requires that ConfigROMhdr and BusOptions have valid
	 * values before enabling.
	 *
	 * However, when the ConfigROMmap is written, some controllers
	 * always read back quadlets 0 and 2 from the config rom to
	 * the ConfigRomHeader and BusOptions registers on bus reset.
	 * They shouldn't do that in this initial case where the link
	 * isn't enabled.  This means we have to use the same
	 * workaround here, setting the bus header to 0 and then write
	 * the right values in the bus reset tasklet.
	 */

	ohci->next_config_rom =
		dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				   &ohci->next_config_rom_bus, GFP_KERNEL);
	if (ohci->next_config_rom == NULL)
		return -ENOMEM;

	memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
	fw_memcpy_to_be32(ohci->next_config_rom, config_rom, length * 4);

	ohci->next_header = config_rom[0];
	ohci->next_config_rom[0] = 0;
	reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
	reg_write(ohci, OHCI1394_BusOptions, config_rom[2]);
	reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);

	reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);

	if (request_irq(dev->irq, irq_handler,
			SA_SHIRQ, ohci_driver_name, ohci)) {
		fw_error("Failed to allocate shared interrupt %d.\n",
			 dev->irq);
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  ohci->config_rom, ohci->config_rom_bus);
		return -EIO;
	}

	reg_write(ohci, OHCI1394_HCControlSet,
		  OHCI1394_HCControl_linkEnable |
		  OHCI1394_HCControl_BIBimageValid);
	flush_writes(ohci);

	/* We are ready to go, initiate bus reset to finish the
	 * initialization. */

	fw_core_initiate_bus_reset(&ohci->card, 1);

	return 0;
}

static int
ohci_set_config_rom(struct fw_card *card, u32 *config_rom, size_t length)
{
	struct fw_ohci *ohci;
	unsigned long flags;
	int retval = 0;
	__be32 *next_config_rom;
	dma_addr_t next_config_rom_bus;

	ohci = fw_ohci(card);

	/* When the OHCI controller is enabled, the config rom update
	 * mechanism is a bit tricky, but easy enough to use.  See
	 * section 5.5.6 in the OHCI specification.
	 *
	 * The OHCI controller caches the new config rom address in a
	 * shadow register (ConfigROMmapNext) and needs a bus reset
	 * for the changes to take place.  When the bus reset is
	 * detected, the controller loads the new values for the
	 * ConfigRomHeader and BusOptions registers from the specified
	 * config rom and loads ConfigROMmap from the ConfigROMmapNext
	 * shadow register. All automatically and atomically.
	 *
	 * Now, there's a twist to this story.  The automatic load of
	 * ConfigRomHeader and BusOptions doesn't honor the
	 * noByteSwapData bit, so with a be32 config rom, the
	 * controller will load be32 values in to these registers
	 * during the atomic update, even on litte endian
	 * architectures.  The workaround we use is to put a 0 in the
	 * header quadlet; 0 is endian agnostic and means that the
	 * config rom isn't ready yet.  In the bus reset tasklet we
	 * then set up the real values for the two registers.
	 *
	 * We use ohci->lock to avoid racing with the code that sets
	 * ohci->next_config_rom to NULL (see bus_reset_tasklet).
	 */

	next_config_rom =
		dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				   &next_config_rom_bus, GFP_KERNEL);
	if (next_config_rom == NULL)
		return -ENOMEM;

	spin_lock_irqsave(&ohci->lock, flags);

	if (ohci->next_config_rom == NULL) {
		ohci->next_config_rom = next_config_rom;
		ohci->next_config_rom_bus = next_config_rom_bus;

		memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
		fw_memcpy_to_be32(ohci->next_config_rom, config_rom,
				  length * 4);

		ohci->next_header = config_rom[0];
		ohci->next_config_rom[0] = 0;

		reg_write(ohci, OHCI1394_ConfigROMmap,
			  ohci->next_config_rom_bus);
	} else {
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  next_config_rom, next_config_rom_bus);
		retval = -EBUSY;
	}

	spin_unlock_irqrestore(&ohci->lock, flags);

	/* Now initiate a bus reset to have the changes take
	 * effect. We clean up the old config rom memory and DMA
	 * mappings in the bus reset tasklet, since the OHCI
	 * controller could need to access it before the bus reset
	 * takes effect. */
	if (retval == 0)
		fw_core_initiate_bus_reset(&ohci->card, 1);

	return retval;
}

static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);

	at_context_transmit(&ohci->at_request_ctx, packet);
}

static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);

	at_context_transmit(&ohci->at_response_ctx, packet);
}

1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236
static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);
	LIST_HEAD(list);
	unsigned long flags;

	spin_lock_irqsave(&ohci->lock, flags);

	if (packet->ack == 0) {
		fw_notify("cancelling packet %p (header[0]=%08x)\n",
			  packet, packet->header[0]);

		complete_transmission(packet, RCODE_CANCELLED, &list);
	}

	spin_unlock_irqrestore(&ohci->lock, flags);

	do_packet_callbacks(ohci, &list);

	/* Return success if we actually cancelled something. */
	return list_empty(&list) ? -ENOENT : 0;
}

1237 1238 1239 1240 1241
static int
ohci_enable_phys_dma(struct fw_card *card, int node_id, int generation)
{
	struct fw_ohci *ohci = fw_ohci(card);
	unsigned long flags;
1242
	int n, retval = 0;
1243

1244 1245
	/* FIXME:  Make sure this bitmask is cleared when we clear the busReset
	 * interrupt bit.  Clear physReqResourceAllBuses on bus reset. */
1246 1247 1248 1249 1250 1251 1252 1253

	spin_lock_irqsave(&ohci->lock, flags);

	if (ohci->generation != generation) {
		retval = -ESTALE;
		goto out;
	}

1254 1255 1256 1257 1258 1259 1260 1261 1262
	/* NOTE, if the node ID contains a non-local bus ID, physical DMA is
	 * enabled for _all_ nodes on remote buses. */

	n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
	if (n < 32)
		reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
	else
		reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));

1263 1264
	flush_writes(ohci);
 out:
1265
	spin_unlock_irqrestore(&ohci->lock, flags);
1266 1267 1268
	return retval;
}

1269 1270 1271
static int handle_ir_packet(struct context *context,
			    struct descriptor *d,
			    struct descriptor *last)
1272
{
1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285
	struct iso_context *ctx =
		container_of(context, struct iso_context, context);
	struct db_descriptor *db = (struct db_descriptor *) d;
 
	if (db->first_res_count > 0 && db->second_res_count > 0)
		/* This descriptor isn't done yet, stop iteration. */
		return 0;

	if (le16_to_cpu(db->control) & descriptor_irq_always)
		/* FIXME: we should pass payload address here. */
		ctx->base.callback(&ctx->base,
				   0, 0,
				   ctx->base.callback_data);
1286

1287
	return 1;
1288 1289 1290 1291
}

#define ISO_BUFFER_SIZE (64 * 1024)

1292 1293 1294
static int handle_it_packet(struct context *context,
			    struct descriptor *d,
			    struct descriptor *last)
1295
{
1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308
	struct iso_context *ctx =
		container_of(context, struct iso_context, context);
 
	if (last->transfer_status == 0)
		/* This descriptor isn't done yet, stop iteration. */
		return 0;

	if (le16_to_cpu(last->control) & descriptor_irq_always)
		ctx->base.callback(&ctx->base,
				   0, le16_to_cpu(last->res_count),
				   ctx->base.callback_data);

	return 1;
1309 1310
}

1311 1312
static struct fw_iso_context *
ohci_allocate_iso_context(struct fw_card *card, int type)
1313 1314 1315
{
	struct fw_ohci *ohci = fw_ohci(card);
	struct iso_context *ctx, *list;
1316
	descriptor_callback_t callback;
1317
	u32 *mask, regs;
1318
	unsigned long flags;
1319
	int index, retval;
1320 1321 1322 1323

	if (type == FW_ISO_CONTEXT_TRANSMIT) {
		mask = &ohci->it_context_mask;
		list = ohci->it_context_list;
1324
		callback = handle_it_packet;
1325
	} else {
1326 1327 1328
 		mask = &ohci->ir_context_mask;
 		list = ohci->ir_context_list;
		callback = handle_ir_packet;
1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339
	}

	spin_lock_irqsave(&ohci->lock, flags);
	index = ffs(*mask) - 1;
	if (index >= 0)
		*mask &= ~(1 << index);
	spin_unlock_irqrestore(&ohci->lock, flags);

	if (index < 0)
		return ERR_PTR(-EBUSY);

1340 1341 1342 1343 1344
 	if (type == FW_ISO_CONTEXT_TRANSMIT)
 		regs = OHCI1394_IsoXmitContextBase(index);
 	else
 		regs = OHCI1394_IsoRcvContextBase(index);
 
1345 1346
	ctx = &list[index];
	memset(ctx, 0, sizeof *ctx);
1347
	retval = context_init(&ctx->context, ohci, ISO_BUFFER_SIZE,
1348
			      regs, callback);
1349 1350 1351 1352 1353 1354
	if (retval < 0) {
		spin_lock_irqsave(&ohci->lock, flags);
		*mask |= 1 << index;
		spin_unlock_irqrestore(&ohci->lock, flags);
		return ERR_PTR(retval);
	}
1355 1356 1357 1358

	return &ctx->base;
}

1359
static int ohci_start_iso(struct fw_iso_context *base, s32 cycle)
1360
{
1361 1362
 	struct iso_context *ctx = container_of(base, struct iso_context, base);
	struct fw_ohci *ohci = ctx->context.ohci;
1363 1364 1365
	u32 cycle_match = 0;
	int index;

1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376
	if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
		index = ctx - ohci->it_context_list;
		if (cycle > 0)
			cycle_match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
				(cycle & 0x7fff) << 16;
		
		reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
		reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
		context_run(&ctx->context, cycle_match);
	} else {
		index = ctx - ohci->ir_context_list;
1377

1378 1379 1380 1381 1382 1383
		reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
		reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
		reg_write(ohci, context_match(ctx->context.regs),
			  0xf0000000 | ctx->base.channel);
		context_run(&ctx->context, IR_CONTEXT_DUAL_BUFFER_MODE);
	}
1384 1385 1386 1387

	return 0;
}

1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406
static int ohci_stop_iso(struct fw_iso_context *base)
{
	struct fw_ohci *ohci = fw_ohci(base->card);
 	struct iso_context *ctx = container_of(base, struct iso_context, base);
	int index;

	if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
		index = ctx - ohci->it_context_list;
		reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
	} else {
		index = ctx - ohci->ir_context_list;
		reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
	}
	flush_writes(ohci);
	context_stop(&ctx->context);

	return 0;
}

1407 1408 1409
static void ohci_free_iso_context(struct fw_iso_context *base)
{
	struct fw_ohci *ohci = fw_ohci(base->card);
1410
 	struct iso_context *ctx = container_of(base, struct iso_context, base);
1411 1412 1413
	unsigned long flags;
	int index;

1414 1415 1416
	ohci_stop_iso(base);
	context_release(&ctx->context);

1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430
	spin_lock_irqsave(&ohci->lock, flags);

	if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
		index = ctx - ohci->it_context_list;
		ohci->it_context_mask |= 1 << index;
	} else {
		index = ctx - ohci->ir_context_list;
		ohci->ir_context_mask |= 1 << index;
	}

	spin_unlock_irqrestore(&ohci->lock, flags);
}

static int
1431 1432 1433 1434
ohci_queue_iso_transmit(struct fw_iso_context *base,
			struct fw_iso_packet *packet,
			struct fw_iso_buffer *buffer,
			unsigned long payload)
1435
{
1436 1437
 	struct iso_context *ctx = container_of(base, struct iso_context, base);
	struct descriptor *d, *last, *pd;
1438 1439
	struct fw_iso_packet *p;
	__le32 *header;
1440
	dma_addr_t d_bus, page_bus;
1441 1442
	u32 z, header_z, payload_z, irq;
	u32 payload_index, payload_end_index, next_page_index;
1443
	int page, end_page, i, length, offset;
1444 1445 1446 1447 1448

	/* FIXME: Cycle lost behavior should be configurable: lose
	 * packet, retransmit or terminate.. */

	p = packet;
1449
	payload_index = payload;
1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469

	if (p->skip)
		z = 1;
	else
		z = 2;
	if (p->header_length > 0)
		z++;

	/* Determine the first page the payload isn't contained in. */
	end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
	if (p->payload_length > 0)
		payload_z = end_page - (payload_index >> PAGE_SHIFT);
	else
		payload_z = 0;

	z += payload_z;

	/* Get header size in number of descriptors. */
	header_z = DIV_ROUND_UP(p->header_length, sizeof *d);

1470 1471 1472
	d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
	if (d == NULL)
		return -ENOMEM;
1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503

	if (!p->skip) {
		d[0].control   = cpu_to_le16(descriptor_key_immediate);
		d[0].req_count = cpu_to_le16(8);

		header = (__le32 *) &d[1];
		header[0] = cpu_to_le32(it_header_sy(p->sy) |
					it_header_tag(p->tag) |
					it_header_tcode(TCODE_STREAM_DATA) |
					it_header_channel(ctx->base.channel) |
					it_header_speed(ctx->base.speed));
		header[1] =
			cpu_to_le32(it_header_data_length(p->header_length +
							  p->payload_length));
	}

	if (p->header_length > 0) {
		d[2].req_count    = cpu_to_le16(p->header_length);
		d[2].data_address = cpu_to_le32(d_bus + z * sizeof *d);
		memcpy(&d[z], p->header, p->header_length);
	}

	pd = d + z - payload_z;
	payload_end_index = payload_index + p->payload_length;
	for (i = 0; i < payload_z; i++) {
		page               = payload_index >> PAGE_SHIFT;
		offset             = payload_index & ~PAGE_MASK;
		next_page_index    = (page + 1) << PAGE_SHIFT;
		length             =
			min(next_page_index, payload_end_index) - payload_index;
		pd[i].req_count    = cpu_to_le16(length);
1504 1505 1506

		page_bus = page_private(buffer->pages[page]);
		pd[i].data_address = cpu_to_le32(page_bus + offset);
1507 1508 1509 1510 1511 1512 1513 1514 1515

		payload_index += length;
	}

	if (p->interrupt)
		irq = descriptor_irq_always;
	else
		irq = descriptor_no_irq;

1516
	last = z == 2 ? d : d + z - 1;
1517 1518 1519 1520
	last->control |= cpu_to_le16(descriptor_output_last |
				     descriptor_status |
				     descriptor_branch_always |
				     irq);
1521

1522
	context_append(&ctx->context, d, z, header_z);
1523 1524 1525 1526

	return 0;
}

1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604
static int
ohci_queue_iso_receive(struct fw_iso_context *base,
		       struct fw_iso_packet *packet,
		       struct fw_iso_buffer *buffer,
		       unsigned long payload)
{
	struct iso_context *ctx = container_of(base, struct iso_context, base);
	struct db_descriptor *db = NULL;
	struct descriptor *d;
	struct fw_iso_packet *p;
	dma_addr_t d_bus, page_bus;
	u32 z, header_z, length, rest;
	int page, offset;
 
	/* FIXME: Cycle lost behavior should be configurable: lose
	 * packet, retransmit or terminate.. */

	p = packet;
	z = 2;

	/* Get header size in number of descriptors. */
	header_z = DIV_ROUND_UP(p->header_length, sizeof *d);
	page     = payload >> PAGE_SHIFT;
	offset   = payload & ~PAGE_MASK;
	rest     = p->payload_length;

	/* FIXME: OHCI 1.0 doesn't support dual buffer receive */
	/* FIXME: handle descriptor_wait */
	/* FIXME: make packet-per-buffer/dual-buffer a context option */
	while (rest > 0) {
		d = context_get_descriptors(&ctx->context,
					    z + header_z, &d_bus);
		if (d == NULL)
			return -ENOMEM;

		db = (struct db_descriptor *) d;
		db->control = cpu_to_le16(descriptor_status |
					  descriptor_branch_always);
		db->first_size = cpu_to_le16(ctx->base.header_size);
		db->first_req_count = cpu_to_le16(p->header_length);
		db->second_req_count = cpu_to_le16(p->payload_length);
		db->first_res_count = cpu_to_le16(db->first_req_count);
		db->second_res_count = cpu_to_le16(db->second_req_count);

		db->first_buffer = cpu_to_le32(d_bus + sizeof *db);
		
		if (offset + rest < PAGE_SIZE)
			length = rest;
		else
			length = PAGE_SIZE - offset;

		page_bus = page_private(buffer->pages[page]);
		db->second_buffer = cpu_to_le32(page_bus + offset);

		context_append(&ctx->context, d, z, header_z);
		offset = (offset + length) & ~PAGE_MASK;
		rest -= length;
		page++;
	}

	if (p->interrupt)
		db->control |= cpu_to_le16(descriptor_irq_always);
 
 	return 0;
 }
 
static int
ohci_queue_iso(struct fw_iso_context *base,
	       struct fw_iso_packet *packet,
	       struct fw_iso_buffer *buffer,
	       unsigned long payload)
{
	if (base->type == FW_ISO_CONTEXT_TRANSMIT)
		return ohci_queue_iso_transmit(base, packet, buffer, payload);
	else
		return ohci_queue_iso_receive(base, packet, buffer, payload);
}

1605
static const struct fw_card_driver ohci_driver = {
1606 1607 1608 1609 1610 1611
	.name			= ohci_driver_name,
	.enable			= ohci_enable,
	.update_phy_reg		= ohci_update_phy_reg,
	.set_config_rom		= ohci_set_config_rom,
	.send_request		= ohci_send_request,
	.send_response		= ohci_send_response,
1612
	.cancel_packet		= ohci_cancel_packet,
1613 1614 1615 1616 1617
	.enable_phys_dma	= ohci_enable_phys_dma,

	.allocate_iso_context	= ohci_allocate_iso_context,
	.free_iso_context	= ohci_free_iso_context,
	.queue_iso		= ohci_queue_iso,
1618
	.start_iso		= ohci_start_iso,
1619
	.stop_iso		= ohci_stop_iso,
1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674
};

static int software_reset(struct fw_ohci *ohci)
{
	int i;

	reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);

	for (i = 0; i < OHCI_LOOP_COUNT; i++) {
		if ((reg_read(ohci, OHCI1394_HCControlSet) &
		     OHCI1394_HCControl_softReset) == 0)
			return 0;
		msleep(1);
	}

	return -EBUSY;
}

/* ---------- pci subsystem interface ---------- */

enum {
	CLEANUP_SELF_ID,
	CLEANUP_REGISTERS,
	CLEANUP_IOMEM,
	CLEANUP_DISABLE,
	CLEANUP_PUT_CARD,
};

static int cleanup(struct fw_ohci *ohci, int stage, int code)
{
	struct pci_dev *dev = to_pci_dev(ohci->card.device);

	switch (stage) {
	case CLEANUP_SELF_ID:
		dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
				  ohci->self_id_cpu, ohci->self_id_bus);
	case CLEANUP_REGISTERS:
		kfree(ohci->it_context_list);
		kfree(ohci->ir_context_list);
		pci_iounmap(dev, ohci->registers);
	case CLEANUP_IOMEM:
		pci_release_region(dev, 0);
	case CLEANUP_DISABLE:
		pci_disable_device(dev);
	case CLEANUP_PUT_CARD:
		fw_card_put(&ohci->card);
	}

	return code;
}

static int __devinit
pci_probe(struct pci_dev *dev, const struct pci_device_id *ent)
{
	struct fw_ohci *ohci;
1675
	u32 bus_options, max_receive, link_speed, version;
1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801
	u64 guid;
	int error_code;
	size_t size;

	ohci = kzalloc(sizeof *ohci, GFP_KERNEL);
	if (ohci == NULL) {
		fw_error("Could not malloc fw_ohci data.\n");
		return -ENOMEM;
	}

	fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);

	if (pci_enable_device(dev)) {
		fw_error("Failed to enable OHCI hardware.\n");
		return cleanup(ohci, CLEANUP_PUT_CARD, -ENODEV);
	}

	pci_set_master(dev);
	pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
	pci_set_drvdata(dev, ohci);

	spin_lock_init(&ohci->lock);

	tasklet_init(&ohci->bus_reset_tasklet,
		     bus_reset_tasklet, (unsigned long)ohci);

	if (pci_request_region(dev, 0, ohci_driver_name)) {
		fw_error("MMIO resource unavailable\n");
		return cleanup(ohci, CLEANUP_DISABLE, -EBUSY);
	}

	ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
	if (ohci->registers == NULL) {
		fw_error("Failed to remap registers\n");
		return cleanup(ohci, CLEANUP_IOMEM, -ENXIO);
	}

	if (software_reset(ohci)) {
		fw_error("Failed to reset ohci card.\n");
		return cleanup(ohci, CLEANUP_REGISTERS, -EBUSY);
	}

	/* Now enable LPS, which we need in order to start accessing
	 * most of the registers.  In fact, on some cards (ALI M5251),
	 * accessing registers in the SClk domain without LPS enabled
	 * will lock up the machine.  Wait 50msec to make sure we have
	 * full link enabled.  */
	reg_write(ohci, OHCI1394_HCControlSet,
		  OHCI1394_HCControl_LPS |
		  OHCI1394_HCControl_postedWriteEnable);
	flush_writes(ohci);
	msleep(50);

	reg_write(ohci, OHCI1394_HCControlClear,
		  OHCI1394_HCControl_noByteSwapData);

	reg_write(ohci, OHCI1394_LinkControlSet,
		  OHCI1394_LinkControl_rcvSelfID |
		  OHCI1394_LinkControl_cycleTimerEnable |
		  OHCI1394_LinkControl_cycleMaster);

	ar_context_init(&ohci->ar_request_ctx, ohci,
			OHCI1394_AsReqRcvContextControlSet);

	ar_context_init(&ohci->ar_response_ctx, ohci,
			OHCI1394_AsRspRcvContextControlSet);

	at_context_init(&ohci->at_request_ctx, ohci,
			OHCI1394_AsReqTrContextControlSet);

	at_context_init(&ohci->at_response_ctx, ohci,
			OHCI1394_AsRspTrContextControlSet);

	reg_write(ohci, OHCI1394_ATRetries,
		  OHCI1394_MAX_AT_REQ_RETRIES |
		  (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
		  (OHCI1394_MAX_PHYS_RESP_RETRIES << 8));

	reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
	ohci->it_context_mask = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
	reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
	size = sizeof(struct iso_context) * hweight32(ohci->it_context_mask);
	ohci->it_context_list = kzalloc(size, GFP_KERNEL);

	reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
	ohci->ir_context_mask = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
	reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
	size = sizeof(struct iso_context) * hweight32(ohci->ir_context_mask);
	ohci->ir_context_list = kzalloc(size, GFP_KERNEL);

	if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
		fw_error("Out of memory for it/ir contexts.\n");
		return cleanup(ohci, CLEANUP_REGISTERS, -ENOMEM);
	}

	/* self-id dma buffer allocation */
	ohci->self_id_cpu = dma_alloc_coherent(ohci->card.device,
					       SELF_ID_BUF_SIZE,
					       &ohci->self_id_bus,
					       GFP_KERNEL);
	if (ohci->self_id_cpu == NULL) {
		fw_error("Out of memory for self ID buffer.\n");
		return cleanup(ohci, CLEANUP_REGISTERS, -ENOMEM);
	}

	reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
	reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
	reg_write(ohci, OHCI1394_IntEventClear, ~0);
	reg_write(ohci, OHCI1394_IntMaskClear, ~0);
	reg_write(ohci, OHCI1394_IntMaskSet,
		  OHCI1394_selfIDComplete |
		  OHCI1394_RQPkt | OHCI1394_RSPkt |
		  OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
		  OHCI1394_isochRx | OHCI1394_isochTx |
		  OHCI1394_masterIntEnable);

	bus_options = reg_read(ohci, OHCI1394_BusOptions);
	max_receive = (bus_options >> 12) & 0xf;
	link_speed = bus_options & 0x7;
	guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
		reg_read(ohci, OHCI1394_GUIDLo);

	error_code = fw_card_add(&ohci->card, max_receive, link_speed, guid);
	if (error_code < 0)
		return cleanup(ohci, CLEANUP_SELF_ID, error_code);

1802 1803 1804
	version = reg_read(ohci, OHCI1394_Version);
	fw_notify("Added fw-ohci device %s, OHCI version %x.%x\n",
		  dev->dev.bus_id, (version >> 16) & 0xff, version & 0xff);
1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856

	return 0;
}

static void pci_remove(struct pci_dev *dev)
{
	struct fw_ohci *ohci;

	ohci = pci_get_drvdata(dev);
	reg_write(ohci, OHCI1394_IntMaskClear, OHCI1394_masterIntEnable);
	fw_core_remove_card(&ohci->card);

	/* FIXME: Fail all pending packets here, now that the upper
	 * layers can't queue any more. */

	software_reset(ohci);
	free_irq(dev->irq, ohci);
	cleanup(ohci, CLEANUP_SELF_ID, 0);

	fw_notify("Removed fw-ohci device.\n");
}

static struct pci_device_id pci_table[] = {
	{ PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
	{ }
};

MODULE_DEVICE_TABLE(pci, pci_table);

static struct pci_driver fw_ohci_pci_driver = {
	.name		= ohci_driver_name,
	.id_table	= pci_table,
	.probe		= pci_probe,
	.remove		= pci_remove,
};

MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
MODULE_LICENSE("GPL");

static int __init fw_ohci_init(void)
{
	return pci_register_driver(&fw_ohci_pci_driver);
}

static void __exit fw_ohci_cleanup(void)
{
	pci_unregister_driver(&fw_ohci_pci_driver);
}

module_init(fw_ohci_init);
module_exit(fw_ohci_cleanup);